ULTIMATE TIC TAC TOE. Serfőző Péter

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "ULTIMATE TIC TAC TOE. Serfőző Péter"

Átírás

1 ULTIMATE TIC TAC TOE Serfőző Péter

2 ULTIMATE TIC TAC TOE Amőba alapján Két változat, az első könnyű, a második nehéz A játék keletkezéséről nincsenek információk, de a játékelmélet elkezdett vele foglalkozni Számos verseny gépi játékosoknak A következőekben vizsgált változat megoldatlan

3 SZABÁLYOK Két játékos: X és O A pálya 9 táblát tartalmaz, mérete 3x3 Egy tábla mérete is 3x3 Egy játékos nyer, ha 3 szomszédos táblában nyer (vízszintesen, függőlegesen, átlósan), ekkor a játéknak vége Természetesen döntetlen is lehetséges

4 SZABÁLYOK Fontosabb a játék megnyerése, mint egy mini-játék megnyerése Az amőbához hasonlóan a táblákhoz tartozó nyerési esélyek különböznek Itt már lényeges szerepet kap az intelligencia!

5 SZABÁLYOK Extra szabály: ha a játékos az i. mezőre lépett, akkor a következő játékosnak az i. táblában kell lépnie Mi történik, ha a soron következő tábla megtelt, vagy már elfoglalta egy játékos? -> 2 változat

6 SZABÁLYOK 1. verzió 2. verzió A következő játékosnak kötelező a soron következő táblában lépnie, ha már megnyert tábla is (ha lehetséges) Ez az eredeti, de gyorsan megváltoztatták Megoldott! Az első játékosnak az ellenfél játékstílusától függetlenül létezik nyerő stratégiája A következő játékosan nem kötelező a soron következő táblában lépnie, ha már megnyert tábla De dönthet úgy, hogy igen! (ha lehetséges) Ez megoldatlan! Továbbiakban ezzel foglalkozunk

7

8 KOMPLEXITÁS 9 tábla, 81 mező X a kezdő Legjobb eset: 9 darab X, 8 darab O Legrosszabb eset: döntetlen(?) 81 lépéssel d: depth, b: branching factor Hagyjuk el az első kört (81 lehetséges lépés) és a wildcardokat, így maximum 9 elágazás egy szinten Átlagosan 5 elágazás (b) -> ~10 13, ha a d=17 Átlagosan 5 elágazás (b) -> ~10 63, ha a d=81 (sakk: ~10 50, Go: ~ ) Reménytelenül nagy a keresési tér (elhagyva lényeges részeket!)

9 THE AI GAMES Egy keretrendszer Különböző kétszemélyes játékok Gépi játékosok páronként játszanak egymás ellen Első hely -> 1024$ Go, Texas Hold Em, Tetris, Connect4 Különböző programozási nyelvek Egységes felület minden játékhoz, nyelvtől független szabályok GUI is rendelkezésre áll Az engine open source, tesztelhető lokálisan a gépi játékos

10 THE AI GAMES Időlimit (nyelv?) Forráskód limit Mindenkinek azonos erőforrás Tiltott minden külső API, internet elérés, adatbázis szerver, stb Tilos bármilyen hack, játékosokról, stílusukról, módszereikről információ elmentése és felhasználása Természetesen játék közben lehet, és ajánlott is

11 THE AI GAMES Java Kommunikáció: standard I/O Timebank: 10sec, minden lépés után 500ms hozzáadva Ha nincs időn belül válasz, akkor vége és vesztett a játékos Szintén bármilyen exception esetén Látható, hogy megfelelő algoritmusokra és nagyon optimális kódra van szükség!

12 ALKALMAZHATÓ MÓDSZEREK Természetesen a lehetséges játékállások tárolása nagyon hasznos (AlphaGo: 30 millió), de most nincs rá lehetőség, gépi tanulás Minimax algoritmus, α-β vágás (exponenciálisan növekednek a csúcsok számai, Deep Blue: 12 lépés) Monte Carlo fakeresés (AlphaGo egy nagyon lényeges része) Értékelő függvények, heurisztikák, mohó módszerek Bitboard

13 BITBOARD Egy adatszerkezet, tipikusan táblajátékokhoz (bitset, bitmap) Alapvetően sakkhoz (12 x 64 bit) Lényegében egy bitvektor, meghatároz egy állapotot Sok állapot a memóriában, kevés CPU művelet (elvileg!) Lekérdezések, tesztek logikai operátorokkal Nehéz a fejlesztés és a debug 81 x 2 bit, a következő tábla sorszámához és a soron következő játékoshoz bit Vagy mindkét játékosnak bit? 21 byte elég lenne (Java integer 4 byte) Nem csak a tár a lényeg: forgatások, mintafelismerés, lekérdezések gyorsítása, stb + a mi esetünkben az idő a kritikus!

14 BITBOARD P P P P P P P P whitepawns = Két állás ekvivalens? (whitepawns == whitepawns2), (whitepawns!= whitepawns2) Leütötték már? (whitepawns == 0), (!whitepawns), (whitepawns) Melyek az üthető bábuk? Hogy néz ki a teljes tábla? Melyek az üres négyzetek? Forgatások, mintafelismerés

15 BITBOARD Gyorsítás Kisebb tár De nehéz a tervezés és az implementáció is. Összetett és jól átgondolt formulákra van szükség a komolyabb vizsgálatokhoz, mintafelismeréshez Sakkhoz már komoly, optimalizált API-k állnak rendelkezésre Egy olyan reprezentációt kell terveznünk, mely tömör formában írja le a játékot és lényegében képesek vagyunk mindent logikai operátorokkal megoldani

16 HEURISZTIKÁK 1. Csak a soron következő táblát vizsgáljuk 1. Ha a lépés nyerő, akkor meglépjük 2. Ha ilyen nem volt, akkor blokkoljuk az ellenfél kettesét 3. Ha ilyen sem volt akkor a mezők értéke alapján lépünk: a lehető legnagyobb eséllyel nyerő mezőt választjuk Buta heurisztika, figyelmen kívül hagyja a játék valódi célját

17 HEURISZTIKÁK 2. Vegyük figyelembe a táblákat is A táblák súlyai: mint a mezők esetén, a középsőnek 4, a sarkoknak 3, az oldalsóknak 2 Az eljárás visszatér egy pontszámmal: súlyozott összege a tábláknak, egy tábla értéke: 1. Ha a táblát mi nyertük, akkor az értéke Ha az ellenfél, akkor Ha döntetlen, akkor 0 4. Egyébként az általunk birtokolt mezők súlyainak összegéből kivonjuk az ellenfél által birtokolt mezők súlyainak összegét (üres 0) Ez már jobbnak tűnik, mint az előző, bár nem preferálja a teljes játék megnyerését

18 HEURISZTIKÁK 3. Szükséges kiértékelni a már eldöntött táblákat is? Az előzőekhez és itt is alkalmazzunk egy kezdeti vizsgálatot: ha megnyertük a teljes játékot akkor maximális pontszám és vége. Ha az ellenfél nyert, akkor negatív minimum és vége, döntetlen esetén 0. (döntetlen esetén nem feltétlenül lesz vége) Most a teljes pályát kiértékeljük: először határozzuk meg csak a játszható táblák értékeit és ott is nyerési esélyekkel. Ezeket az értékeket adjuk össze. Ezután meghatározzuk a pálya értékét, mintha egy tábla lenne. Ehhez tetszőleges > 1 konstans súlyt rendelünk és hozzáadjuk az előbb kiszámított összeget. Miért kell súlyozni? A játék megnyerése a preferáltabb, nem egy tábla elfoglalása.

19 MINIMAX A teljes játékfa kiértékelése nem lehetséges O(b d ) Ezért szükséges értékelő függvények bevezetése és a mélység korlátozása Alfa-béta vágás Használhatjuk az előző heurisztikákat

20 MINIMAX Tehát rögzítsünk egy mélységet, pl. d = 4 Használjuk a legjobbnak gondolt heurisztikus értékelést Alfa-béta vágás, vagy egyéb Megfelelő kódolás Transzpozíciós táblák: ugyanazon játékállás különböző utakon elérhető (ismétlődő állapotok: transzpozíciók). Mindet értékeljük ki? Használjunk hash-táblákat és mentsük el az értékeket. -> különböző stratégiák Sakkban akár 2x mélység érhető el

21 MONTE CARLO FAKERESÉS Véletlenszerűen generálunk az adott állásból lépéseket egészen addig, míg a játéknak nincs vége Tehát k random játék Válasszuk a számunkra legígéretesebb csúcsot Jól használható véges játékok esetén Döntetlen? Dobjunk fel egy érmét! Nyilván, ha k->inf akkor optimális Meglepő, hogy milyen jól teljesít! (AlphaGO) Természetesen rengetek stratégia létezik, a fenti a pure módszer

22 EREDMÉNY Minimax + alfa-béta + heurisztika3 Az engine még beta Terv: transzpozíciós tábla, Monte Carlo, jobb heurisztikák (bitboard ) Ötlet: lehetne hibrid stratégiákat alkalmazni? Talán az idő függvényében, aktuális nyerési esélyektől, körök számától függően más-más algoritmusokat használni? Esetleg bizonyos állásban több időt felhasználni a rendelkezésre álló időből? (tudatosan)

23 VERSENYEK Akit érdekelnek a gépi játékosokkal kapcsolatos versenyek:

24 FORRÁSOK oc.pdf

25 KÖSZÖNÖM A FIGYELMET!

Kétszemélyes játékok

Kétszemélyes játékok Mesterséges Intelligencia alapjai, gyakorlat Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék 2010 / udapest Kétszemélyes teljes információjú játékok két

Részletesebben

V. Kétszemélyes játékok

V. Kétszemélyes játékok Teljes információjú, véges, zéró összegű kétszemélyes játékok V. Kétszemélyes játékok Két játékos lép felváltva adott szabályok szerint. Mindkét játékos ismeri a maga és az ellenfele összes választási

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Keresés ellenséges környezetben Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Ellenség

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus hálók

Részletesebben

Mesterséges intelligencia 3. laborgyakorlat

Mesterséges intelligencia 3. laborgyakorlat Mesterséges intelligencia 3. laborgyakorlat Kétszemélyes játékok - Minimax A következő típusú játékok megoldásával foglalkozunk: (a) kétszemélyes, (b) determinisztikus, (c) zéróösszegű, (d) teljes információjú.

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363 1/33 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 110/33 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus hálók

Részletesebben

SZOFTVERES SZEMLÉLTETÉS A MESTERSÉGES INTELLIGENCIA OKTATÁSÁBAN _ Jeszenszky Péter Debreceni Egyetem, Informatikai Kar jeszenszky.peter@inf.unideb.

SZOFTVERES SZEMLÉLTETÉS A MESTERSÉGES INTELLIGENCIA OKTATÁSÁBAN _ Jeszenszky Péter Debreceni Egyetem, Informatikai Kar jeszenszky.peter@inf.unideb. SZOFTVERES SZEMLÉLTETÉS A MESTERSÉGES INTELLIGENCIA OKTATÁSÁBAN _ Jeszenszky Péter Debreceni Egyetem, Informatikai Kar jeszenszky.peter@inf.unideb.hu Mesterséges intelligencia oktatás a DE Informatikai

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363 1/6 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 46/6 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció stratégiák Szemantikus hálók

Részletesebben

Mesterséges intelligencia 2. laborgyakorlat

Mesterséges intelligencia 2. laborgyakorlat Mesterséges intelligencia 2. laborgyakorlat Keresési módszerek A legtöbb feladatot meg lehet határozni keresési feladatként: egy ún. állapottérben, amely tartalmazza az összes lehetséges állapotot fogjuk

Részletesebben

Számítógép és programozás 2

Számítógép és programozás 2 Számítógép és programozás 2 6. Előadás Problémaosztályok http://digitus.itk.ppke.hu/~flugi/ Emlékeztető A specifikáció egy előfeltételből és utófeltételből álló leírása a feladatnak Léteznek olyan feladatok,

Részletesebben

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t Ellenőrző kérdések 2. Kis dolgozat kérdései 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t 37. Ha t szintű indexet használunk,

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Problémamegoldás kereséssel ha sötétben tapogatózunk Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade

Részletesebben

Problémamegoldás kereséssel. Mesterséges intelligencia március 7.

Problémamegoldás kereséssel. Mesterséges intelligencia március 7. Problémamegoldás kereséssel Mesterséges intelligencia 2014. március 7. Bevezetés Problémamegoldó ágens Kívánt állapotba vezető cselekvéseket keres Probléma megfogalmazása Megoldás megfogalmazása Keresési

Részletesebben

Megerősítéses tanulás 7. előadás

Megerősítéses tanulás 7. előadás Megerősítéses tanulás 7. előadás 1 Ismétlés: TD becslés s t -ben stratégia szerint lépek! a t, r t, s t+1 TD becslés: tulajdonképpen ezt mintavételezzük: 2 Akcióértékelő függvény számolása TD-vel még mindig

Részletesebben

Nyerni jó. 7.-8. évfolyam

Nyerni jó. 7.-8. évfolyam Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. : 27-317 - 077 /fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör Nyerni

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 007/008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció i stratégiák Szemantikus hálók / Keretrendszerek

Részletesebben

Intelligens Rendszerek Elmélete IRE 4/32/1

Intelligens Rendszerek Elmélete IRE 4/32/1 Intelligens Rendszerek Elmélete 4 IRE 4/32/1 Problémamegoldás kereséssel http://nik.uni-obuda.hu/mobil IRE 4/32/2 Egyszerű lények intelligenciája? http://www.youtube.com/watch?v=tlo2n3ymcxw&nr=1 IRE 4/32/3

Részletesebben

Mátrixjátékok tiszta nyeregponttal

Mátrixjátékok tiszta nyeregponttal 1 Mátrixjátékok tiszta nyeregponttal 1. Példa. Két játékos Aladár és Bendegúz rendelkeznek egy-egy tetraéderrel, melyek lapjaira rendre az 1, 2, 3, 4 számokat írták. Egy megadott jelre egyszerre felmutatják

Részletesebben

A programozás alapjai előadás. Amiről szólesz: A tárgy címe: A programozás alapjai

A programozás alapjai előadás. Amiről szólesz: A tárgy címe: A programozás alapjai A programozás alapjai 1 1. előadás Híradástechnikai Tanszék Amiről szólesz: A tárgy címe: A programozás alapjai A számítógép részegységei, alacsony- és magasszintű programnyelvek, az imperatív programozási

Részletesebben

Mesterséges Intelligencia I. kötelező program

Mesterséges Intelligencia I. kötelező program 1. Feladat kiírás Mesterséges Intelligencia I. kötelező program A feladat az Othello (más neveken Reversi, Fonákollós, Színcserélő) játékot játszó ágens írása. A játékot egyik oldalán világos, a másikon

Részletesebben

Dr. habil. Maróti György

Dr. habil. Maróti György infokommunikációs technológiák III.8. MÓDSZER KIDOLGOZÁSA ALGORITMUSOK ÁTÜLTETÉSÉRE KIS SZÁMÍTÁSI TELJESÍTMÉNYŰ ESZKÖZÖKBŐL ÁLLÓ NÉPES HETEROGÉN INFRASTRUKTÚRA Dr. habil. Maróti György maroti@dcs.uni-pannon.hu

Részletesebben

GEOMATECH TANULMÁNYI VERSENYEK 2015. ÁPRILIS

GEOMATECH TANULMÁNYI VERSENYEK 2015. ÁPRILIS GEOMATECH TANULMÁNYI VERSENYEK 2015. ÁPRILIS Eddig nehezebb típusú feladatokkal dolgoztunk. Most, hogy közeledik a tavaszi szünet, játékra hívunk benneteket! Kétszemélyes játékokat fogunk játszani és elemezni.

Részletesebben

Rasmusen, Eric: Games and Information (Third Edition, Blackwell, 2001)

Rasmusen, Eric: Games and Information (Third Edition, Blackwell, 2001) Játékelmélet szociológusoknak J-1 Bevezetés a játékelméletbe szociológusok számára Ajánlott irodalom: Mészáros József: Játékelmélet (Gondolat, 2003) Filep László: Játékelmélet (Filum, 2001) Csontos László

Részletesebben

Verem Verem mutató 01

Verem Verem mutató 01 A számítástechnikában a verem (stack) egy speciális adatszerkezet, amiben csak kétféle művelet van. A berak (push) egy elemet a verembe rak, a kivesz (pop) egy elemet elvesz a verem tetejéről. Mindig az

Részletesebben

( 1) i 2 i. megbízhatóságú a levont következtetése? A matematikai statisztika eszközeivel értékelje a kapott eredményeket!

( 1) i 2 i. megbízhatóságú a levont következtetése? A matematikai statisztika eszközeivel értékelje a kapott eredményeket! 1. Név:......................... Egy szabályos pénzérmét feldobunk, ha az els½o FEJ az i-edik dobásra jön, akkor a játékos nyereménye ( 1) i i forint. Vizsgálja szimulációval a játékot, különböz½o induló

Részletesebben

Összefoglalás és gyakorlás

Összefoglalás és gyakorlás Összefoglalás és gyakorlás High Speed Networks Laboratory 1 / 28 Hálózatok jellemző paraméterei High Speed Networks Laboratory 2 / 28 Evolúció alkotta adatbázis Önszerveződő adatbázis = (struktúra, lekérdezés)

Részletesebben

Algoritmusok bonyolultsága

Algoritmusok bonyolultsága Algoritmusok bonyolultsága 5. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 27 Gazdaságos faváz Kruskal-algoritmus Joseph Kruskal (1928 2010) Legyen V = {v 1, v 2,..., v n }, E = {e 1, e 2,...,

Részletesebben

KÉTSZEMÉLYES JÁTÉKOK

KÉTSZEMÉLYES JÁTÉKOK Debreceni Egyetem Informatika Kar KÉTSZEMÉLYES JÁTÉKOK Témavezető: Mecsei Zoltán Egyetemi tanársegéd Készítette: Briz Ádám Programtervező informatikus Bsc Debrecen 2009 TARTALOMJEGYZÉK 1. BEVEZETÉS...

Részletesebben

SZAKDOLGOZAT. Hucker Dávid

SZAKDOLGOZAT. Hucker Dávid SZAKDOLGOZAT Hucker Dávid Debrecen 2010 Debreceni Egyetem Informatikai Kar Kétszemélyes játékok fejlesztése Java-ban Témavezető: Jeszenszky Péter Egyetemi adjunktus Készítette: Hucker Dávid Programtervező

Részletesebben

Számítógép és programozás 2

Számítógép és programozás 2 Számítógép és programozás 2 11. Előadás Halmazkeresések, dinamikus programozás http://digitus.itk.ppke.hu/~flugi/ A keresési feladat megoldása Legyen a lehetséges megoldások halmaza M ciklus { X legyen

Részletesebben

Amortizációs költségelemzés

Amortizációs költségelemzés Amortizációs költségelemzés Amennyiben műveleteknek egy M 1,...,M m sorozatának a futási idejét akarjuk meghatározni, akkor egy lehetőség, hogy külön-külön minden egyes művelet futási idejét kifejezzük

Részletesebben

MŰSZAKKIOSZTÁSI PROBLÉMÁK A KÖZÖSSÉGI KÖZLEKEDÉSBEN

MŰSZAKKIOSZTÁSI PROBLÉMÁK A KÖZÖSSÉGI KÖZLEKEDÉSBEN infokommunikációs technológiák MŰSZAKKIOSZTÁSI PROBLÉMÁK A KÖZÖSSÉGI KÖZLEKEDÉSBEN Készítette: Árgilán Viktor, Dr. Balogh János, Dr. Békési József, Dávid Balázs, Hajdu László, Dr. Galambos Gábor, Dr. Krész

Részletesebben

Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése

Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése Dr. Kallós Gábor 2014 2015 1 Az Ordó jelölés Azt mondjuk, hogy az f(n) függvény eleme az Ordó(g(n)) halmaznak, ha van olyan c konstans (c

Részletesebben

Készítette: Trosztel Mátyás Konzulens: Hajós Gergely

Készítette: Trosztel Mátyás Konzulens: Hajós Gergely Készítette: Trosztel Mátyás Konzulens: Hajós Gergely Monte Carlo Markov Chain MCMC során egy megfelelően konstruált Markov-lánc segítségével mintákat generálunk. Ezek eloszlása követi a céleloszlást. A

Részletesebben

KOPI. KOPI Online Plágiumkereső és Információs Portál DSD. Pataki Máté MTA SZTAKI. Elosztott Rendszerek Osztály

KOPI. KOPI Online Plágiumkereső és Információs Portál DSD. Pataki Máté MTA SZTAKI. Elosztott Rendszerek Osztály KOPI Rendszerek Osztály KOPI Online Plágiumkereső és Információs Portál Pataki Máté MA SZAKI émakörök Bemutatkozás A KOPI projekt célja A rendszer működése A KOPI portál bemutatása ovábbfejlesztési lehetőségek

Részletesebben

Kereső algoritmusok a diszkrét optimalizálás problémájához

Kereső algoritmusok a diszkrét optimalizálás problémájához Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások

Részletesebben

Bevezetés a programozásba. 5. Előadás: Tömbök

Bevezetés a programozásba. 5. Előadás: Tömbök Bevezetés a programozásba 5. Előadás: Tömbök ISMÉTLÉS Specifikáció Előfeltétel: milyen körülmények között követelünk helyes működést Utófeltétel: mit várunk a kimenettől, mi az összefüggés a kimenet és

Részletesebben

Forrás: Nagylaci (http://www.jatektan.hu)

Forrás: Nagylaci (http://www.jatektan.hu) A Sakk az a legismertebb olyan táblás játék, amit egyre kevesebben ismernek. Ezernyi változata létezik. Sokan kedvelik, de még többen félre húzódnak, ha a lépés-szabályokra kérdezünk. 7-8 éves kor előtt

Részletesebben

Játékelmélet. előadás jegyzet. Kátai-Urbán Kamilla. Tudnivalók Honlap: http://www.math.u-szeged.hu/~katai Vizsga: írásbeli.

Játékelmélet. előadás jegyzet. Kátai-Urbán Kamilla. Tudnivalók Honlap: http://www.math.u-szeged.hu/~katai Vizsga: írásbeli. Játékelmélet Kátai-Urbán Kamilla Tudnivalók Honlap: http://www.math.u-szeged.hu/~katai Vizsga: írásbeli Irodalom előadás jegyzet J. D. Williams: Játékelmélet Filep László: Játékelmélet 1. Előadás Történeti

Részletesebben

Megerősítéses tanulás 2. előadás

Megerősítéses tanulás 2. előadás Megerősítéses tanulás 2. előadás 1 Technikai dolgok Email szityu@eotvoscollegium.hu Annai levlista http://nipglab04.inf.elte.hu/cgi-bin/mailman/listinfo/annai/ Olvasnivaló: Sutton, Barto: Reinforcement

Részletesebben

Kereső algoritmusok a diszkrét optimalizálás problémájához

Kereső algoritmusok a diszkrét optimalizálás problémájához Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások

Részletesebben

Számítógépek felépítése

Számítógépek felépítése Számítógépek felépítése Emil Vatai 2014-2015 Emil Vatai Számítógépek felépítése 2014-2015 1 / 14 Outline 1 Alap fogalmak Bit, Byte, Word 2 Számítógép részei A processzor részei Processzor architektúrák

Részletesebben

JÁTÉKELMÉLETTEL KAPCSOLATOS FELADATOK

JÁTÉKELMÉLETTEL KAPCSOLATOS FELADATOK 1.Feladat JÁTÉKELMÉLETTEL KAPCSOLATOS FELADATOK Az alábbi kifizetőmátrixok három különböző kétszemélyes konstans összegű játék sorjátékosának eredményeit mutatják: 2 1 0 2 2 4 2 3 2 4 0 0 1 0 1 5 3 4 3

Részletesebben

A szimplex tábla. p. 1

A szimplex tábla. p. 1 A szimplex tábla Végződtetés: optimalitás és nem korlátos megoldások A szimplex algoritmus lépései A degeneráció fogalma Komplexitás (elméleti és gyakorlati) A szimplex tábla Példák megoldása a szimplex

Részletesebben

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31. Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert

Részletesebben

8 bivaly 2 tigris ellen

8 bivaly 2 tigris ellen 8 bivaly 2 tigris ellen A felrakott kezdőállásból induló versenyben a tigrisek nyernek akkor, ha már csak 3 bivaly maradt a táblán. A bivalyok nyernek, ha a tigriseket beszorítják és azok már nem tudnak

Részletesebben

5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus.

5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus. 5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus. Optimalis feszítőfák Egy összefüggő, irányítatlan

Részletesebben

Algoritmuselmélet. Mélységi keresés és alkalmazásai. Katona Gyula Y.

Algoritmuselmélet. Mélységi keresés és alkalmazásai. Katona Gyula Y. Algoritmuselmélet Mélységi keresés és alkalmazásai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 9. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet

Részletesebben

INFORMATIKAI ALAPISMERETEK

INFORMATIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2005. május 20. INFORMATIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Megoldási útmutató I.

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Problémamegoldás kereséssel - lokális információval Pataki Béla Bolgár Bence BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Rugó tervezése

Részletesebben

Visszalépéses keresés

Visszalépéses keresés Visszalépéses keresés Backtracking előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Alapvető működése Továbbfejlesztési

Részletesebben

... S n. A párhuzamos programszerkezet két vagy több folyamatot tartalmaz, melyek egymással közös változó segítségével kommunikálnak.

... S n. A párhuzamos programszerkezet két vagy több folyamatot tartalmaz, melyek egymással közös változó segítségével kommunikálnak. Párhuzamos programok Legyen S parbegin S 1... S n parend; program. A párhuzamos programszerkezet két vagy több folyamatot tartalmaz, melyek egymással közös változó segítségével kommunikálnak. Folyamat

Részletesebben

Mohó algoritmusok. Példa:

Mohó algoritmusok. Példa: Mohó algoritmusok Optimalizálási probléma megoldására szolgáló algoritmus sokszor olyan lépések sorozatából áll, ahol minden lépésben adott halmazból választhatunk. Ezt gyakran dinamikus programozás alapján

Részletesebben

Kris Burm játéka. Tartozékok

Kris Burm játéka. Tartozékok Kris Burm játéka Én legyek erősebb, vagy az ellenfelemet gyengítsem? Ezt a húzós kérdést kell feltenni magadnak minden egyes körödben. Tartozékok - 1 játéktábla - 30 fehér korong: 6 Tzaar, 9 Tzarnő és

Részletesebben

Véletlenszám generátorok és tesztelésük HORVÁTH BÁLINT

Véletlenszám generátorok és tesztelésük HORVÁTH BÁLINT Véletlenszám generátorok és tesztelésük HORVÁTH BÁLINT Mi a véletlen? Determinisztikus vs. Véletlen esemény? Véletlenszám: számok sorozata, ahol véletlenszerűen követik egymást az elemek Pszeudo-véletlenszám

Részletesebben

A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel

A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel Majzik István Micskei Zoltán BME Méréstechnika és Információs Rendszerek Tanszék 1 Modell alapú fejlesztési folyamat (részlet)

Részletesebben

Egy francia-sakk feladvány: Világos lép, és döntetlen az alsó sor az 1. sor!

Egy francia-sakk feladvány: Világos lép, és döntetlen az alsó sor az 1. sor! Leüttetni az összes bábud! A játszmát a rendes sakkal ellentétben sötét kezdi. Döntetlen itt is lehetséges, például két különböző színű futó esetén. A királynak ebben a játékban nincsen kitüntetett szerepe

Részletesebben

Érdekes informatika feladatok

Érdekes informatika feladatok A keres,kkel és adatbázissal ellátott lengyel honlap számos díjat kapott: Spirit of Delphi '98, Delphi Community Award, Poland on the Internet, Golden Bagel Award stb. Az itt megtalálható komponenseket

Részletesebben

Google App Engine az Oktatásban 1.0. ügyvezető MattaKis Consulting http://www.mattakis.com

Google App Engine az Oktatásban 1.0. ügyvezető MattaKis Consulting http://www.mattakis.com Google App Engine az Oktatásban Kis 1.0 Gergely ügyvezető MattaKis Consulting http://www.mattakis.com Bemutatkozás 1998-2002 között LME aktivista 2004-2007 Siemens PSE mobiltelefon szoftverfejlesztés,

Részletesebben

2. Visszalépéses stratégia

2. Visszalépéses stratégia 2. Visszalépéses stratégia A visszalépéses keres rendszer olyan KR, amely globális munkaterülete: út a startcsúcsból az aktuális csúcsba (ezen kívül a még ki nem próbált élek nyilvántartása) keresés szabályai:

Részletesebben

Programozási nyelvek Java

Programozási nyelvek Java Programozási nyelvek Java 11.gyakorlat Operációsrendszertől függő tulajdonságok PATH elválasztó Unix ":" Windows ";" final String PATH_SEPARATOR = File.pathSeparator; Ugyanaz, csak karakterkent final char

Részletesebben

Adatszerkezetek 2. Dr. Iványi Péter

Adatszerkezetek 2. Dr. Iványi Péter Adatszerkezetek 2. Dr. Iványi Péter 1 Hash tábla A bináris fáknál O(log n) a legjobb eset a keresésre. Ha valamilyen közvetlen címzést használunk, akkor akár O(1) is elérhető. A hash tábla a tömb általánosításaként

Részletesebben

Készítsen egy adatbázist (egytáblásat) egy számítástechnikai tanfolyam résztvevőiről. Az adattábla rögzítse a következőket:

Készítsen egy adatbázist (egytáblásat) egy számítástechnikai tanfolyam résztvevőiről. Az adattábla rögzítse a következőket: 1. feladat A. Készítsen egy adatbázist (egytáblásat) egy számítástechnikai tanfolyam résztvevőiről. Az adattábla rögzítse a következőket: Tanuló neve - szöveges mező Csoport azonosítója - szöveges mező

Részletesebben

Matematikai alapok. Dr. Iványi Péter

Matematikai alapok. Dr. Iványi Péter Matematikai alapok Dr. Iványi Péter Számok A leggyakrabban használt adat típus Egész számok Valós számok Bináris számábrázolás Kettes számrendszer Bitek: 0 és 1 Byte: 8 bit 128 64 32 16 8 4 2 1 1 1 1 1

Részletesebben

Specifikáció alapú teszttervezési módszerek

Specifikáció alapú teszttervezési módszerek Szoftverellenőrzési technikák Specifikáció alapú teszttervezési módszerek Majzik István, Micskei Zoltán http://www.inf.mit.bme.hu/ 1 Klasszikus tesztelési feladat A tesztelendő program beolvas 3 egész

Részletesebben

Komplex feliratok készítése Maplex-el. Beke Dániel

Komplex feliratok készítése Maplex-el. Beke Dániel Komplex feliratok készítése Maplex-el Beke Dániel Áttekintés Milyen típusú feliratok vannak az ArcGIS-ben? - Labeling - Maplex Label Engine vs. Annotation Felirat pozíciója Felirat elhelyezési stratégiák

Részletesebben

JSF alkalmazások teljesítményhangolása JMeter és dynatrace segítségével

JSF alkalmazások teljesítményhangolása JMeter és dynatrace segítségével JSF alkalmazások teljesítményhangolása JMeter és dynatrace segítségével Bakai Balázs bakaibalazs@gmail.com http://seamplex.blogspot.hu 2013. október 9. Miről lesz szó? A JSF működése (röviden ) Terheléses

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Adatbázisműveletek és lekérdezésoptimalizálás

Adatbázisműveletek és lekérdezésoptimalizálás és lekérdezésoptimalizálás Nagyméretű adathalmazok kezelése Kazi Sándor 2010. február 24. Kazi Sándor (kazi@cs.bme.hu) és lekérdezésoptimalizálás 1 / 39 1 Bevezetés 2 3 4 5 6 7 Kazi Sándor (kazi@cs.bme.hu)

Részletesebben

Specifikáció alapú teszttervezési módszerek

Specifikáció alapú teszttervezési módszerek Szoftverellenőrzési technikák Specifikáció alapú teszttervezési módszerek Majzik István, Micskei Zoltán http://www.inf.mit.bme.hu/ 1 Klasszikus tesztelési feladat A tesztelendő program beolvas 3 egész

Részletesebben

Gépi tanulás és Mintafelismerés

Gépi tanulás és Mintafelismerés Gépi tanulás és Mintafelismerés jegyzet Csató Lehel Matematika-Informatika Tanszék BabesBolyai Tudományegyetem, Kolozsvár 2007 Aug. 20 2 1. fejezet Bevezet A mesterséges intelligencia azon módszereit,

Részletesebben

Space Invaders Dokumenta cio

Space Invaders Dokumenta cio Space Invaders Dokumenta cio 0. Tartalomjegyzék 0. Tartalomjegyzék... 1 1. Követelmény feltárás... 2 1.1. Célkitűzés, projektindító dokumentum... 2 1.2. Szakterületi tartalomjegyzék... 2 1.3. Használatieset-modell,

Részletesebben

angolul: greedy algorithms, románul: algoritmi greedy

angolul: greedy algorithms, románul: algoritmi greedy Mohó algoritmusok angolul: greedy algorithms, románul: algoritmi greedy 1. feladat. Gazdaságos telefonhálózat építése Bizonyos városok között lehet direkt telefonkapcsolatot kiépíteni, pl. x és y város

Részletesebben

3 3 3 3 3 3 0 ----------------------- 0 3 3 3 3 3 3

3 3 3 3 3 3 0 ----------------------- 0 3 3 3 3 3 3 Nagy feladat: Készítse el a programot saját tudása és ötletei alapján. Semmilyen grafikát (OpenGL, DirectX, stb) NE használjon. Minden grafikát csak szövegesen jelenítsen meg. Működőképes programot kell

Részletesebben

PlanetFight. Minden játékosnak van valamennyi űrhajója, amikkel képesek elfoglalni még fel nem fedezett, neutrális bolygókat.

PlanetFight. Minden játékosnak van valamennyi űrhajója, amikkel képesek elfoglalni még fel nem fedezett, neutrális bolygókat. PlanetFight Készítők: A játékot készítette Róth Gergő (roth@dcs.uni-pannon.hu) és Orosz Ákos (orosz@dcs.unipannon.hu). Esetleges kérdésekkel hozzájuk lehet fordulni. Rövid leírás: A játék célja minél több

Részletesebben

Korlátozás és szétválasztás elve. ADAGOLO adattípus

Korlátozás és szétválasztás elve. ADAGOLO adattípus Korlátozás és szétválasztás elve ADAGOLO adattípus Értékhalmaz: E Adagolo : A E Műveletek: A : Adagolo, x : E {Igaz} Letesit(A) {A = /0} {A = A} Megszuntet(A) {Igaz} {A = A} Uresit(A) {A = /0} {A = A}

Részletesebben

Forrás: Nagylaci (http://www.jatektan.hu)

Forrás: Nagylaci (http://www.jatektan.hu) Felületesen és nem nagyon eltúlozva, ide lehetne sorolni az összes általánosabban ismert stratégiai(***) táblás játékot: a Malmot, a Dámát, a Sakkot, ) A rendszerezés során mégis csak azokat a megmaradókat

Részletesebben

Web harvesztelés. Automatikus módszerekkel

Web harvesztelés. Automatikus módszerekkel Országos Széchényi Könyvtár Miről lesz szó? Mi is az a web harvesztelés? Mire és hol használjuk? Miért hasznos? Saját megvalósításaink Mi a web harvesztelés? Interneten található weboldalak begyűjtése,

Részletesebben

Debreceni Egyetem Informatikai Kar. Kétszemélyes logikai játékok

Debreceni Egyetem Informatikai Kar. Kétszemélyes logikai játékok Debreceni Egyetem Informatikai Kar Kétszemélyes logikai játékok Témavezető: Mecsei Zoltán Egyetemi tanársegéd Készítette: Szabó Dániel András Programtervező Informatikus Debrecen 21 Ezúton szeretnék köszönetet

Részletesebben

Isola (1-1 db sötét és világos király-bábu és max. 45 db blokk-bábu) A lépések két fázisból állnak: (1.) bármelyik oldalszomszédos mezőre áttoljuk a

Isola (1-1 db sötét és világos király-bábu és max. 45 db blokk-bábu) A lépések két fázisból állnak: (1.) bármelyik oldalszomszédos mezőre áttoljuk a Isola (1-1 db sötét és világos király-bábu és max. 45 db blokk-bábu) A lépések két fázisból állnak: (1.) bármelyik oldalszomszédos mezőre áttoljuk a saját királyunkat (egyszersmind mutatva, hogy még tudunk

Részletesebben

A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel

A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel A modellellenőrzés érdekes alkalmazása: Tesztgenerálás modellellenőrzővel Majzik István Micskei Zoltán BME Méréstechnika és Információs Rendszerek Tanszék 1 Modell alapú fejlesztési folyamat (részlet)

Részletesebben

1. Lineáris differenciaegyenletek

1. Lineáris differenciaegyenletek Lineáris differenciaegyenletek Tekintsük az alábbi egyenletet: f(n) af(n ) + bf(n + ), (K < n < N) f(k) d, f(n) d Keressük a megoldást f(n) α n alakban Így kajuk a következőket: α n aα n + bα n+ α a +

Részletesebben

Alkalmazott modul III 3. feladatcsoport. Közös követelmények:

Alkalmazott modul III 3. feladatcsoport. Közös követelmények: Alkalmazott modul III 3. feladatcsoport Közös követelmények: A program játékfelületét dinamikusan kell létrehozni futási időben. Egyes feladatoknál különböző méretű játékmezők létrehozását kell megvalósítani,

Részletesebben

Adatszerkezetek Adatszerkezet fogalma. Az értékhalmaz struktúrája

Adatszerkezetek Adatszerkezet fogalma. Az értékhalmaz struktúrája Adatszerkezetek Összetett adattípus Meghatározói: A felvehető értékek halmaza Az értékhalmaz struktúrája Az ábrázolás módja Műveletei Adatszerkezet fogalma Direkt szorzat Minden eleme a T i halmazokból

Részletesebben

INFORMATIKAI ALAPISMERETEK

INFORMATIKAI ALAPISMERETEK Informatikai alapismeretek középszint 0621 ÉRETTSÉGI VIZSGA 2007. május 25. INFORMATIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

Téradatbázisok használata QGIS-ből A DB kezelő modul 2.2 verzió

Téradatbázisok használata QGIS-ből A DB kezelő modul 2.2 verzió Téradatbázisok használata QGIS-ből A DB kezelő modul 2.2 verzió A QGIS programból számos téradatbázis adatait elérhetjük, ezek közül két nyílt forráskódúval foglalkozunk, a PostGIS és a SpatiaLite adatbázis

Részletesebben

Bankkártya elfogadás a kereskedelmi POS terminálokon

Bankkártya elfogadás a kereskedelmi POS terminálokon Bankkártya elfogadás a kereskedelmi POS terminálokon Költségcsökkentés egy integrált megoldással 2004. február 18. Analóg-Digitál Kft. 1 Banki POS terminál elemei Kliens gép processzor, memória, kijelző,

Részletesebben

í ű í í á ó á ő ő á Í ő ő ö ő í á ű á í á á í ó ú á ö í ó á ó á á ő Í ő á ó á Ú ő ő á í á ő ő á ő ö É Á ó á ű í í á ó á ő ő á ű ö í í ű á ó ó ü ő á ó ő ű ó á í ű á ö í ó í ű á ó í í ó ü É ő É Á ó á ü É

Részletesebben

Adatszerkezetek és algoritmusok

Adatszerkezetek és algoritmusok 2009. november 13. Ismétlés El z órai anyagok áttekintése Ismétlés Specikáció Típusok, kifejezések, m veletek, adatok ábrázolása, típusabsztakció Vezérlési szerkezetek Függvények, paraméterátadás, rekurziók

Részletesebben

GONDOLKODÁS ÉS NYELV

GONDOLKODÁS ÉS NYELV GONDOLKODÁS ÉS NYELV GONDOLKODÁS A. Propozicionális B. Képzeleti Propozicionális gondolkodás Propozíció kijelentés, amely egy tényállásra vonatkozik, meghatározott viszonyban összekombinált fogalmakból

Részletesebben

Választó lekérdezés létrehozása

Választó lekérdezés létrehozása Választó lekérdezés létrehozása A választó lekérdezés egy vagy több rekordforrásból származó adatokat jelenít meg. A választó lekérdezések a táblák, illetve az adatbázis tartalmát nem változtatják meg,

Részletesebben

meteformes szabaly 2004/08/31 09:21 Page 1 szerzôk: Michel & Robert Lyons Játékleírás 2004 Huch&Friends D Günzburg licence: FoxMind Games, BV.

meteformes szabaly 2004/08/31 09:21 Page 1 szerzôk: Michel & Robert Lyons Játékleírás 2004 Huch&Friends D Günzburg licence: FoxMind Games, BV. meteformes szabaly 2004/08/31 09:21 Page 1 szerzôk: Michel & Robert Lyons Játékleírás 2004 Huch&Friends D-89312 Günzburg licence: FoxMind Games, BV. meteformes szabaly 2004/08/31 09:21 Page 2 LOGEO Egy

Részletesebben

1. AZ MI FOGALMA. I. Bevezetés. Tulajdonságok. Kezdet ELIZA. Első szakasz (60-as évek)

1. AZ MI FOGALMA. I. Bevezetés. Tulajdonságok. Kezdet ELIZA. Első szakasz (60-as évek) 1. AZ MI FOGALMA I. Bevezetés Nincs pontos definíció Emberi gondolkodás számítógépes reprodukálása Intelligens viselkedésű programok Az ember számára is nehéz problémák számítógépes megoldása Intellektuálisan

Részletesebben

N-személyes játékok. Bársony Alex

N-személyes játékok. Bársony Alex N-személyes játékok Bársony Alex Előszó Neumann János és Oskar Morgenstern Racionális osztozkodás törvényeinek tanulmányozása Játékosok egy tetszőleges csoportjának ereje Nem 3 személyes sakk Definíció

Részletesebben

Adatszerkezetek 7a. Dr. IványiPéter

Adatszerkezetek 7a. Dr. IványiPéter Adatszerkezetek 7a. Dr. IványiPéter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér () Nincsennek hurkok!!! 2 Bináris fák Azokat a

Részletesebben

Egyszerű programozási tételek

Egyszerű programozási tételek Egyszerű programozási tételek 2. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. szeptember 15. Sergyán (OE NIK) AAO 02 2011. szeptember 15.

Részletesebben

S A M U R A I. by Reiner Knizia

S A M U R A I. by Reiner Knizia S A M U R A I 2-4 játékos számára 10 év felett by Reiner Knizia Tartozékok: 3 x 13 db figura - Sisak, Buddha, Rizsmező 80 db jelzőlapka 20 db mind a négy színben 4 db japán karakteres paraván Játéktábla

Részletesebben

Csercsik Dávid ITK PPKE. Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 4. ea 1 / 21

Csercsik Dávid ITK PPKE. Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 4. ea 1 / 21 Játékelmélet és hálózati alkalmazásai 4. ea Csercsik Dávid ITK PPKE Csercsik Dávid (ITK PPKE) Játékelmélet és hálózati alkalmazásai 4. ea 1 / 21 1 Nash bargaining 2 Kooperatív játékok TU CFF játékok tulajdonságai

Részletesebben

Garry Kasparov a Deep Blue ellen

Garry Kasparov a Deep Blue ellen Döntéstámogató rendszerek 2013/14 1.félév Az IBM Deep Blue Sakkszámítógép Készítette: 2013.11.18. Tartalomjegyzék 1. Bevezetés... 3 2. Rendszer konfiguráció... 3 3. A sakk-chip felépítése... 4 Lépés generátor...

Részletesebben