Dr. habil. Maróti György

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Dr. habil. Maróti György"

Átírás

1 infokommunikációs technológiák III.8. MÓDSZER KIDOLGOZÁSA ALGORITMUSOK ÁTÜLTETÉSÉRE KIS SZÁMÍTÁSI TELJESÍTMÉNYŰ ESZKÖZÖKBŐL ÁLLÓ NÉPES HETEROGÉN INFRASTRUKTÚRA Dr. habil. Maróti György

2 A CSAPAT Munkatárs Feladat Szint Imreh Csanád Vinkó Tamás Dwornik Marek 1. A lokális kereső és a korlátozás és szétválasztáson alapul algoritmusok párhuzamosítási technikáinak áttekintése 2. Új lokális kereső és/vagy korlátozás és szétválasztáson alapuló párhuzamosított algoritmus fejlesztése heterogén rendszerre 1. A genetikus és egyéb populáció alapú algoritmusok párhuzamosítási technikáinak áttekintése 2. Új genetikus és/vagy egyéb populáció alapú párhuzamosított algoritmus fejlesztése heterogén rendszerre 1. Boinc rendszer megismerése. A rendszer felkészítése a tervezett algoritmusok implementálására. 100% 80% 100% 80% 100% 2. A fejlesztett algoritmusok implementálása 20% 2

3 KORLÁTOZÁS ÉS SZÉTVÁLASZTÁS 1. 3

4 KORLÁTOZÁS ÉS SZÉTVÁLASZTÁS 2. 4

5 KORLÁTOZÁS ÉS SZÉTVÁLASZTÁS 3. Nem a teljes megoldástért járjuk be, hanem bizonyos részfákat kizárunk. Azokat a részfákat zárhatjuk ki, amelyekre egy korlátozó függvény segítségével (ami alsó korlátot ad az ottani megoldások értékére) tudjuk, hogy nincs bennük jobb megoldás az eddig ismert legjobbnál. Egy részfa bejárása a gyökér megvizsgálása után az alatta levő szinten elhelyezkedő részfák bejárására vezetődik vissza. 5

6 KORLÁTOZÁS ÉS SZÉTVÁLASZTÁS PÁHUZAMOSÍTÁSA Különböző részfákat egyszerre is bejárhatunk párhuzamos szálakon. A korlátozó függvény számításához is használhatunk párhuzamosított algoritmusokat. Amennyiben párhuzamosan járjuk be a részfákat, akkor alapvető kérdés miként osztjuk ki a feladatokat a párhuzamos szálak egy listából választanak vagy minden szálnak saját listája van. 6

7 GENETIKUS ALGORITMUS generáció = 0 2. kezdő populáció létrehozása Véletlen kiválasztás 3. mindaddig, amíg a megállási feltétel nem teljesül (a) generáció = generáció + 1 (b) fitnessz kiszámítása (c) szelekció Szelekciós operátor kiválaszt néhány egyedet (d) keresztezés(psz) A kiválasztott egyedekből keresztezéssel új populáció (e) mutáció(pm) Véletlenszerűen javít vagy ront a populáción 7

8 GENETIKUS ALGORITMUS 2. A genetikus algoritmus minden iterációs lépésben megoldások egy populációját tartja nyilván. Egy populációból elsőként ki kell választani mely elemeket használjuk a következő populáció elkészítésére, általában egy fitnesz függvény alapján. Kereszteződéssel új utódokat képzünk. Ezeket esetleg megváltoztatjuk a mutáció operátorral. Az így kapott elemekből és esetleg néhány régebbi elemből képezzük az új populációt. 8

9 GENETIKUS TÍPUSÚ ALGORITMUSOK PÁRHUZAMOSÍTÁSA Fitnesz függvény párhuzamos számítása. Mutációk párhuzamos számolása. A sziget modellben különböző alpopulációk vannak, amelyek között lehet elemeket cserélni, és ezeket kezelhetjük párhuzamosan. Lehetséges különböző genetikus szabályok alapján futó algoritmusokat futtatni az egyes alpopulációkon. 9

10 FŐ CÉLKITŰZÉSEK Nehéz feladatok megoldása során, a kifejlesztett algoritmusok párhuzamosítása és több processzoron vagy eszközön való futtatása jelentő hatékonyság növeléssel járhat. Általában homogén rendszereket vizsgálnak, ahol egyforma eszközökön hasonló algoritmusok futnak. A téma célja az, hogy olyan algoritmusokat fejlesszünk, melyek figyelembe veszik a párhuzamosan dolgozó eszközök heterogenitását. 12

11 ÚJ HIBRID ALGORITMUS A különböző szálakon más típusú eljárások futnak. Egyszerre futtatunk egy egzakt megoldó korlátozás és szétválasztás alapú algoritmust és egy heurisztikát. A heurisztika által kapott megoldás használható a korlátozásnál a megoldástér hatékonyabb vágására. A korlátozás és szétválasztásnál kapott aktuális megoldásokból indíthat keresést egy lokális kereső szál. 14

12 A BOINC RENDSZER Az algoritmusok tesztelésére a Boinc rendszert tervezzük használni. Ez egy Berkeley-n fejlesztett szerver-kliens alapú nyílt forráskódú rendszer. A szoftverrendszer segítségével összeköthetőek különböző eszközök (például számítógépek és androidos telefonok) így a rendszer jól használható heterogén számítási eszközökre tervezett algoritmusok elemzésére. 15

13 EREDMÉNYEK, TERVEK Ami elkészült B&B Szakirodalom áttekintése, összefoglalása (13 oldal) GA Szakirodalom áttekintése, összefoglalása (13 oldal) A BOINC rendszer ismertetése (10 oldal) Ami folyamatban van Algoritmusok kidolgozása január 20 Implementáció január 31 További feladatok Szimulációk, tesztek futtatása Futási eredmények kiértékelése, dokumentálása 16

14 infokommunikációs technológiák KÖSZÖNÖM A FIGYELMET!

Intelligens Rendszerek Elmélete. Párhuzamos keresés genetikus algoritmusokkal

Intelligens Rendszerek Elmélete. Párhuzamos keresés genetikus algoritmusokkal Intelligens Rendszerek Elmélete Dr. Kutor László Párhuzamos keresés genetikus algoritmusokkal http://mobil.nik.bmf.hu/tantargyak/ire.html login: ire jelszó: IRE0 IRE / A természet általános kereső algoritmusa:

Részletesebben

Számítógépes döntéstámogatás. Genetikus algoritmusok

Számítógépes döntéstámogatás. Genetikus algoritmusok BLSZM-10 p. 1/18 Számítógépes döntéstámogatás Genetikus algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu BLSZM-10 p. 2/18 Bevezetés 1950-60-as

Részletesebben

Intelligens Rendszerek Elmélete. Párhuzamos keresés genetikus algoritmusokkal. A genetikus algoritmus működése. Az élet információ tárolói

Intelligens Rendszerek Elmélete. Párhuzamos keresés genetikus algoritmusokkal. A genetikus algoritmus működése. Az élet információ tárolói Intelligens Rendszerek Elmélete dr. Kutor László Párhuzamos keresés genetikus algoritmusokkal http://mobil.nik.bmf.hu/tantargyak/ire.html login: ire jelszó: IRE07 IRE 5/ Természetes és mesterséges genetikus

Részletesebben

V. Kétszemélyes játékok

V. Kétszemélyes játékok Teljes információjú, véges, zéró összegű kétszemélyes játékok V. Kétszemélyes játékok Két játékos lép felváltva adott szabályok szerint. Mindkét játékos ismeri a maga és az ellenfele összes választási

Részletesebben

MŰSZAKKIOSZTÁSI PROBLÉMÁK A KÖZÖSSÉGI KÖZLEKEDÉSBEN

MŰSZAKKIOSZTÁSI PROBLÉMÁK A KÖZÖSSÉGI KÖZLEKEDÉSBEN infokommunikációs technológiák MŰSZAKKIOSZTÁSI PROBLÉMÁK A KÖZÖSSÉGI KÖZLEKEDÉSBEN Készítette: Árgilán Viktor, Dr. Balogh János, Dr. Békési József, Dávid Balázs, Hajdu László, Dr. Galambos Gábor, Dr. Krész

Részletesebben

I.3 ELOSZTOTT FOLYAMATSZINTÉZIS BERTÓK BOTOND. Témavezetői beszámoló

I.3 ELOSZTOTT FOLYAMATSZINTÉZIS BERTÓK BOTOND. Témavezetői beszámoló infokommunikációs technológiák infokommunikációs technológiák I.3 ELOSZTOTT FOLYAMATSZINTÉZIS BERTÓK BOTOND Témavezetői beszámoló Pannon Egyetem 2015. január 7. A KUTATÁSI TERÜLET RÖVID MEGFOGALMAZÁSA

Részletesebben

Osztott jáva programok automatikus tesztelése. Matkó Imre BBTE, Kolozsvár Informatika szak, IV. Év 2007 január

Osztott jáva programok automatikus tesztelése. Matkó Imre BBTE, Kolozsvár Informatika szak, IV. Év 2007 január Osztott jáva programok automatikus tesztelése Matkó Imre BBTE, Kolozsvár Informatika szak, IV. Év 2007 január Osztott alkalmazások Automatikus tesztelés Tesztelés heurisztikus zaj keltés Tesztelés genetikus

Részletesebben

értékel függvény: rátermettségi függvény (tness function)

értékel függvény: rátermettségi függvény (tness function) Genetikus algoritmusok globális optimalizálás sok lehetséges megoldás közül keressük a legjobbat értékel függvény: rátermettségi függvény (tness function) populáció kiválasztjuk a legrátermettebb egyedeket

Részletesebben

Tartalomjegyzék. Tartalomjegyzék... 3 Előszó... 9

Tartalomjegyzék. Tartalomjegyzék... 3 Előszó... 9 ... 3 Előszó... 9 I. Rész: Evolúciós számítások technikái, módszerei...11 1. Bevezetés... 13 1.1 Evolúciós számítások... 13 1.2 Evolúciós algoritmus alapfogalmak... 14 1.3 EC alkalmazásokról általában...

Részletesebben

Adatszerkezetek I. 7. előadás. (Horváth Gyula anyagai felhasználásával)

Adatszerkezetek I. 7. előadás. (Horváth Gyula anyagai felhasználásával) Adatszerkezetek I. 7. előadás (Horváth Gyula anyagai felhasználásával) Bináris fa A fa (bináris fa) rekurzív adatszerkezet: BinFa:= Fa := ÜresFa Rekord(Elem,BinFa,BinFa) ÜresFa Rekord(Elem,Fák) 2/37 Bináris

Részletesebben

Bevezetés a kvantum informatikába és kommunikációba Féléves házi feladat (2013/2014. tavasz)

Bevezetés a kvantum informatikába és kommunikációba Féléves házi feladat (2013/2014. tavasz) Bevezetés a kvantum informatikába és kommunikációba Féléves házi feladat (2013/2014. tavasz) A házi feladatokkal kapcsolatos követelményekről Kapcsolódó határidők: választás: 6. oktatási hét csütörtöki

Részletesebben

Általános algoritmustervezési módszerek

Általános algoritmustervezési módszerek Általános algoritmustervezési módszerek Ebben a részben arra mutatunk példát, hogy miként használhatóak olyan általános algoritmustervezési módszerek mint a dinamikus programozás és a korlátozás és szétválasztás

Részletesebben

HÁLÓZATSZERŰEN MŰKÖDŐ LOGISZTIKÁVAL INTEGRÁLT TERMELÉSÜTEMEZÉS MEGOLDÁSA GENETIKUS ALGORITMUS ALKALMAZÁSÁVAL. OLÁH Béla

HÁLÓZATSZERŰEN MŰKÖDŐ LOGISZTIKÁVAL INTEGRÁLT TERMELÉSÜTEMEZÉS MEGOLDÁSA GENETIKUS ALGORITMUS ALKALMAZÁSÁVAL. OLÁH Béla HÁLÓZATSZERŰEN MŰKÖDŐ LOGISZTIKÁVAL INTEGRÁLT TERMELÉSÜTEMEZÉS MEGOLDÁSA GENETIKUS ALGORITMUS ALKALMAZÁSÁVAL OLÁH Béla A TERMELÉSÜTEMEZÉS MEGFOGALMAZÁSA Flow shop: adott n számú termék, melyeken m számú

Részletesebben

Amortizációs költségelemzés

Amortizációs költségelemzés Amortizációs költségelemzés Amennyiben műveleteknek egy M 1,...,M m sorozatának a futási idejét akarjuk meghatározni, akkor egy lehetőség, hogy külön-külön minden egyes művelet futási idejét kifejezzük

Részletesebben

Kereső algoritmusok a diszkrét optimalizálás problémájához

Kereső algoritmusok a diszkrét optimalizálás problémájához Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások

Részletesebben

Korlátozás és szétválasztás elve. ADAGOLO adattípus

Korlátozás és szétválasztás elve. ADAGOLO adattípus Korlátozás és szétválasztás elve ADAGOLO adattípus Értékhalmaz: E Adagolo : A E Műveletek: A : Adagolo, x : E {Igaz} Letesit(A) {A = /0} {A = A} Megszuntet(A) {Igaz} {A = A} Uresit(A) {A = /0} {A = A}

Részletesebben

A genetikus algoritmus, mint a részletes modell többszempontú és többérdekű "optimálásának" általános és robosztus módszere

A genetikus algoritmus, mint a részletes modell többszempontú és többérdekű optimálásának általános és robosztus módszere A genetikus algoritmus, mint a részletes modell többszempontú és többérdekű "optimálásának" általános és robosztus módszere Kaposvári Egyetem, Informatika Tanszék I. Kaposvári Gazdaságtudományi Konferencia

Részletesebben

Kézikönyv. Szelekciós jegyzék 2.

Kézikönyv. Szelekciós jegyzék 2. Kézikönyv Szelekciós jegyzék 2. Tartalomjegyzék 1 SZÁMLA (ÉRTÉKESÍTÉS) - ÜRES... 4 2 ABAS-ERP MASZKINFÓ... 6 3 SZÁMLA (ÉRTÉKESÍTÉS) - ÜRES... 7 4 ABAS-ERP UTASÍTÁS ÁTTEKINTÉS... 8 5 PARANCS KERESÉSE...

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Problémamegoldás kereséssel - lokális információval Pataki Béla Bolgár Bence BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Rugó tervezése

Részletesebben

WEB2GRID: Desktop Grid a Web 2.0 szolgálatában

WEB2GRID: Desktop Grid a Web 2.0 szolgálatában WEB2GRID: Desktop Grid a Web 2.0 szolgálatában MAROSI Attila Csaba MTA SZTAKI atisu@sztaki.hu 2011.07.26. Áttekintés Bevezető Grid rendszerekkel szembeni elvarások változása Web 2.0 rendszerek főbb jellemzői

Részletesebben

Kereső algoritmusok a diszkrét optimalizálás problémájához

Kereső algoritmusok a diszkrét optimalizálás problémájához Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások

Részletesebben

Számítógép és programozás 2

Számítógép és programozás 2 Számítógép és programozás 2 11. Előadás Halmazkeresések, dinamikus programozás http://digitus.itk.ppke.hu/~flugi/ A keresési feladat megoldása Legyen a lehetséges megoldások halmaza M ciklus { X legyen

Részletesebben

FELHŐ ALAPÚ HELYMEGHATÁROZÓ SZOLGÁLTATÁS KIFEJLESZTÉSE MOBIL ESZKÖZÖK SZÁMÁRA

FELHŐ ALAPÚ HELYMEGHATÁROZÓ SZOLGÁLTATÁS KIFEJLESZTÉSE MOBIL ESZKÖZÖK SZÁMÁRA infokommunikációs technológiák FELHŐ ALAPÚ HELYMEGHATÁROZÓ SZOLGÁLTATÁS KIFEJLESZTÉSE MOBIL ESZKÖZÖK SZÁMÁRA BEVEZETÉS Probléma felvetés beltéri vs. kültéri lokalizáció elterjedtsége már több mint egy

Részletesebben

Az MTA Cloud projekt MTA Cloud projektzáró június 28.

Az MTA Cloud projekt MTA Cloud projektzáró június 28. Projektzáró Az MTA Cloud projekt MTA Cloud projektzáró 2016. június 28. Pető Gábor peto.gabor@wigner.mta.hu MTA Cloud projektvezető MTA WIGNER FK Adatközpont vezető Kellett egy ötlet Az ötlet 2013 Előzmények:

Részletesebben

A Riemann-Siegel zeta függvény kiugró értékeinek keresése. A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma

A Riemann-Siegel zeta függvény kiugró értékeinek keresése. A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma A Riemann-Siegel zeta függvény kiugró értékeinek keresése A matematikai egyik legnehezebb problémája, avagy a prímszámok misztériuma 2013 A probléma fontossága és hatása a hétköznapi életre A prímszámok

Részletesebben

IV.4. FELHŐ ALAPÚ BIZTONSÁGOS ADATTÁROLÁSI MÓDSZER ÉS TESZTKÖRNYEZET KIDOLGOZÁSA

IV.4. FELHŐ ALAPÚ BIZTONSÁGOS ADATTÁROLÁSI MÓDSZER ÉS TESZTKÖRNYEZET KIDOLGOZÁSA infokommunikációs technológiák IV.4. FELHŐ ALAPÚ BIZTONSÁGOS ADATTÁROLÁSI MÓDSZER ÉS TESZTKÖRNYEZET KIDOLGOZÁSA BEVEZETÉS Mit jelent, hogy működik a felhő alapú adattárolás? Az adatainkat interneten elérhető

Részletesebben

EGYÜTTMŰKÖDŐ ÉS VERSENGŐ ERŐFORRÁSOK SZERVEZÉSÉT TÁMOGATÓ ÁGENS RENDSZER KIDOLGOZÁSA

EGYÜTTMŰKÖDŐ ÉS VERSENGŐ ERŐFORRÁSOK SZERVEZÉSÉT TÁMOGATÓ ÁGENS RENDSZER KIDOLGOZÁSA infokommunikációs technológiák EGYÜTTMŰKÖDŐ ÉS VERSENGŐ ERŐFORRÁSOK SZERVEZÉSÉT TÁMOGATÓ ÁGENS RENDSZER KIDOLGOZÁSA Témavezető: Tarczali Tünde Témavezetői beszámoló 2015. január 7. TÉMAKÖR Felhő technológián

Részletesebben

Intelligens partner rendszer virtuális kórházi osztály megvalósításához

Intelligens partner rendszer virtuális kórházi osztály megvalósításához Intelligens partner rendszer virtuális kórházi osztály megvalósításához 1. Célkitűzések A pályázat célja egy virtuális immunológiai osztály kialakítása, amelynek segítségével a különböző betegségekkel

Részletesebben

A felhőről általában. Kacsuk Péter MTA SZTAKI

A felhőről általában. Kacsuk Péter MTA SZTAKI A felhőről általában Kacsuk Péter MTA SZTAKI Miért fontos a felhő? (I) Problémák, ha az infrastruktúra még nem létezik Az ötletek megvalósításához szükséges idő Kutatás a felhők előtt 1. Van egy jó ötlet

Részletesebben

Tartalomjegyzék. Köszönetnyilvánítás. 1. Az alapok 1

Tartalomjegyzék. Köszönetnyilvánítás. 1. Az alapok 1 Köszönetnyilvánítás Bevezetés Kinek szól a könyv? Elvárt előismeretek A könyv témája A könyv használata A megközelítés alapelvei Törekedjünk az egyszerűségre! Ne optimalizáljunk előre! Felhasználói interfészek

Részletesebben

Podoski Péter és Zabb László

Podoski Péter és Zabb László Podoski Péter és Zabb László Bevezető Algoritmus-vizualizáció témakörében végeztünk kutatásokat és fejlesztéseket Felmértük a manapság ismert eszközök előnyeit és hiányosságait Kidolgoztunk egy saját megjelenítő

Részletesebben

III.6. MAP REDUCE ELVŰ ELOSZTOTT FELDOLGOZÁSI ALGORITMUSOK ÉS TESZTKÖRNYEZET KIDOLGOZÁSA ADATBÁNYÁSZATI FELADATOK VÉGREHAJTÁSÁHOZ

III.6. MAP REDUCE ELVŰ ELOSZTOTT FELDOLGOZÁSI ALGORITMUSOK ÉS TESZTKÖRNYEZET KIDOLGOZÁSA ADATBÁNYÁSZATI FELADATOK VÉGREHAJTÁSÁHOZ infokommunikációs technológiák III.6. MAP REDUCE ELVŰ ELOSZTOTT FELDOLGOZÁSI ALGORITMUSOK ÉS TESZTKÖRNYEZET KIDOLGOZÁSA ADATBÁNYÁSZATI FELADATOK VÉGREHAJTÁSÁHOZ KECSKEMÉTI ANNA KUN JEROMOS KÜRT Zrt. KUTATÁSI

Részletesebben

alkalmazásfejlesztő környezete

alkalmazásfejlesztő környezete A HunGrid infrastruktúra és alkalmazásfejlesztő környezete Gergely Sipos sipos@sztaki.hu MTA SZTAKI Hungarian Academy of Sciences www.lpds.sztaki.hu www.eu-egee.org egee EGEE-II INFSO-RI-031688 Tartalom

Részletesebben

Genetikus algoritmusok az L- rendszereken alapuló. Werner Ágnes

Genetikus algoritmusok az L- rendszereken alapuló. Werner Ágnes Genetikus algoritmusok az L- rendszereken alapuló növénymodellezésben Werner Ágnes Motiváció: Procedurális modellek a növénymodellezésben: sok tervezési munka a felhasználónak ismerni kell az eljárás részleteit

Részletesebben

Számítógép és programozás 2

Számítógép és programozás 2 Számítógép és programozás 2 6. Előadás Problémaosztályok http://digitus.itk.ppke.hu/~flugi/ Emlékeztető A specifikáció egy előfeltételből és utófeltételből álló leírása a feladatnak Léteznek olyan feladatok,

Részletesebben

Modell alapú tesztelés: célok és lehetőségek

Modell alapú tesztelés: célok és lehetőségek Szoftvertesztelés 2016 Konferencia Modell alapú tesztelés: célok és lehetőségek Dr. Micskei Zoltán Budapesti Műszaki és Gazdaságtudományi Egyetem Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika

Részletesebben

Algoritmuselmélet. 2-3 fák. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 8.

Algoritmuselmélet. 2-3 fák. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 8. Algoritmuselmélet 2-3 fák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 8. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet 8. előadás

Részletesebben

Megerősítéses tanulás 7. előadás

Megerősítéses tanulás 7. előadás Megerősítéses tanulás 7. előadás 1 Ismétlés: TD becslés s t -ben stratégia szerint lépek! a t, r t, s t+1 TD becslés: tulajdonképpen ezt mintavételezzük: 2 Akcióértékelő függvény számolása TD-vel még mindig

Részletesebben

Rakov(34125)=34152. Rakov(12543)=13245. Rakov(14532)=15234. Rakov(54321)=-

Rakov(34125)=34152. Rakov(12543)=13245. Rakov(14532)=15234. Rakov(54321)=- Kombinatorikus feladatok Ládák: Egy vállalat udvarán egyetlen sorban vannak az elszállításra várakozó üres ládák. Három különböző típusú láda van, jelölje ezeket A, B és C. Minden láda a felső oldalán

Részletesebben

HEFOP/2005/ Felkészülés a kompetenciaalapú

HEFOP/2005/ Felkészülés a kompetenciaalapú HEFOP/2005/3.1.3. Felkészülés a kompetenciaalapú oktatásra Esélyegyenlőség biztosítása a kompetencia-alapú tudást megalapozó oktatás bevezetésével a Ferencvárosban A projekt célja A Ferencvárosi Általános

Részletesebben

Egyszerű számlázó program kezdő vállalkozások részére

Egyszerű számlázó program kezdő vállalkozások részére PENCART ZRT. Egyszerű számlázó program kezdő vállalkozások részére Használati útmutató Tartalomjegyzék Bevezetés... 2 1. A számlázó program telepítése, regisztrálása, rendszerkövetelmények... 3 2. Funkciók

Részletesebben

Bevezetés a párhuzamos programozási koncepciókba

Bevezetés a párhuzamos programozási koncepciókba Bevezetés a párhuzamos programozási koncepciókba Kacsuk Péter és Dózsa Gábor MTA SZTAKI Párhuzamos és Elosztott Rendszerek Laboratórium E-mail: kacsuk@sztaki.hu Web: www.lpds.sztaki.hu Programozási modellek

Részletesebben

Hatékony műszaki megoldások lineáris és lekérhető médiaszolgáltatások esetén Ajánlástervezet ismertetése

Hatékony műszaki megoldások lineáris és lekérhető médiaszolgáltatások esetén Ajánlástervezet ismertetése Hatékony műszaki megoldások lineáris és lekérhető médiaszolgáltatások esetén Ajánlástervezet ismertetése Tarcsai Zoltán Szabályozási szakértő Nemzeti Média- és Hírközlési Hatóság Infomédia szabályozási

Részletesebben

Heurisztikák algoritmusok ütemezési problémákra. 1. Állapottér és a megoldások kezelése

Heurisztikák algoritmusok ütemezési problémákra. 1. Állapottér és a megoldások kezelése Heurisztikák algoritmusok ütemezési problémákra 1. Állapottér és a megoldások kezelése Számos nehéz ütemezési probléma esetén az exponenciális idejű optimális megoldást adó algoritmusok rendkívül nagy

Részletesebben

A Hunglish Korpusz és szótár

A Hunglish Korpusz és szótár A Hunglish Korpusz és szótár Halácsy Péter 1, Kornai András 1, Németh László 1, Sass Bálint 2 Varga Dániel 1, Váradi Tamás 1 BME Média Oktató és Kutató Központ 1111 Budapest, Stoczek u. 2 {hp,nemeth,daniel}@mokk.bme.hu

Részletesebben

ELEMZŐ KAPACITÁS FEJLESZTÉSE, MÓDSZERTANI FEJLESZTÉS MEGVALÓSÍTÁSA

ELEMZŐ KAPACITÁS FEJLESZTÉSE, MÓDSZERTANI FEJLESZTÉS MEGVALÓSÍTÁSA TÁMOP-2.4.8-12/1-2012-0001 A munkahelyi egészség és biztonság fejlesztése, a munkaügyi ellenőrzés fejlesztése ELEMZŐ KAPACITÁS FEJLESZTÉSE, MÓDSZERTANI FEJLESZTÉS MEGVALÓSÍTÁSA Előadó: Szentesi Fekete

Részletesebben

A mobil nyelvtanár megvalósításának folyamata

A mobil nyelvtanár megvalósításának folyamata A mobil nyelvtanár megvalósításának folyamata Esettanulmány Havasi Zoltán MobilPort K2. Web: www.click4skill.hu E- mail: info@click4skill.com Mit tapasztaltunk az oktatás területén? A csináld magad (do

Részletesebben

Kézikönyv. Szelekciós jegyzék létrehozása

Kézikönyv. Szelekciós jegyzék létrehozása Kézikönyv Szelekciós jegyzék létrehozása Tartalomjegyzék 1 OBJEKTUM KIVÁLASZTÁS - VEVŐ MEGJELENÍTÉS... 4 2 VEVŐ - ÜRES... 6 3 ABAS-ERP MASZKINFÓ... 8 4 VEVŐ - ÜRES... 9 5 ABAS-ERP MASZKINFÓ... 11 6 VEVŐ

Részletesebben

Retek Mihály. A kutatás a TÁMOP-4.2.1/B-09/1/KMR projekt keretében folyt a BCE Jövőkutatás Tanszékén.

Retek Mihály. A kutatás a TÁMOP-4.2.1/B-09/1/KMR projekt keretében folyt a BCE Jövőkutatás Tanszékén. A kutatás a TÁMOP-4.2.1/B-09/1/KMR-2010-0005 projekt keretében folyt a BCE Jövőkutatás Tanszékén. Retek Mihály GPU nap 2012, MTA-RMKI, Budapest 2012. július 2. Mi a jövőkutatás A jövőkutatás a társadalommal

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus hálók

Részletesebben

Egészségterv és edzésprogram használati utasítás

Egészségterv és edzésprogram használati utasítás TELEPÍTÉS (1) Üdvözli a Bi-LINK. Az alkalmazás használatával követheti, megértheti és irányíthatja legfontosabb egészségügyi paramétereit. Az első lépés készüléke adatainak megtekintéséhez, hogy letölti,

Részletesebben

Flynn féle osztályozás Single Isntruction Multiple Instruction Single Data SISD SIMD Multiple Data MISD MIMD

Flynn féle osztályozás Single Isntruction Multiple Instruction Single Data SISD SIMD Multiple Data MISD MIMD M5-. A lineáris algebra párhuzamos algoritmusai. Ismertesse a párhuzamos gépi architektúrák Flynn-féle osztályozását. A párhuzamos lineáris algebrai algoritmusok között mi a BLAS csomag célja, melyek annak

Részletesebben

Élettartam teszteknél alkalmazott programstruktúra egy váltóvezérlő példáján keresztül

Élettartam teszteknél alkalmazott programstruktúra egy váltóvezérlő példáján keresztül Élettartam teszteknél alkalmazott programstruktúra egy váltóvezérlő példáján keresztül 1 Tartalom Miről is lesz szó? Bosch GS-TC Automata sebességváltó TCU (Transmission Control Unit) Élettartam tesztek

Részletesebben

A Feldspar fordító, illetve Feldspar programok tesztelése

A Feldspar fordító, illetve Feldspar programok tesztelése A Feldspar fordító, illetve Feldspar programok tesztelése [KMOP-1.1.2-08/1-2008-0002 társfinanszírozó: ERFA] Leskó Dániel Eötvös Loránd Tudományegyetem Programozási Nyelvek és Fordítóprogramok Tanszék

Részletesebben

Genetikus algoritmusok megvalósítása MATLAB segítségével

Genetikus algoritmusok megvalósítása MATLAB segítségével Genetikus algoritmusok megvalósítása MATLAB segítségével Werner Ágnes A Matlab genetikus algoritmusokat használó eszköztára Kétféle módon használhatjuk fel az eszköztár lehetőségeit: 1. Parancssorból 2.

Részletesebben

Kézikönyv Likviditás tervezés-naptári ciklus

Kézikönyv Likviditás tervezés-naptári ciklus Kézikönyv Likviditás tervezés-naptári ciklus Tartalomjegyzék 1 AMD:CCC-AEMCAPTURINGWINDOW... 5 2 AMD:CCC-AEMCAPTURINGWINDOW... 7 3 ABAS ERP UTASÍTÁS ÁTTEKINTÉS... 8 4 NAPTÁRI CIKLUS - ÜRES... 9 5 AMD:CCC-AEMCAPTURINGWINDOW...

Részletesebben

B-fa. Felépítés, alapvető műveletek. Programozás II. előadás. Szénási Sándor.

B-fa. Felépítés, alapvető műveletek. Programozás II. előadás.  Szénási Sándor. B-fa Felépítés, alapvető műveletek előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar B-fa Felépítése Beszúrás művelete Törlés

Részletesebben

Fák 2009.04.06. Témakörök. Fa definíciója. Rekurzív típusok, fa adatszerkezet Bináris keresőfa, bejárások Bináris keresőfa, módosítás B-fa

Fák 2009.04.06. Témakörök. Fa definíciója. Rekurzív típusok, fa adatszerkezet Bináris keresőfa, bejárások Bináris keresőfa, módosítás B-fa Fák szenasi.sandor@nik.bmf.hu PPT 2007/2008 tavasz http://nik.bmf.hu/ppt 1 Rekurzív típusok, fa adatszerkezet Bináris keresőfa, bejárások Bináris keresőfa, módosítás B-fa Témakörök 2 Fa (Tree): csomópontok

Részletesebben

Nincs öntermékenyítés, de a véges méret miatt a párosodó egyedek bizonyos valószínűséggel rokonok, ezért kerül egy

Nincs öntermékenyítés, de a véges méret miatt a párosodó egyedek bizonyos valószínűséggel rokonok, ezért kerül egy Véges populációméret okozta beltenyésztettség incs öntermékenyítés, de a véges méret miatt a párosodó egyedek bizonyos valószínűséggel rokonok, ezért kerül egy utódba 2 IBD allél Előadásról: -F t (-/2)

Részletesebben

Nemlineáris optimalizálási problémák párhuzamos megoldása grafikus processzorok felhasználásával

Nemlineáris optimalizálási problémák párhuzamos megoldása grafikus processzorok felhasználásával Nemlineáris optimalizálási problémák párhuzamos megoldása grafikus processzorok felhasználásával 1 1 Eötvös Loránd Tudományegyetem, Informatikai Kar Kari TDK, 2016. 05. 10. Tartalom 1 2 Tartalom 1 2 Optimalizálási

Részletesebben

egy szisztolikus példa

egy szisztolikus példa Automatikus párhuzamosítás egy szisztolikus példa Áttekintés Bevezetés Példa konkrét szisztolikus algoritmus Automatikus párhuzamosítási módszer ötlet Áttekintés Bevezetés Példa konkrét szisztolikus algoritmus

Részletesebben

KUTATÁSMÓDSZERTAN 4. ELŐADÁS. A minta és mintavétel

KUTATÁSMÓDSZERTAN 4. ELŐADÁS. A minta és mintavétel KUTATÁSMÓDSZERTAN 4. ELŐADÁS A minta és mintavétel 1 1. A MINTA ÉS A POPULÁCIÓ VISZONYA Populáció: tágabb halmaz, alapsokaság a vizsgálandó csoport egésze Minta: részhalmaz, az alapsokaság azon része,

Részletesebben

Dr. Király István Igazságügyi szakértő Varga Zoltán Igazságügyi szakértő Dr. Marosán Miklós Igazságügyi szakértő

Dr. Király István Igazságügyi szakértő Varga Zoltán Igazságügyi szakértő Dr. Marosán Miklós Igazságügyi szakértő Dr. Király István Igazságügyi szakértő Varga Zoltán Igazságügyi szakértő Dr. Marosán Miklós Igazságügyi szakértő Mintaterületek kijelölésének javasolt módjai kapás sortávú növényekre Miért is kell mintatér?

Részletesebben

Kézikönyv. Tárgyi eszköz karton lista

Kézikönyv. Tárgyi eszköz karton lista Kézikönyv Tárgyi eszköz karton lista Tartalomjegyzék 1 ABAS-ERP UTASÍTÁS ÁTTEKINTÉS... 5 2 TÁRGYI ESZKÖZ KARTON... 9 3 NYOMTATÁS... 14 4 LAYOUT KIVÁLASZTÁSA... 15 5 NYOMTATÁS... 16 6 XDOC2.1327411272729.ABHIST.STD.PDF

Részletesebben

Győri HPC kutatások és alkalmazások

Győri HPC kutatások és alkalmazások Győri HPC kutatások és alkalmazások dr. Horváth Zoltán dr. Környei László Fülep Dávid Széchenyi István Egyetem Matema5ka és Számítástudomány Tanszék 1 HPC szimulációk az iparban Feladat: Rába- futómű terhelés

Részletesebben

Digitális aláíró program telepítése az ERA rendszeren

Digitális aláíró program telepítése az ERA rendszeren Digitális aláíró program telepítése az ERA rendszeren Az ERA felületen a digitális aláírásokat a Ponte webes digitális aláíró program (Ponte WDAP) segítségével lehet létrehozni, amely egy ActiveX alapú,

Részletesebben

Információtartalom vázlata

Információtartalom vázlata 1. Az Ön cégétől árajánlatot kértek egy üzleti portál fejlesztésére, amelynek célja egy online áruház kialakítása. Az árajánlatkérés megválaszolásához munkaértekezletet tartanak, ahol Önnek egy vázlatos

Részletesebben

Informatika tanterv nyelvi előkészítő osztály heti 2 óra

Informatika tanterv nyelvi előkészítő osztály heti 2 óra Informatika tanterv nyelvi előkészítő osztály heti Számítógép feladata és felépítése Az informatikai eszközök használata Operációs rendszer Bemeneti egységek Kijelző egységek Háttértárak Feldolgozás végző

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Problémamegoldás kereséssel ha sötétben tapogatózunk Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade

Részletesebben

IV.4. FELHŐ ALAPÚ BIZTONSÁGOS ADATTÁROLÁSI MÓDSZER ÉS TESZTKÖRNYEZET KIDOLGOZÁSA

IV.4. FELHŐ ALAPÚ BIZTONSÁGOS ADATTÁROLÁSI MÓDSZER ÉS TESZTKÖRNYEZET KIDOLGOZÁSA infokommunikációs technológiák IV.4. FELHŐ ALAPÚ BIZTONSÁGOS ADATTÁROLÁSI MÓDSZER ÉS TESZTKÖRNYEZET KIDOLGOZÁSA BEVEZETÉS Mit jelent, hogy működik a felhő alapú adattárolás? Az adatainkat interneten elérhető

Részletesebben

Operációs rendszerek. Folyamatok ütemezése

Operációs rendszerek. Folyamatok ütemezése Operációs rendszerek Folyamatok ütemezése Alapok Az ütemezés, az események sorrendjének a meghatározása. Az ütemezés használata OPR-ekben: az azonos erőforrásra igényt tartó folyamatok közül történő választás,

Részletesebben

Magas szintű optimalizálás

Magas szintű optimalizálás Magas szintű optimalizálás Soros kód párhuzamosítása Mennyi a várható teljesítmény növekedés? Erős skálázódás (Amdahl törvény) Mennyire lineáris a skálázódás a párhuzamosítás növelésével? S 1 P 1 P N GPGPU

Részletesebben

Újfajta, automatikus, döntési fa alapú adatbányászati módszer idősorok osztályozására

Újfajta, automatikus, döntési fa alapú adatbányászati módszer idősorok osztályozására VÉGZŐS KONFERENCIA 2009 2009. május 20, Budapest Újfajta, automatikus, döntési fa alapú adatbányászati módszer idősorok osztályozására Hidasi Balázs hidasi@tmit.bme.hu Konzulens: Gáspár-Papanek Csaba Budapesti

Részletesebben

SAT probléma kielégíthetőségének vizsgálata. masszív parallel. mesterséges neurális hálózat alkalmazásával

SAT probléma kielégíthetőségének vizsgálata. masszív parallel. mesterséges neurális hálózat alkalmazásával SAT probléma kielégíthetőségének vizsgálata masszív parallel mesterséges neurális hálózat alkalmazásával Tajti Tibor, Bíró Csaba, Kusper Gábor {gkusper, birocs, tajti}@aries.ektf.hu Eszterházy Károly Főiskola

Részletesebben

III.5 KILOPROCESSZOROS RENDSZEREK LOGISZTIKAI ALKALMAZÁSA (SZOLGAY PÉTER)

III.5 KILOPROCESSZOROS RENDSZEREK LOGISZTIKAI ALKALMAZÁSA (SZOLGAY PÉTER) infokommunikációs technológiák III.5 KILOPROCESSZOROS RENDSZEREK LOGISZTIKAI ALKALMAZÁSA (SZOLGAY PÉTER) KILOPROCESSZOROS ARCHITEKTÚRÁK KUTATÁSA ÉS ALKALMAZÁSA Kutatási irányok: Stubendek Attila Nem Boole

Részletesebben

Adaptív menetrendezés ADP algoritmus alkalmazásával

Adaptív menetrendezés ADP algoritmus alkalmazásával Adaptív menetrendezés ADP algoritmus alkalmazásával Alcím III. Mechwart András Ifjúsági Találkozó Mátraháza, 2013. szeptember 10. Divényi Dániel Villamos Energetika Tanszék Villamos Művek és Környezet

Részletesebben

TERC V.I.P. hardverkulcs regisztráció

TERC V.I.P. hardverkulcs regisztráció TERC V.I.P. hardverkulcs regisztráció 2014. második félévétől kezdődően a TERC V.I.P. költségvetés-készítő program hardverkulcsát regisztrálniuk kell a felhasználóknak azon a számítógépen, melyeken futtatni

Részletesebben

FoodManufuture FP7 projekt

FoodManufuture FP7 projekt FoodManufuture FP7 projekt Virtuális és kibővített (augmented) valóság - Élelmiszeripari igények és alkalmazási lehetőségek dr. Sebők András Campden BRI Magyarország FoodManufuture workshop Budapest, Vidékfejlesztési

Részletesebben

Üzleti folyamatok rugalmasabb IT támogatása. Nick Gábor András 2009. szeptember 10.

Üzleti folyamatok rugalmasabb IT támogatása. Nick Gábor András 2009. szeptember 10. Üzleti folyamatok rugalmasabb IT támogatása Nick Gábor András 2009. szeptember 10. A Generali-Providencia Magyarországon 1831: A Generali Magyarország első biztosítója 1946: Vállalatok államosítása 1989:

Részletesebben

A TERMÁLVÍZ HULLADÉKHŐ- HASZNOSÍTÁSÁT TÁMOGATÓ KIFEJLESZTÉSE. Dr. Országh István ONTOLOGIC Közhasznú Nonprofit Zrt. 4032 Debrecen, Egyetem tér 1.

A TERMÁLVÍZ HULLADÉKHŐ- HASZNOSÍTÁSÁT TÁMOGATÓ KIFEJLESZTÉSE. Dr. Országh István ONTOLOGIC Közhasznú Nonprofit Zrt. 4032 Debrecen, Egyetem tér 1. A TERMÁLVÍZ HULLADÉKHŐ- HASZNOSÍTÁSÁT TÁMOGATÓ SZAKÉRTŐI RENDSZER KIFEJLESZTÉSE Dr. Országh István ONTOLOGIC Közhasznú Nonprofit Zrt. 4032 Debrecen, Egyetem tér 1. I. GEOTEST projekt előzménye 1. A hazai

Részletesebben

Csoportos üzenetszórás optimalizálása klaszter rendszerekben

Csoportos üzenetszórás optimalizálása klaszter rendszerekben Csoportos üzenetszórás optimalizálása klaszter rendszerekben Készítette: Juhász Sándor Csikvári András Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Automatizálási

Részletesebben

Felhasználói leírás: STAHL Ex-Tool v1.0 rev101-2 -

Felhasználói leírás: STAHL Ex-Tool v1.0 rev101-2 - Felhasználói leírás: STAHL Ex-Tool v1.0 rev101-1 - Kezelési útmutató Tartalomjegyzék: Kezelési útmutató... 1 Tartalomjegyzék:... 1 Szoftver feladata:... 2 Szoftver telepítése:... 2 Els használat:... 3

Részletesebben

EAV v2.0 szoftver verzió újdonságok a v1.8.20 verzióhoz képest

EAV v2.0 szoftver verzió újdonságok a v1.8.20 verzióhoz képest EAV v2.0 szoftver verzió újdonságok a v1.8.20 verzióhoz képest Betegek keresése... 2 Csatolmány a betegkartonhoz... 2 Mérések összehasonlítása...3 Fejpontok... 4 Allergia teszt... 4 Balancer... 5 Étrend

Részletesebben

Véletlenszám generátorok és tesztelésük. Tossenberger Tamás

Véletlenszám generátorok és tesztelésük. Tossenberger Tamás Véletlenszám generátorok és tesztelésük Tossenberger Tamás Érdekességek Pénzérme feldobó gép: $0,25-os érme 1/6000 valószínűséggel esik az élére 51% eséllyel érkezik a felfelé mutató oldalára Pörgetésnél

Részletesebben

Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban

Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban Intelligens Rendszerek Elmélete : dr. Kutor László Versengéses és önszervező tanulás neurális hálózatokban http://mobil.nik.bmf.hu/tantargyak/ire.html Login név: ire jelszó: IRE07 IRE 9/1 Processzor Versengéses

Részletesebben

Programfejlesztési Modellek

Programfejlesztési Modellek Programfejlesztési Modellek Programfejlesztési fázisok: Követelmények leírása (megvalósíthatósági tanulmány, funkcionális specifikáció) Specifikáció elkészítése Tervezés (vázlatos és finom) Implementáció

Részletesebben

Specifikáció alapú teszttervezési módszerek

Specifikáció alapú teszttervezési módszerek Szoftverellenőrzési technikák Specifikáció alapú teszttervezési módszerek Majzik István, Micskei Zoltán http://www.inf.mit.bme.hu/ 1 Klasszikus tesztelési feladat A tesztelendő program beolvas 3 egész

Részletesebben

R5 kutatási feladatok és várható eredmények. RFID future R Király Roland - Eger, EKF TTK MatInf

R5 kutatási feladatok és várható eredmények. RFID future R Király Roland - Eger, EKF TTK MatInf R5 kutatási feladatok és várható eredmények RFID future R5 2013.06.17 Király Roland - Eger, EKF TTK MatInf RFID future R5 RFID future - tervezett kutatási feladatok R5 feladatok és várható eredmények Résztevékenységek

Részletesebben

Beltéri autonóm négyrotoros helikopter szabályozó rendszerének kifejlesztése és hardware-in-the-loop tesztelése

Beltéri autonóm négyrotoros helikopter szabályozó rendszerének kifejlesztése és hardware-in-the-loop tesztelése Beltéri autonóm négyrotoros helikopter szabályozó rendszerének kifejlesztése és hardware-in-the-loop tesztelése Regula Gergely, Lantos Béla BME Villamosmérnöki és Informatikai Kar Irányítástechnika és

Részletesebben

A számítástudomány alapjai. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem

A számítástudomány alapjai. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem A számítástudomány alapjai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Bináris keresőfa, kupac Katona Gyula Y. (BME SZIT) A számítástudomány

Részletesebben

Specifikáció alapú teszttervezési módszerek

Specifikáció alapú teszttervezési módszerek Szoftverellenőrzési technikák Specifikáció alapú teszttervezési módszerek Majzik István, Micskei Zoltán http://www.inf.mit.bme.hu/ 1 Klasszikus tesztelési feladat A tesztelendő program beolvas 3 egész

Részletesebben

Informatikai prevalidációs módszertan

Informatikai prevalidációs módszertan Informatikai prevalidációs módszertan Zsakó Enikő, CISA főosztályvezető PSZÁF IT szakmai nap 2007. január 18. Bankinformatika Ellenőrzési Főosztály Tartalom CRD előírások banki megvalósítása Belső ellenőrzés

Részletesebben

Simon Károly Babes Bolyai Tudományegyetem ksimon@cs.ubbcluj.com

Simon Károly Babes Bolyai Tudományegyetem ksimon@cs.ubbcluj.com Evolúciósalgoritmusokalkalmazása azadatelemzésben SimonKároly Babes BolyaiTudományegyetem ksimon@cs.ubbcluj.com 1 Evolúciósszámítástechnikaimodellek Evolúciósszámítástechnika:biológiaiinspirációjúkeresésiés

Részletesebben

Használati útmutató Az online példatárhoz

Használati útmutató Az online példatárhoz Használati útmutató Az online példatárhoz A Példatár egy többféle szűrési feltétellel és találati megjelenítéssel rendelkező online adatbázis: I. Keresés 1. Találati lista 2. Térképes megjelenítés 3. Alrendszerek

Részletesebben

Fuzzy rendszerek és neurális hálózatok alkalmazása a diagnosztikában

Fuzzy rendszerek és neurális hálózatok alkalmazása a diagnosztikában Budapesti Műszaki és Gazdaságtudományi Egyetem Fuzzy rendszerek és neurális hálózatok alkalmazása a diagnosztikában Cselkó Richárd 2009. október. 15. Az előadás fő témái Soft Computing technikák alakalmazásának

Részletesebben

30 MB INFORMATIKAI PROJEKTELLENŐR

30 MB INFORMATIKAI PROJEKTELLENŐR INFORMATIKAI PROJEKTELLENŐR 30 MB DOMBORA SÁNDOR BEVEZETÉS (INFORMATIKA, INFORMATIAKI FÜGGŐSÉG, INFORMATIKAI PROJEKTEK, MÉRNÖKI ÉS INFORMATIKAI FELADATOK TALÁKOZÁSA, TECHNOLÓGIÁK) 2016. 09. 17. MMK- Informatikai

Részletesebben

Feladat. Bemenő adatok. Bemenő adatfájlok elvárt formája. Berezvai Dániel 1. beadandó/4. feladat 2012. április 13. Például (bemenet/pelda.

Feladat. Bemenő adatok. Bemenő adatfájlok elvárt formája. Berezvai Dániel 1. beadandó/4. feladat 2012. április 13. Például (bemenet/pelda. Berezvai Dániel 1. beadandó/4. feladat 2012. április 13. BEDTACI.ELTE Programozás 3ice@3ice.hu 11. csoport Feladat Madarak életének kutatásával foglalkozó szakemberek különböző településen különböző madárfaj

Részletesebben

KUTATÁSI PROJEKT. Dr. SZŐKE Gergely László Pécsi Tudományegyetem, Állam- és Jogtudományi Kar Informatikai- és Kommunikációs jogi Kutatóintézet (IKJK)

KUTATÁSI PROJEKT. Dr. SZŐKE Gergely László Pécsi Tudományegyetem, Állam- és Jogtudományi Kar Informatikai- és Kommunikációs jogi Kutatóintézet (IKJK) KUTATÁSI PROJEKT Dr. SZŐKE Gergely László Pécsi Tudományegyetem, Állam- és Jogtudományi Kar Informatikai- és Kommunikációs jogi Kutatóintézet (IKJK) ALAPINFORMÁCIÓK A projekt időtartama 2011.01. 2012.12.31

Részletesebben

Készítette: Trosztel Mátyás Konzulens: Hajós Gergely

Készítette: Trosztel Mátyás Konzulens: Hajós Gergely Készítette: Trosztel Mátyás Konzulens: Hajós Gergely Monte Carlo Markov Chain MCMC során egy megfelelően konstruált Markov-lánc segítségével mintákat generálunk. Ezek eloszlása követi a céleloszlást. A

Részletesebben