, , A

Méret: px
Mutatás kezdődik a ... oldaltól:

Download ", , A"

Átírás

1 MI Nagy ZH, nov. 4., , A és B csoport - Megoldások A/1. Milyen ágenskörnyezetrıl azt mondjuk, hogy nem hozzáférhetı? Adjon példát egy konkrét ágensre, problémára és környezetre, amire igaz ez a definíció! Amelyben valami oknál fogva nem érzékelhetı az összes lényeges információ, ami az ágensre kiszabott feladat megoldásához szükséges lenne. Példa: probléma: reggel minél kisebb benzin ráfordítással, minél gyorsabban átkerülni lakásból a munkahelyre ágens: gk. vezetı környezet: budapesti reggeli forgalom A/2. Definiálja saját szavakkal az elfogadható heurisztika fogalmát! A sakktáblán történı útkereséshez a vezér, a bástya és a király számára elfogadható heurisztika-e a légvonalbeli távolság, ill. a Manhattan heurisztika? Az a heurisztika, amely mindig úgy téved, hogy a cél közelebbinek látszik az adott helyrıl. A légvonalbeli heurisztika minden fizikai térben (euklideszi geometria pontosságáig) elfogadható és a sakktábla is olyan, minden bábúra. Bástya nem tud átlósan lépni, Manhattan heurisztika módjára lép helyrıl helyre. A Manhattan távolság így számára a tényleges távolság. Ha elfogadjuk, hogy az elfogadhatóság definíciójában kisebb-egyenlı áll, akkor ez a heurisztika is elfogadható. A másik két bábú tud átlósan lépni, azok számára a Manhattan távolság lényegesen tud felülbecsülni a tényleges távolságot, magyarán nem elfogadható. A/3. Az alábbi ábrán a körbe írt számok a heurisztika értékek, az élek melletti számok a cselekvések költségei. A dupla kör a célállapotokat különbözteti meg. Az A állapotból kiindulva futtassa a gráfra az A* keresési algoritmust, adja meg a mindenkori open lista tartalmát és a számított f értékeket! A(21) B(9), D(15) F(33), G(11), D(15) M(106), N(16), F(33), D(15) I(22), J(103), K(15), M(106), N(16), F(33) R(16), I(22), J(103), M(106), N(16), F(33) --- R(16) a célállapot

2 A/4. Hogyan mőködik a hegymászó keresés? Mik a jó tulajdonságai és azok mivel magyarázhatók meg? Lokális keresés, tehát kicsi (elágazási tényezıben maximalizált) a tár komplexitása, gyors. Ezek forrása, hogy nem tárol semmit a ki nem fejtett alternatívákból (irányokból). A/5. Mit jelent (szabatosan megfogalmazva), hogy a logikai bizonyítás teljes? Hogyha A tény vonzata a B elméletnek, akkor az A tény a B elméletbıl mindig bebizonyítható. A/6. Mit jelent, hogy egy matematikai logika teljes, monoton, eldönthetı? Predikátum kalkulus milyen? Matematikai logika teljes, ha rendelkezik egy teljes bizonyítással, eldönthetı, ha egy logikai állítás értéke (akár igaz, akár hamis) algoritmikusan belátható, monoton, ha a bizonyítások új tények megjelenésével nem veszítenek az értékükbıl. Predikátum kalkulus teljes, félig eldönthetı, monoton. A/7. Vizsgálja meg a következı mondatokat, és döntse el mindegyikre, hogy érvényesek, kielégíthetetlenek, vagy egyik sem. Igazolja a döntését igazságtáblával, vagy felhasználva a logika ekvivalencia szabályait: a. (Füst Tőz) ( Füst Tőz) b. Nagy Hallgatag (Nagy Hallgatag) F T. (Füst Tőz) ( Füst Tőz) (Füst Tőz) ( Füst Tőz) N H Nagy Hallgatag (Nagy Hallgatag) Nagy Hallgatag (Nagy Hallgatag) A/8. Tamás, Simon és Erzsébet a Sportolók Klub tagjai. A Klub minden tagja vagy hegymászó, vagy síelı, vagy akár mindkettı. Egy hegymászó sem kedveli az esıt, viszont minden síelı oda van a hóért. Erzsébet utálja mindazt, amit Tamás kedvel, és kedveli, amit Tamás utál. Tamás az esıt és a havat is kedveli. Van olyan klubtag, aki hegymászó, de nem síelı? Döntse el a kérdés egy rezolúciós bizonyítással! Legyen H(x) a hegymászó, S(x) a síelı, K(x,y) hogy x kedvel y-t (x a klub tagjai, y a hó, vagy esı): x. S(x) v H(x) x. H(x) K(x, Esı) x. S(x) K(x, Hó) y. K(Erzsébet, y) K(Tamás, y) K(Tamás, Esı) K(Tamás, Hó) Kérdés: x. H(x) ^ S(x) a. S(x1) v H(x1) b. H(x2) v K(x2, Esı) c. S(x3) v K(x3, Hó) d. K(Erzsébet, y1) v K(Tamás, y1) e. K(Erzsébet, y2) v K(Tamás, y2)

3 f. K(Tamás, Esı) g. K(Tamás, Hó) h. H(x4) v S(x4) i. = a.+h., x1/x4 S(x1) j. = i.+c., x1/x3 K(x1, Hó) k. = j.+d., x1/erzsébet, y1/hó K(Tamás, Hó) l. = k.+g., üres rezolvens A/9. Mirıl volt szó a vaj/malacka, avagy az anyag és a dolog probléma esetében? Arról, hogy vannak példányosításnak kedvezı (megszámlálható, külsı tulajdonságokkal jellemzett) objektumok és azok, amelyek ennek ellenállnak (nem megszámlálható, belsı tulajdonságokkal meghatározott). A/10. Mi a szituáció kalkulus? Mi a hatás axióma? Szit. kalkulus a predikátum kalkulus egy alkalmazása annak leírására, hogy egy ágens cselekvéseivel változást idéz elı a környezetben. A hatás axióma egy konkrét változás leírása egy konkrét cselekvés hatására. A/11. Az alábbi 3 db cselekvéssel rendelkezünk (STRIPS formalizmusban): Cs1: Elıfeltétel: a Hatás: a b Cs2: Elıfeltétel: a c Hatás: a b c Cs3: Elıfeltétel: b c Hatás: c d Rajzolja fel a tervgráf (Graphplan) elsı 3 rétegét (állapot, cselekvések, állapot) az (a = igaz, c = igaz) állapotból kiindulva. Igyekezzen feltüntetni a gráfon és röviden megmagyarázni a minél több mutex relációt! (figyelem, csak a magyarázattal ellátott mutex számít) mutex1: inkonzisztens hatások (a), elıfeltétel-hatás kölcsönhatás (a) mutex2: inkonzisztens hatások (a), elıfeltétel-hatás kölcsönhatás (a) mutex3: elıfeltétel-hatás kölcsönhatás (a) mutex4: inkonzisztens hatások (c), elıfeltétel-hatás kölcsönhatás (c) mutex5: logikai inkonzisztencia (a) mutex6: a-megtartó cselekvés (egyetlen lehetıség a elıállítására) mutex minden cselekvéssel, ami b-t eredményez. mutex7: logikai inkonzisztencia (c)

4 B/1. Milyen ágenskörnyezetben célszerő az ágenst hiedelmi állapotokkal modellezni? Adjon rá konkrét példát is! Amely nem hozzáférhetı. Itt az információ hiányt takarhatjuk hiedelmi állapotok használatával. Példa: probléma: reggel minél kisebb benzin ráfordítással, minél gyorsabban átkerülni lakásból a munkahelyre ágens: gk. vezetı környezet: budapesti reggeli forgalom B/2. Definiálja saját szavakkal az effektív elágazási tényezı fogalmát! Az effektív elágazási tényezı a keresés tár-, vagy idı komplexitását méri? Lássa be minél egzaktabb módon, hogy az effektív elágazási tényezı értéke nem lehet 1-nél kisebb! Effektív elágazási tényezı egy olyan fiktív keresési fának az elágazási tényezıje, amely kiegyensúlyozott (és azért elemezhetı) és a méretében bizonyos paraméterekben összemérhetı a tényleges keresés keresési fájával. A keresés idı komplexitását méri. N = 1 + b + b 2 + b d, de egy keresési fában nem lehet kevesebb csomópont, mint a bejárt szintek száma + 1, azaz 1 + b + b 2 + b d >= d +1, belıle b >= 1. B/3. Az alábbi ábrán a körbe írt számok a heurisztika értékek, az élek melletti számok a cselekvések költségei. A célállapotokat a G bető különbözteti meg. Az S állapotból kiindulva futtassa a gráfra az A* keresési algoritmust, adja meg a mindenkori open lista tartalmát és a számított f értékeket! A(8) A(12), B(2), C(8) A(12), F(8), C(6), C(8) A(12), F(8), C(6) A(12), F(8), G3(16) A(12), D(8), G3(16) A(12), G2(9), S(18), G3(16) --- G2(9) a célállapot B/4. Hogyan mőködik az iteratív mélyülı keresés? Mik a jó tulajdonságai, mivel magyarázhatók meg? Szisztematikus, amiatt teljes, de az alkalmazott mélységi keresés miatt kedvezı tárkomplexitású. B/5. Mit jelent (szabatosan megfogalmazva), hogy a logikai bizonyítás helyes?

5 Hogyha A tény bizonyítható B elméletbıl, akkor az A tény a B elmélet biztosan vonzata. B/6. Mit jelent, hogy egy matematikai logika teljes, monoton, eldönthetı? Ítéletkalkulus milyen? Matematikai logika teljes, ha rendelkezik egy teljes bizonyítással, eldönthetı, ha egy logikai állítás értéke (akár igaz, akár hamis) algoritmikusan belátható, monoton, ha a bizonyítások új tények megjelenésével nem veszítenek az értékükbıl. Ítéletkalkulus teljes, eldönthetı, monoton. B/7. Vizsgálja meg a következı mondatokat, és döntse el mindegyikre, hogy érvényesek, kielégíthetetlenek, vagy egyik sem. Igazolja a döntését igazságtáblával, vagy felhasználva a logika ekvivalencia szabályait: a. (Füst => Tőz) ((Füst Hıség) Tőz) b. (Nagy Hallgatag) Hallgatag F T H (Füst => Tőz) (Füst Hıség) Tőz) (Füst => Tőz) ((Füst Hıség) Tőz) N H (Nagy Hallgatag) Hallgatag B/8. Tamás, Simon és Erzsébet a Sportolók Klub tagjai. A Klub minden tagja vagy hegymászó, vagy síelı, vagy akár mindkettı. Egy hegymászó sem kedveli az esıt, viszont minden síelı oda van a hóért. Erzsébet utálja mindazt, amit Tamás kedvel, és kedveli, amit Tamás utál. Tamás az esıt és a havat is kedveli. Van olyan klubtag, aki hegymászó, de nem síelı? Döntse el a kérdés egy rezolúciós bizonyítással! Legyen H(x) a hegymászó, S(x) a síelı, K(x,y) hogy x kedvel y-t (x a klub tagjai, y a hó, vagy esı): x. S(x) v H(x) x. H(x) K(x, Esı) x. S(x) K(x, Hó) y. K(Erzsébet, y) K(Tamás, y) K(Tamás, Esı) K(Tamás, Hó) Kérdés: x. M(x) ^ ~S(x) a. S(x1) v H(x1) b. H(x2) v K(x2, Esı) c. S(x3) v K(x3, Hó) d. K(Erzsébet, y1) v K(Tamás, y1) e. K(Erzsébet, y2) v K(Tamás, y2) f. K(Tamás, Esı) g. K(Tamás, Hó) h. H(x4) v S(x4) i. = a.+h., x1/x4 S(x1)

6 j. = i.+c., x1/x3 K(x1, Hó) k. = j.+d., x1/erzsébet, y1/hó K(Tamás, Hó) l. = k.+g., üres rezolvens B/9. Mirıl volt szó a természetes fajta probléma esetében? Arról, hogy a valós objektumok annyira gazdagok tulajdonságokban és rendelkeznek ráadásul számos kivétellel, hogy logikailag sem megoldás a leegyszerősített leírások használata (kizárják a speciális eseteket), de az sem, hogy az összes speciális esetet a leírásba bevonjuk (a leírás komplexitása miatt). megoldás inkább a tipikus objektum-osztályok ábrázolása. B/10. Mi a szituáció kalkulus? Mi a keret axióma? Szit. kalkulus a predikátum kalkulus egy alkalmazása annak leírására, hogy egy ágens cselekvéseivel változást idéz elı a környezetben. A keret axióma a világ azt a részét (annak csak egy konkrét részét) írja le, ami egy konkrét cselekvés hatására mégsem változik. B/11. Az alábbi 3 db cselekvéssel rendelkezünk (STRIPS formalizmusban): Cs1: Elıfeltétel: a Hatás: a b Cs2: Elıfeltétel: a c Hatás: a b c Cs3: Elıfeltétel: b c Hatás: c d Rajzolja fel a tervgráf (Graphplan) elsı 3 rétegét (állapot, cselekvések, állapot) az (a = igaz, c = igaz) állapotból kiindulva. Igyekezzen feltüntetni a gráfon és röviden megmagyarázni a minél több mutex relációt! (figyelem, csak a magyarázattal ellátott mutex számít) mutex1: inkonzisztens hatások (a), elıfeltétel-hatás kölcsönhatás (a) mutex2: inkonzisztens hatások (a), elıfeltétel-hatás kölcsönhatás (a) mutex3: elıfeltétel-hatás kölcsönhatás (a) mutex4: inkonzisztens hatások (c), elıfeltétel-hatás kölcsönhatás (c) mutex5: logikai inkonzisztencia (a) mutex6: a-megtartó cselekvés (egyetlen lehetıség a elıállítására) mutex minden cselekvéssel, ami b-t eredményez. mutex7: logikai inkonzisztencia (c)

Problémamegoldás kereséssel. Mesterséges intelligencia március 7.

Problémamegoldás kereséssel. Mesterséges intelligencia március 7. Problémamegoldás kereséssel Mesterséges intelligencia 2014. március 7. Bevezetés Problémamegoldó ágens Kívánt állapotba vezető cselekvéseket keres Probléma megfogalmazása Megoldás megfogalmazása Keresési

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Problémamegoldás kereséssel ha sötétben tapogatózunk Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade

Részletesebben

Kereső algoritmusok a diszkrét optimalizálás problémájához

Kereső algoritmusok a diszkrét optimalizálás problémájához Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 2. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Matematikai logika Diszkrét matematika I. középszint

Részletesebben

Kereső algoritmusok a diszkrét optimalizálás problémájához

Kereső algoritmusok a diszkrét optimalizálás problémájához Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások

Részletesebben

-------------------------------------------- MIEA 18.5, --------------- Magyarázza meg, hogy milyen alapgondolat vezetett el a VKH tanuláshoz?

-------------------------------------------- MIEA 18.5, --------------- Magyarázza meg, hogy milyen alapgondolat vezetett el a VKH tanuláshoz? 2015 ZH és vizsga kérdések és feladatok tankönyv (Almanach) és előadás referenciái tankönyv (Almanach - MIEA): alfejezetszámok előadás: 2014 ősz, tárgylapján --------------------------------------------

Részletesebben

Bonyolult jelenség, aminek nincs jó modellje, sok empirikus adat, intelligens (ember)ágens képessége, hogy ilyen problémákkal mégis megbirkozzék.

Bonyolult jelenség, aminek nincs jó modellje, sok empirikus adat, intelligens (ember)ágens képessége, hogy ilyen problémákkal mégis megbirkozzék. Vizsga, 2015. dec. 22. B cs. B1. Hogyan jellemezhetők a tanulást igénylő feladatok? (vendégelőadás) Bonyolult jelenség, aminek nincs jó modellje, sok empirikus adat, intelligens (ember)ágens képessége,

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Tudásbázis építése Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade A tudásbázis építése

Részletesebben

25. tétel: Bizonyítási módszerek és bemutatásuk tételek bizonyításában, tétel és megfordítása, szükséges és elégséges feltétel

25. tétel: Bizonyítási módszerek és bemutatásuk tételek bizonyításában, tétel és megfordítása, szükséges és elégséges feltétel 5. tétel: Bizonyítási módszerek és bemutatásuk tételek bizonyításában, tétel és megfordítása, szükséges és elégséges feltétel Axióma: Bizonyítás: olyan állítás, amelynek igazságát bizonyítás nélkül elfogadjuk.

Részletesebben

A matematika nyelvér l bevezetés

A matematika nyelvér l bevezetés A matematika nyelvér l bevezetés Wettl Ferenc 2012-09-06 Wettl Ferenc () A matematika nyelvér l bevezetés 2012-09-06 1 / 19 Tartalom 1 Matematika Matematikai kijelentések 2 Logikai m veletek Állítások

Részletesebben

30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK

30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK 30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK A gráfos alkalmazások között is találkozunk olyan problémákkal, amelyeket megoldását a részekre bontott gráfon határozzuk meg, majd ezeket alkalmas módon teljes megoldássá

Részletesebben

Elővizsga, dec. 15. Szívhez szóló megjegyzések és megoldások Adja meg a kontrollált természetes nyelv definícióját (vendégelőadás)

Elővizsga, dec. 15. Szívhez szóló megjegyzések és megoldások Adja meg a kontrollált természetes nyelv definícióját (vendégelőadás) Elővizsga, 2015. dec. 15. Szívhez szóló megjegyzések és megoldások Tisztelt Hallgatók! Az elővizsga meglepően rossz eredménye késztet néhány megjegyzés megtételére. A félév elején hangsúlyoztam, hogy a

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Tervkészítés Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Utasítsuk a háztartási robotunkat:

Részletesebben

5. A vezetıi dönt. ntéshozatal. A döntéselmélet tárgya. A racionális viselkedés feltételei megszervezésének, megnyilvánulásának, vizsgálata.

5. A vezetıi dönt. ntéshozatal. A döntéselmélet tárgya. A racionális viselkedés feltételei megszervezésének, megnyilvánulásának, vizsgálata. 5. A vezetıi dönt ntéshozatal A döntéselmélet tárgya A racionális viselkedés feltételei megszervezésének, megnyilvánulásának, logikai, matematikai és, empirikus vizsgálata. 1 A döntéselmélet rendeltetése

Részletesebben

Példa 1. A majom és banán problémája

Példa 1. A majom és banán problémája Példa 1. A majom és banán problémája Egy majom ketrecében mennyezetről egy banánt lógatnak. Kézzel elérni lehetetlen, viszont egy faládát be is tesznek. Eléri-e a majom a banánt? Mit tudunk a majom képességeirõl?

Részletesebben

Programozási módszertan

Programozási módszertan 1 Programozási módszertan 1. Alapfogalmak Feldhoffer Gergely 2012 Féléves tananyag terve 2 Program helyességének bizonyítása Reprezentáció Logikai-matematikai eszköztár Programozási tételek bizonyítása

Részletesebben

Intelligens Rendszerek Elmélete IRE 4/32/1

Intelligens Rendszerek Elmélete IRE 4/32/1 Intelligens Rendszerek Elmélete 4 IRE 4/32/1 Problémamegoldás kereséssel http://nik.uni-obuda.hu/mobil IRE 4/32/2 Egyszerű lények intelligenciája? http://www.youtube.com/watch?v=tlo2n3ymcxw&nr=1 IRE 4/32/3

Részletesebben

Mesterséges intelligencia 2. laborgyakorlat

Mesterséges intelligencia 2. laborgyakorlat Mesterséges intelligencia 2. laborgyakorlat Keresési módszerek A legtöbb feladatot meg lehet határozni keresési feladatként: egy ún. állapottérben, amely tartalmazza az összes lehetséges állapotot fogjuk

Részletesebben

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! függvények RE 1 Relációk Függvények függvények RE 2 Definíció Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor

Részletesebben

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel!

RE 1. Relációk Függvények. A diákon megjelenő szövegek és képek csak a szerző (Kocsis Imre, DE MFK) engedélyével használhatók fel! RE 1 Relációk Függvények RE 2 Definíció: Ha A, B és ρ A B, akkor azt mondjuk, hogy ρ reláció A és B között, vagy azt, hogy ρ leképezés A-ból B-be. Ha speciálisan A=B, azaz ρ A A, akkor azt mondjuk, hogy

Részletesebben

Adatbáziskezelés alapjai. jegyzet

Adatbáziskezelés alapjai. jegyzet Juhász Adrienn Adatbáziskezelés alapja 1 Adatbáziskezelés alapjai jegyzet Készítette: Juhász Adrienn Juhász Adrienn Adatbáziskezelés alapja 2 Fogalmak: Adatbázis: logikailag összefüggı információ vagy

Részletesebben

Cselekvési tervek generálása. Máté Annamária

Cselekvési tervek generálása. Máté Annamária Cselekvési tervek generálása Máté Annamária Tartalom Általánosan a cselekvés tervezésről Értelmezés, megközelítés Klasszikus modellek Mint keresés Mint logikai következtetés Alapvető feltevések és fogalmak

Részletesebben

Mesterséges intelligencia I. gyakorló feladatok

Mesterséges intelligencia I. gyakorló feladatok Mesterséges intelligencia I. gyakorló feladatok Szörényi Balázs 2009. november 26. 1. Feladatok 1. (Korongrendezés) Add meg az alábbi probléma állapottér-reprezentációját! Adott n N és k n 2, valamint

Részletesebben

Algoritmuselmélet. Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás. Katona Gyula Y.

Algoritmuselmélet. Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás. Katona Gyula Y. Algoritmuselmélet Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem

Részletesebben

A matematika nyelvéről bevezetés

A matematika nyelvéről bevezetés A matematika nyelvéről bevezetés Wettl Ferenc 2006. szeptember 19. Wettl Ferenc () A matematika nyelvéről bevezetés 2006. szeptember 19. 1 / 17 Tartalom 1 Matematika Kijelentő mondatok Matematikai kijelentések

Részletesebben

A logikai következmény

A logikai következmény Logika 3 A logikai következmény A logika egyik feladata: helyes következtetési sémák kialakítása. Példa következtetésekre : Minden veréb madár. Minden madár gerinces. Minden veréb gerinces 1.Feltétel 2.Feltétel

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 4 IV. FÜGGVÉNYEk 1. LEkÉPEZÉSEk, függvények Definíció Legyen és két halmaz. Egy függvény -ből -ba egy olyan szabály, amely minden elemhez pontosan egy elemet rendel hozzá. Az

Részletesebben

Az uniós repülıtereken a földi kiszolgálás körébe tartozó szolgáltatások és a 96/67/EK tanácsi irányelv hatályon kívül helyezése ***I

Az uniós repülıtereken a földi kiszolgálás körébe tartozó szolgáltatások és a 96/67/EK tanácsi irányelv hatályon kívül helyezése ***I P7_TA-PROV(2013)0116 Az uniós repülıtereken a földi kiszolgálás körébe tartozó szolgáltatások és a 96/67/EK tanácsi irányelv hatályon kívül helyezése ***I Az Európai Parlament 2013. április 16-i jogalkotási

Részletesebben

Ontológiák, 1. Kooperáció és intelligencia, BME-MIT

Ontológiák, 1. Kooperáció és intelligencia, BME-MIT Ontológiák, 1. Elmélet Mechanizmusfeltáró elmélet prediktív (jósló) modell Tartalomelmélet deskriptív (leíró) modell - ontológia objektumok, objektumok tulajdonságai objektumok közötti relációk Arisztotelész

Részletesebben

Adatstruktúrák, algoritmusok, objektumok

Adatstruktúrák, algoritmusok, objektumok Adatstruktúrák, algoritmusok, objektumok 2. Az objektumorientált programozási paradigma 1 A szoftverkrízis Kihívások a szoftverfejlesztés módszereivel szemben 1. A szoftveres megoldások szerepe folyamatosan

Részletesebben

CAD-CAM-CAE Példatár

CAD-CAM-CAE Példatár CAD-CAM-CAE Példatár A példa megnevezése: A példa száma: A példa szintje: CAD rendszer: Kapcsolódó TÁMOP tananyag: A feladat rövid leírása: Szíjtárcsa mőhelyrajzának elkészítése ÓE-A14 alap közepes haladó

Részletesebben

Nem teljesen nyilvánvaló például a következı, már ismert következtetés helyessége:

Nem teljesen nyilvánvaló például a következı, már ismert következtetés helyessége: Magyarázat: Félkövér: új, definiálandó, magyarázatra szoruló kifejezések Aláhúzás: definíció, magyarázat Dılt bető: fontos részletek kiemelése Indentált rész: opcionális mellékszál, kitérı II. fejezet

Részletesebben

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t Ellenőrző kérdések 2. Kis dolgozat kérdései 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t 37. Ha t szintű indexet használunk,

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

1.2. Mozgó, hajlékony és rugalmas tengelykapcsolók.

1.2. Mozgó, hajlékony és rugalmas tengelykapcsolók. 1.2. Mozgó, hajlékony és rugalmas tengelykapcsolók. Tevékenység: Olvassa el a jegyzet 18-29 oldalain található tananyagát! Tanulmányozza át a segédlet 8.2. és 8.3. fejezeteiben lévı kidolgozott feladatait,

Részletesebben

Algoritmuselmélet. Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás. Katona Gyula Y.

Algoritmuselmélet. Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás. Katona Gyula Y. Algoritmuselmélet Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 007/008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció i stratégiák Szemantikus hálók / Keretrendszerek

Részletesebben

Matematikai logika. 3. fejezet. Logikai m veletek, kvantorok 3-1

Matematikai logika. 3. fejezet. Logikai m veletek, kvantorok 3-1 3. fejezet Matematikai logika Logikai m veletek, kvantorok D 3.1 A P és Q elemi ítéletekre vonatkozó logikai alapm veleteket (konjunkció ( ), diszjunkció ( ), implikáció ( ), ekvivalencia ( ), negáció

Részletesebben

1.1. A tengelykapcsolók feladata, csoportosítása és általános méretezési elvük. Merev tengelykapcsolók.

1.1. A tengelykapcsolók feladata, csoportosítása és általános méretezési elvük. Merev tengelykapcsolók. 1.1. A tengelykapcsolók feladata, csoportosítása és általános méretezési elvük. Merev tengelykapcsolók. Tevékenység: Olvassa el a jegyzet 9-17 oldalain található tananyagát! Tanulmányozza át a segédlet

Részletesebben

Algoritmizálás, adatmodellezés tanítása 1. előadás

Algoritmizálás, adatmodellezés tanítása 1. előadás Algoritmizálás, adatmodellezés 1. előadás Az algoritmus fogalma végrehajtható (van hozzá végre-hajtó) lépésenként hajtható végre a lépések maguk is algoritmusok pontosan definiált, adott végre-hajtási

Részletesebben

Egyszerű programozási tételek

Egyszerű programozási tételek Egyszerű programozási tételek 2. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. szeptember 15. Sergyán (OE NIK) AAO 02 2011. szeptember 15.

Részletesebben

Mesterséges Intelligencia (Artificial Intelligence)

Mesterséges Intelligencia (Artificial Intelligence) Mesterséges Intelligencia (Artificial Intelligence) Bevezetés (ágens típusok, környezet tulajdonságai) Ágens: Környezetébe ágyazott (érzékelések, beavatkozások) autonóm rendszer (minimum válasz). [Bármi

Részletesebben

FRAKTÁLGEOMETRIA. Metrikus terek, szeparábilitás, kompaktság. Czirbusz Sándor czirbusz@gmail.com. Komputeralgebra Tanszék ELTE Informatika Kar

FRAKTÁLGEOMETRIA. Metrikus terek, szeparábilitás, kompaktság. Czirbusz Sándor czirbusz@gmail.com. Komputeralgebra Tanszék ELTE Informatika Kar Metrikus terek, szeparábilitás, kompaktság Czirbusz Sándor czirbusz@gmail.com Komputeralgebra Tanszék ELTE Informatika Kar 2010. március 7. Vázlat 1 Szeparábilitás Definíciók A szeparábilitás ekvivalens

Részletesebben

ALAPFOGALMAK 1. A reláció az program programfüggvénye, ha. Azt mondjuk, hogy az feladat szigorúbb, mint az feladat, ha

ALAPFOGALMAK 1. A reláció az program programfüggvénye, ha. Azt mondjuk, hogy az feladat szigorúbb, mint az feladat, ha ALAPFOGALMAK 1 Á l l a p o t t é r Legyen I egy véges halmaz és legyenek A i, i I tetszőleges véges vagy megszámlálható, nem üres halmazok Ekkor az A= A i halmazt állapottérnek, az A i halmazokat pedig

Részletesebben

Adatszerkezetek 2. Dr. Iványi Péter

Adatszerkezetek 2. Dr. Iványi Péter Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. HA 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) HA 2 Halmazok HA 3 Megjegyzések A halmaz, az elem és az eleme fogalmakat nem definiáljuk, hanem alapfogalmaknak

Részletesebben

Károli Gáspár Református Egyetem A DOKUMENTUMOK KEZELÉSE ME 1.0.0 A DOKUMENTUMOK KEZELÉSE

Károli Gáspár Református Egyetem A DOKUMENTUMOK KEZELÉSE ME 1.0.0 A DOKUMENTUMOK KEZELÉSE 1. Az eljárás célja A dokumentumok kezelése eljárás célja, hogy az egyetem a minıségbiztosítási rendszer számára szükséges dokumentumokat ellenırzés alatt tartsa, hogy mindenki számára egyértelmő legyen,

Részletesebben

Nagyordó, Omega, Theta, Kisordó

Nagyordó, Omega, Theta, Kisordó A növekedés nagyságrendje, számosság Logika és számításelmélet, 6. gyakorlat 2009/10 II. félév Számításelmélet (6. gyakorlat) A növekedés nagyságrendje, számosság 2009/10 II. félév 1 / 1 Nagyordó, Omega,

Részletesebben

Ergonómia alapok. Hardy

Ergonómia alapok. Hardy Ergonómia alapok Hardy Ergonómia fogalma Az ergonómia összetett szó. Ergon = munka, teljesítmény, erı + Nomos = törvény, szabály Jelentése: A MUNKA HOZZÁIGAZÍTÁSA AZ EMBER TULAJDONSÁGAIHOZ, KÉPESSÉGEIHEZ

Részletesebben

Mesterséges Intelligencia I.

Mesterséges Intelligencia I. Mesterséges Intelligencia I. 10. elıadás (2008. november 10.) Készítette: Romhányi Anita (ROANAAT.SZE) - 1 - Statisztikai tanulás (Megfigyelések alapján történı bizonytalan következetésnek tekintjük a

Részletesebben

Az Országos kompetenciamérés (OKM) tartalmi kerete. a 20/2012. (VIII. 31.) EMMI rendelet 3. melléklete alapján

Az Országos kompetenciamérés (OKM) tartalmi kerete. a 20/2012. (VIII. 31.) EMMI rendelet 3. melléklete alapján Az Országos kompetenciamérés (OKM) tartalmi kerete a 20/2012. (VIII. 31.) EMMI rendelet 3. melléklete alapján Az OKM tartalmi keret Célja: definiálja azokat a tényezőket és szempontrendszereket, amelyek

Részletesebben

Mérés és modellezés 1

Mérés és modellezés 1 Mérés és modellezés 1 Mérés és modellezés A mérnöki tevékenység alapeleme a mérés. A mérés célja valamely jelenség megismerése, vizsgálata. A mérés tervszerűen végzett tevékenység: azaz rögzíteni kell

Részletesebben

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait.

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. 2. VEKTORTÉR A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. Legyen K egy test és V egy nem üres halmaz,

Részletesebben

A gyártástervezés feladata. CAM tankönyv. Technológiai terv elemei. Alapfogalmak, definíciók. A gyártástervezés területei. Alapfogalmak, definíciók

A gyártástervezés feladata. CAM tankönyv. Technológiai terv elemei. Alapfogalmak, definíciók. A gyártástervezés területei. Alapfogalmak, definíciók Budapesti Műszaki és Gazdaságtudományi Egyetem Szent István Egyetem Typotex Kiadó TÁMOP-4.1.2-08/A/KMR-0029 Óbudai Egyetem CAM tankönyv A gyártástervezés feladata A gyártástervezés feladata: Megtervezni

Részletesebben

I. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI

I. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI I. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI 1 A digitális áramkörökre is érvényesek a villamosságtanból ismert Ohm törvény és a Kirchhoff törvények, de az elemzés és a tervezés rendszerint nem ezekre épül.

Részletesebben

9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum.

9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum. Programozási tételek Programozási feladatok megoldásakor a top-down (strukturált) programtervezés esetén három vezérlési szerkezetet használunk: - szekvencia - elágazás - ciklus Eddig megismertük az alábbi

Részletesebben

MATEMATIK A 9. évfolyam. 2. modul: LOGIKA KÉSZÍTETTE: VIDRA GÁBOR

MATEMATIK A 9. évfolyam. 2. modul: LOGIKA KÉSZÍTETTE: VIDRA GÁBOR MATEMATIK A 9. évfolyam 2. modul: LOGIKA KÉSZÍTETTE: VIDRA GÁBOR Matematika A 9. évfolyam. 2. modul: LOGIKA Tanári útmutató 2 MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 3 III. MEGFELELTETÉSEk, RELÁCIÓk 1. BEVEZETÉS Emlékeztetünk arra, hogy az rendezett párok halmazát az és halmazok Descartes-féle szorzatának nevezzük. Más szóval az és halmazok

Részletesebben

Adatszerkezetek 7a. Dr. IványiPéter

Adatszerkezetek 7a. Dr. IványiPéter Adatszerkezetek 7a. Dr. IványiPéter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér () Nincsennek hurkok!!! 2 Bináris fák Azokat a

Részletesebben

LINDAB perforált profilokkal kialakítható önhordó és vázkitöltı homlokzati falak LINDAB BME K+F szerzıdés 1/2. ütemének 1. RÉSZJELENTÉS-e 11.

LINDAB perforált profilokkal kialakítható önhordó és vázkitöltı homlokzati falak LINDAB BME K+F szerzıdés 1/2. ütemének 1. RÉSZJELENTÉS-e 11. LINDAB BME K+F szerzıdés 1/2. ütemének 1. RÉSZJELENTÉS-e 11. oldal b) A hazai tartószerkezeti és épületszerkezeti követelményeknek megfelelı, a hatályos, valamint a várhatóan szigorodó (európai) épületfizikai

Részletesebben

Projekttervezés alapjai

Projekttervezés alapjai Projekttervezés alapjai Langó Nándor 2009. október 10. Közéletre Nevelésért Alapítvány A stratégiai tervezés folyamata Külsı környezet elemzése Belsı környezet elemzése Küldetés megfogalmazása Stratégiai

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1 Halmazok 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 2 A fejezet legfontosabb elemei Halmaz megadási módjai Halmazok közti műveletek (metszet,

Részletesebben

Adatszerkezetek 1. előadás

Adatszerkezetek 1. előadás Adatszerkezetek 1. előadás Irodalom: Lipschutz: Adatszerkezetek Morvay, Sebők: Számítógépes adatkezelés Cormen, Leiserson, Rives, Stein: Új algoritmusok http://it.inf.unideb.hu/~halasz http://it.inf.unideb.hu/adatszerk

Részletesebben

Dr. Jelasity Márk. Mesterséges Intelligencia I. Előadás Jegyzet (2008. október 6) Készítette: Filkus Dominik Martin

Dr. Jelasity Márk. Mesterséges Intelligencia I. Előadás Jegyzet (2008. október 6) Készítette: Filkus Dominik Martin Dr. Jelasity Márk Mesterséges Intelligencia I Előadás Jegyzet (2008. október 6) Készítette: Filkus Dominik Martin Elsőrendű logika -Ítéletkalkulus : Az elsőrendű logika egy speciális esete, itt csak nullad

Részletesebben

29. Visszalépéses keresés 1.

29. Visszalépéses keresés 1. 29. Visszalépéses keresés 1. A visszalépéses keresés algoritmusa Az eddig megismert algoritmusok bizonyos értelemben nyílegyenesen haladtak elôre. Tudtuk, hogy merre kell mennünk, és minden egyes lépéssel

Részletesebben

Logikai függvények osztályai. A függvényosztály a függvények egy halmaza.

Logikai függvények osztályai. A függvényosztály a függvények egy halmaza. Logikai függvények osztályai A függvényosztály a függvények egy halmaza. A logikai fügvények egy osztálya logikai függvények valamely halmaza. Megadható felsorolással, vagy a tulajdonságainak leírásával.

Részletesebben

Méréselmélet MI BSc 1

Méréselmélet MI BSc 1 Mérés és s modellezés 2008.02.15. 1 Méréselmélet - bevezetés a mérnöki problémamegoldás menete 1. A probléma kitűzése 2. A hipotézis felállítása 3. Kísérlettervezés 4. Megfigyelések elvégzése 5. Adatok

Részletesebben

V. Kétszemélyes játékok

V. Kétszemélyes játékok Teljes információjú, véges, zéró összegű kétszemélyes játékok V. Kétszemélyes játékok Két játékos lép felváltva adott szabályok szerint. Mindkét játékos ismeri a maga és az ellenfele összes választási

Részletesebben

Összeállította Horváth László egyetemi tanár

Összeállította Horváth László egyetemi tanár Óbudai Egyetem Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek Intézet Intelligens Mérnöki Rendszerek Szakirány a Mérnök informatikus alapszakon Összeállította Horváth László Budapest, 2011

Részletesebben

Excel 2010 függvények

Excel 2010 függvények Molnár Mátyás Excel 2010 függvények Csak a lényeg érthetően! Tartalomjegyzék FÜGGVÉNYHASZNÁLAT ALAPJAI 1 FÜGGVÉNYEK BEVITELE 1 HIBAÉRTÉKEK KEZELÉSE 4 A VARÁZSLATOS AUTOSZUM GOMB 6 SZÁMÍTÁSOK A REJTETT

Részletesebben

MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2005

MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2005 2005 1. * Halmazok, halmazműveletek, nevezetes ponthalmazok 2. Számhalmazok, halmazok számossága 3. Hatványozás, hatványfüggvény 4. Gyökvonás, gyökfüggvény 5. A logaritmus. Az exponenciális és a logaritmus

Részletesebben

Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam

Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Gyakorló feladatok javítóvizsgára szakközépiskola matematika 9. évfolyam Halmazok:. Adott két halmaz: A = kétjegyű pozitív, 4-gyel osztható számok B = 0-nél nagyobb, de 0-nál nem nagyobb pozitív egész

Részletesebben

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31. Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert

Részletesebben

Rekurzió. Dr. Iványi Péter

Rekurzió. Dr. Iványi Péter Rekurzió Dr. Iványi Péter 1 Függvényhívás void f3(int a3) { printf( %d,a3); } void f2(int a2) { f3(a2); a2 = (a2+1); } void f1() { int a1 = 1; int b1; b1 = f2(a1); } 2 Függvényhívás void f3(int a3) { printf(

Részletesebben

Beadható feladatok. 2006. december 4. 1. Add meg az alábbi probléma állapottér-reprezentációját!

Beadható feladatok. 2006. december 4. 1. Add meg az alábbi probléma állapottér-reprezentációját! Beadható feladatok 2006. december 4. 1. Feladatok 2006. szeptember 13-án kitűzött feladat: 1. Add meg az alábbi probléma állapottér-reprezentációját! Adott I 1,..., I n [0, 1] intervallumokból szeretnénk

Részletesebben

Algoritmuselmélet. 2-3 fák. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 8.

Algoritmuselmélet. 2-3 fák. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 8. Algoritmuselmélet 2-3 fák Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 8. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet 8. előadás

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? 6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.

Részletesebben

Információ megjelenítés Számítógépes ábrázolás. Dr. Iványi Péter

Információ megjelenítés Számítógépes ábrázolás. Dr. Iványi Péter Információ megjelenítés Számítógépes ábrázolás Dr. Iványi Péter Raszterizáció OpenGL Mely pixelek vannak a primitíven belül fragment generálása minden ilyen pixelre Attribútumok (pl., szín) hozzárendelése

Részletesebben

Felvételi tematika INFORMATIKA

Felvételi tematika INFORMATIKA Felvételi tematika INFORMATIKA 2016 FEJEZETEK 1. Természetes számok feldolgozása számjegyenként. 2. Számsorozatok feldolgozása elemenként. Egydimenziós tömbök. 3. Mátrixok feldolgozása elemenként/soronként/oszloponként.

Részletesebben

JOGSZABÁLY. LI. ÉVFOLYAM, 15. SZÁM Ára: 693 Ft 2007. JÚNIUS 5. TARTALOM. 1. (1) A rendelet hatálya fenntartótól függetlenül

JOGSZABÁLY. LI. ÉVFOLYAM, 15. SZÁM Ára: 693 Ft 2007. JÚNIUS 5. TARTALOM. 1. (1) A rendelet hatálya fenntartótól függetlenül LI. ÉVFOLYAM, 15. SZÁM Ára: 693 Ft 2007. JÚNIUS 5. oldal JOGSZABÁLY 24/2007. (IV. 2.) OKM rendelet a közoktatás minõségbiztosításáról és minõségfejlesztésérõl szóló 3/2002. (II. 15.) OM rendelet módosításáról...

Részletesebben

Bizonytalanság. Mesterséges intelligencia április 4.

Bizonytalanság. Mesterséges intelligencia április 4. Bizonytalanság Mesterséges intelligencia 2014. április 4. Bevezetés Eddig: logika, igaz/hamis Ha nem teljes a tudás A világ nem figyelhető meg közvetlenül Részleges tudás nem reprezentálható logikai eszközökkel

Részletesebben

Mérés és modellezés Méréstechnika VM, GM, MM 1

Mérés és modellezés Méréstechnika VM, GM, MM 1 Mérés és modellezés 2008.02.04. 1 Mérés és modellezés A mérnöki tevékenység alapeleme a mérés. A mérés célja valamely jelenség megismerése, vizsgálata. A mérés tervszerűen végzett tevékenység: azaz rögzíteni

Részletesebben

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. 3. Rövid leírás. 4. Oktatási módszer. Biró Zsolt. 1.

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. 3. Rövid leírás. 4. Oktatási módszer. Biró Zsolt. 1. Matematika B/1 Biró Zsolt Tartalomjegyzék 1. Célkit zések 1 2. Általános követelmények 1 3. Rövid leírás 1 4. Oktatási módszer 1 5. Követelmények, pótlások 2 6. Program (el adás) 2 7. Program (gyakorlat)

Részletesebben

Első zárthelyi dolgozat megoldásai biomatematikából * A verzió

Első zárthelyi dolgozat megoldásai biomatematikából * A verzió Első zárthelyi dolgozat megoldásai biomatematikából * A verzió Elméleti kérdések: E. Mikor nevezünk egy gráfot gyengén és mikor erősen összefüggőnek? Adjon példát gyengén összefüggő de erősen nem összefüggő

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus hálók

Részletesebben

Magyarok: Bereczki Ilona, Kalmár László, Neumann, Péter Rózsa, Pásztorné Varga Katalin, Urbán János, Lovász László

Magyarok: Bereczki Ilona, Kalmár László, Neumann, Péter Rózsa, Pásztorné Varga Katalin, Urbán János, Lovász László MATEMATIKAI LOGIKA A gondolkodás tudománya Diszkrét matematika Arisztotelész(i.e. 384-311) Boole, De Morgan, Gödel, Cantor, Church, Herbrand, Hilbert, Kleene, Lukesiewicz, Löwenheim, Ackermann, McKinsey,

Részletesebben

MOL Tehetségtámogató program Sport kategória 2010 PÁLYÁZATI ŐRLAP

MOL Tehetségtámogató program Sport kategória 2010 PÁLYÁZATI ŐRLAP Pályázati iktatószám: SP10 - Alapítvány tölti ki! MOL Tehetségtámogató program Sport kategória 2010 PÁLYÁZATI ŐRLAP Pályázati kategória Húzza alá a megfelelıt! A eszközvásárlás B - útiköltség támogatás

Részletesebben

NEM-DETERMINISZTIKUS PROGRAMOK HELYESSÉGE. Szekvenciális programok kategóriái. Hoare-Dijkstra-Gries módszere

NEM-DETERMINISZTIKUS PROGRAMOK HELYESSÉGE. Szekvenciális programok kategóriái. Hoare-Dijkstra-Gries módszere Szekvenciális programok kategóriái strukturálatlan strukturált NEM-DETERMINISZTIKUS PROGRAMOK HELYESSÉGE Hoare-Dijkstra-Gries módszere determinisztikus valódi korai nem-determinisztikus általános fejlett

Részletesebben

LOGIKA. Magyarok: Bereczki Ilona, Kalmár László, Neumann, Péter Rózsa, Pásztorné Varga Katalin, Urbán János, Lovász László.

LOGIKA. Magyarok: Bereczki Ilona, Kalmár László, Neumann, Péter Rózsa, Pásztorné Varga Katalin, Urbán János, Lovász László. MATEMATIKAI A gondolkodás tudománya Arisztotelész(i.e. 384-311) Boole, De Morgan, Gödel, Cantor, Church, Herbrand, Hilbert, Kleene, Lukesiewicz, Löwenheim, Ackermann, McKinsey, Tarski, Ramsey, Russel,

Részletesebben

Fontos a pontosság. Miklós Ildikó Középiskolai Matematikai és Fizikai Lapok

Fontos a pontosság. Miklós Ildikó Középiskolai Matematikai és Fizikai Lapok Fontos a pontosság Miklós Ildikó Középiskolai Matematikai és Fizikai Lapok miklosildiko@komal.hu Amikor egy geometriai feladathoz megpróbálunk ábrát rajzolni, elıfordulhat, hogy nehézségekbe ütközünk:

Részletesebben

ZH feladatok megoldásai

ZH feladatok megoldásai ZH feladatok megoldásai A CSOPORT 5. Írja le, hogy milyen szabályokat tartalmazhatnak az egyes Chomskynyelvosztályok (03 típusú nyelvek)! (4 pont) 3. típusú, vagy reguláris nyelvek szabályai A ab, A a

Részletesebben

Hely- és kontextusfüggő alkalmazások fejlesztését támogató keretrendszer mobil környezetben

Hely- és kontextusfüggő alkalmazások fejlesztését támogató keretrendszer mobil környezetben Department of Distributed Systems Hely- és kontextusfüggő alkalmazások fejlesztését támogató keretrendszer mobil környezetben MTA SZTAKI Elosztott Rendszerek Osztály - Mátételki Péter matetelki@sztaki.hu

Részletesebben

2.6. A fogaskerekek tőrésezése, illesztése. Fogaskerék szerkezetek. Hajtómővek.

2.6. A fogaskerekek tőrésezése, illesztése. Fogaskerék szerkezetek. Hajtómővek. 2.6. A fogaskerekek tőrésezése, illesztése. Fogaskerék szerkezetek. Hajtómővek. Tevékenység: Olvassa el a jegyzet 124-145 oldalain található tananyagát! Tanulmányozza át a segédlet 9.8. fejezetében lévı

Részletesebben

TÉRINFORMATIKAI ÉS TÁVÉRZÉKELÉSI ALKALMAZÁSOK FEJLESZTÉSE

TÉRINFORMATIKAI ÉS TÁVÉRZÉKELÉSI ALKALMAZÁSOK FEJLESZTÉSE Topológiai algoritmusok és adatszerkezetek TÉRINFORMATIKAI ÉS TÁVÉRZÉKELÉSI ALKALMAZÁSOK FEJLESZTÉSE Cserép Máté mcserep@caesar.elte.hu 2015. május 5. EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR BEVEZETŐ

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Bizonytalan tudás és kezelése Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Milyen matematikát

Részletesebben

A gyakorlatokhoz kidolgozott DW példák a gyakorlathoz tartozó Segédlet könyvtárban találhatók.

A gyakorlatokhoz kidolgozott DW példák a gyakorlathoz tartozó Segédlet könyvtárban találhatók. Megoldás Digitális technika II. (vimia111) 1. gyakorlat: Digit alkatrészek tulajdonságai, funkcionális elemek (MSI) szerepe, multiplexer, demultiplexer/dekóder Elméleti anyag: Digitális alkatrészcsaládok

Részletesebben