Az Országos kompetenciamérés (OKM) tartalmi kerete. a 20/2012. (VIII. 31.) EMMI rendelet 3. melléklete alapján

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Az Országos kompetenciamérés (OKM) tartalmi kerete. a 20/2012. (VIII. 31.) EMMI rendelet 3. melléklete alapján"

Átírás

1 Az Országos kompetenciamérés (OKM) tartalmi kerete a 20/2012. (VIII. 31.) EMMI rendelet 3. melléklete alapján

2 Az OKM tartalmi keret Célja: definiálja azokat a tényezőket és szempontrendszereket, amelyek szerepet játszanak egy teszt összeállításában - Szövegtípusok/tartalmi területek - Gondolkodási műveletek - Tesztmátrixok, feladattípusok - Képességszintek - Egyéb jellemzői - Példafeladatok

3 OKM A matematikai eszköztudás A matematikai eszköztudás magában foglalja: az egyénnek azt a képességét, amelynek segítségével megérti és elemzi a matematika szerepét a valós világban; a matematikai eszköztár készségszintű használatát; az elsajátított matematikai tudás valós élethelyzetekben való alkalmazásának igényét és az erre való képességet; a matematikai eszközök használatát a társadalmi kommunikációban és együttműködésben az egyén életkorának megfelelő szinten. A kompetenciamérés matematikatesztje főként a mindennapi életben előforduló, matematikai problémákra visszavezethető feladatokból áll.

4 OKM matematika tartalmi területek 4 tartalmi területet különböztetünk meg: 1. mennyiségek és műveletek 2. hozzárendelések és összefüggések 3. alakzatok síkban és térben 4. események statisztikai jellemzői és valószínűsége

5 OKM matematika tartalmi területek 1. Mennyiségek és műveletek Számok, számérzék Számítások, műveletek Oszthatóság Mérés

6 OKM matematika tartalmi területek Mennyiségek és műveletek mintafeladat

7 OKM matematika tartalmi területek 2. Hozzárendelések és összefüggések Mennyiségek egymáshoz rendelése Arányosságok Paraméter algebra Szöveges egyenletek, egyenlőtlenségek Szabályjáték Halmazok Logika

8 OKM matematika tartalmi területek Hozzárendelések és összefüggések - mintafeladat

9 OKM matematika tartalmi területek 3. Alakzatok síkban és térben Alakzatok Transzformációk Dimenziók Tájékozódás síkban és térben Trigonometriai összefüggések alkalmazása

10 OKM matematika tartalmi területek Alakzatok síkban és térben - mintafeladat

11 OKM matematika tartalmi területek 4. Események statisztikai jellemzői és valószínűsége Adatgyűjtés Statisztikai számítások Valószínűség-számítás Kombinatórika Gráfok

12 OKM matematika tartalmi területek Események statisztikai jellemzői és valószínűsége - mintafeladat

13 OKM matematika tartalmi területek

14 OKM matematika gondolkodási műveletek Gondolkodási műveletek csoportjai a kompetenciamérésben: tényismeret és rutinműveletek, modellalkotás, integráció, komplex megoldások és kommunikáció

15 OKM matematika gondolkodási műveletek Tényismeret és rutinműveletek a matematikai nyelv legalapvetőbb fogalmainak ismerete alapvető matematikai tények, tulajdonságok, szabályok felidézése és egyszerű alkalmazása, végrehajtásának képessége A begyakorolt tudás mozgósítása Kontextusuk tisztán matematikai, illetve könnyen követhető, valós helyzetet írnak le, amely egyszerűen matematizálható.

16 OKM matematika gondolkodási műveletek Tényismeret és rutinműveletek Egyszerű matematikai definíciók, alapfogalmak, jellemzők felidézése Matematikai objektumok, valamint ekvivalens matematikai objektumok azonosítása Számítások végrehajtása Mérés Adatgyűjtés leolvasással Osztályozás, halmazba sorolás Rutinproblémák megoldása

17 OKM matematika gondolkodási műveletek Tényismeret és rutinműveletek:

18 OKM matematika gondolkodási műveletek Modellalkotás, integráció a diák számára szokatlan problémák matematikai modellezése több matematikai terület, művelet összekapcsolása Nem rutin jellegű problémák megoldása A feladatok megfelelő információk, műveletek, ismert módszerek, algoritmusok kombinációival, integrációjával megoldhatók.

19 OKM matematika gondolkodási műveletek Modellalkotás, integráció

20 OKM matematika gondolkodási műveletek Komplex megoldások és kommunikáció újszerű problémát tartalmazó feladat megoldása összetett matematikai modell felállítása önálló megoldási stratégia kidolgozása komplex műveletek kombinációinak alkalmazása A problémák elemezése, értelmezése, általánosítások megfogalmazása

21 OKM matematika gondolkodási műveletek Komplex megoldások és kommunikáció Összetett modell megalkotása, a modell érvényességi határainak kritikus vizsgálata Újszerű szituációban megjelenő összefüggés meghatározása, elemzése Összefüggések értelmezése Matematikai elképzelések, feltételezések, stratégiák, módszerek, bizonyítások értékelése és ezek kommunikálása Művelet érvényességének vagy állítás igazságának igazolása, bizonyítása, ezek kommunikálása Saját megoldási módszerek kitalálása, ismertetése, kommunikálása Általánosítás

22 OKM matematika gondolkodási műveletek Komplex megoldások és kommunikáció

23 OKM matematika tesztmátrix Tesztmátrix: Minden évfolyamra tartalmazza a gondolkodási műveletek és a tartalmi területek arányát a matematikatesztben (itt: 6. évf.) Gondolkodási műveletek Tartalmi területek Tényismer et és rutinműveletek (%) Modellalko tás, integráció (%) Komplex megoldások és kommuniká ció (%) A tartalmi területek aránya (%) Mennyiségek és műveletek Hozzárendelések és összefüggések Alakzatok síkban és térben Események statisztikai jellemzői és valószínűsége Műveletcsoport aránya

24 OKM a teszt összeállításának szempontjai Feladattípusok: Feleletválasztásos 60% - Nyílt végű 40% (az időbeli korlát miatt) A feladatsorban különböző nehézségű feladatok szerepeljenek. A teszt felépítése: könnyebb- nehezebb- könnyebb Rövid, lényegre törő feladatmegfogalmazás Rendelkezésre álló eszközök (Matematikai képletgyűjtemény)

25 OKM A szövegértési képesség A szövegértés A szövegértés komplex fogalom, amely a szövegekkel folytatott párbeszédet, az olvasó tapasztalatainak integrálását, az egymásra épülő gondolkodási műveletek alkalmazását foglalja magában. Az írott nyelvi szövegek megértésének, használatának és a rájuk való reflektálásnak a képessége annak érdekében, hogy az egyén elérje céljait, fejlessze tudását, képességeit, kikapcsolódjék, sikerrel alkalmazkodjon vagy vegyen részt a mindennapi kommunikációs helyzetekben.

26 OKM szövegtípusok A szövegtípusok jellemzői céljuk szerint Elbeszélő (élményszerző): pl. novellák, mesék, esszék, drámák, útleírások Magyarázó: pl. tudományos ismeretterjesztő cikkek, tanulmányok, kommentárok Dokumentum (adatközlő): pl. nyomtatványok, kérdőívek, szabályzatok A szövegtípusok aránya adatközlő (1/3) élményszerző (1/3) magyarázó (1/3)

27 OKM szövegtípusok A szövegtípusok jellemzői formájuk szerint Folyamatos : bekezdésekbe szerveződő összefüggő mondatokból áll, pl. regények, újságcikkek, esszék, novellák, beszámolók és levelek Nem folyamatos: listák, táblázatok, grafikonok, diagramok, hirdetések, időrendek, katalógusok, mutatók és űrlapok. Ide tartozik a két szövegfajtából összeadódó kevert típus is. A szövegtípusok formái nem folyamatos (1/3) folyamatos (2/3)

28 OKM szövegértés gondolkodási műveletek 1. Információ-visszakeresés a szöveg információinak (pl. tényeinek, adatainak) azonosítása, visszakeresése, (ki, mit, mikor stb. típusú kérdések) 2. Kapcsolatok és összefüggések felismerése A szövegben különböző tartalmi és logikai összefüggések felismerése. pl. ok-okozati, egyéb viszonyok és szerkesztésbeli elemek (bekezdések, egységek) közötti kapcsolatok 3. Értelmezés 1.Általános szövegértési feladatok, az üzenet felismerése 2. Reflektálás a szöveg tartalmi elemeire 3. Reflektálás a szöveg stiláris elemeire

29 OKM szövegértés gondolkodási műveletek Évf. Élményszerző Magyarázó Adatközlő Információ-visszakeresés (%) Kapcsolatokkövetkeztetések (%) Értelmezés (%) Szövegtípusok aránya (%)

30 OKM a szövegértés teszt feladattípusai Feleletválasztó feladatok Rövid választ igénylő nyílt végű feladatok Hosszú választ igénylő nyílt végű feladatok 55-65% 15-25% 15-25% - 4 lehetőség (disztraktor) - nagyjából azonos terjedelmű - félrevezető válaszok szerepelhetnek benne - igaz/hamis - egy-egy rövid elem (1 szó) - szövegrész aláhúzása, megjelölése - hosszabb magyarázat, bővebb kifejtés

31 OKM a szövegek egyéb jellemzői A kiválasztás szempontjai: Tematikai sokszínűség Stiláris sokféleség A korosztály érdeklődésének megfelelés Részpopulációnak való kedvezés elkerülése A tanulói háttértudás szerepe: Előzetes tudás szerepének minimalizálása Ismeretlen szöveg Nemzetközi kultúrszókincs mellőzése Szövegen kívüli tényezők hatásának minimalizálása Általános intelligenciával megoldható feladatok kerülése

A évi országos kompetenciamérés eredményei. matematikából és szövegértésből

A évi országos kompetenciamérés eredményei. matematikából és szövegértésből A 2009. évi országos kompetenciamérés eredményei matematikából és szövegértésből Kérdések, amelyekre a jelentésekből választ kaphatunk Hol helyezkednek el az adott iskola tanulói a képességskálákon és

Részletesebben

Átlag (standard hiba)

Átlag (standard hiba) Képességpont A képességpont valószínűségi modellel számított érték, amely a tanuló teszten elért eredményét egy mesterséges, a matematikai eszköztudást, illetve szövegértési képességet jelképező skálára

Részletesebben

A évi országos kompetenciamérés eredményei. matematikából és szövegértésből

A évi országos kompetenciamérés eredményei. matematikából és szövegértésből A 2008. évi országos kompetenciamérés eredményei matematikából és szövegértésből Kérdések, amelyekre a jelentésekből választ kaphatunk Hol helyezkednek el az adott iskola tanulói a képességskálákon és

Részletesebben

A STANDARDFEJLESZTÉS FOLYAMATA. Tartalom. Társadalmi kihívások A fejlesztés célja A fejlesztés folyamata Hazai jó gyakorlatok, rendszerek

A STANDARDFEJLESZTÉS FOLYAMATA. Tartalom. Társadalmi kihívások A fejlesztés célja A fejlesztés folyamata Hazai jó gyakorlatok, rendszerek XXI. Századi Közoktatás (fejlesztés, koordináció) II. szakasz TÁMOP-3.1.1-11/1-2012-0001 Tartalom A STANDARDFEJLESZTÉS FOLYAMATA DR. DANCSÓ TÜNDE dancso.tunde@ofi.hu TÁMOP 3.1.1 XXI. SZÁZADI KÖZOKTATÁS

Részletesebben

Országos kompetenciamérés

Országos kompetenciamérés Országos kompetenciamérés 2017. évi eredmények http://www.kreativwebdesigntanfolyam.hu/webdesign-blog/szaktudas-es-kepessegek-legfontosabb-siker-faktorok A mérésről Minden intézmény 6-8-10. évfolyamos

Részletesebben

Szandaszőlősi Általános Iskola, Művelődési Ház és Alapfokú Művészetoktatási Intézmény

Szandaszőlősi Általános Iskola, Művelődési Ház és Alapfokú Művészetoktatási Intézmény Szandaszőlősi Általános Iskola, Művelődési Ház és Alapfokú Művészetoktatási Intézmény OM azonosító: OM 035883 ORSZÁGOS KOMPETENCIAMÉRÉS 2008 Az Országos kompetenciamérés 2008-ban ötödik alkalommal mérte

Részletesebben

Országos kompetenciamérés 2006

Országos kompetenciamérés 2006 Országos kompetenciamérés 2006 -=szövegértés feladatok=- Balkányi Péter Értékelési Központ A szövegértés fogalma A szövegértés az írott nyelvi szövegek megértésének, használatának és a rájuk való reflektálásnak

Részletesebben

A évi kompetenciamérések elemzése (elmúlt 3 év összehasonlító elemzése)

A évi kompetenciamérések elemzése (elmúlt 3 év összehasonlító elemzése) A 2013. évi kompetenciamérések elemzése (elmúlt 3 év összehasonlító elemzése) Adatok elemzése 1. Tanulói profilok 2. Feladatonkénti eredmények 3. Pontszám elemzések 1. Tanulói profilok A tanulók egyéni

Részletesebben

JOGSZABÁLYOK. LI. ÉVFOLYAM, 9. SZÁM Ára: 798 Ft 2007. MÁJUS 14. TARTALOM

JOGSZABÁLYOK. LI. ÉVFOLYAM, 9. SZÁM Ára: 798 Ft 2007. MÁJUS 14. TARTALOM LI. ÉVFOLYAM, 9. SZÁM Ára: 798 Ft 2007. MÁJUS 14. TARTALOM oldal JOGSZABÁLYOK 2007. évi XXIII. törvény a fogyatékos személyek jogairól és esélyegyenlõségük biztosításáról szóló 1998. évi XXVI. törvény

Részletesebben

JOGSZABÁLY. LI. ÉVFOLYAM, 15. SZÁM Ára: 693 Ft 2007. JÚNIUS 5. TARTALOM. 1. (1) A rendelet hatálya fenntartótól függetlenül

JOGSZABÁLY. LI. ÉVFOLYAM, 15. SZÁM Ára: 693 Ft 2007. JÚNIUS 5. TARTALOM. 1. (1) A rendelet hatálya fenntartótól függetlenül LI. ÉVFOLYAM, 15. SZÁM Ára: 693 Ft 2007. JÚNIUS 5. oldal JOGSZABÁLY 24/2007. (IV. 2.) OKM rendelet a közoktatás minõségbiztosításáról és minõségfejlesztésérõl szóló 3/2002. (II. 15.) OM rendelet módosításáról...

Részletesebben

Budapest, március

Budapest, március OKTATÁSI ÉS KULTURÁLIS MINISZTER TERVEZET! 6226/2007. Tárgy: a közoktatás minőségbiztosításáról és minőségfejlesztéséről szóló 3/2002. (II. 15.) OM rendelet módosításáról Budapest, 2007. március 1 VEZETŐI

Részletesebben

ORSZÁGOS KOMPETENCIAMÉRÉS. Tartalmi keret

ORSZÁGOS KOMPETENCIAMÉRÉS. Tartalmi keret ORSZÁGOS KOMPETENCIAMÉRÉS 2006 Tartalmi keret Balázsi Ildikó Felvégi Emese Rábainé Szabó Annamária Szepesi Ildikó Országos kompetenciamérés 2006 Tartalmi keret Balázsi Ildikó Felvégi Emese Rábainé Szabó

Részletesebben

Országos kompetenciamérés 2006

Országos kompetenciamérés 2006 Országos kompetenciamérés 2006 -=matematika=- Szepesi Ildikó Értékelési Központ A matematikai eszköztudás A matematikai eszköztudás magában foglalja az egyénnek azt a képességét, amely által érti és elemzi

Részletesebben

I. AZ ORSZÁGOS KOMPETENCIAMÉRÉSRŐL

I. AZ ORSZÁGOS KOMPETENCIAMÉRÉSRŐL AZ ORSZÁGOS KOMPETENCIAMÉRÉSRŐL, AZ ERDEI FERENC KERESKEDELMI ÉS KÖZGAZDASÁGI SZAKKÖZÉPISKOLA, A MAKÓI OKTATÁSI KÖZPONT, SZAKKÉPZŐ ISKOLA ÉS KOLLÉGIUM TAGINTÉZMÉNYE EREDMÉNYEIRŐL I. AZ ORSZÁGOS KOMPETENCIAMÉRÉSRŐL

Részletesebben

Nagyvázsonyi Kinizsi Pál Német Nemzetiségi Nyelvoktató Általános Iskola K O M P E T E N C I A M É R É S 2013

Nagyvázsonyi Kinizsi Pál Német Nemzetiségi Nyelvoktató Általános Iskola K O M P E T E N C I A M É R É S 2013 Nagyvázsonyi Kinizsi Pál Német Nemzetiségi Nyelvoktató Általános Iskola K O M P E T E N C I A M É R É S 2013 Kompetenciamérés célja: Hatékony eszköz az intézményi önértékelés elősegítéséhez visszajelzés,

Részletesebben

XXI. Századi Közoktatás (fejlesztés, koordináció) II. szakasz TÁMOP-3.1.1-11/1-2012-0001 PEREGI TAMÁS A STANDARDFEJLESZTÉS LEHETŐSÉGEI MAGYARORSZÁGON

XXI. Századi Közoktatás (fejlesztés, koordináció) II. szakasz TÁMOP-3.1.1-11/1-2012-0001 PEREGI TAMÁS A STANDARDFEJLESZTÉS LEHETŐSÉGEI MAGYARORSZÁGON XXI. Századi Közoktatás (fejlesztés, koordináció) II. szakasz TÁMOP-3.1.1-11/1-2012-0001 PEREGI TAMÁS A STANDARDFEJLESZTÉS LEHETŐSÉGEI MAGYARORSZÁGON 1. Standardfejlesztés, standardszintek meghatározása

Részletesebben

Országos kompetenciamérés eredménye az EKF Gyakorlóiskolában

Országos kompetenciamérés eredménye az EKF Gyakorlóiskolában Országos kompetenciamérés eredménye az EKF Gyakorlóiskolában A mérések és a hozzá tartozó dokumentumok itt tekinthetõk meg. Intézményi jelentés A 2001 õszén elkezdõdött Országos kompetenciamérések sorában

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 7 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

Matematika A 9. szakiskolai évfolyam. 7. modul EGYENES ARÁNYOSSÁG ÉS A LINEÁRIS FÜGGVÉNYEK

Matematika A 9. szakiskolai évfolyam. 7. modul EGYENES ARÁNYOSSÁG ÉS A LINEÁRIS FÜGGVÉNYEK Matematika A 9. szakiskolai évfolyam 7. modul EGYENES ARÁNYOSSÁG ÉS A LINEÁRIS FÜGGVÉNYEK Matematika A 9. szakiskolai évfolyam 7. modul: Egyenes arányosság és a lineáris függvények Tanári útmutató 2 A

Részletesebben

MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2005

MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2005 2005 1. * Halmazok, halmazműveletek, nevezetes ponthalmazok 2. Számhalmazok, halmazok számossága 3. Hatványozás, hatványfüggvény 4. Gyökvonás, gyökfüggvény 5. A logaritmus. Az exponenciális és a logaritmus

Részletesebben

AZ ORSZÁGOS KOMPETENCIAMÉRÉS

AZ ORSZÁGOS KOMPETENCIAMÉRÉS AZ ORSZÁGOS KOMPETENCIAMÉRÉS Az Országos kompetenciamérés céljai Iskolák, fenntartók: a visszajelzés az intézmény, tanulócsoportok és a tanulók egyéni teljesítményéről saját elemzések készítése saját mérések

Részletesebben

11. modul: LINEÁRIS FÜGGVÉNYEK

11. modul: LINEÁRIS FÜGGVÉNYEK MATEMATIK A 9. évfolyam 11. modul: LINEÁRIS FÜGGVÉNYEK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 11. modul: LINEÁRIS FÜGGVÉNYEK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

Követelmény a 7. évfolyamon félévkor matematikából

Követelmény a 7. évfolyamon félévkor matematikából Követelmény a 7. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Elemek halmazba rendezése több szempont alapján. Halmazok ábrázolása. A nyelv logikai elemeinek helyes használata.

Részletesebben

II. A VIZSGA LEÍRÁSA

II. A VIZSGA LEÍRÁSA II. A VIZSGA LEÍRÁSA A vizsga részei 180 perc 15 perc 240 perc 20 perc Definíció, illetve tétel kimondása I. II. Egy téma összefüggő kifejtése Definíció közvetlen alkalmazása I. II. 45 perc 135 perc megadott

Részletesebben

2010.12.14. Feladatok és kérdıívek szerkesztése, használata a könyvtári munkában. 1. A feladatok szerkesztése és használata

2010.12.14. Feladatok és kérdıívek szerkesztése, használata a könyvtári munkában. 1. A feladatok szerkesztése és használata Feladatok és kérdıívek jellemzıi Feladatok és kérdıívek szerkesztése, használata a könyvtári munkában Szakmai továbbképzés könyvtárosok részére 2010. december 9. Vígh Tibor SZTE BTK Neveléstudományi Intézet

Részletesebben

ÖSSZEVONT ÓRÁK A MÁSIK CSOPORTTAL. tartósság, megerősítés, visszacsatolás, differenciálás, rendszerezés. SZÁMTANI ÉS MÉRTANI SOROZATOK (25 óra)

ÖSSZEVONT ÓRÁK A MÁSIK CSOPORTTAL. tartósság, megerősítés, visszacsatolás, differenciálás, rendszerezés. SZÁMTANI ÉS MÉRTANI SOROZATOK (25 óra) Tantárgy: MATEMATIKA Készítette: KRISTÓF GÁBOR, KÁDÁR JUTKA Osztály: 12. évfolyam, fakultációs csoport Vetési Albert Gimnázium, Veszprém Heti óraszám: 6 Éves óraszám: 180 Tankönyv: MATEMATIKA 11 és MATEMATIKA

Részletesebben

18. modul: STATISZTIKA

18. modul: STATISZTIKA MATEMATIK A 9. évfolyam 18. modul: STATISZTIKA KÉSZÍTETTE: LÖVEY ÉVA, GIDÓFALVI ZSUZSA MODULJÁNAK FELHASZNÁLÁSÁVAL Matematika A 9. évfolyam. 18. modul: STATISZTIKA Tanári útmutató 2 A modul célja Időkeret

Részletesebben

A diagnosztikus mérések tartalmi kereteinek kidolgozása az 1 6. évfolyamokra a matematika, a természettudomány és az olvasás területén

A diagnosztikus mérések tartalmi kereteinek kidolgozása az 1 6. évfolyamokra a matematika, a természettudomány és az olvasás területén A diagnosztikus mérések tartalmi kereteinek kidolgozása az 1 6. évfolyamokra a matematika, a természettudomány és az olvasás területén Diagnosztikus mérések fejlesztése (TÁMOP 3.1.9/08/01) Oktatáselméleti

Részletesebben

A kompetencia alapú matematika oktatás. tanmenete a 9. osztályban. Készítette Maitz Csaba

A kompetencia alapú matematika oktatás. tanmenete a 9. osztályban. Készítette Maitz Csaba A kompetencia alapú matematika oktatás tanmenete a 9. osztályban Készítette Maitz Csaba Szerkesztési feladatok 1. Síkgeometriai alapfogalmak 2. Egyszerűbb rajzok, szerkesztések körző, vonalzó használata

Részletesebben

10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK

10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK MATEMATIK A 9. évfolyam 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK Tanári útmutató 2 MODULLEÍRÁS A modul

Részletesebben

3/2002. (II. 15.) OM rendelet. a közoktatás minőségbiztosításáról és minőségfejlesztéséről. Általános rendelkezések

3/2002. (II. 15.) OM rendelet. a közoktatás minőségbiztosításáról és minőségfejlesztéséről. Általános rendelkezések A jogszabály mai napon hatályos állapota 3/2002. (II. 15.) OM rendelet a közoktatás minőségbiztosításáról és minőségfejlesztéséről Az illetékekről szóló - többször módosított - 1990. évi XCIII. törvény

Részletesebben

A évi országos kompetenciamérés elemzése

A évi országos kompetenciamérés elemzése A 2017. évi országos kompetenciamérés elemzése Hódmezővásárhelyi Liszt Ferenc Ének-zenei Általános Iskola Az összefoglalót készítette: Dr. Magyar Andrea Tartalom A felmérésről...3 A 2017. évi országos

Részletesebben

MATEMATIKA II. A VIZSGA LEÍRÁSA

MATEMATIKA II. A VIZSGA LEÍRÁSA MATEMATIKA II. A VIZSGA LEÍRÁSA A vizsga részei 180 perc 15 perc 240 perc 20 perc Egy téma összefüggő II. I. II. kifejtése megadott 135 perc szempontok szerint I. 45 perc Definíció, ill. tétel kimondása

Részletesebben

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA 1 SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 x 3 = 111 A tanmenet 101 óra beosztását tartalmazza. A dolgozatok írása és javítása 10 órát foglal

Részletesebben

nappali tagozat, tanítói szak TAN05MSZ Szigorlati követelmények és tételek Vizsgatematika A szigorlat követelményei:

nappali tagozat, tanítói szak TAN05MSZ Szigorlati követelmények és tételek Vizsgatematika A szigorlat követelményei: Matematika Tanszék Matematika műveltségi terület, nappali tagozat, tanítói szak TAN05MSZ Szigorlati követelmények és tételek A szigorlat követelményei: Vizsgatematika A hallgató legyen képes 15-20 perces

Részletesebben

Szöveg címe: Az ázsiai elefánt Forrás: és Kép forrása: szabadon használható fotók.

Szöveg címe: Az ázsiai elefánt Forrás:  és  Kép forrása:  szabadon használható fotók. Szöveg címe: Az ázsiai elefánt Forrás: http://hu.wikipedia.org/ és http://www.sulinet.hu/ Kép forrása: http://www.sxc.hu, szabadon használható fotók. Szövegtípus: magyarázó szöveg Szöveg olvashatósága:

Részletesebben

SZAKKÖZÉPISKOLA ÉRETTSÉGI VIZSGRA FELKÉSZÍTŐ KK/12. ÉVFOLYAM

SZAKKÖZÉPISKOLA ÉRETTSÉGI VIZSGRA FELKÉSZÍTŐ KK/12. ÉVFOLYAM SZAKKÖZÉPISKOLA ÉRETTSÉGI VIZSGRA FELKÉSZÍTŐ KK/12. ÉVFOLYAM A vizsga szerkezete: A vizsga írásbeli és szóbeli vizsgarészből áll. 1.) Írásbeli vizsga Időtartama: 45 perc Elérhető pontszám: 65 pont Feladattípusok:

Részletesebben

Követelmény a 6. évfolyamon félévkor matematikából

Követelmény a 6. évfolyamon félévkor matematikából Követelmény a 6. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Halmazba rendezés adott tulajdonság alapján, részhalmaz felírása, felismerése. Két véges halmaz közös részének,

Részletesebben

Érettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél

Érettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél Emelt szintű matematika érettségi előkészítő 11. évfolyam Tematikai egység/fejlesztési cél Órakeret 72 óra Kötelező Szabad Összesen 1. Gondolkodási módszerek Halmazok, matematikai logika, kombinatorika,

Részletesebben

Országos kompetenciamérés 2012 Matematikai eszköztudás

Országos kompetenciamérés 2012 Matematikai eszköztudás Országos kompetenciamérés 2012 Matematikai eszköztudás Eszköztudás a tananyag megértésének, feldolgozásának képessége tantárgyak feletti vagy közötti tudás, amely lényegében minden tantárgy tanításánál

Részletesebben

Matematika osztályozó vizsga témakörei 9. évfolyam II. félév:

Matematika osztályozó vizsga témakörei 9. évfolyam II. félév: Matematika osztályozó vizsga témakörei 9. évfolyam II. félév: 7. Függvények: - függvények fogalma, megadása, ábrázolás koordináta- rendszerben - az elsőfokú függvény, lineáris függvény - a másodfokú függvény

Részletesebben

Az enyhe értelmi fogyatékos fővárosi tanulók 2009/2010. tanévi kompetenciaalapú matematika- és szövegértés-mérés eredményeinek elemzése

Az enyhe értelmi fogyatékos fővárosi tanulók 2009/2010. tanévi kompetenciaalapú matematika- és szövegértés-mérés eredményeinek elemzése E L E M Z É S Az enyhe értelmi fogyatékos fővárosi tanulók 2009/2010. tanévi kompetenciaalapú matematika- és szövegértés-mérés eredményeinek elemzése 2010. szeptember Balázs Ágnes (szövegértés) és Magyar

Részletesebben

MATEMATIK A 9. évfolyam. 2. modul: LOGIKA KÉSZÍTETTE: VIDRA GÁBOR

MATEMATIK A 9. évfolyam. 2. modul: LOGIKA KÉSZÍTETTE: VIDRA GÁBOR MATEMATIK A 9. évfolyam 2. modul: LOGIKA KÉSZÍTETTE: VIDRA GÁBOR Matematika A 9. évfolyam. 2. modul: LOGIKA Tanári útmutató 2 MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok

Részletesebben

5. modul: ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS

5. modul: ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS MATEMATIK A 9. évfolyam 5. modul: ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS KÉSZÍTETTE: VIDRA GÁBOR Matematika A 9. évfolyam. 5. modul: ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS Tanári útmutató 2 A modul célja Időkeret Ajánlott

Részletesebben

VENDÉGLÁTÓ-IDEGENFORGALMI ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA

VENDÉGLÁTÓ-IDEGENFORGALMI ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA VENDÉGLÁTÓ-IDEGENFORGALMI ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA A vizsga részei Középszint Emelt szint 180 perc 15 perc 180 perc 20 perc 100 pont 50 pont 100 pont 50 pont A vizsgán használható segédeszközök

Részletesebben

Kilencedikes kompetencia alapú bemeneti mérés matematikából 2008 őszén

Kilencedikes kompetencia alapú bemeneti mérés matematikából 2008 őszén Kilencedikes kompetencia alapú bemeneti mérés matematikából 2008 őszén Póta Mária 2009. 0 1 i e π 1 A matematikai eszköztudás kompetencia alapú mérése Méréssorozat első fázisa, melynek a hozzáadott értéket

Részletesebben

KÖZGAZDASÁG ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA. Emelt szint. 180 perc 20 perc 100 pont 50 pont

KÖZGAZDASÁG ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA. Emelt szint. 180 perc 20 perc 100 pont 50 pont KÖZGAZDASÁG ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA A vizsga részei 180 perc 20 perc 100 pont 50 pont A vizsgán használható segédeszközök A vizsgázó biztosítja A vizsgabizottságot

Részletesebben

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel

Részletesebben

A PISA-ról közhelyek nélkül ami az újságcikkekből kimaradt

A PISA-ról közhelyek nélkül ami az újságcikkekből kimaradt A PISA-ról közhelyek nélkül ami az újságcikkekből kimaradt Balázsi Ildikó sulinova Kht., Értékelési Központ ÉRTÉKEK ÉS ÉRTÉKELÉS A KÖZOKTATÁSBAN VIII. Országos Közoktatási Szakértői Konferencia HAJDÚSZOBOSZLÓ

Részletesebben

13. modul: MÁSODFOKÚ FÜGGVÉNYEK

13. modul: MÁSODFOKÚ FÜGGVÉNYEK MATEMATIK A 9. évfolyam 13. modul: MÁSODFOKÚ FÜGGVÉNYEK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 13. modul: MÁSODFOKÚ FÜGGVÉNYEK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály

Részletesebben

ÉLELMISZER-IPARI ALAPISMERETEK ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA

ÉLELMISZER-IPARI ALAPISMERETEK ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA ÉLELMISZER-IPARI ALAPISMERETEK ÉRETTSÉGI VIZSGA A vizsga részei II. A VIZSGA LEÍRÁSA Középszint Emelt szint 180 perc 15 perc 240 perc 20 perc 100 pont 50 pont 100 pont 50 pont A vizsgán használható segédeszközök

Részletesebben

Matematika A 9. szakiskolai évfolyam. 8. modul AZ ABSZOLÚTÉRTÉK-FÜGGVÉNY ÉS MÁS NEMLINEÁRIS FÜGGVÉNYEK

Matematika A 9. szakiskolai évfolyam. 8. modul AZ ABSZOLÚTÉRTÉK-FÜGGVÉNY ÉS MÁS NEMLINEÁRIS FÜGGVÉNYEK Matematika A 9. szakiskolai évfolyam 8. modul AZ ABSZOLÚTÉRTÉK-FÜGGVÉNY ÉS MÁS NEMLINEÁRIS FÜGGVÉNYEK Matematika A 9. szakiskolai évfolyam 8. modul: Az abszolútérték-függvény és más nemlineáris függvények

Részletesebben

MATEMATIKA TAGOZAT 5-8. BEVEZETŐ. 5. évfolyam

MATEMATIKA TAGOZAT 5-8. BEVEZETŐ. 5. évfolyam BEVEZETŐ Ez a helyi tanterv a kerettanterv Emelet matematika A változata alapján készült. Az emelt oktatás során olyan tanulóknak kívánunk magasabb szintű ismerteket nyújtani, akik matematikából átlag

Részletesebben

9-10. évfolyam felnőttképzés Heti óraszám: 3 óra

9-10. évfolyam felnőttképzés Heti óraszám: 3 óra 9-10. évfolyam felnőttképzés Heti óraszám: 3 óra Fejlesztési cél/ kompetencia lehetőségei: Gondolkodási képességek: rendszerezés, kombinativitás, deduktív következtetés, valószínűségi Tudásszerző képességek:

Részletesebben

SPECIÁLIS HELYI TANTERV SZAKKÖZÉPISKOLA. matematika

SPECIÁLIS HELYI TANTERV SZAKKÖZÉPISKOLA. matematika SPECIÁLIS HELYI TANTERV SZAKKÖZÉPISKOLA matematika 9. évfolyam 1. Számtan, algebra 15 óra 2. Gondolkodási módszerek, halmazok, kombinatorika, valószínűség, statisztika 27 óra 3. Függvények, sorozatok,

Részletesebben

Helyi tanterv Német nyelvű matematika érettségi előkészítő. 11. évfolyam

Helyi tanterv Német nyelvű matematika érettségi előkészítő. 11. évfolyam Helyi tanterv Német nyelvű matematika érettségi előkészítő 11. évfolyam Tematikai egység címe órakeret 1. Gondolkodási és megismerési módszerek 10 óra 2. Geometria 30 óra 3. Számtan, algebra 32 óra Az

Részletesebben

A ÉVI KOMPETENCIAMÉRÉS FIT-JELENTÉSEINEK ÚJ ELEMEI ÚJDONSÁGOK A FIT-JELENTÉSEKBEN ÚJ SKÁLA

A ÉVI KOMPETENCIAMÉRÉS FIT-JELENTÉSEINEK ÚJ ELEMEI ÚJDONSÁGOK A FIT-JELENTÉSEKBEN ÚJ SKÁLA A 2010. ÉVI KOMPETENCIAMÉRÉS FIT-JELENTÉSEINEK ÚJ ELEMEI Balázsi Ildikó TL. ÚJDONSÁGOK A FIT-JELENTÉSEKBEN Évfolyam független skálák matematikából és szövegértésbıl Új ábrák a két év alatti fejlıdés bemutatása

Részletesebben

HONVÉDELMI ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA

HONVÉDELMI ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA HONVÉDELMI ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA A részei Középszint Emelt szint Szóbeli Szóbeli 180 perc 15 perc 240 perc 20 perc 100 pont 50 pont 100 pont 50 pont A vizsgán

Részletesebben

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA A TÁMOP 3.1.4. EU-s pályázat megvalósításához a matematika (9. b/fizika) tárgy tanmenete a matematika kompetenciaterület A típusú

Részletesebben

Helyi tanterv. Batthyány Kázmér Gimnázium Matematika emelt (5+6+6+6 óra/hét) 9-12 évfolyam Készült: 2013 február

Helyi tanterv. Batthyány Kázmér Gimnázium Matematika emelt (5+6+6+6 óra/hét) 9-12 évfolyam Készült: 2013 február Helyi tanterv Batthyány Kázmér Gimnázium Matematika emelt (5+6+6+6 óra/hét) 9-12 évfolyam Készült: 2013 február 1 A TANTERV SZERKEZETE Bevezető Célok és feladatok Fejlesztési célok és kompetenciák Helyes

Részletesebben

Matematika A 9. szakiskolai évfolyam. 13. modul SZÖVEGES FELADATOK. Készítette: Vidra Gábor

Matematika A 9. szakiskolai évfolyam. 13. modul SZÖVEGES FELADATOK. Készítette: Vidra Gábor Matematika A 9. szakiskolai évfolyam 13. modul SZÖVEGES FELADATOK Készítette: Vidra Gábor MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM 13. modul: SZÖVEGES FELADATOK TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott

Részletesebben

Az osztályozóvizsgák követelményrendszere 9. évfolyam

Az osztályozóvizsgák követelményrendszere 9. évfolyam Az osztályozóvizsgák követelményrendszere 9. évfolyam Kombinatorika, halmazok Összeszámlálási feladatok Halmazok, halmazműveletek, halmazok elemszáma Logikai szita Számegyenesek intervallumok Algebra és

Részletesebben

Matematika. 1. évfolyam. I. félév

Matematika. 1. évfolyam. I. félév Matematika 1. évfolyam - Biztos számfogalom a 10-es számkörben - Egyjegyű szám fogalmának ismerete - Páros, páratlan fogalma - Sorszám helyes használata szóban - Növekvő, csökkenő számsorozatok felismerése

Részletesebben

Matematika A 9. szakiskolai évfolyam. 16. modul EGYBEVÁGÓSÁGOK. Készítette: Vidra Gábor

Matematika A 9. szakiskolai évfolyam. 16. modul EGYBEVÁGÓSÁGOK. Készítette: Vidra Gábor Matematika A 9. szakiskolai évfolyam 16. modul EGYBEVÁGÓSÁGOK Készítette: Vidra Gábor MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM 16. modul: EGYBEVÁGÓSÁGOK TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott korosztály

Részletesebben

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 9. évfolyam I. Halmazok 1. Alapfogalmak, jelölések 2. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 3. Nevezetes számhalmazok (N,

Részletesebben

Követelmény a 8. évfolyamon félévkor matematikából

Követelmény a 8. évfolyamon félévkor matematikából Követelmény a 8. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Halmazokkal kapcsolatos alapfogalmak ismerete, halmazok szemléltetése, halmazműveletek ismerete, eszköz jellegű

Részletesebben

Szöveg címe: Az elefántok nem felejtenek Forrás: Kép forrása: szabadon használható fotók.

Szöveg címe: Az elefántok nem felejtenek Forrás:   Kép forrása:   szabadon használható fotók. Szöveg címe: Az elefántok nem felejtenek Forrás: http://www.ngkids.hu/ Kép forrása: http://www.sxc.hu, szabadon használható fotók. Szövegtípus: magyarázó szöveg Szövegfokozat: könnyű Kérdések nehézsége:

Részletesebben

A fejlesztés várt eredményei a 1. évfolyam végén

A fejlesztés várt eredményei a 1. évfolyam végén A tanuló legyen képes: A fejlesztés várt eredményei a 1. évfolyam végén - Halmazalkotásra, összehasonlításra az elemek száma szerint; - Állítások igazságtartalmának eldöntésére, állítások megfogalmazására;

Részletesebben

Országos kompetenciaméréshez kapcsolódó intézkedési terv a évi kompetencia mérés eredményeinek javítására, a tanulók fejlesztésére

Országos kompetenciaméréshez kapcsolódó intézkedési terv a évi kompetencia mérés eredményeinek javítására, a tanulók fejlesztésére Országos kompetenciaméréshez kapcsolódó intézkedési terv a 2016. évi kompetencia mérés eredményeinek javítására, a tanulók fejlesztésére Budapest, XVIII. kerület, Brassó Utcai Általános Iskola Budapest,

Részletesebben

I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek, a halmazelmélet elemei, a logika elemei. 1. Számfogalom, műveletek (4 óra)

I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek, a halmazelmélet elemei, a logika elemei. 1. Számfogalom, műveletek (4 óra) MATEMATIKA NYEK-humán tanterv Matematika előkészítő év Óraszám: 36 óra Tanítási ciklus 1 óra / 1 hét Részletes felsorolás A tananyag felosztása: I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek,

Részletesebben

Matematika A 9. szakiskolai évfolyam. 1. modul GONDOLKODJUNK, RENDSZEREZZÜNK!

Matematika A 9. szakiskolai évfolyam. 1. modul GONDOLKODJUNK, RENDSZEREZZÜNK! Matematika A 9. szakiskolai évfolyam 1. modul GONDOLKODJUNK, RENDSZEREZZÜNK! MATEMATIKA A 9. szakiskolai évfolyam 1. modul:gondolkodjunk, RENDSZEREZZÜNK! Tanári útmutató 2 A modul célja Időkeret Ajánlott

Részletesebben

4. modul EGYENES ÉS FORDÍTOTT ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS

4. modul EGYENES ÉS FORDÍTOTT ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS Matematika A 9. szakiskolai évfolyam 4. modul EGYENES ÉS FORDÍTOTT ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS MATEMATIKA A 9. szakiskolai évfolyam 4. modul: EGYENES ÉS FORDÍTOTT ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS Tanári útmutató

Részletesebben

Iskolai jelentés. 10. évfolyam szövegértés

Iskolai jelentés. 10. évfolyam szövegértés 2008 Iskolai jelentés 10. évfolyam szövegértés Az elmúlt évhez hasonlóan 2008-ban iskolánk is részt vett az országos kompetenciamérésben, diákjaink matematika és szövegértés teszteket, illetve egy tanulói

Részletesebben

Apor Vilmos Katolikus Iskolaközpont. Helyi tanterv. Matematika. készült. a 51/2012. (XII. 21.) EMMI rendelet 1. sz. melléklet 1-4./1.2.3.

Apor Vilmos Katolikus Iskolaközpont. Helyi tanterv. Matematika. készült. a 51/2012. (XII. 21.) EMMI rendelet 1. sz. melléklet 1-4./1.2.3. 1 Apor Vilmos Katolikus Iskolaközpont Helyi tanterv Matematika készült a 51/2012. (XII. 21.) EMMI rendelet 1. sz. melléklet 1-4./1.2.3. alapján 1-4. évfolyam 2 MATEMATIKA Az iskolai matematikatanítás célja,

Részletesebben

Matematika 11. évfolyam

Matematika 11. évfolyam Matematika 11. évfolyam Tanmenet Másodfokúra visszavezethető magasabb rendű egyenletek, másodfokú egyenletrendszerek 1. Másodfokú egyenletek (ismétlés) 2. Másodfokú egyenletrendszerek (behelyettesítő módszer)

Részletesebben

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / tanév

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / tanév 9. évfolyam I. Halmazok Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / 2017. tanév 1. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 2. Intervallumok 3. Halmazműveletek

Részletesebben

A sokorópátkai Általános Iskola évi Országos Kompetenciamérési eredményeit feldolgozó elemzés

A sokorópátkai Általános Iskola évi Országos Kompetenciamérési eredményeit feldolgozó elemzés A sokorópátkai Általános Iskola 2011. évi Országos Kompetenciamérési eredményeit feldolgozó elemzés 6. osztály A 2011. májusában lebonyolított országos mérésen az iskola minden hatodikos tanulója részt

Részletesebben

Az OKM jelentések felhasználási lehetőségei az intézményi adatok elemzésében. A FIT elemzőszoftver által kínált lehetőségek

Az OKM jelentések felhasználási lehetőségei az intézményi adatok elemzésében. A FIT elemzőszoftver által kínált lehetőségek Az OKM jelentések felhasználási lehetőségei az intézményi adatok elemzésében A FIT elemzőszoftver által kínált lehetőségek A kompetenciamérés eredményeire alapuló fejlesztés egy lehetséges módja Képességpontok

Részletesebben

OKTATÁSI ALAPISMERETEK ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA KÖZÉPSZINTŰ VIZSGA

OKTATÁSI ALAPISMERETEK ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA KÖZÉPSZINTŰ VIZSGA A vizsga részei OKTATÁSI ALAPISMERETEK ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA Középszint Emelt szint Írásbeli vizsga Szóbeli vizsga Írásbeli vizsga Szóbeli vizsga 180 perc 15 perc 180 perc 20 perc 100 pont

Részletesebben

Változások az Országos kompetenciamérés skáláiban

Változások az Országos kompetenciamérés skáláiban Változások az Országos kompetenciamérés skáláiban A skála módosításának okai A kompetenciamérések bevezetésénél is megfogalmazott, ám akkor adatvédelmi szempontok miatt nem megvalósítható igény volt, hogy

Részletesebben

Informatika tanterv nyelvi előkészítő osztály heti 2 óra

Informatika tanterv nyelvi előkészítő osztály heti 2 óra Informatika tanterv nyelvi előkészítő osztály heti Számítógép feladata és felépítése Az informatikai eszközök használata Operációs rendszer Bemeneti egységek Kijelző egységek Háttértárak Feldolgozás végző

Részletesebben

JA45 Cserkeszőlői Petőfi Sándor Általános Iskola (OM: ) 5465 Cserkeszőlő, Ady Endre utca 1.

JA45 Cserkeszőlői Petőfi Sándor Általános Iskola (OM: ) 5465 Cserkeszőlő, Ady Endre utca 1. ORSZÁGOS KOMPETENCIAMÉRÉS EREDMÉNYEINEK ÉRTÉKELÉSE LÉTSZÁMADATOK Intézményi, telephelyi jelentések elemzése SZÖVEGÉRTÉS 2016 6. a 6. b osztály 1. ÁTLAGEREDMÉNYEK A tanulók átlageredménye és az átlag megbízhatósági

Részletesebben

ALGEBRAI KIFEJEZÉSEK, EGYENLETEK

ALGEBRAI KIFEJEZÉSEK, EGYENLETEK ALGEBRAI KIFEJEZÉSEK, EGYENLETEK AZ ALGEBRAI KIFEJEZÉS FOGALMÁNAK KIALAKÍTÁSA (7-9. OSZTÁLY) Racionális algebrai kifejezés (betűs kifejezés): betűket és számokat a négy alapművelet véges sokszori alkalmazásával

Részletesebben

MATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, 2014. szeptember

MATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, 2014. szeptember MATEMATIKA TANMENET 9. osztály 4 óra/hét Budapest, 2014. szeptember 2 Évi óraszám: 144 óra Heti óraszám: 4 óra Ismerkedés, év elejei feladatok, szintfelmérő írása 2 óra I. Kombinatorika, halmazok 13 óra

Részletesebben

A 2016.ÉVI ORSZÁGOS KOMPETENCIAMÉRÉS EREDMÉNYÉNEK ELEMZÉSE. Sajóvámosi Arany János Általános Iskola 3712 Sajóvámos, Nevelők út 4.

A 2016.ÉVI ORSZÁGOS KOMPETENCIAMÉRÉS EREDMÉNYÉNEK ELEMZÉSE. Sajóvámosi Arany János Általános Iskola 3712 Sajóvámos, Nevelők út 4. A 2016.ÉVI ORSZÁGOS KOMPETENCIAMÉRÉS EREDMÉNYÉNEK ELEMZÉSE Sajóvámosi Arany János Általános Iskola 3712 Sajóvámos, Nevelők út 4. 029141 1 Tartalomjegyzék 1. TÖRVÉNYI HÁTTÉR:... 3 2. AZ ELEMZÉS CÉLJAI...

Részletesebben

MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2012

MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2012 2012 2. Számhalmazok (a valós számok halmaza és részhalmazai), oszthatósággal kapcsolatos problémák, számrendszerek. 4. Hatványozás, hatványfogalom kiterjesztése, azonosságok. Gyökvonás és azonosságai,

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító ME-III.1./1 2 Azonosító: Változatszám : Érvényesség kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK-DC-2013 2013. 09. 01. MATEMATIKA

Részletesebben

Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag!

Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag! Részletes követelmények Matematika házivizsga Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag! A vizsga időpontja: 2015. április

Részletesebben

A BIOLÓGIAÉRETTSÉGI VIZSGA MÓDOSÍTÁSAI

A BIOLÓGIAÉRETTSÉGI VIZSGA MÓDOSÍTÁSAI XXI. Századi Közoktatás (fejlesztés, koordináció) II. szakasz TÁMOP-3.1.1-11/1-2012-0001 A BIOLÓGIAÉRETTSÉGI VIZSGA MÓDOSÍTÁSAI Biológiaérettségi vizsga 2015 A biológia érettségi vizsga a nemzeti alaptantervben

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/7 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

TANMENET. a matematika tantárgy tanításához a 12. E osztályok számára

TANMENET. a matematika tantárgy tanításához a 12. E osztályok számára Az iskola fejbélyegzője TANMENET a matematika tantárgy tanításához a 12. E osztályok számára Készítette: Természettudományi Munkaközösség matematikát tanító tanárai Készült: a gimnáziumi tanterv alapján

Részletesebben

16. modul: ALGEBRAI AZONOSSÁGOK

16. modul: ALGEBRAI AZONOSSÁGOK MATEMATIK A 9. évfolyam 16. modul: ALGEBRAI AZONOSSÁGOK KÉSZÍTETTE: VIDRA GÁBOR, DARABOS NOÉMI ÁGNES Matematika A 9. évfolyam. 16. modul: ALGEBRAI AZONOSSÁGOK Tanári útmutató 2 A modul célja Időkeret Ajánlott

Részletesebben

OSZTÁLYOZÓVIZSGA TÉMAKÖRÖK 9. OSZTÁLY

OSZTÁLYOZÓVIZSGA TÉMAKÖRÖK 9. OSZTÁLY OSZTÁLYOZÓVIZSGA TÉMAKÖRÖK 9. OSZTÁLY ALGEBRA ÉS SZÁMELMÉLET Halmazok Halmazműveletek Halmazok elemszáma Logikai szita Számegyenesek intervallumok Gráfok Betűk használata a matematikában Hatványozás. A

Részletesebben

Követelmény az 5. évfolyamon félévkor matematikából

Követelmény az 5. évfolyamon félévkor matematikából Követelmény az 5. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Néhány elem kiválasztása adott szempont szerint. Néhány elem sorba rendezése, az összes lehetséges sorrend felsorolása.

Részletesebben

KÖZLEKEDÉSI ALAPISMERETEK ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA

KÖZLEKEDÉSI ALAPISMERETEK ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA KÖZLEKEDÉSI ALAPISMERETEK ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA A vizsga részei Középszint Emelt szint 180 perc 15 perc 240 perc 20 perc 100 pont 50 pont 100 pont 50 pont A vizsgán használható segédeszközök

Részletesebben

EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 2. sz. melléklet 2.2.03. Matematika az általános iskolák 5 8.

EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 2. sz. melléklet 2.2.03. Matematika az általános iskolák 5 8. EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 2. sz. melléklet 2.2.03 Matematika az általános iskolák 5 8. évfolyama számára Alapelvek, célok Az iskolai matematikatanítás célja, hogy hiteles képet

Részletesebben

különösen a média közleményeiben való reális tájékozódást. Mindehhez elengedhetetlen egyszerű matematikai szövegek értelmezése, elemzése.

különösen a média közleményeiben való reális tájékozódást. Mindehhez elengedhetetlen egyszerű matematikai szövegek értelmezése, elemzése. MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika

Részletesebben

különösen a média közleményeiben való reális tájékozódást. Mindehhez elengedhetetlen egyszerű matematikai szövegek értelmezése, elemzése.

különösen a média közleményeiben való reális tájékozódást. Mindehhez elengedhetetlen egyszerű matematikai szövegek értelmezése, elemzése. MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson amatematikáról, mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika

Részletesebben

Nemzeti alaptanterv 2012 MATEMATIKA

Nemzeti alaptanterv 2012 MATEMATIKA ALAPELVEK, CÉLOK Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 11B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 11B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/5 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben