Dr. Jelasity Márk. Mesterséges Intelligencia I. Előadás Jegyzet (2008. október 6) Készítette: Filkus Dominik Martin

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Dr. Jelasity Márk. Mesterséges Intelligencia I. Előadás Jegyzet (2008. október 6) Készítette: Filkus Dominik Martin"

Átírás

1 Dr. Jelasity Márk Mesterséges Intelligencia I Előadás Jegyzet (2008. október 6) Készítette: Filkus Dominik Martin Elsőrendű logika -Ítéletkalkulus : Az elsőrendű logika egy speciális esete, itt csak nullad rendű pedikátum szimbólumokat használunk. Részei: a) objektumok b) relációk c) függvény d) kvantorok Az ítéletkalkulus atomi ítéletei a relációk, amik vagy teljesülnek, vagy nem. Beleláthatunk az ítélet finomabb szerkezetébe => ha túl sok tény lehet, (pl ), ez fontos, mert kompakt és kifejezőbb. Szintaktika mondat atom (összekötő mondat) kvantor változó mondat mondat atom predikátum (term, ) term = term term függvény (term, ) kvantorok változó összekötő kvantor kvantorok A B C (nagybetűk) változók x y z (kisbetűk) Szemantika Ítéletkalkulus egy lépése : Lehetséges világok közül választunk, ez a modell elsőrendű logika : Lehetséges világ a domain, ami a létező objektumok halmaza ( D ). Ehhez még kell egy interpretáció, ami a következő: Minden kvantorhoz rendel elemet a domainből Minden függvényhez (n változós) rendel egy D n D függvényt Minden predikátumnévhez (n változós) egy D n {igaz / hamis} függvényt Egy fix domain-en, sok különböző interpretáció is lehet.

2 Kiértékelés (Igaz vagy Hamis a mondat) Kiterjesztett interpretáció: Minden változóhoz rendel egy domain elemet. Kiértékeléshez kiterjesztett interpretáció kell. Term kiértékelés: ( <= egy domain elem) Konstans és változó : <= kiterjesztett interpretáció Függvény F(t 1,...,t n ) : F -hez rendelt függvény kiértékelése a t 1,...,t n termek kiértékeléseit behelyettesítve Atomi mondatok: (<= Igaz / Hamis) P(t 1,..,t n ) : t 1,...,t n kiértékelését behelyettesítjük P kiértékelésébe Komplex mondatok: Mint az ítéletkalkulusban Kvantorok: Legyen f egy mondat, amelyben szerepel az x változó. x szabad változó, ha f atomi mondat <=> f 1 -ben szabad változó <=> f összetett (pl f 1 f 2 ) és x szabad f 1 -ben vagy f 2 -ben f= y f 1 (vagy y f1) és x y x kötött változó, ha x szerepel f-ben és nem szabad legyen f= xf 1 (x) (x kötött változó) ekkor f kiértékelése igaz, akkor és csak akkor, ha az összes kiterjesztett interpretációban, ahol x értéke a domain minden elemét felveszi (míg a többi hozzárendelés nem változik), f 1 (x) igaz. -nél ugyanez, csak elég egy igaz kiterjesztett interpretáció Logikai következmény T és f mondatok. Ekkor T = f akkor és csak akkor, ha minden modellben és minden interpretációban, ahol T igaz értéket vesz fel, f is igaz értéket vesz fel. Megjegyzés: Ítéletkalkulusban lehetett direkt ellenőrizni (összes modell felsorolása vagy kielégíthetőség). Itt már nem lehet, végtelen lehetőség van. Megjegyzés: Az = operátor ugyanúgy működik mint egy predikátum, amiben az azonosság relációt rendeljük, mint interpretáció. Kvantorok kiértékelése xf(x) = x f(x), stb (csak vagy is elég) x y f(x,y) y x f(x,y) (pl f(x,y) : x vezeti y-t)

3 gyakorlati megjegyzés: Egy elsőrendű logikai adatbázisban általában nem csak egy f(x 1,...,x 2 ) mondat érdekes, hanem, ha igaz, az interpretáció is. Pl xp(x) -nél érdekes, hogy mi az az x? (azaz melyik objektum?) Példák rokonság: a) objektumok : emberek b) predikátumok : férfi, nő (1 változós, nővér, szülő, stb) c) w-ek : Apa, Anya (lehetne kétváltozós predikátum is) tudás, pl x,y Anya(x) = y <=> Nő(y) Szülő (y,x) x,y Nagyszülő(x,y) z (Szülő(x,z) Szülő (z,y)) x,y Unokatestvér(x,y) x y p Szülő (p,x) Szülő (x,y) Férfi (Péter, stb) matematikai példák: a) objektumok : természetes számok b) predikátumok : N(x) : x természetes szám c) függvények : S(x) : x rákövetkezője (x+1) d) kvantorok : nulla Itt a cél az, hogy olyan axiómákat adjunk, amelyeknek lényegében csak a természetes számok a modellje. (izomorfizmus erejéig). Ez nem megy elsőrendű nyelven, mert van megszámlálhatatlan modell is a következő axiómákhoz. N(0) x N(S(x)) x 0 S(x) x,y x y S(x) S(y) x N(x) 0+x = x x,y N(x) N(y) S(m) + n = s(m + n) indukciós axióma: vagy másodrendű nyelven vagy elsőrendűn, de akkor végtelensok axióma Logikai következtetés Hogyan általánosítsuk az ítéletkalkulus módszereit? Van teljes módszer? (igen! Például a rezolúció) ötlet: Ítéletkalkulus következő outputmezőit emeljük át ehhez: a) kvantoroktól megszabadulunk b) következtetési szabályokat felemeljük (lifting) úgy, hogy a finomszerkezete (azaz változó hozzárendelése) figyelünk behelyettesításekkel popelem : a behelyettesítés szintaktikai operáció lesz.

4 kvantorok : xf(x) => f(c), ahol c skolem konstans szimbólum. Általában : skolemizáció: Ha y kvantorok között, és az x1,...,x n -el kötött változókhoz tartozó kvantorok hatáskörében van, akkor helyettesítünk F(x 1,...,x n ) skolem függvénnyel például: x( yp(x,y)) => x(p(x,f(x))) xf(x) => f(x) elhagyjuk a kvantort és minden szabad változót -nel kötöttnek tekintünk Megjegyzés: Logikai következmény szempontjából ekvivalens, de minden kvantorhoz új változónév kell: (pl xp(x) xr(x) => P(x) R(y)) Ebben az állapotban nincsenek kvantorok, csak predikátumok logikai kombinációi, ahol a termek lehetnek változók is. Lifting: P 1 ',...,P n ', P 1,...,P n : atomok P1',..., Pn ', P1 Pn q helyettesít Θ, q Ahol Θ helyettesítés azon szabad változók helyettesítése olyan termekkel, amelyek más mondatokban előfordulnak. Például: Fekete H, Fekete x Hattyú x Hattyú H ahol Θ = {x/h} Ezzel a helyettesítéssel Fekete(H), Fekete(x) -et azonos alakra hozzuk. Θ megtalálásához adható hatékony algoritmus, mely a legoptimálisabb hozzárendelést adja meg, azaz csak akkor rendel x-hez értéket, ha a másik literálban ugyanott nem változó van, hanem konstans vagy függvény. Rezolúció Itt is ellentmondáshoz jutunk, mint az ítéletkalkulusban 1. Vegyük fel β -t : α β -ból indulunk 2. α β konjuktív normálformája kell -t automatikusan bevisszük csak és marad konstansoktól megszabadulunk literálok klózait hozzuk létre ( -t kivisszük)

5 egyetlen-szabály : két klózra l 1 l 2, m 1 m n helyettesít(θ, l 1 l i-1 l i+1 l 2 m 1 m j-1 m j+1 m n ) (lifting a rezolúció szabályhoz) ahol helyettesít (Θ, l i ) = helyettesít (Θ, m j ) Tétel A rezolúció cáfolás-teljes, azaz ha β logikai következmény, találunk bizonyítást, de ha nem, akkor nem kell bizonyítani. Bizonyítás Hasonló mint az ítéletkalkulus, de néhány extra lépés : kihagyjuk Gödel tétele Minden ellentmondásmentes, a természetes számok elméletét tartalmazó, formális-axiomatikus elméletben megfogalmazható olyan mondat, mely se nem bizonyítható, se nem cáfolható. Előre-hátra láncolás Horn-hoz hasonló adatbázis formátum. Határozott klóz : f 1 f 2... f k f k+1, ahol f i -k atomok (pozitív literálok) Tények: pozitív literál Literálok paraméterei: ha csak konstans vagy változó, akkor DATALOG formátum (függvényt nem engedünk) Kvantorokat továbbra is úgy kezeljük, ahogy eddig ötlet: Két módus ponens-t használunk a liftingel ugyanaz, mint az ítéletkalkulus, de 1. algoritmus kell, az összes lehetséges helyettesítés megtalálásához 2. akkor van vége, ha egy új formula és a bizonyítandó α közös alakra hozható helyettesítésnek, vagy nincs új formula (ekkor α nem logikai következmény) DATALOG adatbázison mindig megáll, de egyébként nem. Pl.: 1. N(0) 2. N(x) N(S(x)) -ből generálva N(S(0)), N(S(S(0))), stb A logikai következmények száma végtelen, nemtudjuk mikor kell megállni Félig eldönthető, ha α nem következmény, akkor nem áll meg, ha igen, akkor leáll A változók miatt az elsőrendű logikában a modus ponens lehetséges alakjainak előállítása NP nehéz! Példa probléma:

6 D : különböző D(wa, nt) S(wa, sa) D(nt, q)... stb színezhető tények : D(piros, kék), D(piros, zöld), stb A gyakorlatban nem feltétlenül nehéz heurisztikák: pl egy f 1... f 2 először azt, ami a legnehezebben kielégíthető alapvető probléma: irreleváns következtetések => visszafelé láncolás Ugyanaz, mint az ítéletkalkulus, csak a helyettesítésekre kell figyelni 1. A helyettesítések Θ halmaza kezdetben üres 2. Mélységi bejárással ezt a halmazt fokozatosan bővítjük, hozzáadva az új helyettesítéseket (amíg lehet) 3. A művelet sikeres, ha eljutunk a tényekig, melyek a levelekben vannak, ebben az esetben megkapjuk a behelyettesítést is. 4. A mélyésgi keresés miatt nem teljes és ismétlődő állapotok is lehetnek. Logikai programozás A logikai programozás esetében a programokat relációkkal specifikáljuk. A program futása az logikai következtetésen alapszik. Prolog: Legkiemeltebb környezet Hátrafelé láncolás, határozott klózok a tudásanyag szintaxis pl: A(x,y) B(x) C(x) kb. c(x) :- A(x,y), B(x) Néhány kompromisszummal számolni kell: Pl.: predikátumnak van mellékhatása (input/output, stb) néhány gond például a) (1) path (X,Z) :- link (X,Z) (2) path(x,z) :- path(x,y), link (Y,Z) (nagybetű: változó, kisbetű: konstans) Az A B C gráfon végtelen ciklus következik, ha fordított sorrendben írjuk fel a szabályt ((2),(1)) ( <= mélységi keresés)

7 Ugyanazt az állapotot többször is elérjük, azonban lehet hatékonysági gond Sok lehetséges útvonal A-ból B-be, ezekből sok a fölösleg Végeredményeket táblázatba lehet tárolni (<= dinamikus programozás) Automatikus tételbizonyítás Nem csak határozott klózok vesznek részt, elsőrendű formulák A :- B,C A:- C,B nem mindegy a sorrend OTTER 4 részre osztjuk a tudásbázist támogató halmaz pontos tények használható axiómák háttértudás Átírók termekhez, pl x+0 = x kontroll info pl heurisztika, keresés szabályozásához működés: rezolúció, ahol a támogató halmaz egy elemét és egy axiómát rezolválunk, a legkönnyebb klózt választjuk. A halmazhoz aztán klózokat adunk alkalmazás: néhány területen, algebra, számelmélet

Matematikai logika. Nagy Károly 2009

Matematikai logika. Nagy Károly 2009 Matematikai logika előadások összefoglalója (Levelezős hallgatók számára) Nagy Károly 2009 1 1. Elsőrendű nyelvek 1.1. Definíció. Az Ω =< Srt, Cnst, F n, P r > komponensekből álló rendezett négyest elsőrendű

Részletesebben

Mesterséges intelligencia, 7. előadás 2008. október 13. Készítette: Masa Tibor (KPM V.)

Mesterséges intelligencia, 7. előadás 2008. október 13. Készítette: Masa Tibor (KPM V.) Mesterséges intelligencia, 7. előadás 2008. október 13. Készítette: Masa Tibor (KPM V.) Bizonytalanságkezelés: Az eddig vizsgáltakhoz képest teljesen más világ. A korábbi problémák nagy része logikai,

Részletesebben

A matematikai logika alapjai

A matematikai logika alapjai A matematikai logika alapjai A logika a gondolkodás törvényeivel foglalkozó tudomány A matematikai logika a logikának az az ága, amely a formális logika vizsgálatára matematikai módszereket alkalmaz. Tárgya

Részletesebben

A matematika alapjai. Nagy Károly 2014

A matematika alapjai. Nagy Károly 2014 A matematika alapjai előadások összefoglalója (Levelezős hallgatók számára) Nagy Károly 2014 1 1. Kijelentés logika, ítéletkalkulus 1.1. Definíció. Azokat a kijelentő mondatokat, amelyekről egyértelműen

Részletesebben

Logika és számításelmélet. 2011/11 11

Logika és számításelmélet. 2011/11 11 (Logika rész) Logika és számításelmélet. 2011/11 11 1. előadás 1. Bevezető rész Logika (és a matematikai logika) tárgya Logika (és a matematikai logika) tárgya az emberi gondolkodás vizsgálata. A gondolkodás

Részletesebben

Megoldások. 2001. augusztus 8.

Megoldások. 2001. augusztus 8. Megoldások 2001. augusztus 8. 1 1. El zetes tudnivalók a különböz matematikai logikai nyelvekr l 1.1. (a) Igen (b) Igen (c) Nem, mert nem kijelent mondat. (d) Nem fejez ki önmagában állítást. "Ádám azt

Részletesebben

Mesterséges Intelligencia (Artificial Intelligence)

Mesterséges Intelligencia (Artificial Intelligence) Mesterséges Intelligencia (Artificial Intelligence) Bevezetés (ágens típusok, környezet tulajdonságai) Ágens: Környezetébe ágyazott (érzékelések, beavatkozások) autonóm rendszer (minimum válasz). [Bármi

Részletesebben

Nemzeti versenyek 11 12. évfolyam

Nemzeti versenyek 11 12. évfolyam Nemzeti versenyek 11 12. évfolyam Szerkesztette: I. N. Szergejeva 2015. február 2. Technikai munkák (MatKönyv project, TEX programozás, PHP programozás, tördelés...) Dénes Balázs, Grósz Dániel, Hraskó

Részletesebben

Relációs algebra áttekintés és egy táblára vonatkozó lekérdezések

Relációs algebra áttekintés és egy táblára vonatkozó lekérdezések Relációs algebra áttekintés és egy táblára vonatkozó lekérdezések Tankönyv: Ullman-Widom: Adatbázisrendszerek Alapvetés Második, átdolgozott kiadás, Panem, 2009 2.4. Relációs algebra (áttekintés) 5.1.

Részletesebben

Logika feladatgyűjtemény

Logika feladatgyűjtemény Debreceni Egyetem Informatikai Kar Logika feladatgyűjtemény 2005. május 19. Készítette: Lengyel Zoltán lengyelz@inf.unideb.hu Tartalomjegyzék 1. Ítéletlogika 2 2. Elsőrendű logika 17 2.1. Prenex alak......................................

Részletesebben

Analízis előadás és gyakorlat vázlat

Analízis előadás és gyakorlat vázlat Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 00-. I. Félév . fejezet Számhalmazok és tulajdonságaik.. Nevezetes számhalmazok ➀ a) jelölése: N b) elemei:

Részletesebben

MATEMATIKA 9. osztály Segédanyag 4 óra/hét

MATEMATIKA 9. osztály Segédanyag 4 óra/hét MATEMATIKA 9. osztály Segédanyag 4 óra/hét - 1 - Az óraszámok az AROMOBAN követhetőek nyomon! A tananyag feldolgozása a SOKSZÍNŰ MATEMATIKA (Mozaik, 013) tankönyv és a SOKSZÍNŰ MATEMATIKA FELADATGYŰJTEMÉNY

Részletesebben

Lineáris programozás. Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer

Lineáris programozás. Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer Lineáris programozás Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer Feladat: Egy gyár kétféle terméket gyárt (A, B): /db Eladási ár 1000 800 Technológiai önköltség 400 300 Normaóraigény

Részletesebben

4. Programozási nyelvek osztályozása. Amatőr és professzionális

4. Programozási nyelvek osztályozása. Amatőr és professzionális 4. Programozási nyelvek osztályozása. Amatőr és professzionális programozási nyelvek. Számítási modellek (Neumann-elvű, automataelvű, funkcionális, logikai). Programozási nyelvekkel kapcsolatos fogalmak

Részletesebben

INFORMATIKA LOGIKAI ALAPJAI JEGYZET

INFORMATIKA LOGIKAI ALAPJAI JEGYZET INFORMATIKA LOGIKAI ALAPJAI JEGYZET KÉSZÍTETTE: CSENGERI ISTVÁN PTI SALGÓTARJÁN 2009 Nulladrendű matematikai logika... 4 1.1 Matematikai Logika = mat.log = symbolic logic... 4 1.2 Kijelentések... 4 1.3

Részletesebben

A matematika alapjai 1 A MATEMATIKA ALAPJAI. Pécsi Tudományegyetem, 2006

A matematika alapjai 1 A MATEMATIKA ALAPJAI. Pécsi Tudományegyetem, 2006 A matematika alapjai 1 A MATEMATIKA ALAPJAI Dr. Tóth László Pécsi Tudományegyetem, 2006 Köszönöm Koós Gabriella végzős hallgatónak, hogy felhívta a figyelmemet az anyag előző változatában szereplő néhány

Részletesebben

Analízis 1. (BSc) vizsgakérdések Programtervez informatikus szak 2008-2009. tanév 2. félév

Analízis 1. (BSc) vizsgakérdések Programtervez informatikus szak 2008-2009. tanév 2. félév Analízis 1. (BSc) vizsgakérdések Programtervez informatikus szak 2008-2009. tanév 2. félév Valós számok 1. Hogyan szól a Bernoulli-egyenl tlenség? Mikor van egyenl ség? Válasz. Minden h 1 valós számra

Részletesebben

Természetes számok: a legegyszerűbb halmazok elemeinek. halmazokat alkothatunk, ezek elemszámai természetes 3+2=5

Természetes számok: a legegyszerűbb halmazok elemeinek. halmazokat alkothatunk, ezek elemszámai természetes 3+2=5 1. Valós számok (ismétlés) Természetes számok: a legegyszerűbb halmazok elemeinek megszámlálására használjuk őket: N := {1, 2, 3,...,n,...} Például, egy zsák bab felhasználásával babszemekből halmazokat

Részletesebben

Vizsgakérdések az MI előadás anyagából. 2011. 1. A Russel féle négy cél MI rendszer 2. Megoldás keresés az állapottérben: hegymászó keresés, Hanoi

Vizsgakérdések az MI előadás anyagából. 2011. 1. A Russel féle négy cél MI rendszer 2. Megoldás keresés az állapottérben: hegymászó keresés, Hanoi Vizsgakérdések az MI előadás anyagából. 2011. 1. A Russel féle négy cél MI rendszer 2. Megoldás keresés az állapottérben: hegymászó keresés, Hanoi tornyai példával bemutatva. 3. Dekompozíciós módszer,

Részletesebben

JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS I. Sorozatok és sorok

JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS I. Sorozatok és sorok JANUS PANNONIUS TUDOMÁNYEGYETEM Schipp Ferenc ANALÍZIS I. Sorozatok és sorok Pécs, 1994 Lektorok: Dr. FEHÉR JÁNOS egyetemi docens, kandidtus. Dr. SIMON PÉTER egyetemi docens, kandidtus 1 Előszó Ez a jegyzet

Részletesebben

Geometriai axiómarendszerek és modellek

Geometriai axiómarendszerek és modellek Verhóczki László Geometriai axiómarendszerek és modellek ELTE TTK Matematikai Intézet Geometriai Tanszék Budapest, 2011 1) Az axiómákra vonatkozó alapvető ismeretek Egy matematikai elmélet felépítésének

Részletesebben

Időt kezelő modellek és temporális logikák

Időt kezelő modellek és temporális logikák Időt kezelő modellek és temporális logikák Valósidejű rendszerek követelményeinek formalizálása és ellenőrzése Majzik István Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs

Részletesebben

Áttekintés a felhasznált lineáris algebrai ismeretekről.

Áttekintés a felhasznált lineáris algebrai ismeretekről. Kiegészítés az előadássorozathoz. Áttekintés a felhasznált lineáris algebrai ismeretekről. A valószínűségszámítás (és a matematika) bizonyos kérdéseiben fontos szerepet játszik a lineáris algebra néhány

Részletesebben

1. Három tanuló reggel az iskola bejáratánál hányféle sorrendben lépheti át a küszöböt?

1. Három tanuló reggel az iskola bejáratánál hányféle sorrendben lépheti át a küszöböt? skombinatorika 1. Három tanuló reggel az iskola bejáratánál hányféle sorrendben lépheti át a küszöböt? P = 3 2 1 = 6. 3 2. Hány különböző négyjegyű számot írhatunk föl 2 db 1-es, 1 db 2-es és 1 db 3-as

Részletesebben

Diszkrét Matematika I.

Diszkrét Matematika I. Bácsó Sándor Diszkrét Matematika I. mobidiák könyvtár Bácsó Sándor Diszkrét Matematika I. mobidiák könyvtár SOROZATSZERKESZTŐ Fazekas István Bácsó Sándor Diszkrét Matematika I. egyetemi jegyzet mobidiák

Részletesebben

Megoldások, megoldás ötletek (Jensen-egyenlőtlenség)

Megoldások, megoldás ötletek (Jensen-egyenlőtlenség) Megoldások, megoldás ötletek (Jensen-egyenlőtlenség) Mivel az f : 0; ; x sin x folytonos az értelmezési tartományán, ezért elég azt belátni, hogy szigorúan gyengén konkáv ezen az intervallumon Legyen 0

Részletesebben

Beadható feladatok. 2006. december 4. 1. Add meg az alábbi probléma állapottér-reprezentációját!

Beadható feladatok. 2006. december 4. 1. Add meg az alábbi probléma állapottér-reprezentációját! Beadható feladatok 2006. december 4. 1. Feladatok 2006. szeptember 13-án kitűzött feladat: 1. Add meg az alábbi probléma állapottér-reprezentációját! Adott I 1,..., I n [0, 1] intervallumokból szeretnénk

Részletesebben

Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény

Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR. Analízis I. példatár. (kidolgozott megoldásokkal) elektronikus feladatgyűjtemény Miskolci Egyetem GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR Analízis I. példatár kidolgozott megoldásokkal) elektronikus feladatgyűjtemény Összeállította: Lengyelné Dr. Szilágyi Szilvia Miskolc, 013. Köszönetnyilvánítás

Részletesebben

Contents. 1 Bevezetés 11

Contents. 1 Bevezetés 11 2 Contents I Fogalmi háttér 9 1 Bevezetés 11 2 Mesterséges Intelligencia háttér 15 2.1 Intelligencia és intelligens viselkedés............ 15 2.2 Turing teszt......................... 16 2.3 Az emberi

Részletesebben

Bizonytalanság Valószín ség Bayes szabály. Bizonytalanság. November 5, 2009. Bizonytalanság

Bizonytalanság Valószín ség Bayes szabály. Bizonytalanság. November 5, 2009. Bizonytalanság November 5, 2009 i következtetés Legyen az A t akció az, hogy t perccel a repül gép indulása el tt indulunk otthonról. Kérdés, hogy A t végrehajtásával kiérünk-e id ben? Problemák: 1. hiányos ismeret (utak

Részletesebben

Analízisfeladat-gyűjtemény IV.

Analízisfeladat-gyűjtemény IV. Oktatási segédanyag a Programtervező matematikus szak Analízis. című tantárgyához (003 004. tanév tavaszi félév) Analízisfeladat-gyűjtemény IV. (Függvények határértéke és folytonossága) Összeállította

Részletesebben

Erdélyi Magyar TudományEgyetem (EMTE

Erdélyi Magyar TudományEgyetem (EMTE TARTALOM: Általánosságok Algoritmusok ábrázolása: Matematikai-logikai nyelvezet Pszeudokód Függőleges logikai sémák Vízszintes logikai sémák Fastruktúrák Döntési táblák 1 Általánosságok 1. Algoritmizálunk

Részletesebben

Mesterséges Intelligencia I. (I602, IB602)

Mesterséges Intelligencia I. (I602, IB602) Dr. Jelasity Márk Mesterséges Intelligencia I. (I602, IB602) harmadik (2008. szeptember 15-i) előadásának jegyzete Készítette: Papp Tamás PATLACT.SZE KPM V. HEURISZTIKUS FÜGGVÉNYEK ELŐÁLLÍTÁSA Nagyon fontos

Részletesebben

Matematikai logika 1 A MATEMATIKAI LOGIKA ALAPJAI. Pécsi Tudományegyetem, 2005. Bevezetés

Matematikai logika 1 A MATEMATIKAI LOGIKA ALAPJAI. Pécsi Tudományegyetem, 2005. Bevezetés Matematikai logika 1 A MATEMATIKAI LOGIKA ALAPJAI Dr. Tóth László Pécsi Tudományegyetem, 2005 Bevezetés A logika a gondolkodás általános törvényszerűségeit, szabályait vizsgálja. A matematikai logika a

Részletesebben

Ésik Zoltán (SZTE Informatikai Tanszékcsoport) Logika a számtastudományban Logika és informatikai alkalmazásai Varterész Magdolna, Uni-Deb

Ésik Zoltán (SZTE Informatikai Tanszékcsoport) Logika a számtastudományban Logika és informatikai alkalmazásai Varterész Magdolna, Uni-Deb Logika, 5. Az előadásfóliák ÉsikZoltén (SZTE InformatikaiTanszékcsoport) Logikaa szamtastudomanyban Logikaes informatikaialkalmazasai Előadásai alapján készültek Ésik Zoltán (SZTE Informatikai Tanszékcsoport)

Részletesebben

II. Szabályalapú következtetés

II. Szabályalapú következtetés Szabályalapú következtetés lényege II. Szabályalapú következtetés Szabályalapú technikáknál az ismereteket vagy ha-akkor szerkezetű kal, vagy feltétel nélküli tényállításokkal írják le. a feladat megoldásához

Részletesebben

Relációs algebra 1.rész

Relációs algebra 1.rész Relációs algebra 1.rész Tankönyv: Ullman-Widom: Adatbázisrendszerek Alapvetés Második, átdolgozott kiadás, Panem, 2009 Lekérdezések a relációs modellben 2.4. Egy algebrai lekérdező nyelv -- 01B_RelAlg1alap:

Részletesebben

A gyakorlatok HF-inak megoldása Az 1. gyakorlat HF-inak megoldása. 1. Tagadások:

A gyakorlatok HF-inak megoldása Az 1. gyakorlat HF-inak megoldása. 1. Tagadások: . Tagadások: A gyakorlatok HF-inak megoldása Az. gyakorlat HF-inak megoldása "Nem észak felé kell indulnunk és nem kell visszafordulnunk." "Nem esik az es, vagy nem fúj a szél." "Van olyan puha szilva,

Részletesebben

3. Strukturált programok

3. Strukturált programok Ha egy S program egyszerű, akkor nem lehet túl nehéz eldönteni róla, hogy megold-e egy (A,Ef,Uf) specifikációval megadott feladatot, azaz Ef-ből (Ef által leírt állapotból indulva) Uf-ben (Uf által leírt

Részletesebben

MATEMATIKA tankönyvcsaládunkat

MATEMATIKA tankönyvcsaládunkat Bemutatjuk a NAT 01 és a hozzá kapcsolódó új kerettantervek alapján készült MATEMATIKA tankönyvcsaládunkat 9 10 1 MATEMATIKA A KÖTETEKBEN FELLELHETŐ DIDAKTIKAI ESZKÖZTÁR A SOROZAT KÖTETEI A KÖVETKEZŐ KERETTANTERVEK

Részletesebben

Nevezetes függvények

Nevezetes függvények Nevezetes függvények Függvények értelmezése Legyen adott az A és B két nem üres halmaz. Az A halmaz minden egyes eleméhez rendeljük hozzá a B halmaz egy-egy elemét. Ez a hozzárendelés egyértelmű, és ezt

Részletesebben

Szakmai zárójelentés

Szakmai zárójelentés Szakmai zárójelentés A csoporttechnológia (Group Technology = GT) elvi és módszertani alapjaihoz, valamint a kapcsolódó módszerek informatikai alkalmazásaihoz kötődő kutatómunkával a Miskolci Egyetem Alkalmazott

Részletesebben

Lineáris Algebra gyakorlatok

Lineáris Algebra gyakorlatok A V 2 és V 3 vektortér áttekintése Lineáris Algebra gyakorlatok Írta: Simon Ilona Lektorálta: DrBereczky Áron Áttekintjük néhány témakör legfontosabb definícióit és a feladatokban használt tételeket kimondjuk

Részletesebben

Logika és informatikai alkalmazásai

Logika és informatikai alkalmazásai Logika és informatikai alkalmazásai 1. gyakorlat Németh L. Zoltán http://www.inf.u-szeged.hu/~zlnemeth SZTE, Informatikai Tanszékcsoport 2008 tavasz Követelmények A tárgy (ea+gyak) teljesítésének követlményeit

Részletesebben

AUTOMATÁK ÉS FORMÁLIS NYELVEK PÉLDATÁR

AUTOMATÁK ÉS FORMÁLIS NYELVEK PÉLDATÁR Írta: ÉSIK ZOLTÁN GOMBÁS ÉVA IVÁN SZABOLCS AUTOMATÁK ÉS FORMÁLIS NYELVEK PÉLDATÁR Egyetemi tananyag 2011 COPYRIGHT: 2011 2016, Dr. Ésik Zoltán, Dr. Gombás Éva és Dr. Iván Szabolcs, Szegedi Tudományegyetem

Részletesebben

Komputer statisztika gyakorlatok

Komputer statisztika gyakorlatok Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Tómács Tibor Komputer statisztika gyakorlatok Eger, 2010. október 26. Tartalomjegyzék Előszó 4 Jelölések 5 1. Mintagenerálás 7 1.1. Egyenletes

Részletesebben

Nemzeti alaptanterv 2012 MATEMATIKA

Nemzeti alaptanterv 2012 MATEMATIKA ALAPELVEK, CÉLOK Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika

Részletesebben

MATEMATIKA GYAKORLÓ FELADATGYŰJTEMÉNY

MATEMATIKA GYAKORLÓ FELADATGYŰJTEMÉNY MATEMATIKA GYAKORLÓ FELADATGYŰJTEMÉNY (Kezdő 9. évfolyam) A feladatokat a Borbás Lászlóné MATEMATIKA a nyelvi előkészítő évfolyamok számára című könyv alapján állítottuk össze. I. Számok, műveletek számokkal.

Részletesebben

Logika nyelvészeknek, 11. óra A kvantifikáció kezelése a klasszikus és az általánosított kvantifikációelméletben

Logika nyelvészeknek, 11. óra A kvantifikáció kezelése a klasszikus és az általánosított kvantifikációelméletben Logika nyelvészeknek, 11. óra A kvantifikáció kezelése a klasszikus és az általánosított kvantifikációelméletben I. A kvantifikáció a klasszikus Frege-féle kvantifikációelméletben A kvantifikáció klasszikus

Részletesebben

PROGRAMOZÁS MÓDSZERTANI ALAPJAI I. TÉTELEK ÉS DEFINÍCIÓK

PROGRAMOZÁS MÓDSZERTANI ALAPJAI I. TÉTELEK ÉS DEFINÍCIÓK PROGRAMOZÁS MÓDSZERTANI ALAPJAI I. TÉTELEK ÉS DEFINÍCIÓK Szerkesztette: Bókay Csongor 2012 tavaszi félév Az esetleges hibákat kérlek a csongor@csongorbokay.com címen jelezd! Utolsó módosítás: 2012. június

Részletesebben

Mesterséges intelligencia 1 előadások

Mesterséges intelligencia 1 előadások VÁRTERÉSZ MAGDA Mesterséges intelligencia 1 előadások 2006/07-es tanév Tartalomjegyzék 1. A problémareprezentáció 4 1.1. Az állapottér-reprezentáció.................................................. 5

Részletesebben

2. Logika gyakorlat Függvények és a teljes indukció

2. Logika gyakorlat Függvények és a teljes indukció 2. Logika gyakorlat Függvények és a teljes indukció Folláth János Debreceni Egyetem - Informatika Kar 2012/13. I. félév Áttekintés 1 Függvények Relációk Halmazok 2 Természetes számok Formulák Definíció

Részletesebben

5.10. Exponenciális egyenletek... 155 5.11. A logaritmus függvény... 161 5.12. Logaritmusos egyenletek... 165 5.13. A szinusz függvény... 178 5.14.

5.10. Exponenciális egyenletek... 155 5.11. A logaritmus függvény... 161 5.12. Logaritmusos egyenletek... 165 5.13. A szinusz függvény... 178 5.14. Tartalomjegyzék 1 A matematikai logika elemei 1 11 Az ítéletkalkulus elemei 1 12 A predikátum-kalkulus elemei 7 13 Halmazok 10 14 A matematikai indukció elve 14 2 Valós számok 19 21 Valós számhalmazok

Részletesebben

BUDAPESTI KÖZGAZDASÁGTUDOMÁNYI EGYETEM. Puskás Csaba, Szabó Imre, Tallos Péter LINEÁRIS ALGEBRA JEGYZET

BUDAPESTI KÖZGAZDASÁGTUDOMÁNYI EGYETEM. Puskás Csaba, Szabó Imre, Tallos Péter LINEÁRIS ALGEBRA JEGYZET BUDAPESTI KÖZGAZDASÁGTUDOMÁNYI EGYETEM Puskás Csaba, Szabó Imre, Tallos Péter LINEÁRIS ALGEBRA JEGYZET BUDAPEST, 1997 A szerzők Lineáris Algebra, illetve Lineáris Algebra II c jegyzeteinek átdolgozott

Részletesebben

1.1. Gyökök és hatványozás... 1 1.1.1. Hatványozás... 1 1.1.2. Gyökök... 1 1.2. Azonosságok... 2 1.3. Egyenlőtlenségek... 3

1.1. Gyökök és hatványozás... 1 1.1.1. Hatványozás... 1 1.1.2. Gyökök... 1 1.2. Azonosságok... 2 1.3. Egyenlőtlenségek... 3 Tartalomjegyzék 1. Műveletek valós számokkal... 1 1.1. Gyökök és hatványozás... 1 1.1.1. Hatványozás... 1 1.1.2. Gyökök... 1 1.2. Azonosságok... 2 1.3. Egyenlőtlenségek... 3 2. Függvények... 4 2.1. A függvény

Részletesebben

Félévi időbeosztás (nagyjából) házi feladat beadási határidőkkel (pontosan) Valószínűségszámítás 2. matematikusoknak és fizikusoknak, 2009 tavasz

Félévi időbeosztás (nagyjából) házi feladat beadási határidőkkel (pontosan) Valószínűségszámítás 2. matematikusoknak és fizikusoknak, 2009 tavasz Félévi időbeosztás (nagyjából) házi feladat beadási határidőkkel (pontosan) Valószínűségszámítás 2. matematikusoknak és fizikusoknak, 2009 tavasz Dátum Téma beadandó Feb 12Cs Konvolúció (normális, Cauchy,

Részletesebben

3. Az ítéletlogika szemantikája

3. Az ítéletlogika szemantikája 3. Az ítéletlogika szemantikája (4.2) 3.1 Formula és jelentése minden ítéletváltozó ( V v ) ha A JFF akkor A JFF ha A,B JFF akkor (A B) JFF minden formula előáll az előző három eset véges sokszori alkalmazásával.

Részletesebben

1. Bevezetés. A számítógéptudomány ezt a problémát a feladat elvégzéséhez szükséges erőforrások (idő, tár, program,... ) mennyiségével méri.

1. Bevezetés. A számítógéptudomány ezt a problémát a feladat elvégzéséhez szükséges erőforrások (idő, tár, program,... ) mennyiségével méri. Számításelmélet Dr. Olajos Péter Miskolci Egyetem Alkalmazott Matematika Tanszék e mail: matolaj@uni-miskolc.hu 2011/12/I. Készült: Péter Gács and László Lovász: Complexity of Algorithms (Lecture Notes,

Részletesebben

Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a. cos x + sin2 x cos x. +sinx +sin2x =

Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a. cos x + sin2 x cos x. +sinx +sin2x = 2000 Írásbeli érettségi-felvételi feladatok Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a egyenletet! cos x + sin2 x cos x +sinx +sin2x = 1 cos x (9 pont) 2. Az ABCO háromszög

Részletesebben

V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL

V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 86 Összefoglaló gyaorlato és feladato V GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 5 Halmazo, relácó, függvéye Bzoyítsd be, hogy ha A és B ét tetszőleges halmaz, aor a) P( A) P( B) P( A B) ; b) P( A) P ( B )

Részletesebben

Kőszegi Irén MATEMATIKA. 9. évfolyam

Kőszegi Irén MATEMATIKA. 9. évfolyam -- Kőszegi Irén MATEMATIKA 9. évfolyam (a b) 2 = a 2 2ab + b 2 2015 1 2 Tartalom 1. HALMAZOK... 5 2. SZÁMHALMAZOK... 8 3. HATVÁNYOK... 12 4. OSZTHATÓSÁG... 14 5. ALGEBRAI KIFEJEZÉSEK... 17 6. FÜGGVÉNYEK...

Részletesebben

MATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ

MATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ MATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: középszinten a

Részletesebben

Miskolci Egyetem. Diszkrét matek I. Vizsga-jegyzet. Hegedűs Ádám Imre 2010.12.28.

Miskolci Egyetem. Diszkrét matek I. Vizsga-jegyzet. Hegedűs Ádám Imre 2010.12.28. Miskolci Egyetem Diszkrét matek I. Vizsga-jegyzet Hegedűs Ádám Imre 2010.12.28. KOMBINATORIKA Permutáció Ismétlés nélküli permutáció alatt néhány különböző dolognak a sorba rendezését értjük. Az "ismétlés

Részletesebben

Logika és informatikai alkalmazásai

Logika és informatikai alkalmazásai Logika és informatikai alkalmazásai 1. gyakorlat Németh L. Zoltán http://www.inf.u-szeged.hu/~zlnemeth SZTE, Informatikai Tanszékcsoport 2009 tavasz Követelmények A tárgy (ea+gyak) teljesítésének követlményeit

Részletesebben

5. Trigonometria. 2 cos 40 cos 20 sin 20. BC kifejezés pontos értéke?

5. Trigonometria. 2 cos 40 cos 20 sin 20. BC kifejezés pontos értéke? 5. Trigonometria I. Feladatok 1. Mutassuk meg, hogy cos 0 cos 0 sin 0 3. KöMaL 010/október; C. 108.. Az ABC háromszög belsejében lévő P pontra PAB PBC PCA φ. Mutassuk meg, hogy ha a háromszög szögei α,

Részletesebben

TARTALOM. Ismétlő tesztek...248 ÚTMUTATÁSOK ÉS EREDMÉNYEK...255

TARTALOM. Ismétlő tesztek...248 ÚTMUTATÁSOK ÉS EREDMÉNYEK...255 TARTALOM. SZÁMHALMAZOK...5.. Természetes kitevőjű hatványok...5.. Negatív egész kitevőjű hatványok...6.. Racionális kitevőjű hatványok...7.4. Irracionális kitevőjű hatványok...0.5. Négyzetgyök és köbgyök...

Részletesebben

Nem teljesen nyilvánvaló például a következı, már ismert következtetés helyessége:

Nem teljesen nyilvánvaló például a következı, már ismert következtetés helyessége: Magyarázat: Félkövér: új, definiálandó, magyarázatra szoruló kifejezések Aláhúzás: definíció, magyarázat Dılt bető: fontos részletek kiemelése Indentált rész: opcionális mellékszál, kitérı II. fejezet

Részletesebben

EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 1. sz. melléklet 1.2.3. Matematika az általános iskolák 1 4. évfolyama számára

EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 1. sz. melléklet 1.2.3. Matematika az általános iskolák 1 4. évfolyama számára EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 1. sz. melléklet 1.2.3 Matematika az általános iskolák 1 4. évfolyama számára Célok és feladatok Az iskolai matematikatanítás célja, hogy hiteles képet

Részletesebben

Készítette: niethammer@freemail.hu

Készítette: niethammer@freemail.hu VLogo VRML generáló program Készítette: Niethammer Zoltán niethammer@freemail.hu 2008 Bevezetés A VLogo az általános iskolákban használt Comenius Logo logikájára épülő programozási nyelv. A végeredmény

Részletesebben

2. Halmazelmélet (megoldások)

2. Halmazelmélet (megoldások) (megoldások) 1. A pozitív háromjegy páros számok halmaza. 2. Az olyan, 3-mal osztható egész számok halmaza, amelyek ( 100)-nál nagyobbak és 100-nál kisebbek. 3. Az olyan pozitív egész számok halmaza, amelyeknek

Részletesebben

BEVEZETÉS A FUZZY-ELVŰ SZABÁLYOZÁSOKBA. Jancskárné Dr. Anweiler Ildikó főiskolai docens. PTE PMMIK Műszaki Informatika Tanszék

BEVEZETÉS A FUZZY-ELVŰ SZABÁLYOZÁSOKBA. Jancskárné Dr. Anweiler Ildikó főiskolai docens. PTE PMMIK Műszaki Informatika Tanszék BEVEZETÉS A FUZZY-ELVŰ SZABÁLYOZÁSOKBA Jancskárné Dr. Anweiler Ildikó főiskolai docens PTE PMMIK Műszaki Informatika Tanszék A fuzzy-logika a kétértékű logika kalkulusának kiterjesztése. Matematikatörténeti

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2007/2008-as tanév 2. forduló haladók I. kategória

Arany Dániel Matematikai Tanulóverseny 2007/2008-as tanév 2. forduló haladók I. kategória Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 007/008-as tanév. forduló haladók I. kategória Megoldások

Részletesebben

Lineáris algebra - jegyzet. Kupán Pál

Lineáris algebra - jegyzet. Kupán Pál Lineáris algebra - jegyzet Kupán Pál Tartalomjegyzék fejezet Vektorgeometria 5 Vektorok normája Vektorok skaláris szorzata 4 3 Vektorok vektoriális szorzata 5 fejezet Vektorterek, alterek, bázis Vektorterek

Részletesebben

különösen a média közleményeiben való reális tájékozódást. Mindehhez elengedhetetlen egyszerű matematikai szövegek értelmezése, elemzése.

különösen a média közleményeiben való reális tájékozódást. Mindehhez elengedhetetlen egyszerű matematikai szövegek értelmezése, elemzése. MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika

Részletesebben

Valószín ségelmélet házi feladatok

Valószín ségelmélet házi feladatok Valószín ségelmélet házi feladatok Minden héten 3-4 házi feladatot adok ki. A megoldásokat a következ órán kell beadni, és kés bb már nem lehet pótolni. Csak az mehet vizsgázni, aki a 13 hét során kiadott

Részletesebben

Példa 1. A majom és banán problémája

Példa 1. A majom és banán problémája Példa 1. A majom és banán problémája Egy majom ketrecében mennyezetről egy banánt lógatnak. Kézzel elérni lehetetlen, viszont egy faládát be is tesznek. Eléri-e a majom a banánt? Mit tudunk a majom képességeirõl?

Részletesebben

Matematikai logika. 3. fejezet. Logikai m veletek, kvantorok 3-1

Matematikai logika. 3. fejezet. Logikai m veletek, kvantorok 3-1 3. fejezet Matematikai logika Logikai m veletek, kvantorok D 3.1 A P és Q elemi ítéletekre vonatkozó logikai alapm veleteket (konjunkció ( ), diszjunkció ( ), implikáció ( ), ekvivalencia ( ), negáció

Részletesebben

Matematika. Specializáció. 11 12. évfolyam

Matematika. Specializáció. 11 12. évfolyam Matematika Specializáció 11 12. évfolyam Ez a szakasz az eddigi matematikatanulás 12 évének szintézisét adja. Egyben kiteljesíti a kapcsolatokat a többi tantárggyal, a mindennapi élet matematikaigényes

Részletesebben

különösen a média közleményeiben való reális tájékozódást. Mindehhez elengedhetetlen egyszerű matematikai szövegek értelmezése, elemzése.

különösen a média közleményeiben való reális tájékozódást. Mindehhez elengedhetetlen egyszerű matematikai szövegek értelmezése, elemzése. MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson amatematikáról, mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika

Részletesebben

Tómács Tibor. Matematikai statisztika

Tómács Tibor. Matematikai statisztika Tómács Tibor Matematikai statisztika Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Tómács Tibor Matematikai statisztika Eger, 01 Szerző: Dr. Tómács Tibor főiskolai docens Eszterházy Károly

Részletesebben

Differenciál egyenletek

Differenciál egyenletek Galik Zsófia menedzser hallgató Differenciál egyenletek osztályzása Differenciál egyenletek A differenciálegyenletek olyan egyenletek a matematikában (közelebbről a matematikai analízisben), melyekben

Részletesebben

Apor Vilmos Katolikus Iskolaközpont. Helyi tanterv. Matematika. készült. a 51/2012. (XII. 21.) EMMI rendelet 1. sz. melléklet 1-4./1.2.3.

Apor Vilmos Katolikus Iskolaközpont. Helyi tanterv. Matematika. készült. a 51/2012. (XII. 21.) EMMI rendelet 1. sz. melléklet 1-4./1.2.3. 1 Apor Vilmos Katolikus Iskolaközpont Helyi tanterv Matematika készült a 51/2012. (XII. 21.) EMMI rendelet 1. sz. melléklet 1-4./1.2.3. alapján 1-4. évfolyam 2 MATEMATIKA Az iskolai matematikatanítás célja,

Részletesebben

Dierenciálhányados, derivált

Dierenciálhányados, derivált 9. fejezet Dierenciálhányados, derivált A dierenciálhányados deníciója D 9.1 Az egyváltozós valós f függvény x0 pontbeli dierenciálhányadosának nevezzük a lim f(x0 + h) f(x0) h 0 h határértéket, ha ez

Részletesebben

Debrecen. Bevezetés A digitális képfeldolgozás közel hetven éves múlttal rendelkezik. A kezdeti problémák

Debrecen. Bevezetés A digitális képfeldolgozás közel hetven éves múlttal rendelkezik. A kezdeti problémák VÁZKIJELÖLŐ ALGORITMUSOK A DIGITÁLIS KÉPFELDOLGOZÁSBAN Fazekas Attila Debrecen Összefoglalás: A digitális képfeldolgozásban vonalas ábrák feldolgozása során gyakran használatos a vázkijelölés. Ez a módszer

Részletesebben

I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek, a halmazelmélet elemei, a logika elemei. 1. Számfogalom, műveletek (4 óra)

I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek, a halmazelmélet elemei, a logika elemei. 1. Számfogalom, műveletek (4 óra) MATEMATIKA NYEK-humán tanterv Matematika előkészítő év Óraszám: 36 óra Tanítási ciklus 1 óra / 1 hét Részletes felsorolás A tananyag felosztása: I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek,

Részletesebben

reális tájékozódást. Mindehhez elengedhetetlen egyszerű matematikai szövegek értelmezése, elemzése. A tanulóktól megkívánjuk a szaknyelv életkornak

reális tájékozódást. Mindehhez elengedhetetlen egyszerű matematikai szövegek értelmezése, elemzése. A tanulóktól megkívánjuk a szaknyelv életkornak MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika

Részletesebben

8. Mohó algoritmusok. 8.1. Egy esemény-kiválasztási probléma. Az esemény-kiválasztási probléma optimális részproblémák szerkezete

8. Mohó algoritmusok. 8.1. Egy esemény-kiválasztási probléma. Az esemény-kiválasztási probléma optimális részproblémák szerkezete 8. Mohó algoritmusok Optimalizálási probléma megoldására szolgáló algoritmus gyakran olyan lépések sorozatából áll, ahol minden lépésben adott halmazból választhatunk. Sok optimalizálási probléma esetén

Részletesebben

MATEMATIKA. Tildy Zoltán Általános Iskola és Alapfokú Művészeti Iskola Helyi tanterv 1-4. évfolyam 2013.

MATEMATIKA. Tildy Zoltán Általános Iskola és Alapfokú Művészeti Iskola Helyi tanterv 1-4. évfolyam 2013. MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról, mint tudásrendszerről, és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika

Részletesebben

A FELADATLAPOT A MEGOLDÁSSAL EGYÜTT KÖTELEZİ BEADNI!

A FELADATLAPOT A MEGOLDÁSSAL EGYÜTT KÖTELEZİ BEADNI! BUDAPESTI CORVINUS EGYETEM 2009. május 8. Vezetıi Számvitel Tanszék ÜLÉSREND TEREM OSZLOP SOR NÉV.. NEPTUN KÓD: Gyakorlatvezetı neve:. MINTA V I Z S G A D O L G O Z A T SZÁMVITEL II. c. tárgyból MÉRNÖK,

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 0613 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók

Részletesebben

Egyetemi matematika az iskolában

Egyetemi matematika az iskolában Matematikatanítási és Módszertani Központ Egyetemi matematika az iskolában Hegyvári Norbert 013 Tartalomjegyzék 1. Irracionális számok; 4. További irracionális számok 7 3. Végtelen tizedestörtek 7 4. Végtelen

Részletesebben

Soukup Dániel, Matematikus Bsc III. év Email cím: dsoukup123@gmail.com Témavezető: Szentmiklóssy Zoltán, egyetemi adjunktus

Soukup Dániel, Matematikus Bsc III. év Email cím: dsoukup123@gmail.com Témavezető: Szentmiklóssy Zoltán, egyetemi adjunktus Síktopológiák a Sorgenfrey-egyenes ötletével Soukup Dániel, Matematikus Bsc III. év Email cím: dsoukup123@gmail.com Témavezető: Szentmiklóssy Zoltán, egyetemi adjunktus 1. Bevezetés A Sorgenfrey-egyenes

Részletesebben

MATEMATIKA 1-2.osztály

MATEMATIKA 1-2.osztály MATEMATIKA 1-2.osztály A matematikatanítás feladata a matematika különböző arculatainak bemutatása. A tanulók matematikai gondolkodásának fejlesztése során alapvető cél, hogy mind inkább ki tudják választani

Részletesebben

Adatok szűrése, rendezése

Adatok szűrése, rendezése Adatok szűrése, rendezése Célkitűzések Szűrést kifejező lekérdezések végrehajtása A lekérdezés eredményének rendezése &változó használata isql*plus-ban futási időben megadható feltételek céljából A lista

Részletesebben

MATEMATICĂ ÎN ÎNVĂŢĂMÂNT PRIMAR ŞI PREŞCOLAR Îndrumător de studiu Codul disciplinei: PLM3309

MATEMATICĂ ÎN ÎNVĂŢĂMÂNT PRIMAR ŞI PREŞCOLAR Îndrumător de studiu Codul disciplinei: PLM3309 PREŞCOLAR (ÎN LIMBA MAGHIARĂ, LA SATU MARE) EXTENSIA UNIVERSITARĂ: SATU MARE ANUL UNIVERSITAR: 2015/2016 SEMESTRUL: I. MATEMATICĂ ÎN ÎNVĂŢĂMÂNT PRIMAR ŞI PREŞCOLAR Îndrumător de studiu Codul disciplinei:

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 7 VII. Gyűrűk 1. Gyűrű Definíció Egy a következő axiómákat: gyűrű alatt olyan halmazt értünk, amelyben definiálva van egy összeadás és egy szorzás, amelyek teljesítik (1) egy

Részletesebben

A matematika nyelvér l bevezetés

A matematika nyelvér l bevezetés A matematika nyelvér l bevezetés Wettl Ferenc 2012-09-06 Wettl Ferenc () A matematika nyelvér l bevezetés 2012-09-06 1 / 19 Tartalom 1 Matematika Matematikai kijelentések 2 Logikai m veletek Állítások

Részletesebben

Széchenyi István Egyetem, 2005

Széchenyi István Egyetem, 2005 Gáspár Csaba, Molnárka Győző Lineáris algebra és többváltozós függvények Széchenyi István Egyetem, 25 Vektorterek Ebben a fejezetben a geometriai vektorfogalom ( irányított szakasz ) erős általánosítását

Részletesebben

e s gyakorlati alkalmaza sai

e s gyakorlati alkalmaza sai Sze lso e rte k-sza mı ta s e s gyakorlati alkalmaza sai Szakdolgozat ı rta: Pallagi Dia na Matematika BSc szak, elemzo szakira ny Te mavezeto : Svantnerne Sebestye n Gabriella Tana rsege d Alkalmazott

Részletesebben

Adatbázisok I 2012.05.11. Adatmodellek komponensei. Adatbázis modellek típusai. Adatbázisrendszer-specifikus tervezés

Adatbázisok I 2012.05.11. Adatmodellek komponensei. Adatbázis modellek típusai. Adatbázisrendszer-specifikus tervezés Adatbázisok I Szemantikai adatmodellek Szendrői Etelka PTE-PMMK Rendszer és Szoftvertechnológiai Tanszék szendroi@pmmk.pte.hu Adatmodellek komponensei Adatmodell: matematikai formalizmus, mely a valóság

Részletesebben