Gépi tanulás. Féligellenőrzött tanulás. Pataki Béla (Bolgár Bence)
|
|
- Lőrinc Biró
- 6 évvel ezelőtt
- Látták:
Átírás
1 Gépi tanulás Féligellenőrzött tanulás Pataki Béla (Bolgár Bence) BME I.E. 414,
2 Féligellenőrzött tanulás Mindig kevés az adat, de különösen kevés a címkézett adat. A féligellenőrzött tanulásban a rendelkezésre álló ismert címkéjű (kívánt válaszú) és címkézetlen mintákat egyaránt felhasználjuk. Demópélda: Kmeans algoritmussal becsüljük a klaszterek középpontjait, de a tanítóminták egy részéről tudjuk, hogy melyik csoportba tartoznak.
3 Féligellenőrzött Kmeans algoritmus/1 A Kmeans ugyanúgy megy, mint az alapalgoritmus, csak az ismert besorolású adatok (címkézett, labelled) besorolása nem (mindig) a távolság alapján történik. 1. A címkézett adatokból számítjuk ki a klaszterközéppontok értékeit egyes iterációk során. a. Csak az első iterációnál használjuk fel a címkézett adatok címkéit, a későbbiekben a távolság alapján besoroljuk a legközelebbi középponthoz. (Iniciált Kmeans) b. Mindegyik iterációnál megőrizzük és használjuk az ismert címkéket. (Korlátozott Kmeans)
4 Demópélda: Kmeans algoritmussal becsüljük a klaszterek középpontjait, de a tanítóminták egy részéről tudjuk, hogy melyik csoportba tartoznak. Ha pl. az adatok 5%-ának ismerjük a besorolását: 5 O - ismert címkéjű (besorolású) minták (5%) Három 2D Gauss eloszlásból adódó mintahalmaz
5 A klaszterközéppontok becslésének hibája az ismert címkéjű pontok arányának függvényében
6 Féligellenőrzött Kmeans algoritmus/2: COP 2. Nem címkéket ismerünk, hanem összetartozást, illetve összeférhetetlenséget az adatok közt. COP: Constrained Pairwise x1 x2 x3 x4 xk xm xp xn x1 1 x2 1 x3 1 x4 1 xk xm 1 1 xp -1 1 xn 1
7 Féligellenőrzött Kmeans algoritmus/2 kötelező kapcsolat (must link) kizáró kapcsolat (cannot link) A Kmeans algoritmust véletlen kezdőpontokkal indítjuk. Amikor egy olyan mintapont besorolásához érünk, amelyre kötöttség van, akkor: ha van olyan must link, amelynél a másik mintapontot már besoroltuk valahova, akkor ezt a mintapontot ugyanabba a klaszterbe tesszük ha van olyan cannot link, amelynél a másik mintapontot már besoroltuk valahova, akkor ezt az új pontot nem tesszük akkor se abba klaszterbe, ha annak középpontjához van a legközelebb. ha nem tudjuk besorolni, akkor új véletlen kiindulási helyzetből újrafuttatjuk az algoritmust xk -1 xm Lehet, hogy a kényszerek mátrixa ellentmondásos xp
8 Transzduktív tanulás A transzduktív tanulást az induktívval való szembeállítással magyarázhatjuk. Az induktív (ellenőrzött) tanulás (konkrét, egyedi példákból általánosít) A tanítás folyamata: Kiinduló (tanító) mintahalmaz {(x n,d n )}, n=1,,n Például: x n =[x n1 =1,5 ; x n2 =1; x n2 = SZÉP,...] d n = IGAZ h(x) hipotézis, mintákból például: leszűrendő általános szabály/tudás Tanítási algoritmus (hogyan építsük be a mintákban hordozott tudást az eszközbe) Például: döntési fa kialakítása, növesztése A megtanított eszköz felhasználása Új, ismeretlen szituáció leírása: x új Például: x új =[x új1 =2,7 ; x új2 =0; x új3 = CSÚNYA,...] a minták alapján előzőleg megtanított h(x) hipotézis, Az új, ismeretlen szituációra ( x új ) javasolt válasz Például: h(x új )= NEM
9 Transzduktív tanulás A transzduktív tanulás csak címkézett és címkézetlen adatokkal dolgozik, azokra együttes optimumot keres nem általánosít, nem kezel máshogy címkézetlen és ismeretlen adatokat! Legyen L a címkézett (labeled, ismert besorolású) minták halmaza U pedig az ismeretlen besorolású (unlabeled, címkézetlen) minták halmaza. A transzduktív tanulás együtt optimalizál a két halmazon. Ha egy új minta jön, arra nem alkalmazza a kialakított optimumot (nem általánosít!), hanem hozzáveszi U-hoz az új mintát U, és az új U és L együttes optimalizálásával határozza meg az ismeretlen minta besorolását (az összes többi címkézetlennel együtt). Az ismeretlen új mintára adott válasz tulajdonképpen a kialakított új rendszer! Hasonlat: az induktív tanulás az osztályteremben megoldott vizsgafeladatsor, a transzduktív a hazavitt és otthon megoldott vizsgafeladatsor!
10 Transzduktív SVM Ismert besorolású minták:, +ismeretlen besorolású minták: +új minta: Az ezek alapján kialakított SVM: az ismeretlen mintákat is használó: +új minta:
11 Gráf alapú féligellenőrzött eljárások (MINCUT) A címkézett mintapontok a gráf csúcsai {0,1} címkékkel, ezen minták halmaza L. Vannak címkézetlen mintáikn a csúcspontokban, ezek halmaza U. Az éleken tüntetjük fel a két minta távolságát (hasonlóságot/különbözőséget jellemez). Matematikailag a következő veszteségfüggvényt kell minimalizálnunk: 2 ( ) 1 2 min yk yk wij yi y j p( k ) L 2 p( i) U, p( j) U L A minimumot az y i címkékkel keressük. Azt fejezi ki, hogy a címkézett mintáink mindenképpen az adott címkékkel rendelkezzenek, és a címkézetlenek minimális távolságösszeget adjanak a többi címkézett és címkézetlen mintával. PÉLDA külön pdf-ben Probléma: merev vágást eredményez. Soft- MINCUT : kis zajjal perturbáljuk a w ij súlyokat, és több MINCUT-ot alakítunk ki. A végső eredményt ezen eszközök többségi szavazása adja.
Gépi tanulás. Hány tanítómintára van szükség? VKH. Pataki Béla (Bolgár Bence)
Gépi tanulás Hány tanítómintára van szükség? VKH Pataki Béla (Bolgár Bence) BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Induktív tanulás A tanítás folyamata: Kiinduló
Adatbányászati szemelvények MapReduce környezetben
Adatbányászati szemelvények MapReduce környezetben Salánki Ágnes salanki@mit.bme.hu 2014.11.10. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Felügyelt
Intelligens orvosi műszerek VIMIA023
Intelligens orvosi műszerek VIMIA023 Neurális hálók (Dobrowiecki Tadeusz anyagának átdolgozásával) 2017 ősz http://www.mit.bme.hu/oktatas/targyak/vimia023 dr. Pataki Béla pataki@mit.bme.hu (463-)2679 A
E x μ x μ K I. és 1. osztály. pontokként), valamint a bayesi döntést megvalósító szeparáló görbét (kék egyenes)
6-7 ősz. gyakorlat Feladatok.) Adjon meg azt a perceptronon implementált Bayes-i klasszifikátort, amely kétdimenziós a bemeneti tér felett szeparálja a Gauss eloszlású mintákat! Rajzolja le a bemeneti
Közösség detektálás gráfokban
Közösség detektálás gráfokban Önszervező rendszerek Hegedűs István Célkitűzés: valamilyen objektumok halmaza felett minták, csoportok detektálása csakis az egyedek közötti kapcsolatok struktúrájának a
Keresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Keresés képi jellemzők alapján Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Lusta gépi tanulási algoritmusok Osztályozás: k=1: piros k=5: kék k-legközelebbi szomszéd (k=1,3,5,7)
Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet
/ Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet / Tartalom 3/ kernelek segítségével Felügyelt és félig-felügyelt tanulás felügyelt: D =
Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Számítógépes képelemzés 7. előadás Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Momentumok Momentum-alapú jellemzők Tömegközéppont Irányultáság 1 2 tan 2 1 2,0 1,1 0, 2 Befoglaló
Neurális hálózatok. Nem ellenőrzött tanulás. Pataki Béla. BME I.E. 414,
Neurális hálózato Nem ellenőrzött tanulás Patai Béla BME I.E. 414, 463-26-79 patai@mit.bme.hu, http://www.mit.bme.hu/general/staff/patai Nem ellenőrzött tanulás (Klaszterezés ) Az eseteet szoásos módon
Gépi tanulás a gyakorlatban. Kiértékelés és Klaszterezés
Gépi tanulás a gyakorlatban Kiértékelés és Klaszterezés Hogyan alkalmazzuk sikeresen a gépi tanuló módszereket? Hogyan válasszuk az algoritmusokat? Hogyan hangoljuk a paramétereiket? Precízebben: Tegyük
Gépi tanulás Gregorics Tibor Mesterséges intelligencia
Gépi tanulás Tanulás fogalma Egy algoritmus akkor tanul, ha egy feladat megoldása során olyan változások következnek be a működésében, hogy később ugyanazt a feladatot vagy ahhoz hasonló más feladatokat
Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.
Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert
Gyakorló feladatok adatbányászati technikák tantárgyhoz
Gyakorló feladatok adatbányászati technikák tantárgyhoz Buza Krisztián Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Klaszterezés kiértékelése Feladat:
[1000 ; 0] 7 [1000 ; 3000]
Gépi tanulás (vimim36) Gyakorló feladatok 04 tavaszi félév Ahol lehet, ott konkrét számértékeket várok nem puszta egyenleteket. (Azok egy részét amúgyis megadom.). Egy bináris osztályozási feladatra tanított
Gépi tanulás a gyakorlatban. Lineáris regresszió
Gépi tanulás a gyakorlatban Lineáris regresszió Lineáris Regresszió Legyen adott egy tanuló adatbázis: Rendelkezésünkre áll egy olyan előfeldolgozott adathalmaz, aminek sorai az egyes ingatlanokat írják
VIII. INDUKTÍV TANULÁS
Induktív tanulás VIII. INDUKTÍV TANULÁS Induktív tanulási modell Az f leképezést tanuljuk meg az (x i,f(x i )) példák (minták) alapján úgy, hogy előállítunk egy olyan h leképezést (hipotézist), amelyre
7. Régió alapú szegmentálás
Digitális képek szegmentálása 7. Régió alapú szegmentálás Kató Zoltán http://www.cab.u-szeged.hu/~kato/segmentation/ Szegmentálási kritériumok Particionáljuk a képet az alábbi kritériumokat kielégítő régiókba
Gépi tanulás a gyakorlatban. Bevezetés
Gépi tanulás a gyakorlatban Bevezetés Motiváció Nagyon gyakran találkozunk gépi tanuló alkalmazásokkal Spam detekció Karakter felismerés Fotó címkézés Szociális háló elemzés Piaci szegmentáció analízis
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI A szükséges mintaszám krlát elemzése Pataki Béla BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Mit is jelent az eredmény, ha pnts lenne
TANULÁS. I. Logikai formulák tanulása. Tanulási módok. Miért m ködik jól az induktív tanulás? Induktív tanulás
TANULÁS Egy algoritmus tanul, ha egy feladat megoldása során olyan változások következnek be a m ködésében, hogy kés bb ugyanazt a feladatot vagy ahhoz hasonló más feladatokat jobb eredménnyel, illetve
GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus
GRÁFELMÉLET 7. előadás Javító utak, javító utak keresése, Edmonds-algoritmus Definíció: egy P utat javító útnak nevezünk egy M párosításra nézve, ha az út páratlan hosszú, kezdő- és végpontjai nem párosítottak,
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Problémamegoldás kereséssel - lokális információval Pataki Béla Bolgár Bence BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Rugó tervezése
É Ü ö Ü ú Ú ű Ó Ó ű ö Ó Ó ú ű Ü Ö Ó Ó ö Ó Ő ű Ó Ó ú Ü Ü Ó Ó Ó Ü Ó Í Í ö ö ö ö ö ú ú ö ű ú ö ö ö ú ö ú ű ö ö ű ö ö ö ű ö ö ö ú ö ö ú ö ö ö ö ö ú ö ö ö ö ú ö ú ö ö ö ö ö ö ú ö ö ö ö Í ö Ö ö ú ö ö ö ö Ó Í
Í Ő É Ó É é Ö Á Á Á Ó é Ó é ö é Ö ű ö é ö ű ö é ö é é é é é é é é é é é é é é é é é é ü é é é Í é é é é ü é ö ü é ü é é ö ö é ú é é ü é é ü é é ü é ü é é é ú é Ó é é ú é ü é é ö é ö é Á Á Á Ó é Ó Í é ö
ö í Ö Ó ü í ü ö Ö ö ü ü ö ö ö ö Ö ü ö ö Ö ü Ű Ö ö ü ú ű ö ö í ö ö í ü ö ö í í ö Á É ö Ö í ö Ö ü ö Ö ö ö ö ö ö ü í ü ö í ü ö ö ö Ö ü ö í ü í ö ö ö Ö ü ö Ö í í ö Ö ü ö Ö í ü ö Á É ö Ö í ü ö í ö ű ö ö ű ö
ő ő ű í ó ú í ó í ó Á Á Á É ű ő ó ó ő ó ő Á É ó Á É ú Á É É Á ó Á Á Á Á Á É É ó Á É í É É í É ú ú ú ó ó Ö ú É ú ó ő ú ó í É É É É Ö Ö É Á É É É Ő Ó É ő ó ó í ő ú ő ő ű í ó ú Ő Ö ú É ú ú ő ő É É ő ő ő ő
ö é é ü Ő Ö é ü ö é é ü é é ó é ü ü é é é é é í é ü é é é é é é ö é é ö ö é ü ö ö é ü í é ü ü é é é ü é ö é é é ó é é é é é ü ö é é ü ú ö é é é é ö é é ö é é ó é ó é é í é é ó é é ó é é í ó é é ü ü é ó
ü ő ő ü ő ő ö ö ő ö í ü ő í ö ö í ő ö ő ű ú ő í ü ő ö ő Í ö ö ő ö ö ő ő ö ő í Í í ü ö ő í ü ü ú ü ö ö ő ü ő ö ő í ü ő í ö ö ő ő ő í í ő í ő ő Á Ó Í í í ő ű ú ő í í ő ő Í ő í ő í í Í í ő í ő í ő ő íí ő
Normális eloszlás tesztje
Valószínűség, pontbecslés, konfidenciaintervallum Normális eloszlás tesztje Kolmogorov-Szmirnov vagy Wilk-Shapiro próba. R-funkció: shapiro.test(vektor) balra ferde eloszlás jobbra ferde eloszlás balra
1. gyakorlat. Mesterséges Intelligencia 2.
1. gyakorlat Mesterséges Intelligencia. Elérhetőségek web: www.inf.u-szeged.hu/~gulyasg mail: gulyasg@inf.u-szeged.hu Követelmények (nem teljes) gyakorlat látogatása kötelező ZH írása a gyakorlaton elhangzott
Klaszterezés, 2. rész
Klaszterezés, 2. rész Csima Judit BME, VIK, Számítástudományi és Információelméleti Tanszék 208. április 6. Csima Judit Klaszterezés, 2. rész / 29 Hierarchikus klaszterezés egymásba ágyazott klasztereket
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Valószínűségi hálók - következtetés Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Következtetés
Algoritmusok bonyolultsága
Algoritmusok bonyolultsága 5. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 27 Gazdaságos faváz Kruskal-algoritmus Joseph Kruskal (1928 2010) Legyen V = {v 1, v 2,..., v n }, E = {e 1, e 2,...,
BEKE ANDRÁS, FONETIKAI OSZTÁLY BESZÉDVIZSGÁLATOK GYAKORLATI ALKALMAZÁSA
BEKE ANDRÁS, FONETIKAI OSZTÁLY BESZÉDVIZSGÁLATOK GYAKORLATI ALKALMAZÁSA BESZÉDTUDOMÁNY Az emberi kommunikáció egyik leggyakrabban használt eszköze a nyelv. A nyelv hangzó változta, a beszéd a nyelvi kommunikáció
Konjugált gradiens módszer
Közelítő és szimbolikus számítások 12. gyakorlat Konjugált gradiens módszer Készítette: Gelle Kitti Csendes Tibor Vinkó Tamás Faragó István Horváth Róbert jegyzetei alapján 1 LINEÁRIS EGYENLETRENDSZEREK
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Egyszerű döntés Döntési fák Tanuljuk meg! Metsszük meg! Pataki Béla Bolgár Bence BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Példaprobléma:
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Diverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 11. Előadás Portfólió probléma Portfólió probléma Portfólió probléma Adott részvények (kötvények,tevékenységek,
Szemidenit optimalizálás és az S-lemma
Szemidenit optimalizálás és az S-lemma Pólik Imre SAS Institute, USA BME Optimalizálás szeminárium 2011. október 6. Outline 1 Egyenl tlenségrendszerek megoldhatósága 2 Az S-lemma 3 Szemidenit kapcsolatok
Modellezés, predikció és szimuláció a termelésoptimalizálásban
Modellezés, predikció és szimuláció a termelésoptimalizálásban Dr. Pataricza András, dr. Horváth Gábor, dr. Pataki Béla, Gáti Kristóf, Szombath István, Horváth Ákos (BME MIT) dr. Csertán György, Gönczy
Minták automatikus osztályba sorolása a mintát leíró jellemzők alapján. Típusok: felügyelt és felügyelet nélküli tanuló eljárások
Minták automatikus osztályba sorolása a mintát leíró jellemzők alapján Típusok: felügyelt és felügyelet nélküli tanuló eljárások Különbség: előbbinél szükséges egy olyan tanulóhalmaz, ahol ismert a minták
Operációkutatás vizsga
Operációkutatás vizsga A csoport Budapesti Corvinus Egyetem 2007. január 9. Egyéb gyakorló és vizsgaanyagok találhatók a honlapon a Letölthető vizsgasorok, segédanyagok menüpont alatt. OPERÁCIÓKUTATÁS
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Problémamegoldás kereséssel - csak lokális információra alapozva Pataki Béla BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Lokálisan
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
HÁLÓZAT Maximális folyam, minimális vágás
HÁLÓZAT Maximális folyam, minimális vágás HÁLÓZAT informálisan Hálózat Irányított gráf Mindegyik élnek adott a (nemnegatív) kapacitása Spec csúcsok: Forrás (Source): a kiindulási pont csak ki élek Nyelő
Nem teljesen kitöltött páros összehasonlítás mátrixok sajátérték optimalizálása Newton-módszerrel p. 1/29. Ábele-Nagy Kristóf BCE, ELTE
Nem teljesen kitöltött páros összehasonlítás mátrixok sajátérték optimalizálása Newton-módszerrel Ábele-Nagy Kristóf BCE, ELTE Bozóki Sándor BCE, MTA SZTAKI 2010. november 4. Nem teljesen kitöltött páros
1. hét. Neptun kód. Összesen. Név
1. hét 1 5 1 3 28 1 1 8 1 3 3 44 1 5 1 3 2 3 1 7 5 1 3 1 45 1 5 1 1 1 6 51 1 1 1 1 1 5 1 2 8 1 7 3 4 8 5 8 1 1 41 1 5 8 1 1 3 46 1 8 1 3 2 33 1 7 8 1 3 38 1 5 7 1 7 1 49 1 1 5 1 1 45 1 8 1 3 31 1 8 8 1
Gépi tanulás. A szükséges mintaszám korlát elemzése. Pataki Béla (Bolgár Bence)
Gépi tanulás A szükséges mintaszám krlát elemzése Pataki Béla (Blgár Bence) BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki A Russell-Nrvig könyv n=10 bemenetű lgikai
Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei
A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.
Programozási módszertan. A gépi tanulás alapmódszerei
SZDT-12 p. 1/24 Programozási módszertan A gépi tanulás alapmódszerei Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu SZDT-12 p. 2/24 Ágensek Az új
Az objektum leírására szolgálnak. Mire jók? Sokszor maga a jellemző az érdekes: Tömörítés. Objektumok csoportosítására
Az objektum leírására szolgálnak Mire jók? Sokszor maga a jellemző az érdekes: pl.: átlagosan mekkora egy szitakötő szárnyfesztávolsága? Tömörítés pl.: ha körszerű objektumokat tartalmaz a kép, elegendő
Példák jellemzőkre: - minden pixelérték egy jellemző pl. neurális hálózat esetében csak kis képekre, nem invariáns sem a megvilágításra, sem a geom.
Lépések 1. tanító és teszt halmaz összeállítása / megszerzése 2. jellemzők kinyerése 3. tanító eljárás választása Sok vagy kevés adat áll-e rendelkezésünkre? Mennyi tanítási idő/memória áll rendelkezésre?
Számítógép és programozás 2
Számítógép és programozás 2 11. Előadás Halmazkeresések, dinamikus programozás http://digitus.itk.ppke.hu/~flugi/ A keresési feladat megoldása Legyen a lehetséges megoldások halmaza M ciklus { X legyen
Gráfok 2. Legrövidebb utak, feszítőfák. Szoftvertervezés és -fejlesztés II. előadás. Szénási Sándor
Gráfok 2. Legrövidebb utak, feszítőfák előadás http://nik.uni-obuda.hu/sztf2 Szénási Sándor Óbudai Egyetem,Neumann János Informatikai Kar Legrövidebb utak keresése Minimális feszítőfa keresése Gráfok 2
Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban
Intelligens Rendszerek Elmélete : dr. Kutor László Versengéses és önszervező tanulás neurális hálózatokban http://mobil.nik.bmf.hu/tantargyak/ire.html Login név: ire jelszó: IRE07 IRE 9/1 Processzor Versengéses
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
Random Forests - Véletlen erdők
Random Forests - Véletlen erdők Szabó Adrienn Adatbányászat és Webes Keresés Kutatócsoport 2010 Tartalom Fő forrás: Leo Breiman: Random Forests Machine Learning, 45, 5-32, 2001 Alapok Döntési fa Véletlen
Algoritmuselmélet. Legrövidebb utak, Bellmann-Ford, Dijkstra. Katona Gyula Y.
Algoritmuselmélet Legrövidebb utak, Bellmann-Ford, Dijkstra Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 3. előadás Katona Gyula Y. (BME
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2015. ősz 1. Diszkrét matematika 2.C szakirány 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2015.
Gráfelméleti alapfogalmak
1 Gráfelméleti alapfogalmak Gráf (angol graph= rajz): pontokból és vonalakból álló alakzat. pontok a gráf csúcsai, a vonalak a gráf élei. GRÁ Irányítatlan gráf Vegyes gráf Irányított gráf G H Izolált pont
Diszkrét matematika 1. estis képzés
Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
Aradi Bernadett. 2017/18 ősz. TensorFlow konvolúciós hálózatokhoz 2017/18 ősz 1 / 11
TensorFlow konvolúciós hálózatokhoz Aradi Bernadett 2017/18 ősz TensorFlow konvolúciós hálózatokhoz 2017/18 ősz 1 / 11 Tensorflow import tensorflow as tf szoftverkönyvtár neurális hálózatokhoz a Google
Neurális hálózatok bemutató
Neurális hálózatok bemutató Füvesi Viktor Miskolci Egyetem Alkalmazott Földtudományi Kutatóintézet Miért? Vannak feladatok amelyeket az agy gyorsabban hajt végre mint a konvencionális számítógépek. Pl.:
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Diszkrét Matematika MSc hallgatók számára 7. Előadás Párosítási tételek Előadó: Hajnal Péter Jegyzetelő: Kovácsházi Anna
Diszkrét Matematika MSc hallgatók számára 7. Előadás Párosítási tételek Előadó: Hajnal Péter Jegyzetelő: Kovácsházi Anna 2010. 10. 18. 2 7. Párosítási tételek.nb 7. Előadás Emlékeztető: Javító út, Javító
Algoritmuselmélet 18. előadás
Algoritmuselmélet 18. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Május 7. ALGORITMUSELMÉLET 18. ELŐADÁS 1 Közelítő algoritmusok
Szociális hálózatok Gráf alapú módszerek. Adatbányászat. Klaszterezés Szociális hálózatok. Szegedi Tudományegyetem. Adatbányászat
Klaszterezés Szegedi Tudományegyetem Élei lehetnek címkézettek (pl. ellenség, barát), továbbá súlyozottak (pl. telefonbeszélgetés) Megjelenési formái Ismeretségi, társszerzőségi gráf (Erdős-Bacon szám)
Adatbányászat: Klaszterezés Haladó fogalmak és algoritmusok
Adatbányászat: Klaszterezés Haladó fogalmak és algoritmusok 9. fejezet Tan, Steinbach, Kumar Bevezetés az adatbányászatba előadás-fóliák fordította Ispány Márton Logók és támogatás A tananyag a TÁMOP-4.1.2-08/1/A-2009-0046
Markov-láncok stacionárius eloszlása
Markov-láncok stacionárius eloszlása Adatbányászat és Keresés Csoport, MTA SZTAKI dms.sztaki.hu Kiss Tamás 2013. április 11. Tartalom Markov láncok definíciója, jellemzése Visszatérési idők Stacionárius
Szúnyogháló 1.1 1.2 bepattintása 1.1 1.2 A szúnyogháló felengedése (A) (R) Tanács Portalanítás Tisztítás
Számítógép és programozás 2
Számítógép és programozás 2 6. Előadás Problémaosztályok http://digitus.itk.ppke.hu/~flugi/ Emlékeztető A specifikáció egy előfeltételből és utófeltételből álló leírása a feladatnak Léteznek olyan feladatok,
Szalai Péter. April 17, Szalai Péter April 17, / 36
Szociális hálók Szalai Péter April 17, 2015 Szalai Péter April 17, 2015 1 / 36 Miről lesz szó? 1 Megfigyelések Kis világ Power-law Klaszterezhetőség 2 Modellek Célok Erdős-Rényi Watts-Strogatz Barabási
További programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás
További programozási esetek Hiperbolikus, kvadratikus, integer, bináris, többcélú programozás Készítette: Dr. Ábrahám István Hiperbolikus programozás Gazdasági problémák optimalizálásakor gyakori, hogy
Adatelemzés és adatbányászat MSc
Adatelemzés és adatbányászat MSc 12. téma Klaszterezési módszerek Klaszterezés célja Adott az objektumok, tulajdonságaik együttese. Az objektumok között hasonlóságot és különbözőséget fedezhetünk fel.
Strukturált Generátorrendszerek Online Tanulása és Alk-ai
Strukturált Generátorrendszerek Online Tanulása és Alkalmazásai Problémamegoldó Szeminárium 2010. nov. 5 Tartalomjegyzék Motiváció, példák Regressziós feladatok (generátorrendszer fix) Legkisebb négyzetes
Modellellenőrzés. dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék
Modellellenőrzés dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Mit szeretnénk elérni? Informális vagy félformális tervek Informális követelmények Formális modell: KS, LTS, TA
Hálózatszámítási modellek
Hálózatszámítási modellek Dr. Rácz Ervin egyetemi docens Óbudai Egyetem, Kandó Kálmán Villamosmérnöki Kar Villamosenergetikai Intézet HÁLÓZATBELI FOLYAM VAGY ÁRAMLÁS ÁLTALÁNOS PROBLÉMÁJA Általános feladat
Közösségi kezdeményezéseket megalapozó szükségletfeltárás módszertana. Domokos Tamás, módszertani igazgató
Közösségi kezdeményezéseket megalapozó szükségletfeltárás módszertana Domokos Tamás, módszertani igazgató A helyzetfeltárás célja A közösségi kezdeményezéshez kapcsolódó kutatások célja elsősorban felderítés,
Babeş Bolyai Tudományegyetem, Matematika és Informatika Kar. szinte minden tudományterületen találkozhatunk. A sok fontos alkalmazás közül itt
Gépi tanulás gráfokkal Bodó Zalán Babeş Bolyai Tudományegyetem, Matematika és Informatika Kar 1. Bevezetés A gráfelmélet a matematika és számítástudomány egyik fontos ága. Az első, 1736-ban publikált a
Képrekonstrukció 9. előadás
Képrekonstrukció 9. előadás Balázs Péter Képfeldolgozás és Számítógépes Grafika Tanszék Szegedi Tudományegyetem hv-konvex összefüggő halmazok Mag-burok-szerű rekonstrukció: S. Brunetti, A. Del Lungo, F.
2. A példahalmazban n = 3 negatív és p = 3 pozitív példa van, azaz a példahalmazt képviselő döntési fa információtartalma: I = I(1/2, 1/2) = 1 bit.
Példa 1. Döntési fa számítása/1 1. Legyen a felhasználandó példahalmaz: Példa sz. Nagy(x) Fekete(x) Ugat(x) JóKutya(x) X1 Igen Igen Igen Nem X2 Igen Igen Nem Igen X3 Nem Nem Igen Nem X4 Nem Igen Igen Igen
Legkisebb négyzetek módszere, Spline interpoláció
Közelítő és szimbolikus számítások 10. gyakorlat Legkisebb négyzetek módszere, Spline interpoláció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján
Genetikus algoritmusok
Genetikus algoritmusok Zsolnai Károly - BME CS zsolnai@cs.bme.hu Keresőalgoritmusok osztályai Véletlent használó algoritmusok Keresőalgoritmusok Kimerítő algoritmusok Dinamikus programozás BFS DFS Tabu
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
PIXEL SZINTŰ SZEGMENTÁLÁS CNN-EL
PIXEL SZINTŰ SZEGMENTÁLÁS CNN-EL Csúszóablakos szegmentálás Szegmentálás direkt osztályozással Kisméretű ablakkal kivágott kép alapján megítéli az adott pixel környezetének a típusát Nagyon lassú, nehezen
Példa Hajtsuk végre az 1 pontból a Dijkstra algoritmust az alábbi gráfra. (A mátrixban a c i j érték az (i, j) él hossza, ha nincs él.
Legrövidebb utak súlyozott gráfokban A feladat egy súlyozott gráfban egy adott pontból kiinduló legrövidebb utak megkeresése. Az input a súlyozott gráf és a kiindulási s pont. Outputként egy legrövidebb
Operációkutatás. Vaik Zsuzsanna. Budapest október 10. First Prev Next Last Go Back Full Screen Close Quit
Operációkutatás Vaik Zsuzsanna Vaik.Zsuzsanna@ymmfk.szie.hu Budapest 200. október 10. Mit tanulunk ma? Szállítási feladat Megoldása Adott: Egy árucikk, T 1, T 2, T,..., T m termelőhely, melyekben rendre
MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika középszint 063 ÉRETTSÉGI VIZSGA 006. február. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot
Navigáci. stervezés. Algoritmusok és alkalmazásaik. Osváth Róbert Sorbán Sámuel
Navigáci ció és s mozgástervez stervezés Algoritmusok és alkalmazásaik Osváth Róbert Sorbán Sámuel Feladat Adottak: pálya (C), játékos, játékos ismerethalmaza, kezdőpont, célpont. Pálya szerkezete: akadályokkal
Gauss-Seidel iteráció
Közelítő és szimbolikus számítások 5. gyakorlat Iterációs módszerek: Jacobi és Gauss-Seidel iteráció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 ITERÁCIÓS
Gépi tanulás a gyakorlatban SVM
Gépi tanulás a gyakorlatban SVM Klasszifikáció Feladat: előre meghatározott csoportok elkülönítése egymástól Osztályokat elkülönítő felület Osztályokhoz rendelt döntési függvények Klasszifikáció Feladat:
Teljesen elosztott adatbányászat pletyka algoritmusokkal. Jelasity Márk Ormándi Róbert, Hegedűs István
Teljesen elosztott adatbányászat pletyka algoritmusokkal Jelasity Márk Ormándi Róbert, Hegedűs István Motiváció Nagyméretű hálózatos elosztott alkalmazások az Interneten egyre fontosabbak Fájlcserélő rendszerek
c adatpontok és az ismeretlen pont közötti kovariancia vektora
1. MELLÉKLET: Alkalmazott jelölések A mintaterület kiterjedése, területe c adatpontok és az ismeretlen pont közötti kovariancia vektora C(0) reziduális komponens varianciája C R (h) C R Cov{} d( u, X )
Support Vector Machines
Support Vector Machnes Ormánd Róbert MA-SZE Mest. Int. Kutatócsoport 2009. február 17. Előadás vázlata Rövd bevezetés a gép tanulásba Bevezetés az SVM tanuló módszerbe Alapötlet Nem szeparálható eset Kernel
Adatbányászat. Klaszterezés Szociális hálózatok 2014. Szegedi Tudományegyetem
Adatányászat Klaszterezés Szegedi Tudományegyetem 2014. Adatányászat Mit várhatunk egy klaszterezőtől? Az ojektumok olyan csoportjainak megtalálása, hogy az egy csoportan levő ojektumok hasonlóak lesznek
KOOPERÁCIÓ ÉS GÉPI TANULÁS LABORATÓRIUM
KOOPERÁCIÓ ÉS GÉPI TANULÁS LABORATÓRIUM Kernel módszerek idősor előrejelzés Mérési útmutató Készítette: Engedy István (engedy@mit.bme.hu) Méréstechnika és Információs Rendszerek Tanszék Budapesti Műszaki
Intelligens adatelemzés
Antal Péter, Antos András, Horváth Gábor, Hullám Gábor, Kocsis Imre, Marx Péter, Millinghoffer András, Pataricza András, Salánki Ágnes Intelligens adatelemzés Szerkesztette: Antal Péter A jegyzetben az
Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén
Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén Dombi József Szegedi Tudományegyetem Bevezetés - ID3 (Iterative Dichotomiser 3) Az ID algoritmusok egy elemhalmaz felhasználásával
Matematikai geodéziai számítások 6.
Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék