PIXEL SZINTŰ SZEGMENTÁLÁS CNN-EL
|
|
- Lőrinc Hegedüs
- 6 évvel ezelőtt
- Látták:
Átírás
1 PIXEL SZINTŰ SZEGMENTÁLÁS CNN-EL
2 Csúszóablakos szegmentálás Szegmentálás direkt osztályozással Kisméretű ablakkal kivágott kép alapján megítéli az adott pixel környezetének a típusát Nagyon lassú, nehezen tanítható, pontatlan
3 Teljesen konvolúciós hálóval Teljesen összekötött réteg nélküli hálóval: Kimenete: minden képponthoz kategória számnyi konfidenciát rendel (softmax nemlin. után) / regresszió pixelenként Általában az U-net-el valósítják meg: 1. szakasz: felbontás csökkentése, csatornák számának növelésével 2. szakasz: felbontás növelése transzponált konvolúciókkal, csatornák számának csökkentésével
4 Mask R-CNN (*) Faster R-CNN kimeneti régióin teljesen konvolúciós hálóval szegmentál: a) Régiókat uniform méretűvé mintavételezve, majd az eredményt vissza méretezve b) Régiókat invalid pixelekkel uniform méretűvé kiegészítve, majd az eredményt kivágva
5 Mask R-CNN (*) Jó eredmények pontos szegmentáció Nagy hatékonyság
6 U-Net (2016) Teljesen konvolúciós (Fully Convolutional) háló
7 DeepLab v3+ (2018) Enkóder Dekóder architektúrák továbbfejlesztése
8 ELOSZLÁSOK TANULÁSA
9 Motiváció Nem ellenőrzött tanítás: P x Félig ellenőrzött tanítás: Csak -et tudjuk becsülni (nincsenek címkéink) Ellenőrzött tanításnál P y, x P y x P x -et becsüljük Azon mintákkal, melynek nincs címkéje P x -et finomíthatjuk Klasszikus megközelítés eszköztára gyenge: Direkt modellezés leginkább a klaszterezésben merült ki csak az eloszlás sűrűsödési pontjait tanulta meg Indirekt modellezése a transzduktív tanulásban (pl. transzduktív SVM)
10 Motiváció Mély tanulás megjelenésével: Lehetővé vált hiteles minták generálása (GAN) Eloszlások direkt modellezése félig ellenőrzött tanításnál (GAN-al támadás) Hasznos, és kevésbé hasznos alkalmazások: Hálószoba / macska generálás Képek transzformációja (pix 2 pix) alapon Sematikus skiccből homlokzat Térképből légi felvétel Videó hamisítások
11 Rekurrens hálók (RNN) Együttes eloszlást faktorizáljuk: Adott elem értékének az eloszlása a tőle kisebb indexű elemek értékeinek eloszlásának a függvénye: Jellemzői: xx x x x p p,,..., i i i1 i2 1 Pixel CNN esetén csak a lokálisan elhelyezkedő pixeleké Pontosság / hihetőség az eloszlást előállító cella komplexitásának a függvénye Hosszú hiba visszaterjesztési utak (sok dim. pontok esetén) Először ezzel akartak képeket generálni
12 Rekurrens hálók (Pixel RNN / CNN) Softmax Loss pixelenként Pixel RNN Pixel CNN
13 Pixel CNN
14 Autoenkóder (AE) Autoenkóder háló: Kódoló: bemenet => látens változó Dekódoló: látens reprezentáció => bemenet D z x Mintagenerálás: hihető látens változó dekódolása Veszteségfüggvény: L x D E x x Minták generálása: Pl. valódi mintákhoz tartozó látens ábrázolások konvex kombinációjának dekódolásából Mivel a veszteségfüggvény a legkisebb hibájú rekonstrukciót preferálja, ezért hihető minták generálásra gyakorlatban nem alkalmas z E x??
15 Generatív modellek általánosan Maximalizáljuk a minták likelihoodját: Minták likelihoodja: Logaritmálva: Vizsgáljuk meg 12N i P x, x,..., x θ P x θ N i1 12N i log P x, x,..., x θ log P x θ N arg min 1 log P i θ N x θ θ i1 D P KL x x θ P kifejezést: D P x P x θ P x log P x θ P x log P x KL x θ arg mind P P arg min P logp KL x x θ x x θ θ θ x x
16 Variációs Autoenkóder (VAE) Közelítsük a minták likelihoodját: i p x log E log z q z x i i p p x z z E log i q z i p z x zx i i p p q x z z zx E log i q z i i p q z x z x z x i i q q E log i z x z x z p x z Ez log Ez log p i p z zx i i i i Ez log p x z DKL q z x p z DKL q z x p z x p x i
17 Variációs Autoenkóder (VAE) Tehát egy prior eloszláshoz igazítjuk a látens változókat Unimodális eloszlás legyen (gyakorlatban Gauss, ezzel a legkönnyebb számolni a KL divergenciát) Unimodalitás miatt az interpolált látens változók kép eloszlása értelmes marad Új architurális elem mintavételi réteg Bemenete: egy várható érték, valamint egy kovariancia mtx. Kimenete: a bemeneti paraméterekkel leírt Gauss eloszlás egy statiszikai mintája Nincs tanítható paramétere, numerikusan jól viselkedik, hiba visszaterjesztése triviális. Megvalósítása: z θ, xdiag ε z θ, x
18 Variációs Autoenkóder (VAE) Visszaterjesztett hiba: Dekórder résznél alapján Enkóder résznél: Dekóderen keresztül visszaterjesztett hiba + prior eloszlástól való eltérés (Gauss prior esetén weight decay / Thikhonov reg.) L x D E x x?? x z z x z N x, x z z x N z, z x x z x x z x
19 Variációs Autoenkóder (VAE)
20 Variációs Autoenkóder (VAE) Látens változók eloszlása: AE VAE
21 GAN Feladjuk az explicit eloszlás modellezést: Megelégszünk egy olyan CNN-el, mely zaj bemenetből hihető képeket tud generálni. Két szereplős játék: Generátor: megpróbál olyan képeket generálni, melyek átverik a diszkriminátor hálót Diszkriminátor: megpróbálja a leginkább megkülönböztetni a generált és a valódi mintákat egymástól Tanítása: D d x D p d G g z min max E log E log 1 g d x p x z z Block coordinate descent / ascent alapú optimalizálás
22 GAN Minmax hibafüggvény: x Belátható, hogy ha D d hipotézistere tetszőlegesen nagy, akkor D P x z -t minimalizálja JS G g Gyakorlati problémák sokasága jellemzi: Abból erednek, hogy a diszkriminátoron keresztül tanul a generátor (annak is a gradiensén) Nehezen kézben tartható 1 epoch alatt csodák történnek Különböző regularizációs módszerek: Diszkriminátor leképezés Lipchitz hányadosának korlátozása Több lépéses előretanítás alapján súlymódosítás, stb. D D G p z min max E log E log 1 g d x Val d z z d g
23 GAN (*) Bonyolult hibafelület, gyakorlati javaslatok: Pooling layereket mellőzzük, helyettük nagyobb lépésközű konvolúciót alkalmazzunk mindkét részhálóban Batchnorm alkalmazása javasolt rétegpáronként Teljesen összekötött rétegeket is mellőzzük Generátorban ReLU-t használjunk, kivéve a kimenetén (ott Tanh) Diszkriminátorban szivárgó ReLU Jelenleg az eloszlástanulás state of the art eljárásai: Legalábbis ha hiteles mintákat kell generálni x önmagában ritkán jó bármire is D d
24 GAN a félig ellenőrzött tanulásban (*) Módosítjuk az osztályozási problémát: K+1. osztály: generált mintáké Diszkriminátor szerepét átveszi az osztályozó: x P x D y K d x Val x x x, y Cimkezett L E log P y E log P y K x Gen E log P y K 1 x A GAN pedig át akarja verni az osztályozót Érdekes elméleti / gyakorlati eredmények: Nem érdemes túl erős generátort használni Laborkörnyezetben jelentős (4-10%-os) javulás
25 Félig ellenőrzött tanulás VAT (*) Adversarial Training ötletét általánosítja: Támadásra a címkézetlen mintákat is felhasználja: x y x θ y x radv θ LVAT D P, P, r, r adv s. t. radv arg max D P y x, θ P y x r, θ Hatásos, mert r adv -ot hiba visszaterjesztés közben online becsli (kicsi az overhead, ~1,5 -es számítási igény) Lényegében SVM-es stat. kockázatminimalizálás: Regularizál a döntési határt olyan tartományba tolja, ahol ritka a mintakészlet (itt fáj legkevésbé a bizonytalanság)
26 Félig ellenőrzött tanulás VAT (*) Egy példa futás:
27 Aktív tanulás (*) Nagy, címkézetlen mintahalmaz: Mely mintákat éri meg ezek közül címkézni? Két megközelítés létezik konfidencia, illetve fedettség Konfidencia alapú: Ha H P y x, θ kicsi, akkor látszólag biztos a háló Valójában jobb leíró a bemeneti támadásra érzékenyég Monte Carlo Dropout jobb lenne Fedettség alapú: Ha ritkán fedett a bemenet egy része, akkor ott címkézzünk Mi van, ha alacsony dim. manifold feszíti ki a mintákat?
28 GAN példák Látens változó interpretációja: - + =
29 GAN példák Képek generálására példák: Progressive GAN, Karras (Nvidia) 2017
30 GAN példák Képek transzformálása (kondicionált GAN): Pix2pix Isola (2017)
31 GAN Képek transzformálása (kond. GAN) Bemenet Kimenet
32 GAN példák Képek transzformálása (cycle GAN):
33 GAN példák Képek transzformálása (CT - MR): Marketing, határok (meg ész) nélkül:
34 GAN Képek transzformálása:
Konvolúciós neurális hálózatok (CNN)
Konvolúciós neurális hálózatok (CNN) Konvolúció Jelfeldolgozásban: Diszkrét jelek esetén diszkrét konvolúció: Képfeldolgozásban 2D konvolúció (szűrők): Konvolúciós neurális hálózat Konvolúciós réteg Kép,
Mély konvolúciós neurális hálózatok. Hadházi Dániel BME IE 338
Mély konvolúciós neurális hálózatok Hadházi Dániel BME IE 338 hadhazi@mit.bme.hu ÚJ ARCHITEKTÚRÁLIS ELEMEK Konvolúciós réteg Motiváció: Klasszikus képfeldolgozásnál alapművelet a konvolúció: Zajszűrésre
Gépi tanulás. Féligellenőrzött tanulás. Pataki Béla (Bolgár Bence)
Gépi tanulás Féligellenőrzött tanulás Pataki Béla (Bolgár Bence) BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Féligellenőrzött tanulás Mindig kevés az adat, de
Osztályozási feladatok képdiagnosztikában. Orvosi képdiagnosztikai 2017 ősz
Osztályozási feladatok képdiagnosztikában Orvosi képdiagnosztikai 2017 ősz Osztályozás Szeparáló felületet keresünk Leképezéseket tanulunk meg azok mintáiból A tanuláshoz használt minták a tanító minták
Visszacsatolt (mély) neurális hálózatok
Visszacsatolt (mély) neurális hálózatok Visszacsatolt hálózatok kimenet rejtett rétegek bemenet Sima előrecsatolt neurális hálózat Visszacsatolt hálózatok kimenet rejtett rétegek bemenet Pl.: kép feliratozás,
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Neurális hálók. Pataki Béla
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Neurális hálók Előadó: Előadás anyaga: Hullám Gábor Pataki Béla Dobrowiecki Tadeusz BME I.E. 414, 463-26-79
Gépi tanulás a gyakorlatban. Bevezetés
Gépi tanulás a gyakorlatban Bevezetés Motiváció Nagyon gyakran találkozunk gépi tanuló alkalmazásokkal Spam detekció Karakter felismerés Fotó címkézés Szociális háló elemzés Piaci szegmentáció analízis
Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function
Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,
Least Squares becslés
Least Squares becslés A négyzetes hibafüggvény: i d i ( ) φx i A négyzetes hibafüggvény mellett a minimumot biztosító megoldás W=( d LS becslés A gradiens számítása és nullává tétele eredményeképp A megoldás
biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás
Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani
Gépi tanulás a gyakorlatban. Kiértékelés és Klaszterezés
Gépi tanulás a gyakorlatban Kiértékelés és Klaszterezés Hogyan alkalmazzuk sikeresen a gépi tanuló módszereket? Hogyan válasszuk az algoritmusokat? Hogyan hangoljuk a paramétereiket? Precízebben: Tegyük
Gépi tanulás Gregorics Tibor Mesterséges intelligencia
Gépi tanulás Tanulás fogalma Egy algoritmus akkor tanul, ha egy feladat megoldása során olyan változások következnek be a működésében, hogy később ugyanazt a feladatot vagy ahhoz hasonló más feladatokat
Intelligens orvosi műszerek VIMIA023
Intelligens orvosi műszerek VIMIA023 Neurális hálók (Dobrowiecki Tadeusz anyagának átdolgozásával) 2017 ősz http://www.mit.bme.hu/oktatas/targyak/vimia023 dr. Pataki Béla pataki@mit.bme.hu (463-)2679 A
Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.
Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert
Neurális hálózatok.... a gyakorlatban
Neurális hálózatok... a gyakorlatban Java NNS Az SNNS Javás változata SNNS: Stuttgart Neural Network Simulator A Tübingeni Egyetemen fejlesztik http://www.ra.cs.unituebingen.de/software/javanns/ 2012/13.
Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017.
Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017. Vizuális feldolgozórendszerek feladatai Mesterséges intelligencia és idegtudomány Mesterséges intelligencia és idegtudomány Párhuzamos problémák
KÖZELÍTŐ INFERENCIA II.
STATISZTIKAI TANULÁS AZ IDEGRENDSZERBEN KÖZELÍTŐ INFERENCIA II. MONTE CARLO MÓDSZEREK ISMÉTLÉS Egy valószínűségi modellben a következtetéseinket a látensek vagy a paraméterek fölötti poszterior írja le.
Keresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Keresés képi jellemzők alapján Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Lusta gépi tanulási algoritmusok Osztályozás: k=1: piros k=5: kék k-legközelebbi szomszéd (k=1,3,5,7)
Hadházi Dániel.
Hadházi Dániel hadhazi@mit.bme.hu Orvosi képdiagnosztika: Szerepe napjaink orvoslásában Képszegmentálás orvosi kontextusban Elvárások az adekvát szegmentálásokkal szemben Verifikáció és validáció lehetséges
Gépi tanulás. Hány tanítómintára van szükség? VKH. Pataki Béla (Bolgár Bence)
Gépi tanulás Hány tanítómintára van szükség? VKH Pataki Béla (Bolgár Bence) BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Induktív tanulás A tanítás folyamata: Kiinduló
KÖZELÍTŐ INFERENCIA II.
STATISZTIKAI TANULÁS AZ IDEGRENDSZERBEN KÖZELÍTŐ INFERENCIA II. MONTE CARLO MÓDSZEREK ISMÉTLÉS Egy valószínűségi modellben a következtetéseinket a látensek vagy a paraméterek fölötti poszterior írja le.
Funkcionális konnektivitás vizsgálata fmri adatok alapján
Funkcionális konnektivitás vizsgálata fmri adatok alapján Képalkotási technikák 4 Log Resolution (mm) 3 Brain EEG & MEG fmri TMS PET Lesions 2 Column 1 0 Lamina -1 Neuron -2 Dendrite -3 Synapse -4 Mikrolesions
KONVOLÚCIÓS NEURONHÁLÓK. A tananyag az EFOP pályázat támogatásával készült.
KONVOLÚCIÓS NEURONHÁLÓK A tananyag az EFOP-3.5.1-16-2017-00004 pályázat támogatásával készült. 1. motiváció A klasszikus neuronháló struktúra a fully connected háló Két réteg között minden neuron kapcsolódik
Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Számítógépes képelemzés 7. előadás Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Momentumok Momentum-alapú jellemzők Tömegközéppont Irányultáság 1 2 tan 2 1 2,0 1,1 0, 2 Befoglaló
Rekonstrukciós eljárások. Orvosi képdiagnosztika 2017 ősz
Rekonstrukciós eljárások Orvosi képdiagnosztika 2017 ősz Pozitron emissziós tomográfia alapelve Szervezetbe pozitron kibocsátására képes radioaktív izotópot tartalmazó anyagot visznek cukoroldatban. Sejtek
Neurális hálózatok. Nem ellenőrzött tanulás. Pataki Béla. BME I.E. 414,
Neurális hálózato Nem ellenőrzött tanulás Patai Béla BME I.E. 414, 463-26-79 patai@mit.bme.hu, http://www.mit.bme.hu/general/staff/patai Nem ellenőrzött tanulás (Klaszterezés ) Az eseteet szoásos módon
Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban
Intelligens Rendszerek Elmélete : dr. Kutor László Versengéses és önszervező tanulás neurális hálózatokban http://mobil.nik.bmf.hu/tantargyak/ire.html Login név: ire jelszó: IRE07 IRE 9/1 Processzor Versengéses
Kvantitatív módszerek
Kvantitatív módszerek szimuláció Kovács Zoltán Szervezési és Vezetési Tanszék E-mail: kovacsz@gtk.uni-pannon.hu URL: http://almos/~kovacsz Mennyiségi problémák megoldása analitikus numerikus szimuláció
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Neurális hálók 2. Pataki Béla
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Neurális hálók 2. Előadó: Hullám Gábor Pataki Béla BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki
Diszkréten mintavételezett függvények
Diszkréten mintavételezett függvények A függvény (jel) értéke csak rögzített pontokban ismert, de köztes pontokban is meg akarjuk becsülni időben mintavételezett jel pixelekből álló műholdkép rácson futtatott
Neurális hálók tanítása során alkalmazott optimalizáció
Neurális hálók tanítása során alkalmazott optimalizáció Háló paramétereinek tanulása Lényegében egy szélsőérték keresési feladat: θ: háló paramétereinek vektora X: tanító minták bemeneteiből képzett mátrix
Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision
Mérési hibák 2006.10.04. 1
Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség
[1000 ; 0] 7 [1000 ; 3000]
Gépi tanulás (vimim36) Gyakorló feladatok 04 tavaszi félév Ahol lehet, ott konkrét számértékeket várok nem puszta egyenleteket. (Azok egy részét amúgyis megadom.). Egy bináris osztályozási feladatra tanított
Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása
Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból
Neurális hálózatok elméleti alapjai TULICS MIKLÓS GÁBRIEL
Neurális hálózatok elméleti alapjai TULICS MIKLÓS GÁBRIEL TULICS@TMIT.BME.HU Példa X (tanult órák száma, aludt órák száma) y (dolgozaton elért pontszám) (5, 8) 80 (3, 5) 78 (5, 1) 82 (10, 2) 93 (4, 4)
12. előadás. Egyenletrendszerek, mátrixok. Dr. Szörényi Miklós, Dr. Kallós Gábor
12. előadás Egyenletrendszerek, mátrixok Dr. Szörényi Miklós, Dr. Kallós Gábor 2015 2016 1 Tartalom Matematikai alapok Vektorok és mátrixok megadása Tömbkonstansok Lineáris műveletek Mátrixok szorzása
Készítette: Trosztel Mátyás Konzulens: Hajós Gergely
Készítette: Trosztel Mátyás Konzulens: Hajós Gergely Monte Carlo Markov Chain MCMC során egy megfelelően konstruált Markov-lánc segítségével mintákat generálunk. Ezek eloszlása követi a céleloszlást. A
Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás
Algoritmusok Tervezése 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Mi az algoritmus? Lépések sorozata egy feladat elvégzéséhez (legáltalánosabban) Informálisan algoritmusnak nevezünk bármilyen jól definiált
Gépi tanulás a gyakorlatban. Lineáris regresszió
Gépi tanulás a gyakorlatban Lineáris regresszió Lineáris Regresszió Legyen adott egy tanuló adatbázis: Rendelkezésünkre áll egy olyan előfeldolgozott adathalmaz, aminek sorai az egyes ingatlanokat írják
Kovács Ernő 1, Füvesi Viktor 2
Kovács Ernő 1, Füvesi Viktor 2 1 Miskolci Egyetem, Elektrotechnikai - Elektronikai Tanszék 2 Miskolci Egyetem, Alkalmazott Földtudományi Kutatóintézet 1 HU-3515 Miskolc-Egyetemváros 2 HU-3515 Miskolc-Egyetemváros,
A kibontakozó új hajtóerő a mesterséges intelligencia
5. Magyar Jövő Internet Konferencia» Okos város a célkeresztben «A kibontakozó új hajtóerő a mesterséges intelligencia Dr. Szűcs Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Távközlési és Médiainformatikai
Teljesen elosztott adatbányászat pletyka algoritmusokkal. Jelasity Márk Ormándi Róbert, Hegedűs István
Teljesen elosztott adatbányászat pletyka algoritmusokkal Jelasity Márk Ormándi Róbert, Hegedűs István Motiváció Nagyméretű hálózatos elosztott alkalmazások az Interneten egyre fontosabbak Fájlcserélő rendszerek
Hibadetektáló rendszer légtechnikai berendezések számára
Hibadetektáló rendszer légtechnikai berendezések számára Tudományos Diákköri Konferencia A feladatunk Légtechnikai berendezések Monitorozás Hibadetektálás Újrataníthatóság A megvalósítás Mozgásérzékelő
ACM Snake. Orvosi képdiagnosztika 11. előadás első fele
ACM Snake Orvosi képdiagnosztika 11. előadás első fele ACM Snake (ismétlés) A szegmentáló kontúr egy paraméteres görbe: x Zs s X s, Y s,, s A szegmentáció energia funkcionál minimalizálása: E x Eint x
Modellkiválasztás és struktúrák tanulása
Modellkiválasztás és struktúrák tanulása Szervezőelvek keresése Az unsupervised learning egyik fő célja Optimális reprezentációk Magyarázatok Predikciók Az emberi tanulás alapja Általános strukturális
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 Mérési hibák súlya és szerepe a mérési eredményben A mérési hibák csoportosítása A hiba rendűsége Mérési bizonytalanság Standard és kiterjesztett
Legkisebb négyzetek módszere, Spline interpoláció
Közelítő és szimbolikus számítások 10. gyakorlat Legkisebb négyzetek módszere, Spline interpoláció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján
Statisztikai eljárások a mintafelismerésben és a gépi tanulásban
Statisztikai eljárások a mintafelismerésben és a gépi tanulásban Varga Domonkos (I.évf. PhD hallgató) 2014 május A prezentáció felépítése 1) Alapfogalmak 2) A gépi tanulás, mintafelismerés alkalmazási
STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése
4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól
Megerősítéses tanulás 7. előadás
Megerősítéses tanulás 7. előadás 1 Ismétlés: TD becslés s t -ben stratégia szerint lépek! a t, r t, s t+1 TD becslés: tulajdonképpen ezt mintavételezzük: 2 Akcióértékelő függvény számolása TD-vel még mindig
Lineáris regressziós modellek 1
Lineáris regressziós modellek 1 Ispány Márton és Jeszenszky Péter 2016. szeptember 19. 1 Az ábrák C.M. Bishop: Pattern Recognition and Machine Learning c. könyvéből származnak. Tartalom Bevezető példák
FELÜGYELT ÉS MEGERŐSÍTÉSES TANULÓ RENDSZEREK FEJLESZTÉSE
FELÜGYELT ÉS MEGERŐSÍTÉSES TANULÓ RENDSZEREK FEJLESZTÉSE Dr. Aradi Szilárd, Fehér Árpád Mesterséges intelligencia kialakulása 1956 Dartmouth-i konferencián egy maroknyi tudós megalapította a MI területét
Nem-lineáris programozási feladatok
Nem-lineáris programozási feladatok S - lehetséges halmaz 2008.02.04 Dr.Bajalinov Erik, NyF MII 1 Elég egyszerű példa: nemlineáris célfüggvény + lineáris feltételek Lehetséges halmaz x 1 *x 2 =6.75 Gradiens
Statisztikai következtetések Nemlineáris regresszió Feladatok Vége
[GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Valószínűségi hálók - következtetés Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Következtetés
A fordítóprogramok szerkezete. Kódoptimalizálás. A kódoptimalizálás célja. A szintézis menete valójában. Kódoptimalizálási lépések osztályozása
A fordítóprogramok szerkezete Forrásprogram Forrás-kezelő (source handler) Kódoptimalizálás Fordítóprogramok előadás (A,C,T szakirány) Lexikális elemző (scanner) Szintaktikus elemző (parser) Szemantikus
Optimalizálási eljárások GYAKORLAT, MSc hallgatók számára. Analízis R d -ben
Optimalizálási eljárások GYAKORLAT, MSc hallgatók számára Analízis R d -ben Gyakorlatvezetõ: Hajnal Péter 2012. február 8 1. Konvex függvények Definíció. f : D R konvex, ha dom(f) := D R n konvex és tetszőleges
Számítógép és programozás 2
Számítógép és programozás 2 6. Előadás Problémaosztályok http://digitus.itk.ppke.hu/~flugi/ Emlékeztető A specifikáció egy előfeltételből és utófeltételből álló leírása a feladatnak Léteznek olyan feladatok,
egy szisztolikus példa
Automatikus párhuzamosítás egy szisztolikus példa Áttekintés Bevezetés Példa konkrét szisztolikus algoritmus Automatikus párhuzamosítási módszer ötlet Áttekintés Bevezetés Példa konkrét szisztolikus algoritmus
3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás
3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 15. Digitális Alakzatrekonstrukció Méréstechnológia, Ponthalmazok regisztrációja http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiiav54
Neurális Hálók. és a Funkcionális Programozás. Berényi Dániel Wigner GPU Labor
Neurális Hálók és a Funkcionális Programozás Berényi Dániel Wigner GPU Labor Alapvető építőkövek Függvény kompozíció Automatikus Differenciálás (AD) 2 Neurális Háló, mint kompozíció Bemenetek Súlyok w
Csapadékmaximum-függvények változása
Csapadékmaximum-függvények változása (Techniques and methods for climate change adaptation for cities /2013-1-HU1-LEO05-09613/) Dr. Buzás Kálmán, Dr. Honti Márk, Varga Laura Elavult mértékadó tervezési
3. Szűrés képtérben. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)
3. Szűrés képtérben Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE http://www.inf.u-szeged.hu/~kato/teaching/ 2 Kép transzformációk típusai Kép értékkészletének radiometriai információ
Mélytanulási módszerek az orvosi képalkotó diagnosztikában
Mélytanulási módszerek az orvosi képalkotó diagnosztikában Szakdolgozat Katona Réka Matematikai elemző szakirány Témavezető: Csiszárik Adrián MTA Rényi Alfréd Matematikai Kutatóintézet Belső konzulens:
Megerősítéses tanulás 9. előadás
Megerősítéses tanulás 9. előadás 1 Backgammon (vagy Ostábla) 2 3 TD-Gammon 0.0 TD() tanulás (azaz időbeli differencia-módszer felelősségnyomokkal) függvényapproximátor: neuronháló 40 rejtett (belső) neuron
SCILAB programcsomag segítségével
Felhasználói függvények de niálása és függvények 3D ábrázolása SCILAB programcsomag segítségével 1. Felhasználói függvények de niálása A Scilab programcsomag rengeteg matematikai függvényt biztosít a számítások
Minták automatikus osztályba sorolása a mintát leíró jellemzők alapján. Típusok: felügyelt és felügyelet nélküli tanuló eljárások
Minták automatikus osztályba sorolása a mintát leíró jellemzők alapján Típusok: felügyelt és felügyelet nélküli tanuló eljárások Különbség: előbbinél szükséges egy olyan tanulóhalmaz, ahol ismert a minták
Véletlenszám generátorok és tesztelésük. Tossenberger Tamás
Véletlenszám generátorok és tesztelésük Tossenberger Tamás Érdekességek Pénzérme feldobó gép: $0,25-os érme 1/6000 valószínűséggel esik az élére 51% eséllyel érkezik a felfelé mutató oldalára Pörgetésnél
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
Mérési struktúrák
Mérési struktúrák 2007.02.19. 1 Mérési struktúrák A mérés művelete: a mérendő jellemző és a szimbólum halmaz közötti leképezés megvalósítása jel- és rendszerelméleti aspektus mérési folyamat: a leképezést
A KLT (Kanade Lucas Tomasi) Feature Tracker Működése (jellegzetes pontok választása és követése)
A KL (Kanade Lucas omasi) Feature racker Működése (jellegzetes pontok választása és követése) Készítette: Hajder Levente 008.11.18. 1. Feladat A rendelkezésre álló videó egy adott képkockájából minél több
Teljesen elosztott adatbányászat alprojekt
Teljesen elosztott adatbányászat alprojekt Hegedűs István, Ormándi Róbert, Jelasity Márk Big Data jelenség Big Data jelenség Exponenciális növekedés a(z): okos eszközök használatában, és a szenzor- és
Képszegmentáló eljárások. Orvosi képdiagnosztika 2018 ősz
Képszegmentáló eljárások Orvosi képdiagnosztika 2018 ősz Képszegmentálás Anatómiai részek elkülönítés: pl. csontok, szív, erek, szürkefehér állomány, stb Vizsgálandó terület körbehatárolása: pl. tüdőterület
Adversarial tanítás neurális hálózatokban
, Faculty of Information Technology Adversarial tanítás neurális hálózatokban András Horváth Budapest, 2018.11.21 Neurális hálózatok Számos helyen használhatóak Önvezető autók Alpha Go Arcfelismerés Neurális
STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika
4. előadás. Kiegyenlítő számítások MSc 2018/19 1 / 41
4. előadás Kiegyenlítő számítások MSc 2018/19 1 / 41 Áttekintés Extrém érték elmélet Monte Carlo eljárások 2 / 41 Extrém érték elmélet Bevezetés Alapvető módszerek (GEV és POT) Extrém érték eloszlások
Deep Learning a gyakorlatban Python és LUA alapon Tanítás: alap tippek és trükkök
Gyires-Tóth Bálint Deep Learning a gyakorlatban Python és LUA alapon Tanítás: alap tippek és trükkök http://smartlab.tmit.bme.hu Deep Learning Híradó Hírek az elmúlt 168 órából Deep Learning Híradó Google
Intelligens Rendszerek Gyakorlata. Neurális hálózatok I.
: Intelligens Rendszerek Gyakorlata Neurális hálózatok I. dr. Kutor László http://mobil.nik.bmf.hu/tantargyak/ir2.html IRG 3/1 Trend osztályozás Pnndemo.exe IRG 3/2 Hangulat azonosítás Happy.exe IRG 3/3
Irányításelmélet és technika II.
Irányításelmélet és technika II. Legkisebb négyzetek módszere Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 200 november
társadalomtudományokban
Gépi tanulás, predikció és okság a társadalomtudományokban Muraközy Balázs (MTA KRTK) Bemutatkozik a Számítógépes Társadalomtudomány témacsoport, MTA, 2017 2/20 Empirikus közgazdasági kérdések Felváltja-e
Bevezetés a hipotézisvizsgálatokba
Bevezetés a hipotézisvizsgálatokba Nullhipotézis: pl. az átlag egy adott µ becslése : M ( x -µ ) = 0 Alternatív hipotézis: : M ( x -µ ) 0 Szignifikancia: - teljes bizonyosság csak teljes enumerációra -
Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet
/ Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet / Tartalom 3/ kernelek segítségével Felügyelt és félig-felügyelt tanulás felügyelt: D =
Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán
Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán MTA KFKI Részecske és Magfizikai Intézet, Biofizikai osztály Az egy adatsorra (idősorra) is alkalmazható módszerek Példa: Az epileptikus
Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió
SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás
Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:
Mély neuronhálók alkalmazása és optimalizálása
magyar nyelv beszédfelismerési feladatokhoz 2015. január 10. Konzulens: Dr. Mihajlik Péter A megvalósítandó feladatok Irodalomkutatás Nyílt kutatási eszközök keresése, beszédfelismer rendszerek tervezése
Szekvenciális hálózatok és automaták
Szekvenciális hálózatok a kombinációs hálózatokból jöhetnek létre tárolási tulajdonságok hozzáadásával. A tárolás megvalósítása történhet a kapcsolás logikáját képező kombinációs hálózat kimeneteinek visszacsatolásával
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363
1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 324/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák
Projektfeladatok 2014, tavaszi félév
Projektfeladatok 2014, tavaszi félév Gyakorlatok Félév menete: 1. gyakorlat: feladat kiválasztása 2-12. gyakorlat: konzultációs rendszeres beszámoló a munka aktuális állásáról (kötelező) 13-14. gyakorlat:
Google Summer of Code Project
Neuronhálózatok a részecskefizikában Bagoly Attila ELTE TTK Fizikus MSc, 2. évfolyam Integrating Machine Learning in Jupyter Notebooks Google Summer of Code Project 2016.10.10 Bagoly Attila (ELTE) Machine
Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék
Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006
Leképezések. Leképezések tulajdonságai. Számosságok.
Leképezések Leképezések tulajdonságai. Számosságok. 1. Leképezések tulajdonságai A továbbiakban legyen A és B két tetszőleges halmaz. Idézzünk fel néhány definíciót. 1. Definíció (Emlékeztető). Relációknak
I. LABOR -Mesterséges neuron
I. LABOR -Mesterséges neuron A GYAKORLAT CÉLJA: A mesterséges neuron struktúrájának az ismertetése, neuronhálókkal kapcsolatos elemek, alapfogalmak bemutatása, aktivációs függvénytípusok szemléltetése,
A maximum likelihood becslésről
A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:
Robotika. Kinematika. Magyar Attila
Robotika Kinematika Magyar Attila amagyar@almos.vein.hu Miről lesz szó? Bevezetés Merev test pozíciója és orientációja Rotáció Euler szögek Homogén transzformációk Direkt kinematika Nyílt kinematikai lánc
7. Régió alapú szegmentálás
Digitális képek szegmentálása 7. Régió alapú szegmentálás Kató Zoltán http://www.cab.u-szeged.hu/~kato/segmentation/ Szegmentálási kritériumok Particionáljuk a képet az alábbi kritériumokat kielégítő régiókba