Adversarial tanítás neurális hálózatokban

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Adversarial tanítás neurális hálózatokban"

Átírás

1 , Faculty of Information Technology Adversarial tanítás neurális hálózatokban András Horváth Budapest,

2 Neurális hálózatok Számos helyen használhatóak Önvezető autók Alpha Go Arcfelismerés

3 Neurális hálózatok Felügyelt tanulás Cat 80% Cat

4 Neurális hálózatok Felügyelt tanulás Mire van szükség: Bemenet, kimenet párokra Cat

5 Neurális hálózatok Felügyelt tanulás Mire van szükség: Bemenet, kimenet párokra Neurális hálózatra Cat

6 Neurális hálózatok Felügyelt tanulás Mire van szükség: Bemenet, kimenet párokra Neurális hálózatra Cat 80% Cat

7 Neurális hálózatok Felügyelt tanulás Mire van szükség: Bemenet, kimenet párokra Neurális hálózatra Hibafüggvényre Cat 80% Cat

8 y x d y

9 Neurális hálózatok Példa: Generáljunk arcképeket

10 Neurális hálózatok Példa: Generáljunk arcképeket d

11 Neurális hálózatok Példa: Generáljunk arcképeket d L2

12 Hiba függvény megállapítása A neurális hálózatok megmutatták, hogy egy reprezentatív adathalmaz néha jobban leírja a problémát, mint egy matematikai leírás

13 Rosszul/nehezen definiálható problémák A mélytanulás a nehezen definiálható problémák esetében teljesít igazán jól Mi az az autó? Autó-e SUV, egy sportkocsi,egy kisbusz,egy kabrió?

14 Hiba függvény megállapítása A neurális hálózatok megmutatták, hogy egy reprezentatív adathalmaz néha jobban leírja a problémát, mint egy matematikai leírás De ezen esetekben is nehéz hibafüggvényt találni Lehet L1, L2 távolságot számolni képek között Mindegyik metrika független az adat struktúrájától

15 Hiba függvény megállapítása A neurális hálózatok megmutatták, hogy egy reprezentatív adathalmaz néha jobban leírja a problémát, mint egy matematikai leírás De ezen esetekben is nehéz hibafüggvényt találni Lehet L1, L2 távolságot számolni képek között Mindegyik metrika független az adat struktűrájától Használjunk neurális hálózatot a hibafüggvény megállapításához

16 Generative adversarial networks Egy rabló-pandúr játék két neurális hálózat között Ahelyett, hogy definiálnánk a hibát, a hálózat eldönti, hogy a megoldásunk mennyire jó

17 Generative adversarial networks Egy rabló-pandúr játék két neurális hálózat között Ahelyett, hogy definiálnánk a hibát, a hálózat eldönti, hogy a megoldásunk mennyire jó Diszkriminátor: Mintákat kap a tényleges adatból és a generált adatból is Célja,hogy eldöntse,hogy melyik adat melyik halmazból érkezett Generátor: Előállítja a mintákat, ez a halózat azon része, amire szükségünk van Célja,hogy olyan mintákat állítson elő, melyek átverik a diszkriminátort Figure by Chris Olah

18 Generative adversarial networks

19 Karras, Tero, et al. "Progressive growing of gans for improved quality, stability, and variation." arxiv preprint arxiv: (2017).

20 4K Portraits of Imaginary People by Mike Tyka

21 Problémák Konvergencia problémák Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein gan. arxiv preprint arxiv: Miyato, T., Kataoka, T., Koyama, M., & Yoshida, Y. (2018). Spectral normalization for generative adversarial networks. arxiv preprint arxiv:

22 Mode collapse Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein gan. arxiv preprint arxiv: Ghosh, A., Kulharia, V., Namboodiri, V., Torr, P. H., & Dokania, P. K. (2017). Multi-agent diverse generative adversarial networks. arxiv preprint arxiv: , 1(4).

23 Szuperrezolució A bemenetünk lehet egy alacsony felbontású kép, a kimenet pedig ugyanaz a kép nagyobb felbontásban, jobb minőségben (zaj nélkül vagy akár más modalitásban) 23

24 Szuperrezolució A bemenetünk lehet egy alacsony felbontású kép, a kimenet pedig ugyanaz a kép nagyobb felbontásban, jobb minőségben (zaj nélkül vagy akár más modalitásban) 24

25 Szuperrezolució A bemenetünk lehet egy alacsony felbontású kép, a kimenet pedig ugyanaz a kép nagyobb felbontásban, jobb minőségben (zaj nélkül vagy akár más modalitásban) 25

26 Szuperrezolució A bemenetünk lehet egy alacsony felbontású kép, a kimenet pedig ugyanaz a kép nagyobb felbontásban, jobb minőségben (zaj nélkül vagy akár más modalitásban) 26

27 Szuperrezolució Orvosi CT képeken CBCT images Generated microct images 27Medical Hatvani, Janka, et al. "Deep Learning-Based Super-Resolution Applied to Dental Computed Tomography." IEEE Transactions on Radiation and Plasma Sciences (2018).

28 Info GAN Diszkriminátor: Mintákat kap a tényleges adatból és a generált adatból is Vissza kell állítania a kódvektort Célja,hogy eldöntse,hogy melyik adat melyik halmazból érkezett Generátor: Előállítja a mintákat, ez a halózat azon része, amire szükségünk van Valamint a egy kódvektort, amit bele kell kódolnia a generált adatba Célja,hogy olyan mintákat állítson elő, melyek átverik a diszkriminátort Figure by Chris Olah

29 Info GAN Diszkrét kódvektorok (0,1,2...9) Figure by Chris Olah

30 Info GAN Folytonos kódvektorok [0,1] Figure by Chris Olah

31 Adat generálással az adat belső struktúrája megérthető Berthelot et al.

32 Adversarial Samples for Neural Networks Olyanok, mint az optikai illuziók az emberi látórendszer számára Speciálisan szerkesztett bemenetek, amik a tanítóhalmazban nincsenek benne

33 Adversarial attacks Egy komplex hálózatban nagyon sok paraméteret optimalizálunk De a bemenetünk még nagyobb dimenziós A hálózat jól működik a tényleges bementere, de nem fedtünk le minden lehetséges bemenetet

34 Adversarial attacks Egy komplex hálózatban nagyon sok paraméteret optimalizálun De a bemenetünk még nagyobb dimenziós A hálózat jól működik a tényleges bementere, de nem fedtünk le minden lehetséges bemenetet Lesznek olyan pontok a bemeneti térben, amik nincsenek lefedve

35 Adversarial noise Van egy jól működő hálózatunk: Panda [Goodfellow, I. J., Shlens, J., & Szegedy, C. (2014). Explaining and harnessing adversarial examples. arxiv preprint arxiv:

36 Adversarial noise Mit kellen a bementhez adnom, hogy egy másik kimenetet kapjak:??? Az additív zajt ugyanúgy (pl SGD-vel) optimalizáljuk Panda Gibbon [Goodfellow, I. J., Shlens, J., & Szegedy, C. (2014). Explaining and harnessing adversarial examples. arxiv preprint arxiv:

37 Adversarial noise Speciális alacsony intenzitású zaj: A két kép az emberi észlelés számára azonos Panda Gibbon [Goodfellow, I. J., Shlens, J., & Szegedy, C. (2014). Explaining and harnessing adversarial examples. arxiv preprint arxiv:

38 Adversarial noise Ismerve egy hálózatot (hozzáférünk a gradienseihez) generálhatunk olyan mintákat (amik nincsenek a train halmazban), amkire a hálózat rossz választ ad

39 Adversarial noise a gyakorlatban nem működik Egy valós zaj szerencsére tönkre teszi ezt a speciális bemenetet = + Real life distortion Real life distortion + = Jiajun Lu, Hussein Sibai, Evan Fabry, and David Forsyth. No need to worry about adversarial examples in object detection in autonomous vehicles URL abs/ g Ismerve egy hálózatot (hozzáférünk a gradienseihez) generálhatunk olyan mintákat (amik nincsenek a train halmazban), amkire a hálózat rossz választ ad

40 Matrica alapú adversarial attacks Nagy intenzitású, de kis területre koncentrált támadások: ( k l C d =N I+ St i ( x i,y i,wi,h i ) + St j ( x j,y j,w j,h j ) i=1 j=1 ) A paraméterek a matricák poziciói és méretei Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Song, D., Kohno, T.,... & Tramer, F. (2017). Note on Attacking Object Detectors with Adversarial Stickers. arxiv preprint arxiv:

41 Sticker based adversarial attacks Nagy intenzitású, de kis területre koncentrált támadások: ( k l C d =N I+ St i ( x i,y i,wi,h i ) + St j ( x j,y j,w j,h j ) i=1 j=1 ) A paraméterek a matricák poziciói és méretei Ezek a támadások kellően robosztusak ahhoz, hogy valós applikációkban is használjuk őket Nem szükséges hozzájuk a hálózat ismerete (elég a hálózat válasza) Evtimov, I., Eykholt, K., Fernandes, E., Kohno, T., Li, B., Prakash, A.,... & Song, D. (2017). Robust physical-world attacks on machine learning models. arxiv preprint arxiv:

42 Sticker based adversarial attacks Evtimov, I., Eykholt, K., Fernandes, E., Kohno, T., Li, B., Prakash, A.,... & Song, D. (2017). Robust physical-world attacks on machine learning models. arxiv preprint arxiv:

43 Hálózat döntésének azonosítása Kitakarással azonosíthtjuk, hogy a bemenet egy része mennyire vesz részt a döntésben Zeiler, M. D., & Fergus, R. (2014, September). Visualizing and understanding convolutional networks. In European conference on computer vision (pp ). Springer, Cham.

44 Hálózat döntésének azonosítása Kitakarással azonosíthtjuk, hogy a bemenet egy része mennyire vesz részt a döntésben Meglehetősen számításigényes Backward lépéssel készíthetnük egy saliency map-et a fontos pixelek-ről Zeiler, M. D., & Fergus, R. (2014, September). Visualizing and understanding convolutional networks. In European conference on computer vision (pp ). Springer, Cham.

45 Konzisztencia alapú detekció Eredeti kimenet: Stop Sign Letakart kimenet: Stop Sign Kismértékű változás Horváth András, Csanád Egervári: Detection of sticker based adversarial attacks, ICDIP 2018

46 Konzisztencia alapú detekció Eredeti kimenet: Stop Sign Letakart kimenet: Speed Limit Sign Jelentős változás, inkonzisztens detekció Horváth András, Csanád Egervári: Detection of sticker based adversarial attacks, ICDIP 2018

47 Konzisztencia alapú detekció Más adathalmazokon is hasonlóan hanszálható a módszer

48 Nemlinearitások Sigmoid ReLU ReLU a leggyakrabban használt és általában legjobban teljesítő hálózat

49 Regularizáció Regularizáció a súlyokat kontrollálja: Egy neuron aktovációja a bemenet és a súlyok szorzata Attól, hogy a súlyok eloszlása megfelelő, az aktivációk eloszlása még tetszőleges lehet

50 Háló aktivitások Egy hálózat megtanulhatja, hogy autók detekciójához fontosak a kerek minták

51 Háló aktivitások Egy hálózat megtanulhatja, hogy autók detekciójához fontosak a kerek minták A hálózatunkban lehetnek olyan minták, amin egy-egy feature rendkívül felülreprezentált Egy korlátos válasz a neuronok esetében sokat segíthet a tanítás során

52 Aktivációk egy tanítás során CIFAR10-n batch normalizációt használva

53 Feature-ök megváltozása matrica alapú támadásoknál A matrica alapú támadások nagy intenzitást váltanak ki kis területen Aktivációk az eredeti bemeneten Aktivációk a támadott mintán

54 Korlátos nemlinearitás tanulható korláttal Bounded leaky Relu

55 GAN A: Zebra B: Ló Image credit:

56 Cycle Consistent GAN A: Zebra B: Ló Image credit:

57 Cycle Consistent GAN

58 Cycle Consistent GAN

59 Original Transformed

60 Cycle Consistent GAN

61 Cycle Consistent GAN

62 Adat annotálás Sokszor elég nehéz adatot gyűjteni Felcimkézett adatot pedig még nehezebb

63 Adat annotálás Sokszor elég nehéz adatot gyűjteni Felcimkézett adatot pedig még nehezebb Az emberek néhány mintából és egész jól tanulnak meg általános jellemzőket

64 Adat annotálás Sokszor elég nehéz adatot gyűjteni Felcimkézett adatot pedig még nehezebb Az emberek néhány mintából és egész jól tanulnak meg általános jellemzőket különböző domain-ek közti kapcsolat

65 Szimulációk Szimulált adat előállítása általában nagyságrendekkel egyszerűbb, mint valós adat gyűjtése, cimkézése Playing for benchmarks, Vladlev Klotun et Al, 65

66 Szimulációk Szimulált adat előállítása általában nagyságrendekkel egyszerűbb, mint valós adat gyűjtése, cimkézése A szimulált adat (még,ha nagyon jó minőségű is), sosem lesz olyan, mint a valós Playing for benchmarks, Vladlev Klotun et Al, 66

67 Domain adaptation Tegyük fel, hogy van kismennyiségű, felcimkézetlen adatunk: cél-domain Cél domain 67

68 Domain adaptation Tegyük fel, hogy van kismennyiségű, felcimkézetlen adatunk: cél-domain Van egy ehhez hasonló, szimulált adathalmazunk nagyszámú, jelölt adattal Cél domain Forrás domain 68

69 Domain Adversarial Neural Networks Vegyünk egy hagyományos osztályozót (Feature extractor + Label predictor) 69

70 Domain Adversarial Neural Networks Vegyünk egy hagyományos osztályozót (Feature extractor + Label predictor) Betanítjuk a szimulált domain-en...s egész jól működik 70

71 Domain Adversarial Neural Networks Vegyünk egy hagyományos osztályozót (Feature extractor + Label predictor) Kipróbáljuk a valós adaton. 71

72 Domain Adversarial Neural Networks Vegyünk egy hagyományos osztályozót (Feature extractor + Label predictor) Kipróbáljuk a valós adaton.borzalmasan teljesít 72

73 Domain adaptation A két domain a megtanult reprezentációban akár teljesen eltérő is lehet source domain target domain 73

74 Domain adaptation A két domain a megtanult reprezentációban akár teljesen eltérő is lehet source domain target domain 74

75 Domain Adversarial neural Networks Vegyünk egy hagyományos osztályozót (Feature extractor + Label predictor) Adjunk hozzá egy osztályozót domain classifier, aminek azt kell eldöntenie, hogy a tanító adat melyik domain-ből jött A Feature extractor-t és a domain classifier-t egymás ellen taníthatjuk Ajakan, Hana, et al. "Domain-Adversarial Neural Networks." arxiv: Machine Learning (2014). 75

76 Domain Adversarial neural Networks Vegyünk egy hagyományos osztályozót (Feature extractor + Label predictor) Adjunk hozzá egy osztályozót domain classifier, aminek azt kell eldöntenie, hogy a tanító adat melyik domain-ből jött A Feature extractor-t és a domain classifier-t egymás ellen taníthatjuk 1. lépés: betanítjuk az osztályozót a forrás domain-en Kimenet: Auto Nem auto Ajakan, Hana, et al. "Domain-Adversarial Neural Networks." arxiv: Machine Learning (2014). 76

77 Domain Adversarial neural Networks Vegyünk egy hagyományos osztályozót (Feature extractor + Label predictor) Adjunk hozzá egy osztályozót domain classifier, aminek azt kell eldöntenie, hogy a tanító adat melyik domain-ből jött A Feature extractor-t és a domain classifier-t egymás ellen taníthatjuk 2. lépés:valós és szimulált képeken tanítjuk a domain classifier-t Kimenet: Source domain Target Domain Ajakan, Hana, et al. "Domain-Adversarial Neural Networks." arxiv: Machine Learning (2014). 77

78 CyCADA simulations CyCADA: Cycle-Consistent Adversarial Domain Adaptation Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko, Alexei A. Efros, Trevor Darrell 78

79 Semi parametric image synthesis Kép generálás egy megadott feltétel alapján Qi, X., Chen, Q., Jia, J., & Koltun, V. (2018). Semi-parametric Image Synthesis. arxiv preprint 79

Visszacsatolt (mély) neurális hálózatok

Visszacsatolt (mély) neurális hálózatok Visszacsatolt (mély) neurális hálózatok Visszacsatolt hálózatok kimenet rejtett rétegek bemenet Sima előrecsatolt neurális hálózat Visszacsatolt hálózatok kimenet rejtett rétegek bemenet Pl.: kép feliratozás,

Részletesebben

Konvolúciós neurális hálózatok (CNN)

Konvolúciós neurális hálózatok (CNN) Konvolúciós neurális hálózatok (CNN) Konvolúció Jelfeldolgozásban: Diszkrét jelek esetén diszkrét konvolúció: Képfeldolgozásban 2D konvolúció (szűrők): Konvolúciós neurális hálózat Konvolúciós réteg Kép,

Részletesebben

Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Neurális hálók 2. Pataki Béla

Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Neurális hálók 2. Pataki Béla Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Neurális hálók 2. Előadó: Hullám Gábor Pataki Béla BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki

Részletesebben

Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function

Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,

Részletesebben

Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017.

Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017. Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017. Vizuális feldolgozórendszerek feladatai Mesterséges intelligencia és idegtudomány Mesterséges intelligencia és idegtudomány Párhuzamos problémák

Részletesebben

Intelligens Rendszerek Gyakorlata. Neurális hálózatok I.

Intelligens Rendszerek Gyakorlata. Neurális hálózatok I. : Intelligens Rendszerek Gyakorlata Neurális hálózatok I. dr. Kutor László http://mobil.nik.bmf.hu/tantargyak/ir2.html IRG 3/1 Trend osztályozás Pnndemo.exe IRG 3/2 Hangulat azonosítás Happy.exe IRG 3/3

Részletesebben

Hadházi Dániel.

Hadházi Dániel. Hadházi Dániel hadhazi@mit.bme.hu Orvosi képdiagnosztika: Szerepe napjaink orvoslásában Képszegmentálás orvosi kontextusban Elvárások az adekvát szegmentálásokkal szemben Verifikáció és validáció lehetséges

Részletesebben

PIXEL SZINTŰ SZEGMENTÁLÁS CNN-EL

PIXEL SZINTŰ SZEGMENTÁLÁS CNN-EL PIXEL SZINTŰ SZEGMENTÁLÁS CNN-EL Csúszóablakos szegmentálás Szegmentálás direkt osztályozással Kisméretű ablakkal kivágott kép alapján megítéli az adott pixel környezetének a típusát Nagyon lassú, nehezen

Részletesebben

Kihívások és trendek mesterséges intelligencia alapú rendszerek tesztelésében

Kihívások és trendek mesterséges intelligencia alapú rendszerek tesztelésében Kihívások és trendek mesterséges intelligencia alapú rendszerek tesztelésében Majzik István BME VIK Méréstechnika és Információs Rendszerek Tanszék IIR Szoftvertesztelés 2019 konferencia Budapest, 2019.

Részletesebben

Megerősítéses tanulás

Megerősítéses tanulás Megerősítéses tanulás elméleti kognitív neurális Introduction Knowledge representation Probabilistic models Bayesian behaviour Approximate inference I (computer lab) Vision I Approximate inference II:

Részletesebben

Modellkiválasztás és struktúrák tanulása

Modellkiválasztás és struktúrák tanulása Modellkiválasztás és struktúrák tanulása Szervezőelvek keresése Az unsupervised learning egyik fő célja Optimális reprezentációk Magyarázatok Predikciók Az emberi tanulás alapja Általános strukturális

Részletesebben

Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Neurális hálók. Pataki Béla

Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Neurális hálók. Pataki Béla Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Neurális hálók Előadó: Előadás anyaga: Hullám Gábor Pataki Béla Dobrowiecki Tadeusz BME I.E. 414, 463-26-79

Részletesebben

Tanulás az idegrendszerben

Tanulás az idegrendszerben Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Funkcióvezérelt modellezés Abból indulunk ki, hogy milyen feladatot valósít meg a rendszer Horace Barlow: "A

Részletesebben

Google Summer of Code Project

Google Summer of Code Project Neuronhálózatok a részecskefizikában Bagoly Attila ELTE TTK Fizikus MSc, 2. évfolyam Integrating Machine Learning in Jupyter Notebooks Google Summer of Code Project 2016.10.10 Bagoly Attila (ELTE) Machine

Részletesebben

A kibontakozó új hajtóerő a mesterséges intelligencia

A kibontakozó új hajtóerő a mesterséges intelligencia 5. Magyar Jövő Internet Konferencia» Okos város a célkeresztben «A kibontakozó új hajtóerő a mesterséges intelligencia Dr. Szűcs Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Távközlési és Médiainformatikai

Részletesebben

Deep Learning a gyakorlatban Python és LUA alapon Tanítás: alap tippek és trükkök

Deep Learning a gyakorlatban Python és LUA alapon Tanítás: alap tippek és trükkök Gyires-Tóth Bálint Deep Learning a gyakorlatban Python és LUA alapon Tanítás: alap tippek és trükkök http://smartlab.tmit.bme.hu Deep Learning Híradó Hírek az elmúlt 168 órából Deep Learning Híradó Google

Részletesebben

AKTUÁTOR MODELLEK KIVÁLASZTÁSA ÉS OBJEKTÍV ÖSSZEHASONLÍTÁSA

AKTUÁTOR MODELLEK KIVÁLASZTÁSA ÉS OBJEKTÍV ÖSSZEHASONLÍTÁSA AKTUÁTOR MODELLEK KIVÁLASZTÁSA ÉS OBJEKTÍV ÖSSZEHASONLÍTÁSA Kovács Ernő 1, Füvesi Viktor 2 1 Egyetemi docens, PhD; 2 tudományos segédmunkatárs 1 Eletrotechnikai és Elektronikai Tanszék, Miskolci Egyetem

Részletesebben

Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function

Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,

Részletesebben

Hibadetektáló rendszer légtechnikai berendezések számára

Hibadetektáló rendszer légtechnikai berendezések számára Hibadetektáló rendszer légtechnikai berendezések számára Tudományos Diákköri Konferencia A feladatunk Légtechnikai berendezések Monitorozás Hibadetektálás Újrataníthatóság A megvalósítás Mozgásérzékelő

Részletesebben

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31. Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert

Részletesebben

Gépi tanulás a gyakorlatban. Lineáris regresszió

Gépi tanulás a gyakorlatban. Lineáris regresszió Gépi tanulás a gyakorlatban Lineáris regresszió Lineáris Regresszió Legyen adott egy tanuló adatbázis: Rendelkezésünkre áll egy olyan előfeldolgozott adathalmaz, aminek sorai az egyes ingatlanokat írják

Részletesebben

Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék

Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Számítógépes képelemzés 7. előadás Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Momentumok Momentum-alapú jellemzők Tömegközéppont Irányultáság 1 2 tan 2 1 2,0 1,1 0, 2 Befoglaló

Részletesebben

FELÜGYELT ÉS MEGERŐSÍTÉSES TANULÓ RENDSZEREK FEJLESZTÉSE

FELÜGYELT ÉS MEGERŐSÍTÉSES TANULÓ RENDSZEREK FEJLESZTÉSE FELÜGYELT ÉS MEGERŐSÍTÉSES TANULÓ RENDSZEREK FEJLESZTÉSE Dr. Aradi Szilárd, Fehér Árpád Mesterséges intelligencia kialakulása 1956 Dartmouth-i konferencián egy maroknyi tudós megalapította a MI területét

Részletesebben

Intelligens orvosi műszerek VIMIA023

Intelligens orvosi műszerek VIMIA023 Intelligens orvosi műszerek VIMIA023 Neurális hálók (Dobrowiecki Tadeusz anyagának átdolgozásával) 2017 ősz http://www.mit.bme.hu/oktatas/targyak/vimia023 dr. Pataki Béla pataki@mit.bme.hu (463-)2679 A

Részletesebben

Keresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék

Keresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Keresés képi jellemzők alapján Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Lusta gépi tanulási algoritmusok Osztályozás: k=1: piros k=5: kék k-legközelebbi szomszéd (k=1,3,5,7)

Részletesebben

Neurális hálózatok.... a gyakorlatban

Neurális hálózatok.... a gyakorlatban Neurális hálózatok... a gyakorlatban Java NNS Az SNNS Javás változata SNNS: Stuttgart Neural Network Simulator A Tübingeni Egyetemen fejlesztik http://www.ra.cs.unituebingen.de/software/javanns/ 2012/13.

Részletesebben

Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban

Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban Intelligens Rendszerek Elmélete : dr. Kutor László Versengéses és önszervező tanulás neurális hálózatokban http://mobil.nik.bmf.hu/tantargyak/ire.html Login név: ire jelszó: IRE07 IRE 9/1 Processzor Versengéses

Részletesebben

Neurális hálózatok elméleti alapjai TULICS MIKLÓS GÁBRIEL

Neurális hálózatok elméleti alapjai TULICS MIKLÓS GÁBRIEL Neurális hálózatok elméleti alapjai TULICS MIKLÓS GÁBRIEL TULICS@TMIT.BME.HU Példa X (tanult órák száma, aludt órák száma) y (dolgozaton elért pontszám) (5, 8) 80 (3, 5) 78 (5, 1) 82 (10, 2) 93 (4, 4)

Részletesebben

Teljesen elosztott adatbányászat alprojekt

Teljesen elosztott adatbányászat alprojekt Teljesen elosztott adatbányászat alprojekt Hegedűs István, Ormándi Róbert, Jelasity Márk Big Data jelenség Big Data jelenség Exponenciális növekedés a(z): okos eszközök használatában, és a szenzor- és

Részletesebben

Stratégiák tanulása az agyban

Stratégiák tanulása az agyban Statisztikai tanulás az idegrendszerben, 2019. Stratégiák tanulása az agyban Bányai Mihály banyai.mihaly@wigner.mta.hu http://golab.wigner.mta.hu/people/mihaly-banyai/ Kortárs MI thispersondoesnotexist.com

Részletesebben

2. Gyakorlat Khoros Cantata

2. Gyakorlat Khoros Cantata 2. Gyakorlat Khoros Cantata Ismerkedés a Khoros Cantata-val: A Khoros Cantata egy képfeldolgozó műveletsorok készítésére szolgáló program. A műveleteket csővezetékszerűen lehet egymás után kötni. A műveleteket

Részletesebben

Gépi tanulás a gyakorlatban. Kiértékelés és Klaszterezés

Gépi tanulás a gyakorlatban. Kiértékelés és Klaszterezés Gépi tanulás a gyakorlatban Kiértékelés és Klaszterezés Hogyan alkalmazzuk sikeresen a gépi tanuló módszereket? Hogyan válasszuk az algoritmusokat? Hogyan hangoljuk a paramétereiket? Precízebben: Tegyük

Részletesebben

A bemeneti feszültség 10 V és 20 V között van. 1. ábra A fuzzy tagsági függvény

A bemeneti feszültség 10 V és 20 V között van. 1. ábra A fuzzy tagsági függvény BÁRKÁNYI PÁL: FUZZY MODELL MATEMATIKAI HÁTTERE SPECIÁLIS KATONAI RENDSZEREKRE ALKALMAZVA A katonai rendszerek műszaki megbízhatóságának vizsgálatai során, több matematikai módszert alkalmazhatunk, mint

Részletesebben

I. LABOR -Mesterséges neuron

I. LABOR -Mesterséges neuron I. LABOR -Mesterséges neuron A GYAKORLAT CÉLJA: A mesterséges neuron struktúrájának az ismertetése, neuronhálókkal kapcsolatos elemek, alapfogalmak bemutatása, aktivációs függvénytípusok szemléltetése,

Részletesebben

Neurális hálózatok bemutató

Neurális hálózatok bemutató Neurális hálózatok bemutató Füvesi Viktor Miskolci Egyetem Alkalmazott Földtudományi Kutatóintézet Miért? Vannak feladatok amelyeket az agy gyorsabban hajt végre mint a konvencionális számítógépek. Pl.:

Részletesebben

Gépi tanulás a gyakorlatban. Bevezetés

Gépi tanulás a gyakorlatban. Bevezetés Gépi tanulás a gyakorlatban Bevezetés Motiváció Nagyon gyakran találkozunk gépi tanuló alkalmazásokkal Spam detekció Karakter felismerés Fotó címkézés Szociális háló elemzés Piaci szegmentáció analízis

Részletesebben

Intelligens Rendszerek Elmélete

Intelligens Rendszerek Elmélete Intelligens Rendszerek Elmélete Dr. Kutor László : Mesterséges neurális hálózatok felügyelt tanítása hiba visszateresztő Back error Propagation algoritmussal Versengéses tanulás http://mobil.nik.bmf.hu/tantargyak/ire.html

Részletesebben

Tanulás tanuló gépek tanuló algoritmusok mesterséges neurális hálózatok

Tanulás tanuló gépek tanuló algoritmusok mesterséges neurális hálózatok Zrínyi Miklós Gimnázium Művészet és tudomány napja Tanulás tanuló gépek tanuló algoritmusok mesterséges neurális hálózatok 10/9/2009 Dr. Viharos Zsolt János Elsősorban volt Zrínyis diák Tudományos főmunkatárs

Részletesebben

Kódverifikáció gépi tanulással

Kódverifikáció gépi tanulással Kódverifikáció gépi tanulással Szoftver verifikáció és validáció kiselőadás Hidasi Balázs 2013. 12. 12. Áttekintés Gépi tanuló módszerek áttekintése Kódverifikáció Motiváció Néhány megközelítés Fault Invariant

Részletesebben

Mesterséges neurális hálózatok II. - A felügyelt tanítás paraméterei, gyorsító megoldásai - Versengéses tanulás

Mesterséges neurális hálózatok II. - A felügyelt tanítás paraméterei, gyorsító megoldásai - Versengéses tanulás Mesterséges neurális hálózatok II. - A felügyelt tanítás paraméterei, gyorsító megoldásai - Versengéses tanulás http:/uni-obuda.hu/users/kutor/ IRE 7/50/1 A neurális hálózatok általános jellemzői 1. A

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363 1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 20/2011 Az Előadások Témái 226/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus

Részletesebben

Körkép a lakossági felhasználók fogyasztásának készülékszintű becsléséről (NILM)

Körkép a lakossági felhasználók fogyasztásának készülékszintű becsléséről (NILM) Körkép a lakossági felhasználók fogyasztásának készülékszintű becsléséről (NILM) MEE Vándorgyűlés, Siófok, 2015. szeptember 17. Dr. Raisz Dávid, docens, csoportvezető Dr. Divényi Dániel, adjunktus Villamos

Részletesebben

VI. Magyar Földrajzi Konferencia 524-529

VI. Magyar Földrajzi Konferencia 524-529 Van Leeuwen Boudewijn Tobak Zalán Szatmári József 1 BELVÍZ OSZTÁLYOZÁS HAGYOMÁNYOS MÓDSZERREL ÉS MESTERSÉGES NEURÁLIS HÁLÓVAL BEVEZETÉS Magyarország, különösen pedig az Alföld váltakozva szenved aszályos

Részletesebben

Sergyán Szabolcs szeptember 21.

Sergyán Szabolcs szeptember 21. Éldetektálás Sergyán Szabolcs Budapesti Műszaki Főiskola Neumann János Informatikai Kar 2009. szeptember 21. Sergyán Sz. (BMF NIK) Éldetektálás 2009. szeptember 21. 1 / 28 Mit nevezünk élnek? Intuitív

Részletesebben

Osztályozási feladatok képdiagnosztikában. Orvosi képdiagnosztikai 2017 ősz

Osztályozási feladatok képdiagnosztikában. Orvosi képdiagnosztikai 2017 ősz Osztályozási feladatok képdiagnosztikában Orvosi képdiagnosztikai 2017 ősz Osztályozás Szeparáló felületet keresünk Leképezéseket tanulunk meg azok mintáiból A tanuláshoz használt minták a tanító minták

Részletesebben

KÖZELÍTŐ INFERENCIA II.

KÖZELÍTŐ INFERENCIA II. STATISZTIKAI TANULÁS AZ IDEGRENDSZERBEN KÖZELÍTŐ INFERENCIA II. MONTE CARLO MÓDSZEREK ISMÉTLÉS Egy valószínűségi modellben a következtetéseinket a látensek vagy a paraméterek fölötti poszterior írja le.

Részletesebben

E x μ x μ K I. és 1. osztály. pontokként), valamint a bayesi döntést megvalósító szeparáló görbét (kék egyenes)

E x μ x μ K I. és 1. osztály. pontokként), valamint a bayesi döntést megvalósító szeparáló görbét (kék egyenes) 6-7 ősz. gyakorlat Feladatok.) Adjon meg azt a perceptronon implementált Bayes-i klasszifikátort, amely kétdimenziós a bemeneti tér felett szeparálja a Gauss eloszlású mintákat! Rajzolja le a bemeneti

Részletesebben

KONVOLÚCIÓS NEURONHÁLÓK. A tananyag az EFOP pályázat támogatásával készült.

KONVOLÚCIÓS NEURONHÁLÓK. A tananyag az EFOP pályázat támogatásával készült. KONVOLÚCIÓS NEURONHÁLÓK A tananyag az EFOP-3.5.1-16-2017-00004 pályázat támogatásával készült. 1. motiváció A klasszikus neuronháló struktúra a fully connected háló Két réteg között minden neuron kapcsolódik

Részletesebben

[1000 ; 0] 7 [1000 ; 3000]

[1000 ; 0] 7 [1000 ; 3000] Gépi tanulás (vimim36) Gyakorló feladatok 04 tavaszi félév Ahol lehet, ott konkrét számértékeket várok nem puszta egyenleteket. (Azok egy részét amúgyis megadom.). Egy bináris osztályozási feladatra tanított

Részletesebben

KÖZELÍTŐ INFERENCIA II.

KÖZELÍTŐ INFERENCIA II. STATISZTIKAI TANULÁS AZ IDEGRENDSZERBEN KÖZELÍTŐ INFERENCIA II. MONTE CARLO MÓDSZEREK ISMÉTLÉS Egy valószínűségi modellben a következtetéseinket a látensek vagy a paraméterek fölötti poszterior írja le.

Részletesebben

NEURÁLIS HÁLÓZATOK 1. eloadás 1

NEURÁLIS HÁLÓZATOK 1. eloadás 1 NEURÁLIS HÁLÓZATOKH 1. eloadás 1 Biológiai elozmények nyek: az agy Az agy az idegrendszerunk egyik legfontosabb része: - képes adatokat tárolni, - gyorsan és hatékonyan mukodik, - nagy a megbízhatósága,

Részletesebben

Gépi tanulás a Rapidminer programmal. Stubendek Attila

Gépi tanulás a Rapidminer programmal. Stubendek Attila Gépi tanulás a Rapidminer programmal Stubendek Attila Rapidminer letöltése Google: download rapidminer Rendszer kiválasztása (iskolai gépeken Other Systems java) Kicsomagolás lib/rapidminer.jar elindítása

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363 1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái -hálók 306/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák

Részletesebben

BIZONYTALAN ADATOK KEZELÉSE: FUZZY SZAKÉRTŐI RENDSZEREK

BIZONYTALAN ADATOK KEZELÉSE: FUZZY SZAKÉRTŐI RENDSZEREK BIZONYTALAN ADATOK KEZELÉSE: FUZZY SZAKÉRTŐI RENDSZEREK Szakértői rendszerek, 14. hét, 2008 Tartalom 1 Bevezető 2 Fuzzy történelem A fuzzy logika kialakulása Alkalmazások Fuzzy logikát követ-e a világ?

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Funkcionálanalízis. n=1. n=1. x n y n. n=1

Funkcionálanalízis. n=1. n=1. x n y n. n=1 Funkcionálanalízis 2011/12 tavaszi félév - 2. előadás 1.4. Lényeges alap-terek, példák Sorozat terek (Folytatás.) C: konvergens sorozatok tere. A tér pontjai sorozatok: x = (x n ). Ezen belül C 0 a nullsorozatok

Részletesebben

Optikai karakterfelismerés

Optikai karakterfelismerés Optikai karakterfelismerés Az optikai karakterfelismerés feladata A különböző formátumú dokumentumok kezelésének egyik speciális esete, amikor a kezelendő dokumentumok még nem állnak rendelkezésre elektronikus

Részletesebben

Sztereó kamerarendszerre alapozott gyalogos felismerés Kornis János*, Szabó Zsolt**

Sztereó kamerarendszerre alapozott gyalogos felismerés Kornis János*, Szabó Zsolt** Sztereó kamerarendszerre alapozott gyalogos felismerés Kornis János*, Szabó Zsolt** *PhD, okleveles villamosmérnök, Budapesti Műszaki és Gazdaságtudományi Egyetem Fizika Tanszék, kornis@phy.bme.hu **fizikus

Részletesebben

Modellezés és szimuláció. Szatmári József SZTE Természeti Földrajzi és Geoinformatikai Tanszék

Modellezés és szimuláció. Szatmári József SZTE Természeti Földrajzi és Geoinformatikai Tanszék Modellezés és szimuláció Szatmári József SZTE Természeti Földrajzi és Geoinformatikai Tanszék Kvantitatív forradalmak a földtudományban - geográfiában 1960- as évek eleje: statisztika 1970- as évek eleje:

Részletesebben

Kétdimenziós mesterséges festési eljárások. Hatások és alkalmazások

Kétdimenziós mesterséges festési eljárások. Hatások és alkalmazások Pannon Egyetem Informatikai Tudományok Doktori Iskola Tézisfüzet Kétdimenziós mesterséges festési eljárások. Hatások és alkalmazások Kovács Levente Képfeldolgozás és Neuroszámítógépek Tanszék Témavezet

Részletesebben

2. Elméleti összefoglaló

2. Elméleti összefoglaló 2. Elméleti összefoglaló 2.1 A D/A konverterek [1] A D/A konverter feladata, hogy a bemenetére érkező egész számmal arányos analóg feszültséget vagy áramot állítson elő a kimenetén. A működéséhez szükséges

Részletesebben

Valószínűségi modellellenőrzés Markov döntési folyamatokkal

Valószínűségi modellellenőrzés Markov döntési folyamatokkal Valószínűségi modellellenőrzés Markov döntési folyamatokkal Hajdu Ákos Szoftver verifikáció és validáció 2015.12.09. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek

Részletesebben

A RADARJELEK DETEKTÁLÁSA NEURÁLIS HÁLÓZAT ALKALMAZÁSÁVAL

A RADARJELEK DETEKTÁLÁSA NEURÁLIS HÁLÓZAT ALKALMAZÁSÁVAL A RADARJELEK DETEKTÁLÁSA NEURÁLIS HÁLÓZAT ALKALMAZÁSÁVAL Dr. Ludányi Lajos mk. alezredes egyetemi adjunktus Zrínyi Miklós Nemzetvédelmi Egyetem Vezetés- és Szervezéstudományi Kar Fedélzeti Rendszerek Tanszék

Részletesebben

Pletykaalapú gépi tanulás teljesen elosztott környezetben

Pletykaalapú gépi tanulás teljesen elosztott környezetben Pletykaalapú gépi tanulás teljesen elosztott környezetben Hegedűs István Jelasity Márk témavezető Szegedi Tudományegyetem MTA-SZTE Mesterséges Intelligencia Kutatócsopot Motiváció Az adat adatközpontokban

Részletesebben

A neurális hálózatok tanításának alapjai II.: Módszerek a túltanulás elkerülésére. Szoldán Péter

A neurális hálózatok tanításának alapjai II.: Módszerek a túltanulás elkerülésére. Szoldán Péter >ready to transmit A neurális hálózatok tanításának alapjai II.: Módszerek a túltanulás elkerülésére Szoldán Péter A hálózatnak nincs kontextusa Képzeljék el, hogy amióta megszülettek, semmit mást nem

Részletesebben

Fuzzy rendszerek és neurális hálózatok alkalmazása a diagnosztikában

Fuzzy rendszerek és neurális hálózatok alkalmazása a diagnosztikában Budapesti Műszaki és Gazdaságtudományi Egyetem Fuzzy rendszerek és neurális hálózatok alkalmazása a diagnosztikában Cselkó Richárd 2009. október. 15. Az előadás fő témái Soft Computing technikák alakalmazásának

Részletesebben

Gépi tanulás. Féligellenőrzött tanulás. Pataki Béla (Bolgár Bence)

Gépi tanulás. Féligellenőrzött tanulás. Pataki Béla (Bolgár Bence) Gépi tanulás Féligellenőrzött tanulás Pataki Béla (Bolgár Bence) BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Féligellenőrzött tanulás Mindig kevés az adat, de

Részletesebben

Bevezetés a neurális számításokba Analóg processzortömbök,

Bevezetés a neurális számításokba Analóg processzortömbök, Pannon Egyetem Villamosmérnöki és Információs Tanszék Bevezetés a neurális számításokba Analóg processzortömbök, neurális hálózatok Előadó: dr. Tömördi Katalin Neurális áramkörök (ismétlés) A neurális

Részletesebben

Adatbányászati szemelvények MapReduce környezetben

Adatbányászati szemelvények MapReduce környezetben Adatbányászati szemelvények MapReduce környezetben Salánki Ágnes salanki@mit.bme.hu 2014.11.10. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Felügyelt

Részletesebben

8. Pontmegfeleltetések

8. Pontmegfeleltetések 8. Pontmegfeleltetések Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2 Példa: panoráma kép készítés 1. Jellemzőpontok detektálása mindkét

Részletesebben

Számításelmélet. Második előadás

Számításelmélet. Második előadás Számításelmélet Második előadás Többszalagos Turing-gép Turing-gép k (konstans) számú szalaggal A szalagok mindegyike rendelkezik egy független író / olvasó fejjel A bemenet az első szalagra kerül, a többi

Részletesebben

Biológiai és mesterséges neurális hálózatok

Biológiai és mesterséges neurális hálózatok Biológiai és mesterséges neurális hálózatok Szegedy Balázs 2018. október 10. Hasonlóságok és külömbségek A mesterséges neurális hálózatok története 1957-ben kezdődött: perceptron (Frank Rosenblatt). 400

Részletesebben

Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function

Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,

Részletesebben

A/D és D/A átalakítók gyakorlat

A/D és D/A átalakítók gyakorlat Budapesti Műszaki és Gazdaságtudományi Egyetem A/D és D/A átalakítók gyakorlat Takács Gábor Elektronikus Eszközök Tanszéke (BME) 2013. február 27. ebook ready Tartalom 1 A/D átalakítás alapjai (feladatok)

Részletesebben

Lineáris regressziós modellek 1

Lineáris regressziós modellek 1 Lineáris regressziós modellek 1 Ispány Márton és Jeszenszky Péter 2016. szeptember 19. 1 Az ábrák C.M. Bishop: Pattern Recognition and Machine Learning c. könyvéből származnak. Tartalom Bevezető példák

Részletesebben

A KLT (Kanade Lucas Tomasi) Feature Tracker Működése (jellegzetes pontok választása és követése)

A KLT (Kanade Lucas Tomasi) Feature Tracker Működése (jellegzetes pontok választása és követése) A KL (Kanade Lucas omasi) Feature racker Működése (jellegzetes pontok választása és követése) Készítette: Hajder Levente 008.11.18. 1. Feladat A rendelkezésre álló videó egy adott képkockájából minél több

Részletesebben

SAT probléma kielégíthetőségének vizsgálata. masszív parallel. mesterséges neurális hálózat alkalmazásával

SAT probléma kielégíthetőségének vizsgálata. masszív parallel. mesterséges neurális hálózat alkalmazásával SAT probléma kielégíthetőségének vizsgálata masszív parallel mesterséges neurális hálózat alkalmazásával Tajti Tibor, Bíró Csaba, Kusper Gábor {gkusper, birocs, tajti}@aries.ektf.hu Eszterházy Károly Főiskola

Részletesebben

Deep learning. bevezetés

Deep learning. bevezetés Deep learning bevezetés Egy kis történelem - a kezdetek 1957 - Frank Rosenblatt: Perceptron A perceptron algoritmus első implementációja a Mark I Perceptron gép 20 20 pixeles képet adó kamerához volt kötve

Részletesebben

Valósidejű objektumkövetés mély tanulás segítségével

Valósidejű objektumkövetés mély tanulás segítségével SZAKDOLGOZAT FELADAT Münczberg Tamás szigorló mérnök informatikus hallgató részére Valósidejű objektumkövetés mély tanulás segítségével A gépi tanulás új módszerei az intelligens érzékelés számos területét

Részletesebben

Funkcionális konnektivitás vizsgálata fmri adatok alapján

Funkcionális konnektivitás vizsgálata fmri adatok alapján Funkcionális konnektivitás vizsgálata fmri adatok alapján Képalkotási technikák 4 Log Resolution (mm) 3 Brain EEG & MEG fmri TMS PET Lesions 2 Column 1 0 Lamina -1 Neuron -2 Dendrite -3 Synapse -4 Mikrolesions

Részletesebben

SAR AUTOFÓKUSZ ALGORITMUSOK VIZSGÁLATA ÉS GYAKORLATI ALKALMAZÁSA 2

SAR AUTOFÓKUSZ ALGORITMUSOK VIZSGÁLATA ÉS GYAKORLATI ALKALMAZÁSA 2 Szüllő Ádám 1 SAR AUTOFÓKUSZ ALGORITMUSOK VIZSGÁLATA ÉS GYAKORLATI ALKALMAZÁSA A szintetikus apertúrájú radar (SAR) elven alapuló mikrohullámú képalkotási módszer matematikailag egy holografikus jelfeldolgozási

Részletesebben

P-gráf alapú workflow modellezés fuzzy kiterjesztéssel

P-gráf alapú workflow modellezés fuzzy kiterjesztéssel P-gráf alapú workflow modellezés fuzzy kiterjesztéssel Doktori (PhD) értekezés Tick József témavezető: Dr. Kovács Zoltán Pannon Egyetem Műszaki Informatikai Kar Informatikai Tudományok Doktori Iskola 2007.

Részletesebben

Neurális hálózatok. Nem ellenőrzött tanulás. Pataki Béla. BME I.E. 414,

Neurális hálózatok. Nem ellenőrzött tanulás. Pataki Béla. BME I.E. 414, Neurális hálózato Nem ellenőrzött tanulás Patai Béla BME I.E. 414, 463-26-79 patai@mit.bme.hu, http://www.mit.bme.hu/general/staff/patai Nem ellenőrzött tanulás (Klaszterezés ) Az eseteet szoásos módon

Részletesebben

SIM-02 Univerzális kardiológiai szimulátor

SIM-02 Univerzális kardiológiai szimulátor SIM-02 Univerzális kardiológiai szimulátor Farkas László és Tóth Péter, Labtech Kft. Az EKG szerepe napjainkban A hazai és nemzetközi kutatások az elmúlt időben arra hívták fel a figyelmet, hogy a szív-

Részletesebben

II. LABOR Tanulás, Perceptron, Adaline

II. LABOR Tanulás, Perceptron, Adaline II. LABOR Tanulás, Perceptron, Adaline A dolgozat célja a tanító algoritmusok osztályozása, a tanító és tesztel halmaz szerepe a neuronhálók tanításában, a Perceptron és ADALINE feldolgozó elemek struktúrája,

Részletesebben

10. Előadás. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai

10. Előadás. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai Optimalizálási eljárások MSc hallgatók számára 10. Előadás Előadó: Hajnal Péter Jegyzetelő: T. Szabó Tamás 2011. április 20. 1. Feltétel nélküli optimalizálás: Az eljárás alapjai A feltétel nélküli optimalizálásnál

Részletesebben

Függvények ábrázolása

Függvények ábrázolása Függvények ábrázolása Matematikai függvényeket analitikusan nem tudunk a matlabban megadni (tudunk, de ilyet még nem tanulunk). Ahhoz, hogy egy függvényt ábrázoljuk, hasonlóan kell eljárni, mint a házi

Részletesebben

Gépi tanulás Gregorics Tibor Mesterséges intelligencia

Gépi tanulás Gregorics Tibor Mesterséges intelligencia Gépi tanulás Tanulás fogalma Egy algoritmus akkor tanul, ha egy feladat megoldása során olyan változások következnek be a működésében, hogy később ugyanazt a feladatot vagy ahhoz hasonló más feladatokat

Részletesebben

1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0

1. Házi feladat. Határidő: I. Legyen f : R R, f(x) = x 2, valamint. d : R + 0 R+ 0 I. Legyen f : R R, f(x) = 1 1 + x 2, valamint 1. Házi feladat d : R + 0 R+ 0 R (x, y) f(x) f(y). 1. Igazoljuk, hogy (R + 0, d) metrikus tér. 2. Adjuk meg az x {0, 3} pontok és r {1, 2} esetén a B r (x)

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363 1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 262/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák

Részletesebben

NEURONHÁLÓS HANGTÖMÖRÍTÉS. Áfra Attila Tamás

NEURONHÁLÓS HANGTÖMÖRÍTÉS. Áfra Attila Tamás NEURONHÁLÓS HANGTÖMÖRÍTÉS Áfra Attila Tamás Tartalom Bevezetés Prediktív kódolás Neuronhálós prediktív modell Eredmények Források Bevezetés Digitális hanghullámok Pulzus kód moduláció Hangtömörítés Veszteségmentes

Részletesebben

CARE. Biztonságos. otthonok idős embereknek CARE. Biztonságos otthonok idős embereknek 2010-09-02. Dr. Vajda Ferenc Egyetemi docens

CARE. Biztonságos. otthonok idős embereknek CARE. Biztonságos otthonok idős embereknek 2010-09-02. Dr. Vajda Ferenc Egyetemi docens CARE Biztonságos CARE Biztonságos otthonok idős embereknek otthonok idős embereknek 2010-09-02 Dr. Vajda Ferenc Egyetemi docens 3D Érzékelés és Mobilrobotika kutatócsoport Budapesti Műszaki és Gazdaságtudományi

Részletesebben

TARTALOMJEGYZÉK. TARTALOMJEGYZÉK...vii ELŐSZÓ... xiii BEVEZETÉS A lágy számításról A könyv célkitűzése és felépítése...

TARTALOMJEGYZÉK. TARTALOMJEGYZÉK...vii ELŐSZÓ... xiii BEVEZETÉS A lágy számításról A könyv célkitűzése és felépítése... TARTALOMJEGYZÉK TARTALOMJEGYZÉK...vii ELŐSZÓ... xiii BEVEZETÉS...1 1. A lágy számításról...2 2. A könyv célkitűzése és felépítése...6 AZ ÖSSZETEVŐ LÁGY RENDSZEREK...9 I. BEVEZETÉS...10 3. Az összetevő

Részletesebben

Csapadékmaximum-függvények változása

Csapadékmaximum-függvények változása Csapadékmaximum-függvények változása (Techniques and methods for climate change adaptation for cities /2013-1-HU1-LEO05-09613/) Dr. Buzás Kálmán, Dr. Honti Márk, Varga Laura Elavult mértékadó tervezési

Részletesebben

Véletlenszám generátorok és tesztelésük. Tossenberger Tamás

Véletlenszám generátorok és tesztelésük. Tossenberger Tamás Véletlenszám generátorok és tesztelésük Tossenberger Tamás Érdekességek Pénzérme feldobó gép: $0,25-os érme 1/6000 valószínűséggel esik az élére 51% eséllyel érkezik a felfelé mutató oldalára Pörgetésnél

Részletesebben

Irányítási struktúrák összehasonlító vizsgálata. Tóth László Richárd. Pannon Egyetem Vegyészmérnöki és Anyagtudományok Doktori Iskola

Irányítási struktúrák összehasonlító vizsgálata. Tóth László Richárd. Pannon Egyetem Vegyészmérnöki és Anyagtudományok Doktori Iskola Doktori (PhD) értekezés tézisei Irányítási struktúrák összehasonlító vizsgálata Tóth László Richárd Pannon Egyetem Vegyészmérnöki és Anyagtudományok Doktori Iskola Témavezetők: Dr. Szeifert Ferenc Dr.

Részletesebben

Tisztán kivehetı tendencia: kommunikációs hálózatok egyre bonyolultabbakká válnak Hálózat bonyolultsága

Tisztán kivehetı tendencia: kommunikációs hálózatok egyre bonyolultabbakká válnak Hálózat bonyolultsága @ Budapest University of Technology and Economics Nagy hálózatok evolúciója Gulyás András, Heszberger Zalán High Speed Networks Laboratory Internet trendek Tisztán kivehetı tendencia: kommunikációs hálózatok

Részletesebben

Szabó Attila Dániel. Valósidejű intrúder felismerés UAV környezetben

Szabó Attila Dániel. Valósidejű intrúder felismerés UAV környezetben Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Automatizálási és Alkalmozott Informatikai Tanszék Szabó Attila Dániel Valósidejű intrúder felismerés UAV környezetben

Részletesebben

Alter Róbert Báró Csaba Sensor Technologies Kft

Alter Róbert Báró Csaba Sensor Technologies Kft Közúti forgalomelemzés kamerával e_traffic Alter Róbert Báró Csaba Sensor Technologies Kft Előadás témái Cégbemutató Videó analitikai eljárások Forgalomszámláló eszközök összehasonlítása e_traffic forgalomelemző

Részletesebben

Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás

Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás STATISZTIKA, BIOMETRIA. Előadás Mintavétel, mintavételi technikák, adatbázis Mintavétel fogalmai A mintavételt meg kell tervezni A sokaság elemei: X, X X N, lehet véges és végtelen Mintaelemek: x, x x

Részletesebben