c adatpontok és az ismeretlen pont közötti kovariancia vektora
|
|
- Frigyes Halász
- 6 évvel ezelőtt
- Látták:
Átírás
1 1. MELLÉKLET: Alkalmazott jelölések A mintaterület kiterjedése, területe c adatpontok és az ismeretlen pont közötti kovariancia vektora C(0) reziduális komponens varianciája C R (h) C R Cov{} d( u, X ) D D optim reziduális komponens kovariancia mátrixa reziduális komponens kovarianciája kovariancia legrövidebb távolság egy tetszőlegesen választott pont és a hozzá legközelebb eső mintavételi pont között mintavételi kombináció optimalizált mintavételi konfiguráció E{} e(u) várható érték becsült és valós érték különbsége az u pontban, vagyis a hiba F(r) üres-tér (empty space) függvény F ˆ ( r ) tapasztalati üres-tér függvény g h becslő grid geometriai felbontása szeparációs vektor i u ; z ) indikátor kódolt adatponti értékek l ( i k m (u) SK kontroll pontok száma z k vágás érték mellett Z (u) valószínűségi változó várható értéke vagy Z (u) valószínűségi függvény trend komponense m (u) változó lokális átlagra adott becslés az u pontban n N Nx Ny p mintavételi pontok száma, N grid a térbeli modellezésben résztvevő grid pontok pontok száma grid pontok száma az x tengely mentén grid pontok száma az y tengely mentén regresszióba bevont független változók száma q (u) független változók vektora az u pontban q k (u) k-adik független változó értéke az u pontban Q független változók adatpontokra vonatkozó ( n p 1) mátrixa R (u) Z (u) valószínűségi függvény reziduális komponense
2 T u Var{} x y xmin ymin X z z k z( u i ) Z(u) rendszer hőmérséklet x és y koordináták vektora variancia x koordináta y koordináta x koordináták minimuma y koordináták minimuma mintavételi pontok által meghatározott pontmintázat adatponti értékek vektora vágás érték adatponti értékek Valószínűségi változó vagy valószínűségi függvény Z (u) u pontba adott becslés Z RK (u) regresszió krigeléssel az u pontba adott becslés β GLS regressziós együtthatók vektora GLS k-adik regressziós együttható k (h) félvariogram i (u) általános értelemben az adatponti értékekhez rendelt krigelési súlyok λ SK (u) egyszerű krigelési súlyok vektora (u) az adatponti értékekhez rendelt egyszerű krigelés (simple kriging) súlyai SK i 2 E 2 RK általános értelemben vett becslési (vagy krigelési) variancia regresszió krigelés becslési varianciája 2 egyszerű krigelés becslési varianciája SK ( ) célfüggvény
3 2. MELLÉKLET: Felhasznált szoftverek és algoritmusok Alkalmazott eljárás Szoftver Összefoglaló statisztikák Boxplot Hisztogram Feltáró alapadat elemzés Q-Q diagram Shapiro-Wilk próba Kolmogorov-Smirnov próba Adatponti értékek posztolása Indikátor térképek az adatsorok decilisei alapján Üres-tér függvény R software environment Back-to-back hisztogramok Területi részesedés Segédadatok előkészítése Domborzati paraméterek származtatása a digitális domborzatmodellekből Főkomponens analízis Kategorikus segédinformációk indikátor változókká való transzformációja SAGA GIS Térképezés Mintavétel optimalizáció Regresszió krigelés Térbeli bizonytalanság modellezése Hibaértékelés Egyváltozós spatial simulated annealing Többváltozós spatial simulated annealing Mintavételi elrendezések földrajzi térbeli értékelése Mintavételi elrendezések attribútum térbeli értékelése R software environment
4 3. MELLÉKLET: Szálkai szervesanyag-tartalom adatsor feltáró alapadat elemzése 1. ábra: A szálkai adatsor boxplot-ja, hisztogramja és Q-Q diagramja Decilisek értékei: D1 = 1,16 D2 = 1,31 D3 = 1,41 D4 = 1,50 D5 = 1,58 D6 = 1,72 D7 = 1,86 D8 = 2,15 D9 = 2,69 * Kék szín jelöli azon adatpontokat, melyek adatponti értéke kisebb vagy egyenlő, mint az adott decilis (D1, D2, D3,, D9) értéke 2. ábra: Indikátor térképek az adatsor decilisei (D1, D2, D3,, D9) alapján* 3. ábra: A tapasztalati üres-tér függvény (fekete vonal) és a Poisson folyamatra (piros szaggatott vonal) szimulált 95%-os konfidencia sáv (szürke színnel) 4. ábra: A tapasztalati üres-tér függvény meghatározásának alapját jelentő távolság térkép
5 5. ábra: A folytonos segédinformációk back-to-back hisztogramjai
6 4. MELLÉKLET: Előszállási szervesanyag-tartalom adatsor feltáró alapadat elemzése 1. ábra: Az előszállási adatsor boxplot-ja, hisztogramja és Q-Q diagramja Decilisek értékei: D1 = 2,07 D2 = 2,40 D3 = 2,68 D4 = 2,84 D5 = 2,91 D6 = 3,10 D7 = 3,22 D8 = 3,45 D9 = 3,54 * Kék szín jelöli azon adatpontokat, melyek adatponti értéke kisebb vagy egyenlő, mint az adott decilis (D1, D2, D3,, D9) értéke 2. ábra: Indikátor térképek az adatsor decilisei (D1, D2, D3,, D9) alapján* 3. ábra: A tapasztalati üres-tér függvény (fekete vonal) és a Poisson folyamatra (piros szaggatott vonal) szimulált 95%-os konfidencia sáv (szürke színnel) 4. ábra: A tapasztalati üres-tér függvény meghatározásának alapját jelentő távolság térkép
7 5. ábra: A folytonos segédinformációk back-to-back hisztogramjai
8 5. MELLÉKLET: Zala megyei szervesanyag-tartalom adatok feltáró alapadat elemzése 1. ábra: A zalai adatsor box-plot-ja, hisztogramja és Q-Q diagramja 2. ábra: A tapasztalati üres-tér függvény (fekete vonal) és a Poisson folyamatra (piros szaggatott vonal) szimulált 95%-os konfidencia sáv (szürke színnel) 3. ábra: A tapasztalati üres-tér függvény meghatározásának alapját jelentő távolság térkép
9 Decilisek értékei: D1 = 1,32% D2 = 1,69% D3 = 1,89% D4 = 2,05% D5 = 2,23% D6 = 2,29% D7 = 2,45% D8 = 2,67% D9 = 3,19% * Kék szín jelöli azon adatpontokat, melyek adatponti értéke kisebb vagy egyenlő, mint az adott decilis (D1, D2, D3,, D9) értéke 4. ábra: Indikátor térképek a zalai adatsor decilisei (D1, D2, D3,, D9) alapján*
10 5. ábra: A folytonos segédinformációk back-to-back hisztogramjai I.
11 6. ábra: A folytonos segédinformációk back-to-back hisztogramjai II.
12 7. ábra: Digitális Kreybig Talajinformációs Rendszer talajok vízgazdálkodási tulajdonság térképezési egységei Magyarázat: 1: Jó víztartó és vízvezetőképességű talajok; 2: Közepes vízvezetőképességű, a vizet erősebben tartó talajok; 3: Gyenge vízvezetőképességű, a vizet erősen tartó talajok, erősebben repedező talajok; 4: Nagy vízvezetőképességű, még jó víztartó talajok; 5: Igen nagy vízvezetőképességű, gyengén víztartó talajok; 7: Köves, kavicsos; 10: Tőzeges talajok; 66: Időszakosan vízállásos, vízjárta területek; 77: Erdők; 88: Tavak, nádasok, folyóvizek; 99: Települések.
13 6. MELLÉKLET: Szálkai szervesanyag-tartalom térbeli modellezése regresszió krigeléssel 1. ábra: A szálkai kisvízgyűjtő kartografált szervesanyag-tartalom térképe (Alaptérkép: 2005-ös légifotó)
14 2. ábra: A regresszió krigelés becslési varianciája a szálkai kisvízgyűjtőn (Megjegyzés: zöld szín jelöli a Lajvér-patakot)
15 7. MELLÉKLET: Előszállási szervesanyag-tartalom térbeli modellezése regresszió krigeléssel 1. ábra: Az előszállási mintaterület kartografált szervesanyag-tartalom térképe (Alaptérkép: 2005-ös légifotó)
16 2. ábra: A regresszió krigelés becslési varianciája az előszállási mintaterületen
17 8. MELLÉKLET: Zala megye szervesanyag-tartalmának térbeli modellezése regresszió krigeléssel 1. ábra: Zala megye kartografált szervesanyag-tartalom térképe (Alaptérkép: EU-DEM digitális domborzat modell)
18 2. ábra: A regresszió krigelés becslési varianciája Zala megyében (Megjegyzés: zöld szín jelöli az erdővel borított területeket és a Balatont)
19 9. MELLÉKLET: Előszállási szervesanyag-tartalom sztochasztikus szimulációja 1. ábra: Az előszállási mintaterületre előállított realizációk (1-től 50-ig)
20 2. ábra: Az előszállási mintaterületre előállított realizációk (51-től 100-ig)
21 3. ábra: A realizációkból származtatott reziduumok irányfüggetlen variogramjai (X1,, X100), illetve a szekvenciális sztochasztikus szimuláció során alkalmazott variogram modell (folytonos vonal)
22 4. ábra: A szervesanyag-tartalomra elkészített várható érték típusú becslés a 100 realizáció alapján 5. ábra: A konfidencia intervallum szélessége a 100 realizáció alapján
23 6. ábra: Valószínűség térkép: szervesanyag-tartalom kisebb vagy egyenlő, mint 2% 7. ábra: Valószínűség térkép: szervesanyag-tartalom magasabb, mint 2%, de kisebb vagy egyenlő, mint 3%
24 8. ábra: Valószínűség térkép: szervesanyag-tartalom magasabb, mint 3%, de kisebb vagy egyenlő, mint 4% 9. ábra: Valószínűség térkép: szervesanyag-tartalom magasabb, mint 4%
25 10. MELLÉKLET: 1. és 2. szcenárióra optimalizált mintavételi konfigurációk értékelése 1. ábra: A 2. szcenárió során optimalizált mintavételi konfigurációk
26 2. ábra: A krigelési szomszédok térképei a 2. szcenárió során optimalizált mintavételi konfigurációk alapján
27 11. MELLÉKLET: 3. és 4. szcenáriókra optimalizált mintavételi konfigurációk értékelése 1. ábra: A 4. szcenárió során optimalizált mintavételi konfigurációk csoportosult meglévő mintavételezés mellett
28 2. ábra: A 4. szcenárió során optimalizált mintavételi konfigurációk szabályos meglévő mintavételezés mellett
29 3. ábra: A krigelési szomszédok térképei a 4. szcenárió során optimalizált mintavételi konfigurációkra csoportosult meglévő mintavételezés mellett
30 4. ábra: A krigelési szomszédok térképei a 4. szcenárió során optimalizált mintavételi konfigurációkra szabályos meglévő mintavételezés mellett
STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése
4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól
7. A digitális talajtérképezés alapjai
Magyar Tudományos Akadémia Agrártudományi Kutatóközpont Talajtani és Agrokémiai Intézet Környezetinformatikai Osztály Pásztor László: Térbeli Talajinformációs Rendszerek/ Bevezetés a digitális talajtérképezésbe
SZEGEDI TUDOMÁNYEGYETEM Természettudományi és Informatikai Kar Környezettudományi Doktori Iskola Természeti Földrajzi és Geoinformatikai Tanszék
SZEGEDI TUDOMÁNYEGYETEM Természettudományi és Informatikai Kar Környezettudományi Doktori Iskola Természeti Földrajzi és Geoinformatikai Tanszék GEOSTATISZTIKAI MEGKÖZELÍTÉSEN ALAPULÓ DIGITÁLIS TALAJTÉRKÉPEZÉSI
A statisztikus klimatológia szerepe és lehetőségei a változó éghajlat kutatásában
A statisztikus klimatológia szerepe és lehetőségei a változó éghajlat kutatásában Szentimrey Tamás Országos Meteorológiai Szolgálat Vázlat A statisztikus klimatológia lényege - meteorológiai adatok, matematikai
Osztályozás, regresszió. Nagyméretű adathalmazok kezelése Tatai Márton
Osztályozás, regresszió Nagyméretű adathalmazok kezelése Tatai Márton Osztályozási algoritmusok Osztályozás Diszkrét értékkészletű, ismeretlen attribútumok értékének meghatározása ismert attribútumok értéke
Adatok statisztikai értékelésének főbb lehetőségei
Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció
Több valószínűségi változó együttes eloszlása, korreláció
Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...
GEOSTATISZTIKA. Földtudományi mérnöki MSc, geofizikus-mérnöki szakirány. 2018/2019 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ
GEOSTATISZTIKA Földtudományi mérnöki MSc, geofizikus-mérnöki szakirány 2018/2019 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ Miskolci Egyetem Műszaki Földtudományi Kar Geofizikai és Térinformatikai Intézet
Principal Component Analysis
Principal Component Analysis Principal Component Analysis Principal Component Analysis Definíció Ortogonális transzformáció, amely az adatokat egy új koordinátarendszerbe transzformálja úgy, hogy a koordináták
Statisztika elméleti összefoglaló
1 Statisztika elméleti összefoglaló Tel.: 0/453-91-78 1. Tartalomjegyzék 1. Tartalomjegyzék.... Becsléselmélet... 3 3. Intervallumbecslések... 5 4. Hipotézisvizsgálat... 8 5. Regresszió-számítás... 11
Többváltozós lineáris regresszió 3.
Többváltozós lineáris regresszió 3. Orlovits Zsanett 2018. október 10. Alapok Kérdés: hogyan szerepeltethetünk egy minőségi (nominális) tulajdonságot (pl. férfi/nő, egészséges/beteg, szezonális hatások,
GEOSTATISZTIKA II. Geográfus MSc szak. 2019/2020 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ
GEOSTATISZTIKA II. Geográfus MSc szak 2019/2020 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ Miskolci Egyetem Műszaki Földtudományi Kar Geofizikai és Térinformatikai Intézet A tantárgy adatlapja Tantárgy neve:
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen
Matematikai geodéziai számítások 10.
Matematikai geodéziai számítások 10. Hibaellipszis, talpponti görbe és közepes ponthiba Dr. Bácsatyai, László Matematikai geodéziai számítások 10.: Hibaellipszis, talpponti görbe és Dr. Bácsatyai, László
Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
Egymintás próbák. Alapkérdés: populáció <paramétere/tulajdonsága> megegyezik-e egy referencia paraméter értékkel/tulajdonsággal?
Egymintás próbák σ s μ m Alapkérdés: A populáció egy adott megegyezik-e egy referencia paraméter értékkel/tulajdonsággal? egymintás t-próba Wilcoxon-féle előjeles
Digitális Domborzat Modellek (DTM)
Digitális Domborzat Modellek (DTM) Digitális Domborzat Modellek (DTM) Digitális Domborzat Modellek (DTM) DTM fogalma A földfelszín számítógéppel kezelhető topográfiai modellje Cél: tetszőleges pontban
STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika
Regressziós vizsgálatok
Regressziós vizsgálatok Regresszió (regression) Általános jelentése: visszaesés, hanyatlás, visszafelé mozgás, visszavezetés. Orvosi területen: visszafejlődés, involúció. A betegség tünetei, vagy maga
2013 ŐSZ. 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét!
GAZDASÁGSTATISZTIKA KIDOLGOZOTT ELMÉLETI KÉRDÉSEK A 3. ZH-HOZ 2013 ŐSZ Elméleti kérdések összegzése 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét! 2. Mutassa be az
Keresési algoritmusok, optimalizáció
Keresési algoritmusok, optimalizáció Az eddig tanultakból a mostani részben gyakran használt (emiatt szükséges az ismeretük) programozási ismeretek: függvények létrehozása, meghívása (ld. 3. óra anyagában)
A glejes talajrétegek megjelenésének becslése térinformatikai módszerekkel. Dr. Dobos Endre, Vadnai Péter
A glejes talajrétegek megjelenésének becslése térinformatikai módszerekkel Dr. Dobos Endre, Vadnai Péter Miskolci Egyetem Műszaki Földtudományi Kar Földrajz Intézet VIII. Kárpát-medencei Környezettudományi
Gazdasági matematika II. Tantárgyi útmutató
Módszertani Intézeti Tanszék Gazdálkodási és menedzsment, pénzügy és számvitel szakok távoktatás tagozat Gazdasági matematika II. Tantárgyi útmutató 2016/17 tanév II. félév 1/6 A KURZUS ALAPADATAI Tárgy
Biometria, haladó biostatisztika EA+GY biometub17vm Szerda 8:00-9:00, 9:00-11:00 Déli Tömb 0-804, Lóczy Lajos terem
Biometria, haladó biostatisztika EA+GY biometub17vm Szerda 8:00-9:00, 9:00-11:00 Déli Tömb 0-804, Lóczy Lajos terem Előadások-gyakorlatok 2018-ban (13 alkalom) IX.12, 19, 26, X. 3, 10, 17, 24, XI. 7, 14,
Elemi statisztika. >> =weiszd= << december 20. Szerintem nincs sok szükségünk erre... [visszajelzés esetén azt is belerakom] x x = n
Elemi statisztika >> =weiszd=
Pásztor László: Talajinformációs Rendszerek Birtokrendező MSc kurzus. 2. Hazai talajinformációs rendszerek
Magyar Tudományos Akadémia Talajtani és Agrokémiai Kutatóintézet Környezetinformatikai Osztály, GIS Labor Pásztor László: Talajinformációs Rendszerek Birtokrendező MSc kurzus 2. Hazai talajinformációs
Többváltozós lineáris regressziós modell feltételeinek tesztelése I.
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Kvantitatív statisztikai módszerek Petrovics Petra Többváltozós lineáris regressziós
biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás
Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani
Segítség az outputok értelmezéséhez
Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró
Többváltozós lineáris regressziós modell feltételeinek
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p
Összeállította: dr. Leitold Adrien egyetemi docens
Az R n vektortér Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. R n vektortér/1 Vektorok Rendezett szám n-esek: a = (a 1, a 2,, a n ) sorvektor a1 a = a2 oszlopvektor... a n a 1, a 2,,
Populációbecslések és monitoring
Populációbecslések és monitoring A becslés szerepe az ökológiában és a vadgazdálkodásban. A becslési módszerek csoportosítása. Teljes számlálás. Statisztikai alapfogalmak. Fontos lehet tudnunk, hogy hány
Földi radaradattal támogatott csapadékmező-rekonstrukció és vízgazdálkodási alkalmazásai
Földi radaradattal támogatott csapadékmező-rekonstrukció és vízgazdálkodási alkalmazásai SZABÓ János Adolf (1) Kravinszkaja Gabriella (2) Lucza Zoltán (3) (1) HYDROInform, Hidroinformatikai Kutató, Rendszerfejlesztő,
Dr. Dobos Endre, Vadnai Péter. Miskolci Egyetem Műszaki Földtudományi Kar Földrajz Intézet
Ideális interpolációs módszer keresése a talajvízszint ingadozás talajfejlődésre gyakorolt hatásának térinformatikai vizsgálatához Dr. Dobos Endre, Vadnai Péter Miskolci Egyetem Műszaki Földtudományi Kar
A többváltozós lineáris regresszió III. Főkomponens-analízis
A többváltozós lineáris regresszió III. 6-7. előadás Nominális változók a lineáris modellben 2017. október 10-17. 6-7. előadás A többváltozós lineáris regresszió III., Alapok Többváltozós lineáris regresszió
Minitab 16 újdonságai május 18
Minitab 16 újdonságai 2010. május 18 Minitab 16 köszöntése! A Minitab statisztikai szoftver új verziója több mint hetven újdonságot tartalmaz beleértve az erősebb statisztikai képességet, egy új menüt
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát
Sztochasztikus folyamatok alapfogalmak
Matematikai Modellalkotás Szeminárium 2012. szeptember 4. 1 Folytonos idejű Markov láncok 2 3 4 1 Folytonos idejű Markov láncok 2 3 4 Folytonos idejű Markov láncok I Adott egy G = (V, E) gráf Folytonos
Matematika A1a Analízis
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Vektorok StKis, EIC 2019-02-12 Wettl Ferenc ALGEBRA
Vizuális adatelemzés
Vizuális adatelemzés Rendszermodellezés 2017. Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics Department of Measurement
Folyóvízi övzátony testek mikro és makroléptékű 3D szedimentológiai modellezése
Folyóvízi övzátony testek mikro és makroléptékű 3D szedimentológiai modellezése OTKA Nyilvántartási szám: T43318 Témavezető: Dr.Geiger János Zárójelentés Vizsgálatunk tárgya a Tisza-folyó Algyő és Szeged
Vizuális adatelemzés
Vizuális adatelemzés Salánki Ágnes, Guta Gábor, PhD Dr. Pataricza András Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics
Inverziós módszerek alkalmazása a geofizikában
Inverziós módszerek alkalmazása a geofizikában Kis Márta Ph.D. Eötvös Loránd Geofizikai Intézet PhD értekezés: Felszínközeli földtani szerkezetek vizsgálata szeizmikus és egyenáramú geoelektromos adatok
A Fertő tó magyarországi területén mért vízkémiai paraméterek elemzése többváltozós feltáró adatelemző módszerekkel
A Fertő tó magyarországi területén mért vízkémiai paraméterek elemzése többváltozós feltáró adatelemző módszerekkel Magyar Norbert Környezettudomány M. Sc. Témavezető: Kovács József Általános és Alkalmazott
Számítógéppel segített modellezés és szimuláció a természettudományokban
Számítógéppel segített modellezés és szimuláció a természettudományokban Beszámoló előadás Németh Gábor 2008. 05. 08. A kurzusról Intenzív, 38 órás kurzus 2008. 03. 25. -2008. 03. 30-ig Három csoport:
Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision
y ij = µ + α i + e ij
Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai
BIOMATEMATIKA ELŐADÁS
BIOMATEMATIKA ELŐADÁS 9. Együttes eloszlás, kovarianca, nevezetes eloszlások Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés, definíciók Együttes eloszlás Függetlenség
STATISZTIKA. Egymintás u-próba. H 0 : Kefir zsírtartalma 3% Próbafüggvény, alfa=0,05. Egymintás u-próba vagy z-próba
Egymintás u-próba STATISZTIKA 2. Előadás Középérték-összehasonlító tesztek Tesztelhetjük, hogy a valószínűségi változónk értéke megegyezik-e egy konkrét értékkel. Megválaszthatjuk a konfidencia intervallum
Matematikai módszerek alkalmazása a földtudományban. Bárdossy György, Fodor János
Matematikai módszerek alkalmazása a földtudományban Bárdossy György, Fodor János Előszó Célunk több évtizedes tapasztalataink átadása és fel szeretnénk hívni a figyelmet új módszerek alkalmazásának lehetőségeire.
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
A szimplex algoritmus
A szimplex algoritmus Ismétlés: reprezentációs tétel, az optimális megoldás és az extrém pontok kapcsolata Alapfogalmak: bázisok, bázismegoldások, megengedett bázismegoldások, degenerált bázismegoldás
Véletlenszám generátorok és tesztelésük. Tossenberger Tamás
Véletlenszám generátorok és tesztelésük Tossenberger Tamás Érdekességek Pénzérme feldobó gép: $0,25-os érme 1/6000 valószínűséggel esik az élére 51% eséllyel érkezik a felfelé mutató oldalára Pörgetésnél
Likelihood, deviancia, Akaike-féle információs kritérium
Többváltozós statisztika (SZIE ÁOTK, 2011. ősz) 1 Likelihood, deviancia, Akaike-féle információs kritérium Likelihood függvény Az adatokhoz paraméteres modellt illesztünk. A likelihood függvény a megfigyelt
Matematikai geodéziai számítások 6.
Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre
ANOVA,MANOVA. Márkus László március 30. Márkus László ANOVA,MANOVA március / 26
ANOVA,MANOVA Márkus László 2013. március 30. Márkus László ANOVA,MANOVA 2013. március 30. 1 / 26 ANOVA / MANOVA One-Way ANOVA (Egyszeres ) Analysis of Variance (ANOVA) = szóráselemzés A szórásokat elemezzük,
Pásztor László: Térbeli Talajinformációs Rendszerek/ Bevezetés a digitális talajtérképezésbe PhD kurzus
Magyar Tudományos Akadémia Agrártudományi Kutatóközpont Talajtani és Agrokémiai Intézet Környezetinformatikai Osztály Pásztor László: Térbeli Talajinformációs Rendszerek/ Bevezetés a digitális talajtérképezésbe
Intelligens adatelemzés
Antal Péter, Antos András, Horváth Gábor, Hullám Gábor, Kocsis Imre, Marx Péter, Millinghoffer András, Pataricza András, Salánki Ágnes Intelligens adatelemzés Szerkesztette: Antal Péter A jegyzetben az
A XXI. SZÁZADRA BECSÜLT KLIMATIKUS TENDENCIÁK VÁRHATÓ HATÁSA A LEFOLYÁS SZÉLSŐSÉGEIRE A FELSŐ-TISZA VÍZGYŰJTŐJÉN
44. Meteorológiai Tudományos Napok Budapest, 2018. november 22 23. A XXI. SZÁZADRA BECSÜLT KLIMATIKUS TENDENCIÁK VÁRHATÓ HATÁSA A LEFOLYÁS SZÉLSŐSÉGEIRE A FELSŐ-TISZA VÍZGYŰJTŐJÉN Kis Anna 1,2, Pongrácz
Matematikai statisztika c. tárgy oktatásának célja és tematikája
Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:
A légkördinamikai modellek klimatológiai adatigénye Szentimrey Tamás
A légkördinamikai modellek klimatológiai adatigénye Szentimrey Tamás Országos Meteorológiai Szolgálat Az adatigény teljesítének alapvető eszköze: Statisztikai klimatológia! (dicsérni jöttem, nem temetni)
TÉRBELI STATISZTIKAI VIZSGÁLATOK, ÁTLAGOS JELLEMZŐK ÉS TENDENCIÁK MAGYARORSZÁGON. Bihari Zita, OMSZ Éghajlati Elemző Osztály OMSZ
TÉRBELI STATISZTIKAI VIZSGÁLATOK, ÁTLAGOS JELLEMZŐK ÉS TENDENCIÁK MAGYARORSZÁGON Bhar Zta, OMSZ Éghajlat Elemző Osztály OMSZ Áttekntés Térbel vzsgálatok Alkalmazott módszer: MISH Eredmények Tervek A módszer
A maximum likelihood becslésről
A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának
Matematikai geodéziai számítások 6.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Bácsatyai László Matematikai geodéziai számítások 6. MGS6 modul Lineáris regresszió számítás elektronikus távmérőkre SZÉKESFEHÉRVÁR 2010 Jelen szellemi
Idősorok elemzése. Salánki Ágnes
Idősorok elemzése Salánki Ágnes salanki.agnes@gmail.com 2012.04.13. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék 1 Idősorok analízise Alapfogalmak Komponenselemzés
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:
A Markowitz modell: kvadratikus programozás
A Markowitz modell: kvadratikus programozás Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Debrecen, 2011/12 tanév, II. félév Losonczi László (DE) A Markowitz modell 2011/12 tanév,
Lineáris regressziószámítás 1. - kétváltozós eset
Lineáris regressziószámítás 1. - kétváltozós eset Orlovits Zsanett 2019. február 6. Adatbázis - részlet eredmény- és magyarázó jellegű változók Cél: egy eredményváltozó alakulásának jellemzése a magyarázó
VIZSGADOLGOZAT. I. PÉLDÁK (60 pont)
VIZSGADOLGOZAT (100 pont) A megoldások csak szöveges válaszokkal teljes értékűek! I. PÉLDÁK (60 pont) 1. példa (13 pont) Az egyik budapesti könyvtárban az olvasókból vett 400 elemű minta alapján a következőket
Statisztika I. 12. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 1. előadás Előadó: Dr. Ertsey Imre Regresszió analízis A korrelációs együttható megmutatja a kapcsolat irányát és szorosságát. A kapcsolat vizsgálata során a gyakorlatban ennél messzebb
6. Előadás. Vereb György, DE OEC BSI, október 12.
6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás
Logisztikus regresszió
Logisztikus regresszió Kvantitatív statisztikai módszerek Dr. Szilágyi Roland Függő változó (y) Nem metrikus Metri kus Gazdaságtudományi Kar Független változó (x) Nem metrikus Metrikus Kereszttábla elemzés
14 A Black-Scholes-Merton modell. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull
14 A Black-choles-Merton modell Copyright John C. Hull 01 1 Részvényárak viselkedése (feltevés!) Részvényár: μ: elvárt hozam : volatilitás Egy rövid Δt idő alatt a hozam normális eloszlású véletlen változó:
Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán
Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán MTA KFKI Részecske és Magfizikai Intézet, Biofizikai osztály Az egy adatsorra (idősorra) is alkalmazható módszerek Példa: Az epileptikus
Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok
STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris
Csoportosítás. Térinformatikai műveletek, elemzések. Csoportosítás. Csoportosítás
Csoportosítás Térinformatikai műveletek, elemzések Leíró (attribútum) adatokra vonatkozó kérdések, műveletek, elemzések, csoportosítások,... Térbeli (geometriai) adatokra vonatkozó kérdések, műveletek
Diszkriminancia-analízis
Diszkriminancia-analízis az SPSS-ben Petrovics Petra Doktorandusz Diszkriminancia-analízis folyamata Feladat Megnyitás: Employee_data.sav Milyen tényezőktől függ a dolgozók beosztása? Nem metrikus Független
Matematikai statisztikai elemzések 6.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematikai statisztikai elemzések 6. MSTE6 modul Regressziószámítás: kétváltozós lineáris és nemlineáris regresszió, többváltozós
Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!
MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!) 2016. JANUÁR 21. Elérhető pontszám: 50 pont Megoldások 1. 6. 2. 7. 3. 8. 4. 9. 5. Össz.:
A TALAJVÍZSZINT SZTOCHASZTIKUS SZIMULÁCIÓJA EGY TISZAI ÖVZÁTONY PÉLDÁJÁN. Mucsi László 1 Geiger János 2
BEVEZETÉS A TALAJVÍZSZINT SZTOCHASZTIKUS SZIMULÁCIÓJA EGY TISZAI ÖVZÁTONY PÉLDÁJÁN Mucsi László 1 Geiger János 2 A talajban lejátszódó térbeli folyamatok elemzéséhez a kutatók egyre többet használják a
Statisztikai következtetések Nemlineáris regresszió Feladatok Vége
[GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell
Adatgyűjtés, adatkezelés, adattípusok
Adatgyűjtés, adatkezelés, adattípusok Varga Ágnes egyetemi tanársegéd varga.agnes@uni-corvinus.hu 2018/19. I. félév BCE Geo Intézet Társadalmi-gazdasági folyamatok feltárása Egyik legfontosabb és legizgalmasabb
Folyamatosan változó mennyiségek feldolgozása I. 6. előadás
Folyamatosan változó mennyiségek feldolgozása I. 6. előadás 1 Tartalom folyamatosan változó mennyiségek sztochasztikus folyamatok mintavételezés LKN kollokáció geostatisztika, krigelés szűrések interpolációk
A talajok szervesanyag-készletének nagyléptékű térképezése regresszió krigeléssel Zala megye példáján
Agrokémia és Talajtan 62 (2) 2013 pp. 219 234 DOI: 10.1556/Agrokem.62.2013.2.4 A talajok szervesanyag-készletének nagyléptékű térképezése regresszió krigeléssel Zala megye példáján 1 SZATMÁRI Gábor, 2
Tantárgy neve. Geomatematika és térinformatika I-II. Meghirdetés féléve 2-3 Kreditpont 2-2 Összóraszám (elm+gyak) 0+2
Tantárgy neve Geomatematika és térinformatika I-II. Tantárgy kódja FDB1404; FDB1405 Meghirdetés féléve 2-3 Kreditpont 2-2 Összóraszám (elm+gyak) 0+2 Számonkérés módja gyakorlati jegy Előfeltétel (tantárgyi
Készítette: Fegyverneki Sándor
VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y
Felszín alatti vizektől függő ökoszisztémák vízigénye és állapota a Nyírség és a Duna-Tisza köze példáján keresztül
Felszín alatti vizektől függő ökoszisztémák vízigénye és állapota a Nyírség és a Duna-Tisza köze példáján keresztül XXI. Konferencia a felszín alatti vizekről 2014. Április 2-3. Siófok Biró Marianna Simonffy
Populációbecslések és monitoring
Populációbecslések és monitoring A becslés szerepe az ökológiában és a vadgazdálkodásban. A becslési módszerek csoportosítása. Teljes számlálás. Statisztikai alapfogalmak. Fontos lehet tudnunk, hogy hány
ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június
GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi
Statisztika II előadáslapok. 2003/4. tanév, II. félév
Statisztika II előadáslapok 3/4 tanév, II félév BECSLÉS ÉS HIPOTÉZISVIZSGÁLAT Egyik konzervgyár vágott zöldbabot exportál A szabvány szerint az üvegek nettó töltősúlyának az átlaga 3 g, a szórása 5 g Az
Vektorok, mátrixok, lineáris egyenletrendszerek
a Matematika mérnököknek I. című tárgyhoz Vektorok, mátrixok, lineáris egyenletrendszerek Vektorok A rendezett valós számpárokat kétdimenziós valós vektoroknak nevezzük. Jelölésükre latin kisbetűket használunk.
Mérési adatok illesztése, korreláció, regresszió
Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,
Hidraulikus hálózatok robusztusságának növelése
Dr. Dulovics Dezső Junior Szimpózium 2018. Hidraulikus hálózatok robusztusságának növelése Előadó: Huzsvár Tamás MSc. Képzés, II. évfolyam Témavezető: Wéber Richárd, Dr. Hős Csaba www.hds.bme.hu Az előadás
Losonczi László. Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar
Szélsőértékszámítás Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Losonczi László (DE) Szélsőértékszámítás 1 / 21 2. SZÉLSOÉRTÉKSZÁMÍTÁS 2.1 A szélsőérték fogalma, létezése Azt
A távérzékelt felvételek tematikus kiértékelésének lépései
A távérzékelt felvételek tematikus kiértékelésének lépései Csornai Gábor László István Földmérési és Távérzékelési Intézet Mezőgazdasági és Vidékfejlesztési Igazgatóság Az előadás 2011-es átdolgozott változata
Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév
Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév A pirossal írt anyagrészeket nem fogom közvetlenül számon kérni a vizsgán, azok háttérismeretként,
Korreláció és lineáris regresszió
Korreláció és lineáris regresszió Két folytonos változó közötti összefüggés vizsgálata Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika és Statisztika I. előadás 2016.11.02.
Vektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit
Vektorgeometria (1) First Prev Next Last Go Back Full Screen Close Quit 1. A térbeli irányított szakaszokat vektoroknak hívjuk. Két vektort egyenlőnek tekintünk, ha párhuzamos eltolással fedésbe hozhatók.
Talajerőforrás gazdálkodás
Talajerőforrás gazdálkodás MTA ATK Talajtani és Agrokémiai Intézet Bakacsi Zsófia Talajfizikai és Vízgazdálkodási Osztály Az ENSZ Elsivatagosodás és Aszály Elleni Küzdelem 2019. évi világnapja alkalmából