Folyamatosan változó mennyiségek feldolgozása I. 6. előadás

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Folyamatosan változó mennyiségek feldolgozása I. 6. előadás"

Átírás

1 Folyamatosan változó mennyiségek feldolgozása I. 6. előadás 1

2 Tartalom folyamatosan változó mennyiségek sztochasztikus folyamatok mintavételezés LKN kollokáció geostatisztika, krigelés szűrések interpolációk 2

3 Példák folyamatosan változó mennyiségekre A mérési eredmények a véletlenen kívül egy vagy több folyamatosan változó fizikai jellegű mennyiségtől is függnek GNSS mérések (hely, idő) Nehézségi gyorsulás-mérés (hely, esetleg idő) Mérnöki szerkezetek mozgásvizsgálata (idő, esetleg teher) Digitális képfeldolgozás (hely) Térinformatikai rendszerek attribútumai (hely, idő) 3

4 Ionoszféra mentes GNSS kódmérés kombináció Forrás: ESA Navipedia 4

5 Maradék nehézségi rendellenességek idősorai: Bad Homburg (piros), Medicina (zöld) és Wettzell (kék) között Forrás: Wziontek et al. (2009) 5

6 6

7 7

8 A sztochasztikus folyamatok a mérési eredmény értékét a véletlenen kívül más tényezők is befolyáslják: például a híd egy pontjának magasságát befolyásolják a hídon áthaladó autók definíció: ξ(ω,t), ωîω, tît. A sztochasztikus folyamatok realizációja: ω rögzített, t befutja a T halmazt: ξ(t) függvény : egy autó áthaladásakor a híd egy pontjának magassága (t az autó helyzete) Ω : eseménytér, elemi események halmaza rögzített t 0 : ξ(ω,t 0 ) valószínűségi változó: az autó kiválasztott helyzetéhez tartozó magasságok több áthaladás esetén 8

9 Realizációk sztochasztikus folyamat 5 különböző realizációja 9

10 A sztochasztikus folyamatok t vektorváltozó: ξ(ω,t) véletlen mező - pl. két autó helyzetét vizsgáljuk: t = (t 1, t 2 ) ξ vektorfüggvény: ξ(ω,t) sztochasztikus vektorfolyamat pl. a híd két pontját vizsgáljuk egy időben egy autó áthaladásakor ξ(ω,t) véletlen vektormező pl. a híd két pontját vizsgáljuk egy időben két vagy több autó áthaladásakor diszkrét és folytonos sztochasztikus folyamatok A sztochasztikus folyamatok jellemzői: Első, másod, harmad rendű eloszlásfüggvények Térátlag Auto- és keresztkorrelációs függvények 10

11 Eloszlásfüggvények ξ(ω) val. változó eloszlásfüggvénye ξ(ω,t) jellemzéséhez: ξ(t 1 ) eloszlása, [ξ(t 1 ), ξ(t 2 )] együttes eloszlása, [ξ(t 1 ), ξ(t 2 ), ξ(t 3 )] együttes eloszlása, [ξ(t 1 ), ξ(t 2 ), ξ(t 3 ),...] együttes eloszlása szükséges a t értékek minden véges részhalmazára! ezeket első-, másod-,... rendű eloszlásfüggvények írják le 11

12 Első-, másod-, harmad-, stb. rendű eloszlásfüggvények F 1 (x 1, t 1 ) = P[ξ(t 1 ) x 1 ] elsőrendű, F 2 (x 1, t 1 ; x 2, t 2 ) = P[ξ(t 1 ) x 1, ξ(t 2 ) x 2 ] másodrendű,... eloszlásfüggvények írják le a sztochasztikus folyamatot 12

13 Térátlag valószínűségi változó várható értékével analóg mennyiség ξ(t 1 ), ξ(t 2 ),... minták alkalmas f függvényének a térátlaga: M{f } = M{f [ξ(t 1 ), ξ(t 2 ),...]} =... f(x 1, x 2,...) df(x 1,t 1 ; x 2,t 2 ;...) 13

14 Auto- és keresztkorreláció függvények r xx (t 1, t 2 ) = M[ξ(t 1 )ξ(t 2 )] auto-, r xy (t 1, t 2 ) = M[ξ(t 1 )η(t 2 )] keresztkorreláció függvények jellemzik a sztochasztikus folyamatot 14

15 A sztochasztikus folyamatok néhány fontos fajtája Stacionárius folyamatok Ergodikus folyamatok (bármelyik realizáció meghatározza a folyamatot) Gyakran alkalmazott sztochasztikus folyamat típusok: Gauss-folyamat (az eloszlások minden rögzített t értékre normálisak), Markov folyamat, Poisson folyamat. 15

16 Stacionárius folyamatok A folyamathoz tartozó eloszlások egyike sem változik meg akkor, ha t helyébe t + t 0 lép (időponttól független jellemzés adható) n-edrendű eloszlások csupán n 1 számú különbségtől függenek: τ 1 = t 2 t 1, τ 2 = t 3 t 1,..., τ n-1 = t n t 1 16

17 Stacionárius folyamatok Stacionárius folyamatok térátlagai állandók Korrelációfüggvények csak a τ = t i t k különbségektől függenek: r xx (τ) = M[x(t)x(t+τ)] r xy (τ) = M[x(t)y(t+τ)] 17

18 Tapasztalati autokorreláció 18

19 Tapasztalati keresztkorreláció 19

20 Mintavételezés és empirikus jellemzők Detrekői 3.7 Mintavételezés folytonos sztochasztikus folyamatokból. A Dirac-féle deltafüggvény. Nyquist-feltétel. A sztochasztikus folyamatok empirikus jellemzői: Térátlag, Időátlag, Korrelációs függvények. 20

21 ò - Mintavételezés x( t) d( t - T) dt = x( g t) d( t - g t) = x ( t) å g=- m g T: mintavételi távolság g: egész szám δ: Dirac-féle deltafüggvény 21

22 2D mintavételezés eredménye 22

23 ò - Nyquist-feltétel iut F( u) = x( t) e dt Fourier-transzformált F u) = 0, ha u> (frekvenciaspektrum) ( u sávkorlátos függvény h u h határfrekvencia Nyquist-feltétel: t 1 2u h Az előforduló legnagyobb frekvencia minden periódusára legalább két mintavételi helynek kell esnie. 23

24 Nyquist-feltétel következményei Ismeretlen analóg jelet mintavételezés előtt a Nyquist-frekvenciának megfelelő aluláteresztő szűrővel kell szűrni Adatrendszer ritkítása csak aluláteresztő szűrés mellett megengedett 24

25 Átlapolódás (aliasing) elégtelen mintavételezés eredménye hamis alacsony frekvenciás minták megjelenése a képen Moiré - minták 25

26 A folyamatosan változó mennyiségek feldolgozásának esetei A sztochasztikus folyamatok felbontása: Trend Jel Zaj Trend + jel + zaj: legkisebb négyzetek módszerén alapuló kollokáció, geostatisztika, Jel + zaj: szűrések, Jel: interpolációk 26

27 Legkisebb négyzetes (LKN) kollokáció statisztikai megfontolásokon alapuló eljárás Moritz (1963) és Krarup (1969) az eljárás alkalmazásának úttörői előnye statisztikailag jól megalapozott eljárás hátránya nagy számításigény 27

28 Matematikai modell modell az x mérési eredmény három különböző részből tevődik össze: x = AX + s+ AX trend s jel (a mért pontokban jele: t) n zaj (csak mért pontokban) n n AX s 28

29 Lépések > Detrekői 7.3 trend függvény megválasztása jeleket jellemző kovariancia mátrixok felvétele zajokat jellemző kovariancia mátrix felvétele trendfüggvény paramétereinek meghatározása LKN módszerével jelek értékének meghatározása a mért pontokban a nem mért pontokban a levezetett mennyiségek kovariancia mátrixainak meghatározása 29

30 A véletlen mennyiségek vektora Kombináljuk az összes véletlen jellegű mennyiséget egy m+q méretű v vektorba: ésù v= [ s s s ] ê = 1 2 K m n1 n2k n q n ú ë û Ez tartalmazza t -t, ha m>q és s-nek első q komponense azonos t-vel: ét s= ê ë u ù ú û 30

31 A véletlen mennyiségek kovariancia mátrixa ha a jel és a zaj korrelálatlanok, v kovariancia mátrixa blokk-diagonális: inverze: C C vv -1 vv = éc ê ë 0 éc ê ë 0 ss C 0 nn -1 0 = ss C -1 nn ù ú û ù ú û 31

32 LKN kollokáció alapgondolata az X paraméterek optimális becslése és a nem mért pontokban az s jelre végzett predikció a jel és zaj egyszerre történő minimalizációjával érhető el: v T C -1 vv v = s T C -1 ss s + n T C -1 nn n = min v = ésù ê n ú ë û = [ s s s n n K ] 1 2 K m 1 2 n q 32

33 A minimalizációs probléma megoldása megoldás Lagrange-féle multiplikátor módszerrel jelölések: C ss = éc ê ëc tt ut C C tu uu ù ú û t = Us = [ { I { 0 ] s q m-q éc tt C st = ê = C ú ut ë ù û C ss U T C = C tt + C nn 33

34 Optimális becslések a paraméterekre: X = ( A T -1-1 T -1 C A) A C x a jelre a nem mért pontokban (interpoláció vagy predikció): -1 s= C C ( x- st AX ) 34

35 LKN kollokáció esetei trend zérus, mérések hibátlanok: interpoláció (predikció) a trend zérus, a mérések nem hibátlanok: szűrések ezekkel később foglalkozunk majd 35

36 Geostatisztika (Detrekői Szabó: Térinformatika) Statisztika Geostatisztika Valószínűségi változók Független mintavétel Helyfüggő (regionalizált) változók A minta adatai nem függetlenek egymástól 36

37 Változók Valószínűségi változó Elemi események halmazán értelmezett valós értékű függvény Helyfüggő változó Térbeli eloszlású valószínűségi változó, amely strukturált és eratikus tulajdonsággal rendelkezik Helyfüggő változó A tekintett jelenséget kifejező helyfüggő változót az ezen a jelenségen létrehozott valószínűségi függvény egyedi realizációjának tekintjük. 37

38 Geostatisztika, kri(e)gelés speciális szűrési és interpolációs eljárások elsősorban a földtudományok terén alkalmazzák elvi alapok: Matheron gyakorlati alkalmazás: Kriege ( krigelés ) trend, jel és zajfüggvények Z(x) értékek diszkrét pontokban ismertek D(x) trend, s(x) jel, n(x) zaj Z(x) = D(x) + s(x) + n(x) 38

39 Trend, jel, zaj x lehet 1, 2, vagy 3 változós 39

40 Trendfüggvények átlag (vízszintes sík) ferde sík D(x, y) = 1/N (ΣZ(x)) D(x, y) = a + bx + cy bonyolultabb függvény (pl. ötödfokú polinom) 40

41 Jelfüggvények szomszédos pontokhoz tartozó jelértékek nem függetlenek, a függőség mértéke: c kovariancia vagy g szemivariancia függvény stacionárius sztochasztikus folyamatok izotróp (irányfüggetlen) csak a d távolságtól függ: c(d), ill. g(d) várható értéke állandó g(d) = c(0) c(d), 41

42 42 Kovariancia, szemivariancia å [ ] = + - = ) ( 1 2 ) ( ) ( ) ( 2 1 ) ( d N i i i d X Z X Z d N d g å [ ] [ ] = = ) ( 1 ) ( ) ( ) ( 1 ) ( d N i i i Z d X Z Z X Z d N d c röghatás

43 Szemivariancia függvények maximális a hatástávolság gömbi modell 43

44 Zajfüggvények az egyes mért pontokhoz tartozó zajértékek egymástól függetlenek v 0 varianciával jellemezhetők 44

45 Krigelés lépései 1. trendfüggvény meghatározása ismert pontokban mért Z értékek (regionalizált változó, gyengén stacionárius) ismeretlen trendfüggvény paraméterek becslése 2. tapasztalati szemivariancia függvény meghatározása z i = Z i D i különbségértékek alapján 3. ismeretlen pontokban z P értékek számítása ismert pontokban felvett értékek súlyozott számtani közepeként 45

46 1. Trendfüggvény meghatározása A alakmátrix felírása az ismert pontokhoz tartozó Z i értékek alapján C kovarianciamátrix felírása: főátlóban: v 0 + c(0) főátlón kívül: c(d) p ismeretlen trendfüggvény paramétervektor becslése: (A C -1 A) p = (A C -1 Z) 46

47 2. Szemivariancia függvény meghatározása z i = Z i D i különbségértékek alapján egymástól azonos d 1,, d k távolságra levő pontpárokat választunk ki megkapjuk a tapasztalati szemivariancia függvényt valamilyen modellfüggvényt illesztünk a tapasztalati függvényre 47

48 3. z P értékek becslése az ismert pontokhoz tartozó z i = Z i D i különbségértékek alapján, súlyozott számtani közepet számítunk a nem mért P pontban: a w i súlyokat a z P = Σ(w i z i ) Σw i = 1 Σw i g(d i ) + F = min feltételek melletti feltételes szélsőérték-feladat megoldásaként kapjuk 48

49 w i súlyok meghatározása B mátrix előállítása a g(d i ) ismert pontok közötti szemivarianciákból és a feltételekben szereplő 1 értékekből b vektor előállítása a az ismert és ismeretlen pontok közötti szemivarianciákból és a feltételben szereplő 1 értékből u megoldás számítása: u = B -1 b u elemei: ismeretlen w i súlyok, a feltételes szélsőértékben szereplő F érték Z P számítása: Z P = D P + z P, ahol z P = Σ(w i z i ) 49

50 Néhány krigelési megközelítés Hagyományos krigelés (OK) súlyok összege 1 nem igényli az átlag ismeretét Egyszerű krigelés (SK) a súlyok összege tetszőleges igényli az átlag ismeretét Krigelés trend modellel (TK) az átlag ismeretlen, de ismert alakú trend mentén változik Ko-krigelés valamely tulajdonság pontbeli becslését egy másik tulajdonsággal való regressziós kapcsolatával javítjuk Indikátor krigelés (IK) feltételes eloszlásfüggvény becslése 50

51 Surfer Gyakorlati megoldások QGIS (SAGA GIS) R (gstat, geor) STK (Octave) 51

52 jövő héten: TDK konferencia 2 hét múlva: VizsgaZH előkészítés, ZH konzultáció 52

c adatpontok és az ismeretlen pont közötti kovariancia vektora

c adatpontok és az ismeretlen pont közötti kovariancia vektora 1. MELLÉKLET: Alkalmazott jelölések A mintaterület kiterjedése, területe c adatpontok és az ismeretlen pont közötti kovariancia vektora C(0) reziduális komponens varianciája C R (h) C R Cov{} d( u, X )

Részletesebben

Valószínűségi változók. Várható érték és szórás

Valószínűségi változók. Várható érték és szórás Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :

Részletesebben

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Gazdasági matematika II. vizsgadolgozat megoldása, június 10

Gazdasági matematika II. vizsgadolgozat megoldása, június 10 Gazdasági matematika II. vizsgadolgozat megoldása, 204. június 0 A dolgozatírásnál íróeszközön kívül más segédeszköz nem használható. A dolgozat időtartama: 90 perc. Ha a dolgozat első részéből szerzett

Részletesebben

5. előadás - Regressziószámítás

5. előadás - Regressziószámítás 5. előadás - Regressziószámítás 2016. október 3. 5. előadás 1 / 18 Kétváltozós eset A modell: Y i = α + βx i + u i, i = 1,..., T, ahol X i független u i -től minden i esetén, (u i ) pedig i.i.d. sorozat

Részletesebben

Biomatematika 2 Orvosi biometria

Biomatematika 2 Orvosi biometria Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus

Részletesebben

Gazdasági matematika II. vizsgadolgozat megoldása A csoport

Gazdasági matematika II. vizsgadolgozat megoldása A csoport Gazdasági matematika II. vizsgadolgozat megoldása A csoport Definiálja az alábbi fogalmakat!. Egy eseménynek egy másik eseményre vonatkozó feltételes valószínűsége. ( pont) Az A esemény feltételes valószínűsége

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ

Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ Megoldások Harmadik fejezet gyakorlatai 3.. gyakorlat megoldása ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4;, 3 normális eloszlású P (ξ 8 ξ 5 feltételes valószínűségét (.3. alapján számoljuk.

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

Gazdasági matematika II. vizsgadolgozat, megoldással,

Gazdasági matematika II. vizsgadolgozat, megoldással, Gazdasági matematika II. vizsgadolgozat, megoldással, levelező képzés Definiálja az alábbi fogalmakat! 1. Kvadratikus mátrix invertálhatósága és inverze. (4 pont) Egy A kvadratikus mátrixot invertálhatónak

Részletesebben

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk Valószínűségszámítás 8. feladatsor 2015. november 26. 1. Bizonyítsuk be, hogy az alábbi folyamatok mindegyike martingál. a S n, Sn 2 n, Y n = t n 1+ 1 t 2 Sn, t Fn = σ S 1,..., S n, 0 < t < 1 rögzített,

Részletesebben

4. Az A és B események egymást kizáró eseményeknek vagy idegen (diszjunkt)eseményeknek nevezzük, ha AB=O

4. Az A és B események egymást kizáró eseményeknek vagy idegen (diszjunkt)eseményeknek nevezzük, ha AB=O 1. Mit nevezünk elemi eseménynek és eseménytérnek? A kísérlet lehetséges kimeneteleit elemi eseményeknek nevezzük. Az adott kísélethez tartozó elemi események halmazát eseménytérnek nevezzük, jele: X 2.

Részletesebben

Á ű Ü Á Ö É Á É É Á É Á ű Á Á ű Ö Ó ű Ó Ó ű Á ű ű ű ű ű ű ű ű É Ü ű ű É É É Ö Ü Ü ű Ü ű Ü É Ó Á Á Ü Ö ű Ü ű Ü Ó ű Ú Ü ű Ü Ü Ú Ü Ü ű Ö Ü Ü Ú Ö Ü ű Ü ű É ű Á ű É É Ú Á ű Á É Ü ű Ú Ó ű ű Ü É Ő ű ű ű Ú Ö

Részletesebben

Fourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 5-7. ea ősz

Fourier térbeli analízis, inverz probléma. Orvosi képdiagnosztika 5-7. ea ősz Fourier térbeli analízis, inverz probléma Orvosi képdiagnosztika 5-7. ea. 2017 ősz 5. Előadás témái Fourier transzformációk és kapcsolataik: FS, FT, DTFT, DFT, DFS Mintavételezés, interpoláció Folytonos

Részletesebben

Folyamatosan változó mennyiségek feldolgozása II. 7. előadás

Folyamatosan változó mennyiségek feldolgozása II. 7. előadás Folyamatosan változó mennyiségek feldolgozása II. 7. előadás Tartalom sztochasztikus folyamatok mintavételezés (lásd Fizikai geod.) LKN kollokáció (lásd Fizikai geod.) geostatisztika, krigelés szűrések

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem

Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel

Részletesebben

(Independence, dependence, random variables)

(Independence, dependence, random variables) Két valószínűségi változó együttes vizsgálata Feltételes eloszlások Két diszkrét változó együttes eloszlása a lehetséges értékpárok és a hozzájuk tartozó valószínűségek (táblázat) Példa: Egy urna 3 fehér,

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Jármőtervezés és vizsgálat I. VALÓSZÍNŐSÉGSZÁMÍTÁSI ALAPFOGALMAK Dr. Márialigeti János

Jármőtervezés és vizsgálat I. VALÓSZÍNŐSÉGSZÁMÍTÁSI ALAPFOGALMAK Dr. Márialigeti János BUDAPESTI MŐSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI KAR JÁRMŐELEMEK ÉS HAJTÁSOK TANSZÉK Jármőtervezés és vizsgálat I. VALÓSZÍNŐSÉGSZÁMÍTÁSI ALAPFOGALMAK Dr. Márialigeti János Budapest 2008

Részletesebben

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Principal Component Analysis Principal Component Analysis Definíció Ortogonális transzformáció, amely az adatokat egy új koordinátarendszerbe transzformálja úgy, hogy a koordináták

Részletesebben

ADAT- ÉS INFORMÁCIÓFELDOLGOZÁS

ADAT- ÉS INFORMÁCIÓFELDOLGOZÁS ADAT- ÉS INFORMÁCIÓFELDOLGOZÁS Földtudományi mérnöki MSc mesterszak 2018/19 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ Miskolci Egyetem Műszaki Földtudományi Kar Geofizikai és Térinformatikai Intézet A tantárgy

Részletesebben

GEOSTATISZTIKA. Földtudományi mérnöki MSc, geofizikus-mérnöki szakirány. 2018/2019 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ

GEOSTATISZTIKA. Földtudományi mérnöki MSc, geofizikus-mérnöki szakirány. 2018/2019 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ GEOSTATISZTIKA Földtudományi mérnöki MSc, geofizikus-mérnöki szakirány 2018/2019 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ Miskolci Egyetem Műszaki Földtudományi Kar Geofizikai és Térinformatikai Intézet

Részletesebben

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus. Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza

Részletesebben

Matematikai geodéziai számítások 6.

Matematikai geodéziai számítások 6. Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre

Részletesebben

Gazdasági matematika II. tanmenet

Gazdasági matematika II. tanmenet Gazdasági matematika II. tanmenet Mádi-Nagy Gergely A hivatkozásokban az alábbi tankönyvekre utalunk: T: Tóth Irén (szerk.): Operációkutatás I., Nemzeti Tankönyvkiadó 1987. Cs: Csernyák László (szerk.):

Részletesebben

Sztochasztikus folyamatok alapfogalmak

Sztochasztikus folyamatok alapfogalmak Matematikai Modellalkotás Szeminárium 2012. szeptember 4. 1 Folytonos idejű Markov láncok 2 3 4 1 Folytonos idejű Markov láncok 2 3 4 Folytonos idejű Markov láncok I Adott egy G = (V, E) gráf Folytonos

Részletesebben

Matematikai geodéziai számítások 5.

Matematikai geodéziai számítások 5. Matematikai geodéziai számítások 5 Hibaterjedési feladatok Dr Bácsatyai László Matematikai geodéziai számítások 5: Hibaterjedési feladatok Dr Bácsatyai László Lektor: Dr Benedek Judit Ez a modul a TÁMOP

Részletesebben

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.

Részletesebben

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!

Megoldások MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be! MATEMATIKA II. VIZSGA (VK) NBT. NG. NMH. SZAKOS HALLGATÓK RÉSZÉRE (Kérjük, hogy a megfelelő szakot jelölje be!) 2016. JANUÁR 21. Elérhető pontszám: 50 pont Megoldások 1. 6. 2. 7. 3. 8. 4. 9. 5. Össz.:

Részletesebben

Matematikai geodéziai számítások 6.

Matematikai geodéziai számítások 6. Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Bácsatyai László Matematikai geodéziai számítások 6. MGS6 modul Lineáris regresszió számítás elektronikus távmérőkre SZÉKESFEHÉRVÁR 2010 Jelen szellemi

Részletesebben

Valószínűségszámítás összefoglaló

Valószínűségszámítás összefoglaló Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 6. A MINTAVÉTELI TÖRVÉNY

ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 6. A MINTAVÉTELI TÖRVÉNY ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 6. A MINTAVÉTELI TÖRVÉNY Dr. Soumelidis Alexandros 2018.10.25. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG Mintavételezés

Részletesebben

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani

Részletesebben

YBL - SGYMMAT2012XA Matematika II.

YBL - SGYMMAT2012XA Matematika II. YBL - SGYMMAT2012XA Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához

Részletesebben

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:

e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma: Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

ö é é ú ö ú Ü ő ű ó ő é ó ú ó ó é é é ó ö é ó é ó é ő ő é ü é ó é ó ő ű é Ó é ü é ó é ü ó ó é ü ó é ő é

ö é é ú ö ú Ü ő ű ó ő é ó ú ó ó é é é ó ö é ó é ó é ő ő é ü é ó é ó ő ű é Ó é ü é ó é ü ó ó é ü ó é ő é Á Á ö Á É Á É ú Á Á ö é é ú ó Á é ú é ó ú ő é é ú é ü é ó ó ó ő é ó ó ó é ó é é ó ó é é ó é ü ü ü ő ó é é Ó ő é é ö ö ő é é é é é ú ő ő é é ó ü ú ő é ö é ő ö ü é ő é é ú ő é ü é ü Ú é ö ö é é ü ó ö é é

Részletesebben

ű Ó Á ú ü Á É É ü ü Áú Ő Ó Ü Á

ű Ó Á ú ü Á É É ü ü Áú Ő Ó Ü Á Ö Ö ű Ó Á ú ü Á É É ü ü Áú Ő Ó Ü Á ü Á Ó Ü ű Ü Ó Ó ú Ü Ű ú ü Ó ú Ó Ü É Ü Ő Á Ó Ó É Ó ú Ó Á ü Á Ó Ü Ü Ó ú ü ü ü Ü ü Ü Ü ű Ó ű Ű Ó ú Ó Ü Á ü Ü É ű ü ű Ü ú ü ú ü ú Á Ü Ü Ö ü ü Ü ű ú ü ú É ü ú ú Ü Ü Ü ü ú

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 4. óra Mingesz Róbert Szegedi Tudományegyetem 2012. február 27. MA - 4. óra Verzió: 2.1 Utolsó frissítés: 2012. március 12. 1/41 Tartalom I 1 Jelek 2 Mintavételezés 3 A/D konverterek

Részletesebben

ú ü ő ú ú ü ő

ú ü ő ú ú ü ő É É ú ü ő ú ú ü ő ú ú ú ő ő ú ü ő Ö Ö Ó Ó É É ő É É É É É É É É É ő É É É É ű ű ő ő ú ú ü ú ő ő ő ü ő ú ő É ő ő ü ű ő ő ő ü ü ő ü ő ü ő Ö ő ő ű ü ő ő ő ő ő ő ő ő ü ú ü ő ü ü ő ü ü ő ő ü ő ő ő ő ü ő ő ő

Részletesebben

ü ü ű ű ü ü ü Á ű ü ü ü ű Ü

ü ü ű ű ü ü ü Á ű ü ü ü ű Ü ü ű ü ű ü ü ü ü Á ü ü ű ű ü ü ü Á ű ü ü ü ű Ü É É Á Á Á Á É Á Á Ő É É É Á É Á É Á É Á ű É É Á Á É É É Á É Á É Á É Á Á ü ű ű ü ü ü ü ü üü ü ü ü ü ü ü ű ü ü ű ü ü ü ü ű ü ü ü ű ü ü ü ü ü ü ü ü ü ü ü ű ü

Részletesebben

GEOSTATISZTIKA II. Geográfus MSc szak. 2019/2020 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ

GEOSTATISZTIKA II. Geográfus MSc szak. 2019/2020 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ GEOSTATISZTIKA II. Geográfus MSc szak 2019/2020 I. félév TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ Miskolci Egyetem Műszaki Földtudományi Kar Geofizikai és Térinformatikai Intézet A tantárgy adatlapja Tantárgy neve:

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 3. MÉRÉSFELDOLGOZÁS

ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 3. MÉRÉSFELDOLGOZÁS ÉRZÉKELŐK ÉS BEAVATKOZÓK I. 3. MÉRÉSFELDOLGOZÁS Dr. Soumelidis Alexandros 2018.10.04. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG Mérés-feldolgozás

Részletesebben

Lineáris algebra numerikus módszerei

Lineáris algebra numerikus módszerei Hermite interpoláció Tegyük fel, hogy az x 0, x 1,..., x k [a, b] különböző alappontok (k n), továbbá m 0, m 1,..., m k N multiplicitások úgy, hogy Legyenek adottak k m i = n + 1. i=0 f (j) (x i ) = y

Részletesebben

ő ő ú ú ő ö ö ö ö ő ö ü ű ü ö ú ö ö ű ü ő ő ő ő ú ő ü ő ő ő ő ő ü ő Ö ő ö ü ő ö ő ú

ő ő ú ú ő ö ö ö ö ő ö ü ű ü ö ú ö ö ű ü ő ő ő ő ú ő ü ő ő ő ő ő ü ő Ö ő ö ü ő ö ő ú ú ú Á ö ő ő ú ú ő ö ö ö ö ő ö ü ű ü ö ú ö ö ű ü ő ő ő ő ú ő ü ő ő ő ő ő ü ő Ö ő ö ü ő ö ő ú ő ö ü ö ö ö ü ő ö ü ö ő ú ö ö Ú ő ö ö ő ö ű ő ő ű ü ü ő ő ő ő ő ő ő ő ő ü ű ű ü ő ü ü ő ö ú ű ö ö ő ü ő ü ü ő

Részletesebben

Ó ö ű Ü Ó Ó Ö Ö Í Ó Ö Ú Ö Ű Ü Ö Ö ö Ü Ó Í ö Ü Í Ü Ú Ö Í Ó Ó Ó Ö Ö Á Ó Ü Ó Ó Ö Ó Ó Ó Ö Ö Í Ó Ö Ó Ó Ó É Ü ű Ó ú

Ó ö ű Ü Ó Ó Ö Ö Í Ó Ö Ú Ö Ű Ü Ö Ö ö Ü Ó Í ö Ü Í Ü Ú Ö Í Ó Ó Ó Ö Ö Á Ó Ü Ó Ó Ö Ó Ó Ó Ö Ö Í Ó Ö Ó Ó Ó É Ü ű Ó ú Á É É É Ü Á Ü Ü ű Í Ó Ü ű Ó Í Ú Ü Ó ű ú Ü ű ö Ó ö ű ű Ó Ó Ó Ő ű Ó Ö ö Ó Ö Ü Í Ü Ó Ü Á Í Ó ü Ú Ó ű ú Ó úü Ó Ú ü Í ű Í Ő Ó Ó Ó Ó Ü ú Í Í Í Ó ö ű Ü Ó Ó Ö Ö Í Ó Ö Ú Ö Ű Ü Ö Ö ö Ü Ó Í ö Ü Í Ü Ú Ö Í Ó Ó Ó Ö

Részletesebben

FÜGGELÉK. 10. fejezet Matematikai statisztika, geostatisztika A matematikai statisztika szerepe a térinformatikában

FÜGGELÉK. 10. fejezet Matematikai statisztika, geostatisztika A matematikai statisztika szerepe a térinformatikában 10. fejezet FÜGGELÉK 10.1. Matematikai statisztika, geostatisztika 10.1.1. A matematikai statisztika szerepe a térinformatikában A matematikai statisztika a valószínűség-számításnak az a fejezete, amely

Részletesebben

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA A VALÓSZÍNŰSÉGI SZEMLÉLET ALAPOZÁSA 1-6. OSZTÁLY A biztos, a lehetetlen és a lehet, de nem biztos események megkülünböztetése Valószínűségi játékok, kísérletek események

Részletesebben

ú ú ü ü ú ü Í ü ú ü ú ü ú ü ü ű ü ú ű Í ü ü ú ű ü ű ű ü ü ü ü ű ú Ú ú

ú ú ü ü ú ü Í ü ú ü ú ü ú ü ü ű ü ú ű Í ü ü ú ű ü ű ű ü ü ü ü ű ú Ú ú ú É ú ü ú ü Í ü ú Ú ú ú ü ü ú ü Í ü ú ü ú ü ú ü ü ű ü ú ű Í ü ü ú ű ü ű ű ü ü ü ü ű ú Ú ú Í ú É Í Á Á Í É Á Á Á Í Á Ó Á Á É Á Á É É ű Á É É ú É É Á Á ú Á ü Á Á Á Á Ú É ü ú ú É É ú Ú Á Á É Á É Ó Ú ú Ú Í

Részletesebben

ö Ö Í ó ö ü ö ö ó ó ü ó Í ö ö ö ó Á ü ü

ö Ö Í ó ö ü ö ö ó ó ü ó Í ö ö ö ó Á ü ü Í ö ü ó ü ó ö Ö Í ó ö ü ö ö ó ó ü ó Í ö ö ö ó Á ü ü ó ö Í ó ö ó ü ó ó ó ö ö ü ü ö Ó Í Í ü ö ö ö ó ü ó ü ö Ö ö ü Ü ö ö ü ó Í ö ö ö ó Ü ö ö ö ó ó ó ó ü ó Ü ö Ü ó Á Á ö ö ö ó ó ó ó ó ó ö ó ű ó ö ö ö ö ü ú

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok II. útmutató

TANTÁRGYI PROGRAM Matematikai alapok II. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok II. útmutató 2013/2014. tanév II. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:

Részletesebben

é é é é í é ű ü ü é ú é í é ü ü é í ű é é é é é é é é ü é ü é ü é í é é é é í é ü é é ü ü é ü ű é é é ű ü é ü ü é ű é ü é éú é ü é ü ű é ü é éú é é é

é é é é í é ű ü ü é ú é í é ü ü é í ű é é é é é é é é ü é ü é ü é í é é é é í é ü é é ü ü é ü ű é é é ű ü é ü ü é ű é ü é éú é ü é ü ű é ü é éú é é é é Ö é ü é é é ü é í é Ó é Ö é Ú Á é í í ü é é é é ü ü é é é ü é é é ü é ü é í ü é é ü é ü í ü é ü ű é ü ú ü é Í ú ú é ü é é é é í ü é é ü é é é é é é í é ű ü ü é ú é í é ü ü é í ű é é é é é é é é ü é ü

Részletesebben

ö í Á Á Á ö É É í É Á Á Á Á Á É ő ö í ő ö ő ö í ü ő ö ő ö ő ü ö ő ö í ő ő ő ö í ő ő ú ö ű ö ő ö í

ö í Á Á Á ö É É í É Á Á Á Á Á É ő ö í ő ö ő ö í ü ő ö ő ö ő ü ö ő ö í ő ő ő ö í ő ő ú ö ű ö ő ö í ú ö ű ö ő ö í Á Ü ú Á Á Á ö É É í É É Á ö í Á Á Á ö É É í É Á Á Á Á Á É ő ö í ő ö ő ö í ü ő ö ő ö ő ü ö ő ö í ő ő ő ö í ő ő ú ö ű ö ő ö í ö í Á Á Á ö É É í É Á Á Á Á ö ö ú ö ű ö ő ö ö ő í ö í ö í ő ö ü

Részletesebben

ó ö í ó í ó í í ü ü í ó ó í ó ó í í Á ö í ö ó ú í ó ó í

ó ö í ó í ó í í ü ü í ó ó í ó ó í í Á ö í ö ó ú í ó ó í Á Á É ó Á ö ú ú ö ö Í ó ö ö í Á ó Á ü ú ü ö ó ú í ó ú í ó ű í ú ó Á ó Á ü ú ó ö í ó í ó í í ü ü í ó ó í ó ó í í Á ö í ö ó ú í ó ó í ö ö í ó ó í í ü ü í ó Á ü ü ü Í ö í ü ó í ű ö ó ó ó ö í ö ó í ó ü ó í

Részletesebben

ö ö í í í í ö í í í í í í í í ö ú ö í í í í í ö ö ü í ö í ö í í í ü í í ö Í í ö ü ű í í í í í

ö ö í í í í ö í í í í í í í í ö ú ö í í í í í ö ö ü í ö í ö í í í ü í í ö Í í ö ü ű í í í í í Á É ö úú í ö ö í ű í ú ű Ő ű ű ű Ú ö ö í í í í ö í í í í í í í í ö ú ö í í í í í ö ö ü í ö í ö í í í ü í í ö Í í ö ü ű í í í í í í ö ö í í í ö ö ü í ö ö ü í í ö í í í í ö ű í ö í í ü í ü ü í Í ű ü í ű

Részletesebben

ű ű ű ű ű ű Ú Ú ű ű ű Ö ű ű ű ű ű ű

ű ű ű ű ű ű Ú Ú ű ű ű Ö ű ű ű ű ű ű Ü É ű ű ű ű ű ű ű ű Ú Ú ű ű ű Ö ű ű ű ű ű ű Ö Ü Ú ű Ü Ö É Ü Ü ű ű ű ű ű ű É É ű É Ó É Ü ű Ó É É É Ő űű ű Ö ű Ú ű ű ű ű ű ű ű ű ű ű ű ű Ö ű ű ű ű ű ű ű ű ű ű ű ű Ü É ű ű ű ű Ú É É ű ű Ü É Ü ű ű ű Ü ű ű

Részletesebben

Bevezetés az állapottér elméletbe: Állapottér reprezentációk

Bevezetés az állapottér elméletbe: Állapottér reprezentációk Tartalom Bevezetés az állapottér elméletbe: Állapottér reprezentációk vizsgálata 1. Példa az állapottér reprezentációk megválasztására 2. Átviteli függvény és állapottér reprezentációk közötti kapcsolatok

Részletesebben

TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató

TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató BGF PÉNZÜGYI ÉS SZÁMVITELI KAR Módszertani Intézeti Tanszéki Osztály TANTÁRGYI PROGRAM Matematikai alapok 2. útmutató 2015/2016. tanév I. félév Tantárgyi program Tantárgy megnevezése Tantárgy jellege/típusa:

Részletesebben

Matematikai geodéziai számítások 5.

Matematikai geodéziai számítások 5. Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr Bácsatyai László Matematikai geodéziai számítások 5 MGS5 modul Hibaterjedési feladatok SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról

Részletesebben

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006

Részletesebben

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.

Részletesebben

Ú ű É ű ű Ü Ü ű ű Ú É ű ű Ü ű ű ű ű ű ű ű Ú ű ű

Ú ű É ű ű Ü Ü ű ű Ú É ű ű Ü ű ű ű ű ű ű ű Ú ű ű Ú ű ű ű ű ű ű ű ű Ú ű É ű ű Ü Ü ű ű Ú É ű ű Ü ű ű ű ű ű ű ű Ú ű ű É ű Ú Ú Ú Ú Ú ű Á Ú Ú Ú Ú ű Ú Ú ű É ű Ú Ú Ú Ú Ú Á ű Ó ű Ú É É Ú Ú ű É ű ű ű ű É ű Ő ű Ő ű ű ű ű ű É ű É Á ű ű Ü Á Ó ű ű ű Ú ű ű É ű ű Ú

Részletesebben

ü ü Ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü É ü ü

ü ü Ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü É ü ü ü ü É ű ű É É ű ü ű ü ü ü Á ü ü ü ü ü ű É ü ű É ű ü ü ü Ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü ü É ü ü ü Á ü ü ü ü ü Ú ü ü ű É ü ü ű ü ü ű ü ü ü ü É ü ü ü ü ü ü ü ü É ű ü Á ü ü ü ü ü Á Ö É ü ü ű Ú ü ü ü ű

Részletesebben

Á Ó ű ű Á É ű ű ű ű Ú Ú

Á Ó ű ű Á É ű ű ű ű Ú Ú Ö ű ű Ö Ü ű ű ű ű ű Ó ű Ü ű Á Ó ű ű Á É ű ű ű ű Ú Ú ű ű Á Á Á É ű ű ű ű ű ű ű ű ű ű É ű Ö Ó Ú ű ű ű ű Ü Ó Ú ű É É Ó É É Ó É É É É Ó ű ű ű ű ű Ü ű Á ű ű ű ű ű Ü ű ű ű ű ű ű Á ű Ú Á Á Ö É Á Á Ö É Ü ű ű Ü

Részletesebben

Ó é é Ó Ó ő ű Ó Ö ü Ó é Ó ő Ó Á Ö é Ö Ó Ó é Ó Ó Ó Ó ú Ó Ó Ó Ó ű Ö Ó Ó Ó é Ó Ó ö Ö Ó Ö Ö Ó Ó Ó é ö Ö é é Ü Ó Ö Ó é Ó é ö Ó Ú Ó ő Ö Ó é é Ö ú Ó Ö ö ű ő

Ó é é Ó Ó ő ű Ó Ö ü Ó é Ó ő Ó Á Ö é Ö Ó Ó é Ó Ó Ó Ó ú Ó Ó Ó Ó ű Ö Ó Ó Ó é Ó Ó ö Ö Ó Ö Ö Ó Ó Ó é ö Ö é é Ü Ó Ö Ó é Ó é ö Ó Ú Ó ő Ö Ó é é Ö ú Ó Ö ö ű ő É Ó Ű Á Ó É Ó Á É Ó Á ő ű Ó ú Ö ú é Ö Ó Ö ú Ó Ö ú Ó Ó Ó Ó ű é ű ű Ó Ó ú ű ű é é Ö ö Ö Ö Ó ű Ó Ö ü ű Ö Ó ő Ó ő Ó ú Ó ő Ó é Ó ű Ó Ó Ó Ó ú Ó Ó Ó Ó Ö Ó Ó ö ő ü é ü Ö é é é Á é Ó Ó ú ú ű é Ö é é é Ó é é Ó Ó

Részletesebben

ű Ú ű ű É Ú ű ű

ű Ú ű ű É Ú ű ű ű ű ű ű Ú Á É Ú ű Ú ű ű É Ú ű ű ű Á ű ű ű ű ű Ü ű Á ű ű ű Á Á ű ű ű É ű ű ű Ú É ű ű ű ű ű ű ű ű Á É Á Ö Ü ű É ű ű Ö É Ü Ú ű Ó ű É Ó Ó Ó ű É Ü Ü ű ű Ú ű ű ű ű ű ű ű ű ű ű É ű ű Á Á ű Ú ű Ú ű ű Ó ű ű Ü Ü

Részletesebben

Á Á ő ő Ö ő ő ö É ö ő ö ő ő ö ő ő ö ő ő ü ö

Á Á ő ő Ö ő ő ö É ö ő ö ő ő ö ő ő ö ő ő ü ö ű É É Á Á Á É Ó É É Á ö ő ő ö ő ő ő Ó ő ö ő ö ő ú ő ü ö ő ü ö Á É ű Á É É É Ö ö Á É É ő ő ö Á Á ő ő Ö ő ő ö É ö ő ö ő ő ö ő ő ö ő ő ü ö É É Á Ö ő ú ő ű Ö ü Ő É Ó É É Á Ó É Á É Ü É Á Ó É ő ő ö ö ő ö ö ö

Részletesebben

ű Ö ű Ú ű ű ű Á ű

ű Ö ű Ú ű ű ű Á ű ű ű Ó É É ű Ó ű Ü ű ű Ö ű Ú ű ű ű Á ű É ű Á ű ű ű ű ű ű ű ű ű ű ű Á ű ű Ö Ü Ö É ű ű Ü Ü ű É Á Ú É É ű ű ű Ö É ű É Ó É Á Á É ű ű Á ű ű ű Á É ű Ö Á ű ű ű Á ű Á É Ö Ó Ö ű ű ű ű ű ű ű Á É Á Á ű ű ű Á ű ű ű

Részletesebben

ű ű ű Ú Ú Á ű Ö ű ű Ú Ő É

ű ű ű Ú Ú Á ű Ö ű ű Ú Ő É Ü ű ű ű Ú Ú Á ű Ö ű ű Ú Ő É É ű Ö Ö Á É ű Ö Ö Á Ü Á ű ű Ó Ó Á Á É Ü É ű Ó Á Ó Á ű Ö ű ű É Ü Ö ű É Ö ű ű Ó ű ű Ú ű ű ű ű ű É ű É Ú Ö Á É ű ű Ó ű ű ű ű ű ű Ó ű Ü ű ű ű É ű ű Ü Ü ű ű Ő Á Á Á ű ű ű Ó Ó Ó ű

Részletesebben

Ó Ó ö ú ö ö ö ö ü ú ú ö ö ö ú ú ö ö ö ú ú ú ű ö ö ú ö ü ö ö ö ö ü ú Á ö ü Á ö ö ö ö ö ö

Ó Ó ö ú ö ö ö ö ü ú ú ö ö ö ú ú ö ö ö ú ú ú ű ö ö ú ö ü ö ö ö ö ü ú Á ö ü Á ö ö ö ö ö ö É Ó ö É Á ű Ü Ü ö Ú ö ö ö ö ö ö ö ú ö ö ö ö ö ú ú ú ú ú ú ü ú ú ö ö ű ö ü ú ö Ó Ó ö ú ö ö ö ö ü ú ú ö ö ö ú ú ö ö ö ú ú ú ű ö ö ú ö ü ö ö ö ö ü ú Á ö ü Á ö ö ö ö ö ö Á Ó ú ö Á ö Á ö ú ú ö ö ö ö ü ü Ü ú

Részletesebben

Á Ö Ö Ö Ö ú ú Ö Ö Ó Ó ú ú Ü ú Ó Ö Ö Ü Ó Ö Ö Á Ó ú ú ú ű Ö Ö Ö Ö Á Ó Ö Ó ú ú Ö

Á Ö Ö Ö Ö ú ú Ö Ö Ó Ó ú ú Ü ú Ó Ö Ö Ü Ó Ö Ö Á Ó ú ú ú ű Ö Ö Ö Ö Á Ó Ö Ó ú ú Ö Ó ú ú ú ú ű ű ű ú Á Ö ű Á Ö Ö Ö Ö ú ú Ö Ö Ó Ó ú ú Ü ú Ó Ö Ö Ü Ó Ö Ö Á Ó ú ú ú ű Ö Ö Ö Ö Á Ó Ö Ó ú ú Ö Ú ű ú É Á Ó Ó É Ó Ó ú ű ű ű ú Ö Ó Ö ú ú Ö ú Ü ú Ü É Ö Á Á Á Á ú Ó Ö ú ú ú Ü Ö ú ú ú ú ú ú Ö ú Ö Ó ű

Részletesebben

É Á Á Ö Á

É Á Á Ö Á É Á Á Ö Á Á É Á Ü ű Á É Ü ű Ú ű ű É É ű ű Á ű ű ű ű ű É ű ű ű Á É É É ű Á É É Á É Á É Ü Ü ű Á Á Á ű Á Á Á Á Á Á Á Á Ü ű Á ű Ü É É Á Á Á É ű ű ű ű ű ű ű ű ű ű ű ű ű Á Á É É ű É ű Ő ű É Ő Á É É ű ű Ú Á

Részletesebben

ó ő ő ó ő ö ő ő ó ó ó ö ő ó ó ó ö ő ó ő ő ö Ö ő ö ó ő ö ő ő ú ö ö ü ö ó ö ö ö ő ö ö Ö ú ü ó ü ő ő ő ő ó ő ü ó ü ö ő ö ó ő ö ő ö ü ö ü ő ö ö ó ö ő ő ö

ó ő ő ó ő ö ő ő ó ó ó ö ő ó ó ó ö ő ó ő ő ö Ö ő ö ó ő ö ő ő ú ö ö ü ö ó ö ö ö ő ö ö Ö ú ü ó ü ő ő ő ő ó ő ü ó ü ö ő ö ó ő ö ő ö ü ö ü ő ö ö ó ö ő ő ö ü ö ő ö ő ó ö ő ü ü ö ő ó ó ü ő ö ő ö ő ö ü ö ő ö ő ó ö ü ü ö ő ő ő ö ő ö ü ö ő ó ő ö ü ö ő ő ű ő ö ö ő ű ő ü ö Ő ó ö ö ő ü ó ü ú ű ú ő ó ó ó ő ö ő ő ö ó ö ö ő ő ö ö ó ú ő ő ö ó ö ó ö ü ó ő ő ö ó ő ő ó

Részletesebben

ö ő ü ö ő ő ü ü ő ő ő ü ö ü ü ő ú ő ő ő ü ő ő ő ő ő ú ő ő ü ő ő ő ü ö ü ú ő ő ő ő ü ü ő ő ú

ö ő ü ö ő ő ü ü ő ő ő ü ö ü ü ő ú ő ő ő ü ő ő ő ő ő ú ő ő ü ő ő ő ü ö ü ú ő ő ő ő ü ü ő ő ú ő ű ű ő ö ö Á ö ő ü ö ő ő ü ü ő ő ő ü ö ü ü ő ú ő ő ő ü ő ő ő ő ő ú ő ő ü ő ő ő ü ö ü ú ő ő ő ő ü ü ő ő ú ő ö Á Ó ő ő ü ú ő ő ő ő Á ő ú ű ő ő ő ü ú ő ő ő ő ő ő ő ő ö ü ú ő ő ő ő ű ű ő ő ö ű ü ő ő ő ö ö

Részletesebben

ó Ó ú ó ó ó Á ó ó ó Á ó ó ó ó Á ó ú ó ó ó

ó Ó ú ó ó ó Á ó ó ó Á ó ó ó ó Á ó ú ó ó ó É ó ú ó ú ó Á ó ó ú ó ó ó ú ó ó ó ó ú ó ó ó ó ó ó ú ó ó ú ó ó ó ó Ó ú ó ó ó Á ó ó ó Á ó ó ó ó Á ó ú ó ó ó Ö ó ó ó ó ó ó ó ó ó ó ó ó Ü ó ű ú ú ó ó ó ó ó ó ó É ó É ó É ó ó ó ó ó ó É ó ú ó ó É ó ó ó ó É ó

Részletesebben

ú ö ö ö ö ö ö Á ö ö ö á á á ű Ü ű ö ö Á á Á

ú ö ö ö ö ö ö Á ö ö ö á á á ű Ü ű ö ö Á á Á ú ú ö ö ö ö ö ö Á ö ö ö á á á ű Ü ű ö ö Á á Á Á ú á ú á Á ö á ö ö ö ú á á ö ö ö ö á ű Ü ú ö Ü ű ö ú ű á á á ú á ú ú á ö ö ú ö ú ú ö ö ú ö ö ö á ö ö ö á á ö ú ö á á Ú á ö ö ö Ü ú Á á ű ö Ü ö ú Á á ö á ö

Részletesebben

ü ú ú ü ú ú ú ú

ü ú ú ü ú ú ú ú ú ú ú ü Ü ú ú ű ú ú ü ú ü ü ú ú ü ú ú ú ú ü ú Ö ü ü ü ú ü ú Ó ü ü ű ü Á Ü ü ű ü ű ü ű ű ü Ó ű ú ú ű ú ü ü ú ű ű ú ű ü ú ű ű ü ü ü ű ü ű ü ü ű ü ü ü ü ü ü ü ü ü ú ű ü ű Ó ü ü ü ú Á Ü ú ü ű ü Á Ü Ö Ú Á Á

Részletesebben

é ü ó ö é Ö é ü é é ó ö é ü ü é é ó ó ó é Á é é ü ó é ó ó é ö ö ö é é ü é ü é é ö ü ü é ó é é é é é é ö é é é é é é ö é ó ö ü é é é ü é é ó é ü ó ö é

é ü ó ö é Ö é ü é é ó ö é ü ü é é ó ó ó é Á é é ü ó é ó ó é ö ö ö é é ü é ü é é ö ü ü é ó é é é é é é ö é é é é é é ö é ó ö ü é é é ü é é ó é ü ó ö é Ó Ö é ü ó ö é é ü é é ó ö é ü ü é é ó é é é é é é ö é é é é é é é ó ö ü é é é ü ó ö é Ö é ü é é ó ö é ü ü é é ó ó ó é Á é é ü ó é ó ó é ö ö ö é é ü é ü é é ö ü ü é ó é é é é é é ö é é é é é é ö é ó ö ü

Részletesebben

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.

Részletesebben

Ó Ó ó ö ó

Ó Ó ó ö ó É ó ö É Á ó ó ü ó Ü ó ö ú ű ö ö ö ü ó Ó Ó ó ö ó Ó Ó ö ö ö ü Ó Ó ö ö ü ö ó ó ü ü Ó Ó Ó Ó ó ö ó ö ó ö ó ö ü ö ö ü ö ó ü ö ü ö ö ö ü ü ö ü É ü ö ü ü ö ó ü ü ü ü Ó Ó ü ö ö ü ö ó ö ö ü ó ü ó ö ü ö ü ö ü ö ó

Részletesebben

Line aris f uggv enyilleszt es m arcius 19.

Line aris f uggv enyilleszt es m arcius 19. Lineáris függvényillesztés 2018. március 19. Illesztett paraméterek hibája Eddig azt néztük, hogy a mérési hiba hogyan propagál az illesztett paraméterekbe, ha van egy konkrét függvényünk. a hibaterjedés

Részletesebben

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision

Részletesebben

LNM folytonos Az interpoláció Lagrange interpoláció. Lineáris algebra numerikus módszerei

LNM folytonos Az interpoláció Lagrange interpoláció. Lineáris algebra numerikus módszerei Legkisebb négyzetek módszere, folytonos eset Folytonos eset Legyen f C[a, b]és h(x) = a 1 φ 1 (x) + a 2 φ 2 (x) +... + a n φ n (x). Ekkor tehát az n 2 F (a 1,..., a n ) = f a i φ i = = b a i=1 f (x) 2

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben