Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA"

Átírás

1 SZDT-04 p. 1/30 Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék

2 Előadás SZDT-04 p. 2/30

3 SZDT-04 p. 3/30 Bevezetés Vállalkozási tevékenységünk során (általában) minél kevesebb ráfordítással szeretnénk minél nagyobb eredményt (minél több bevételt) elérni. A ráfordítást minimalizálni és az eredményt maximalizálni egyszerre nem megy. Az egyik csak a másik rovására történhet. Gazdaságossági elvek Eredményességi- vagy maximum elv (pl. termelési feladatoknál) adott erőforrások mellett eredmény max Takarékossági- vagy minimum elv (pl. szállítási feladatoknál vagy ha télen a megfelelő fűtést többféle energiahordozó segítségével is elérhetjük) adott gazdasági cél mellett ráfordítás min

4 SZDT-04 p. 4/30 Termelési feladat Hatféle erőforrásból négyféle terméket állít(hat)unk elő. Az egyes termékek fajlagos erőforrás szükségletét, az egyes erőforrásokból rendelkezésünkre álló készleteket, és az egyes termékek fajlagos nyereségét az alábbi táblázat tartalmazza.

5 SZDT-04 p. 5/30 Adjuk meg az optimális termelési programot! Mielőtt megadnánk a megoldást, írjuk át a problémát matematikai alakra. Így egyrészt könnyebb áttekinteni (ha szükséges programozni), másrészt a már rendelkezésünkre álló Excel eszköz, a Solver által kért adatokat is könnyebb így megadni. A célfüggvény itt nyereséget (eredményt) fog jelenteni, amit nyilván maximalizálni szeretnénk (maximum elv).

6 SZDT-04 p. 6/30 Termelési feladat megoldása Solverrel Táblázatunkat egészítsük ki néhány mezővel, amelybe egyrészt induló (nyilván nem az optimális) termelt mennyiségeket írjuk (B10:E10), Másrészt az ehhez a termelési programhoz tartozó erőforrás felhasználást adjuk meg (G3:G8), Harmadrészt pedig a megadott termelési programhoz tartozó nyereséget is felírjuk (G10). Az SZ.Ö. rövidítés a SZORZAT OSSZEG(tomb1; tomb2; tomb3;...) függvényt jelöli, amely két (vagy több) 1 n-es vagy n 1-es tömböt szoroz össze elemenként, majd a kapott szorzatokat összeadja.

7 A beírt összefüggések SZDT-04 p. 7/30

8 SZDT-04 p. 8/30 Termelési feladat A kezdő termelt mennyiségeket 1-eknek választva (helyettük írhattunk volna más számokat is), a következő értékek jelennek meg:

9 SZDT-04 p. 9/30 További lépések Az eszközök menüpontban található Solvert elindítva megadjuk az általa kért adatokat. Eszközök / Solver Célcella: G10 Legyen: Max Módosuló cellák: B10 : E10 Korlátozó feltételek: F3 : F8 G3 : G8 B10 : E10 0 és futtatjuk a Solvert.

10 SZDT-04 p. 10/30 Eredmény A legyártandó mennyiségek mellett megkapjuk azt is, hogy ehhez melyik erőforrásból mennyit használtunk fel és hogy mennyi nyereségünk van ebből.

11 SZDT-04 p. 11/30 Szállítási feladat Valamilyen anyagból 5 rendeltetési helyen felmerülő igényeket kell 4 telephelyről kielégítenünk. Az egyes rendeltetési helyeken felmerülő igényeket, az egyes telephelyeken rendelkezésre álló készleteket és a fajlagos szállítási költségeket az alábbi táblázat tartalmazza. Adjuk meg az optimális döntési tervet! Fel kell írnunk a matematikai modellt.

12 SZDT-04 p. 12/30 Beruházási feladat 5 üzem felépítéséről kell döntenünk, amelyhez mindössze egy erőforrást veszünk figyelembe. Az üzemek egy terméket állítanak elő. Az adatok

13 Gyakorlat SZDT-04 p. 13/30

14 SZDT-04 p. 14/30 Hipotézisvizsgálat Próba, teszt, szignifikancia vizsgálat Segítségével eldöntendő kérdésekre keressük a választ: Különbözik-e...? Összefügg-e...? Hat-e...? pl. Csökkenti-e egy bizonyos gyógyszer az allergiás rohamok gyakoriságát? Válasz egy minta alapján (nem teljes populáció!)

15 SZDT-04 p. 15/30 A hipotézisvizsgálat menete 1. Meg kell fogalmazni egy ún. nullhipotézist 2. Meg kell fogalmazni egy ellenhipotézist 3. Ki kell választani a megfelelő statisztikai próbát 4. Végre kell hajtani a próbát 5. Értelmezni kell a kapott eredményeket pl. Egy konkrét betegség kezelésének vizsgálata

16 SZDT-04 p. 16/30 Hipotézisvizsgálat A "Vajon nem véletlen-e?" kérdés eldöntésére alkalmas A tapasztalt különbség vagy hatás szakmailag jelentős-e, nem tudja eldönteni A különbség az új és a hagyományos kezelés között szignifikáns: túlmegy azon a mértéken, ami a véletlen számlájára lenne írható Releváns: ha szakmailag figyelemre méltó Statisztikai hipotézisvizsgálat alapgondolata: tudjuk, hogy ha a H hipotézis igaz lenne, az E esemény bekövetkezésének valószínűsége igen csekély volna. E bekövetkezett, tehát a H hipotézist elvetjük. Valószínűségszámítás szükségessége: ki kell tudnunk számolni, hogy mekkora az E esemény bekövetkezésének valószínűsége a H hipotézis igazsága esetén

17 SZDT-04 p. 17/30 Nullhipotézis, ellenhipotézis Nullhipotézis: régi elmélet (H 0 ) Ellenhipotézis: új elmélet (H 1 ) Egy megfigyelt minta alapján eldöntjük, hogy a nullhipotézis maradhat-e vagy új kerül a helyébe Ha a minta mindkét hipotézissel összeegyeztethető, akkor a régi elmélet marad érvényben p-érték, szignifikancia szint: egy mérőszám, amely megmutatja, hogy a megfigyelt minta mennyire erős bizonyíték a H 0 ellen, a H 1 javára

18 Egymintás próbák: egymintás t-teszt SZDT-04 p. 18/30

19 1 Alap információk a használathoz SZDT-04 p. 19/30

20 2 SZDT-04 p. 20/30

21 3 SZDT-04 p. 21/30

22 4 SZDT-04 p. 22/30

23 5 SZDT-04 p. 23/30

24 6 SZDT-04 p. 24/30

25 7 SZDT-04 p. 25/30

26 8 SZDT-04 p. 26/30

27 9 SZDT-04 p. 27/30

28 10 SZDT-04 p. 28/30

29 11 SZDT-04 p. 29/30

30 12 SZDT-04 p. 30/30

Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA

Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA SZDT-03 p. 1/24 Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás

Részletesebben

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása

1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat

Részletesebben

Biomatematika 13. Varianciaanaĺızis (ANOVA)

Biomatematika 13. Varianciaanaĺızis (ANOVA) Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 13. Varianciaanaĺızis (ANOVA) Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:

Részletesebben

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani

Részletesebben

Biometria az orvosi gyakorlatban. Regresszió Túlélésanalízis

Biometria az orvosi gyakorlatban. Regresszió Túlélésanalízis SZDT-09 p. 1/36 Biometria az orvosi gyakorlatban Regresszió Túlélésanalízis Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Logisztikus regresszió

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

TARTALOMJEGYZÉK. 1. téma Átlagbecslés (Barna Katalin) téma Hipotézisvizsgálatok (Nagy Mónika Zita)... 23

TARTALOMJEGYZÉK. 1. téma Átlagbecslés (Barna Katalin) téma Hipotézisvizsgálatok (Nagy Mónika Zita)... 23 TARTALOMJEGYZÉK 1. téma Átlagbecslés (Barna Katalin).... 7 2. téma Hipotézisvizsgálatok (Nagy Mónika Zita)... 23 3. téma Összefüggések vizsgálata, korrelációanalízis (Dr. Molnár Tamás)... 73 4. téma Összefüggések

Részletesebben

Növényvédő szerek A B C D

Növényvédő szerek A B C D A feladat megoldása során az Excel 2010 használata a javasolt. A feladat elvégzése során a következőket fogjuk gyakorolni: Termelési és optimalizálási feladatok megoldása. Mátrixműveletek alkalmazása.

Részletesebben

ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN!

ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN! A1 A2 A3 (8) A4 (12) A (40) B1 B2 B3 (15) B4 (11) B5 (14) Bónusz (100+10) Jegy NÉV (nyomtatott nagybetűvel) CSOPORT: ALÁÍRÁS: ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN! 2011. december 29. Általános tudnivalók:

Részletesebben

Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 9. előadás Előadó: Dr. Ertsey Imre Statisztikai hipotézis vizsgálatok elsősorban a biometriában alkalmazzák, újabban reprezentatív jellegű ökonómiai vizsgálatoknál, üzemi szinten élelmiszeripari

Részletesebben

Számítógépes döntéstámogatás. Döntési modellek és technikák

Számítógépes döntéstámogatás. Döntési modellek és technikák SZDT-02 p. 1/31 Számítógépes döntéstámogatás Döntési modellek és technikák Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás SZDT-02 p. 2/31

Részletesebben

Számítógépes döntéstámogatás. Genetikus algoritmusok

Számítógépes döntéstámogatás. Genetikus algoritmusok BLSZM-10 p. 1/18 Számítógépes döntéstámogatás Genetikus algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu BLSZM-10 p. 2/18 Bevezetés 1950-60-as

Részletesebben

Számítógépes döntéstámogatás. Statisztikai elemzés

Számítógépes döntéstámogatás. Statisztikai elemzés SZDT-03 p. 1/22 Számítógépes döntéstámogatás Statisztikai elemzés Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás SZDT-03 p. 2/22 Rendelkezésre

Részletesebben

SZÁMÍTÓGÉPES PROBLÉMAMEGOLDÁS

SZÁMÍTÓGÉPES PROBLÉMAMEGOLDÁS Dr. Pál László, Sapientia EMTE, Csíkszereda SZÁMÍTÓGÉPES PROBLÉMAMEGOLDÁS 9.ELŐADÁS Lehetőségelemzés Lehetőségelemzés Egy olyan funkció, amely segítségével úgy tudunk megváltoztatni adatainkat, hogy a

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Biostatisztika Összefoglalás

Biostatisztika Összefoglalás Biostatisztika Összefoglalás A biostatisztika vizsga A biostatisztika vizsga az Orvosi fizika és statisztika I. fizika vizsgájával egy napon történik. A vizsga keretében 30 perc alatt 0 kérdésre kell válaszolni

Részletesebben

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő

Részletesebben

Matematikai modellek megoldása számítógéppel Solver Lingo

Matematikai modellek megoldása számítógéppel Solver Lingo Matematikai modellek megoldása számítógéppel Solver Lingo Készítette: Dr. Ábrahám István A matematikai modellek számítógépes megoldásait példákkal mutatjuk be. Példa: Négy erőforrás felhasználásával négyféle

Részletesebben

EuroOffice Optimalizáló (Solver)

EuroOffice Optimalizáló (Solver) 1. oldal EuroOffice Optimalizáló (Solver) Az EuroOffice Optimalizáló egy OpenOffice.org bővítmény, ami gyors algoritmusokat kínál lineáris programozási és szállítási feladatok megoldására. Szimplex módszer

Részletesebben

Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely.

Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely. Kiválasztás A változó szerint Egymintás t-próba Mann-Whitney U-test paraméteres nem-paraméteres Varianciaanalízis De melyiket válasszam? Kétmintás t-próba Fontos, hogy mindig a kérdésnek és a változónak

Részletesebben

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 15. Nemparaméteres próbák Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date: November

Részletesebben

Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat

Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi fizika és statisztika I. előadás 2016.11.09 Orvosi

Részletesebben

BIOMETRIA (H 0 ) 5. Előad. zisvizsgálatok. Hipotézisvizsg. Nullhipotézis

BIOMETRIA (H 0 ) 5. Előad. zisvizsgálatok. Hipotézisvizsg. Nullhipotézis Hipotézis BIOMETRIA 5. Előad adás Hipotézisvizsg zisvizsgálatok Tudományos hipotézis Nullhipotézis feláll llítása (H ): Kétmintás s hipotézisek Munkahipotézis (H a ) Nullhipotézis (H ) > = 1 Statisztikai

Részletesebben

Korreláció és lineáris regresszió

Korreláció és lineáris regresszió Korreláció és lineáris regresszió Két folytonos változó közötti összefüggés vizsgálata Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika és Statisztika I. előadás 2016.11.02.

Részletesebben

Számítógépes döntéstámogatás. Fogalmakat is kezelni tudó számítógépes döntéstámogatás A DoctuS rendszer

Számítógépes döntéstámogatás. Fogalmakat is kezelni tudó számítógépes döntéstámogatás A DoctuS rendszer SZDT-07 p. 1/20 Számítógépes döntéstámogatás Fogalmakat is kezelni tudó számítógépes döntéstámogatás A DoctuS rendszer Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu

Részletesebben

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a

Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre

Részletesebben

Adatok statisztikai értékelésének főbb lehetőségei

Adatok statisztikai értékelésének főbb lehetőségei Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció

Részletesebben

Növényvédő szerek A 500 0 0 0 0 65000 B 0 0 50 500 500 60000 C 50 25 0 50 50 12000 D 0 25 5 50 0 6000

Növényvédő szerek A 500 0 0 0 0 65000 B 0 0 50 500 500 60000 C 50 25 0 50 50 12000 D 0 25 5 50 0 6000 A feladat megoldása során az Excel 2010 használata a javasolt. A feladat elvégzése során a következőket fogjuk gyakorolni: Termelési és optimalizálási feladatok megoldása. Mátrixműveletek alkalmazása.

Részletesebben

egyetemi jegyzet Meskó Balázs

egyetemi jegyzet Meskó Balázs egyetemi jegyzet 2011 Előszó 2. oldal Tartalomjegyzék 1. Bevezetés 4 1.1. A matematikai statisztika céljai.............................. 4 1.2. Alapfogalmak......................................... 4 2.

Részletesebben

A biostatisztika alapfogalmai, hipotézisvizsgálatok. Dr. Boda Krisztina Boda PhD SZTE ÁOK Orvosi Informatikai Intézet

A biostatisztika alapfogalmai, hipotézisvizsgálatok. Dr. Boda Krisztina Boda PhD SZTE ÁOK Orvosi Informatikai Intézet A biostatisztika alapfogalmai, hipotézisvizsgálatok Dr. Boda Krisztina Boda PhD SZTE ÁOK Orvosi Informatikai Intézet Hipotézisvizsgálatok A hipotézisvizsgálat során a rendelkezésre álló adatok (statisztikai

Részletesebben

Biometria az orvosi gyakorlatban. Számítógépes döntéstámogatás

Biometria az orvosi gyakorlatban. Számítógépes döntéstámogatás SZDT-01 p. 1/23 Biometria az orvosi gyakorlatban Számítógépes döntéstámogatás Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Gyakorlat SZDT-01 p.

Részletesebben

Biostatisztika VIII. Mátyus László. 19 October

Biostatisztika VIII. Mátyus László. 19 October Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.

Részletesebben

Matematika III. 9. Statisztikai hipotézisek Prof. Dr. Závoti, József

Matematika III. 9. Statisztikai hipotézisek Prof. Dr. Závoti, József Matematika III. 9. Statisztikai hipotézisek Prof. Dr. Závoti, József Matematika III. 9. : Statisztikai hipotézisek Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek

Részletesebben

Számítógépes döntéstámogatás. Döntések fuzzy környezetben Közelítő következtetések

Számítógépes döntéstámogatás. Döntések fuzzy környezetben Közelítő következtetések BLSZM-09 p. 1/17 Számítógépes döntéstámogatás Döntések fuzzy környezetben Közelítő következtetések Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu

Részletesebben

Egyes logisztikai feladatok megoldása lineáris programozás segítségével. - bútorgyári termelési probléma - szállítási probléma

Egyes logisztikai feladatok megoldása lineáris programozás segítségével. - bútorgyári termelési probléma - szállítási probléma Egyes logisztikai feladatok megoldása lineáris programozás segítségével - bútorgyári termelési probléma - szállítási probléma Egy bútorgyár polcot, asztalt és szekrényt gyárt faforgácslapból. A kereskedelemben

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem.

Kabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem. Kabos: Statisztika II. ROC elemzések 10.1 ROC elemzések Szenzitivitás és specificitás a jelfeldolgozás szóhasználatával A riasztóberendezés érzékeli, ha támadás jön, és ilyenkor riaszt. Máskor nem. TruePositiveAlarm:

Részletesebben

A konfidencia intervallum képlete: x± t( α /2, df )

A konfidencia intervallum képlete: x± t( α /2, df ) 1. feladat. Egy erdőben az egy fészekben levő tojásszámokat vizsgáltuk egy madárfajnál. A következő tojásszámokat találtuk: 1, 1, 1,,,,,,, 3, 3, 3, 3, 3, 4, 4, 5, 6, 7. Mi a mintának a minimuma, maximuma,

Részletesebben

S Z Á L L Í T Á S I F E L A D A T

S Z Á L L Í T Á S I F E L A D A T Döntéselmélet S Z Á L L Í T Á S I F E L A D A T Szállítási feladat meghatározása Speciális lineáris programozási feladat. Legyen adott m telephely, amelyeken bizonyos fajta, tetszés szerint osztható termékből

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

Táblázatkezelés 5. - Függvények

Táblázatkezelés 5. - Függvények Táblázatkezelés 5. - Függvények Eddig mi magunk készítettünk képleteket (számolási utasításokat). A bonyolultabb, programozók által készített, Excelbe beépített képleteket függvényeknek nevezik. Táblázatkezelőnk

Részletesebben

Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat

Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat 7. lecke Paraméter becslés Konfidencia intervallum Hipotézis vizsgálat feladata Paraméter becslés és konfidencia

Részletesebben

Kézikönyv. Nyitott tételek átértékelése

Kézikönyv. Nyitott tételek átértékelése Kézikönyv Nyitott tételek átértékelése Tartalomjegyzék 1 ABAS-ERP UTASÍTÁS ÁTTEKINTÉS... 4 2 NYITOTT TÉTELEK ÁTÉRTÉKELÉSE... 6 3 OBJEKTUM KIVÁLASZTÁS - NYITOTT TÉTEL MOZGÁS... 8 4 NYITOTT TÉTELEK ÁTÉRTÉKELÉSE...

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 8. rész: Statisztikai eszköztár: Alapfokú statisztikai ismeretek Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Nyolcadik rész Statisztikai eszköztár: Alapfokú statisztikai

Részletesebben

Számítógépes döntéstámogatás. Bevezetés és tematika

Számítógépes döntéstámogatás. Bevezetés és tematika SZDT-01 p. 1/18 Számítógépes döntéstámogatás Bevezetés és tematika Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás SZDT-01 p. 2/18 SZDT-01

Részletesebben

Ismertető A Solver telepítése, illetve indítása A Solver célcella módosuló cellák A feltételek általában a módosuló cellákra hivatkozó képletek.

Ismertető A Solver telepítése, illetve indítása A Solver célcella módosuló cellák A feltételek általában a módosuló cellákra hivatkozó képletek. Ismertető A középiskolában sokféle egyenlet megoldásával megismerkednek a diákok. A matematikaórán azonban csak korlátozott típusú egyenletek fordulnak elő. Nem is cél az egyenletmegoldás általános tárgyalása,

Részletesebben

Populációbecslés és monitoring. Eloszlások és alapstatisztikák

Populációbecslés és monitoring. Eloszlások és alapstatisztikák Populációbecslés és monitoring Eloszlások és alapstatisztikák Eloszlások Az eloszlás megadja, hogy milyen valószínűséggel kapunk egy adott intervallumba tartozó értéket, ha egy olyan populációból veszünk

Részletesebben

SZÁMÍTÁSOK A TÁBLÁZATBAN

SZÁMÍTÁSOK A TÁBLÁZATBAN SZÁMÍTÁSOK A TÁBLÁZATBAN Az Excelben az egyszerű adatok bevitelén kívül számításokat is végezhetünk. Ezeket a cellákba beírt képletek segítségével oldjuk meg. A képlet: olyan egyenlet, amely a munkalapon

Részletesebben

3. előadás. Termelési és optimalizálási feladatok. Dr. Szörényi Miklós, Dr. Kallós Gábor

3. előadás. Termelési és optimalizálási feladatok. Dr. Szörényi Miklós, Dr. Kallós Gábor 3. előadás Termelési és optimalizálási feladatok Dr. Szörényi Miklós, Dr. Kallós Gábor 2014 2015 1 Tartalom Matematikai alapok Matematikai modell Fontosabb feladattípusok Érzékenységvizsgálat Fontos fogalmak

Részletesebben

Valószínűségszámítás és statisztika

Valószínűségszámítás és statisztika Valószínűségszámítás és statisztika Programtervező informatikus szak esti képzés Varga László Valószínűségelméleti és Statisztika Tanszék Matematikai Intézet Természettudományi Kar Eötvös Loránd Tudományegyetem

Részletesebben

Alapfogalmak, alapszámítások

Alapfogalmak, alapszámítások Alapfogalmak, alapszámítások Fazekas Tamás Vállalatgazdaságtan szeminárium 1. Vállalati gazdálkodás Gazdálkodás - Gazdaságosság. A gazdálkodás a vállalat számára szűkösen rendelkezésre álló és adott időszakon

Részletesebben

SPSS ALAPISMERETEK. T. Parázsó Lenke

SPSS ALAPISMERETEK. T. Parázsó Lenke SPSS ALAPISMERETEK T. Parázsó Lenke 2 Statistical Package for Social Scienses Statisztikai programcsomag a szociológiai tudományok számára 1968-ban Norman H. Nie, C.Handlai Hull és Dale H. Bent alkották

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.

Részletesebben

Vállalati modellek. Előadásvázlat. dr. Kovács László

Vállalati modellek. Előadásvázlat. dr. Kovács László Vállalati modellek Előadásvázlat dr. Kovács László Vállalati modell fogalom értelmezés Strukturált szervezet gazdasági tevékenység elvégzésére, nyereség optimalizálási céllal Jellemzői: gazdasági egység

Részletesebben

Esettanulmányok és modellek 5

Esettanulmányok és modellek 5 Esettanulmányok és modellek 5 Disztribúciós feladatok Egészségügy Készítette: Dr. Ábrahám István Disztribúció. Az alábbi szállítási feladatban az. és a 2. feladótól a teljes készletet el kell szállítani.

Részletesebben

Gyakorlat 8 1xANOVA. Dr. Nyéki Lajos 2016

Gyakorlat 8 1xANOVA. Dr. Nyéki Lajos 2016 Gyakorlat 8 1xANOVA Dr. Nyéki Lajos 2016 A probléma leírása Azt vizsgáljuk, hogy milyen hatása van a család jövedelmének a tanulók szövegértés teszten elért tanulmányi eredményeire. A minta 59 iskola adatait

Részletesebben

NEMZETKÖZI KÖZGAZDASÁGTAN Kereskedelem

NEMZETKÖZI KÖZGAZDASÁGTAN Kereskedelem NEMZETKÖZI KÖZGAZDASÁGTAN Kereskedelem Kiss Olivér Budapesti Corvinus Egyetem Makroökonómia Tanszék Az alternetívaköltség Az alternatívaköltség megadja, hogy egy adott termék hány egységéről kell lemondanunk

Részletesebben

A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra

A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra Vörös Zsuzsanna NÉBIH RFI tervezési referens 2013. április 17. Egy kis felmérés nem kor Következtetések: 1. a jelenlevők nemi megoszlása:

Részletesebben

Érzékenységvizsgálat

Érzékenységvizsgálat Érzékenységvizsgálat Alkalmazott operációkutatás 5. elıadás 008/009. tanév 008. október 0. Érzékenységvizsgálat x 0 A x b z= c T x max Kapacitások, együtthatók, célfüggvény együtthatók változnak => optimális

Részletesebben

Statisztikai függvények

Statisztikai függvények EXCEL FÜGGVÉNYEK 9/1 Statisztikai függvények ÁTLAG(tartomány) A tartomány terület numerikus értéket tartalmazó cellák értékének átlagát számítja ki. Ha a megadott tartományban nincs numerikus értéket tartalmazó

Részletesebben

Kézikönyv Sarzs (LOT) kezelés - alapok

Kézikönyv Sarzs (LOT) kezelés - alapok Kézikönyv Sarzs (LOT) kezelés - alapok 1 4 Tartalomjegyzék 2 ÁRUCIKK - ÜRES... 10 3 ÁRUCIKK - MEGJELENÍTÉS [10035 BE_S_ANYAG SARZSOS ALAPANYAG]... 12 4 ÁRUCIKK - VÁLTOZTATÁS [10035 BE_S_ANYAG SARZSOS ALAPANYAG]13

Részletesebben

A bergengóc lakosság szemszín szerinti megoszlása a négy tartományban azonos:

A bergengóc lakosság szemszín szerinti megoszlása a négy tartományban azonos: A. Matematikai Statisztika 2.MINTA ZH. 2003 december Név (olvasható) :... A feladatmegoldásnak az alkalmazott matematikai modell valószínűségszámítási ill. statisztikai szóhasználat szerinti megfogalmazását,

Részletesebben

Algoritmusok és adatszerkezetek 2.

Algoritmusok és adatszerkezetek 2. Algoritmusok és adatszerkezetek 2. Varga Balázs gyakorlata alapján Készítette: Nagy Krisztián 1. gyakorlat Nyílt címzéses hash-elés A nyílt címzésű hash táblákban a láncolással ellentétben egy indexen

Részletesebben

Hasonlóságelemzés COCO használatával

Hasonlóságelemzés COCO használatával Hasonlóságelemzés COCO használatával Miért a CoCo?? Mire használhatom a CoCo-t?! Például megállapíthatom, hogy van-e a piacon olyan cég, amely az árhoz és a többiekhez képest kevesebbet vagy többet teljesít.?

Részletesebben

Menedzsment és vállalkozásgazdaságtan

Menedzsment és vállalkozásgazdaságtan Menedzsment és vállalkozásgazdaságtan 4. ZH - számolós feladatok Tartalomjegyzék 1. Készletgazdálkodás 2 1.1. Egy keresked az új................................... 2 1.2. Egy üzem egyik terméke................................

Részletesebben

Lineáris algebra (10A103)

Lineáris algebra (10A103) Lineáris algebra (10A103) Dr. Hartmann Miklós Tudnivalók Honlap: http://www.math.u-szeged.hu/~hartm Jegyzet: Megyesi László: Lineáris algebra. Vizsga: írásbeli, feltétele a Lineáris algebra gyakorlat teljesítése.

Részletesebben

2. Előadás Projekt ütemezés. Solver használata. Salamon Júlia

2. Előadás Projekt ütemezés. Solver használata. Salamon Júlia 2. Előadás Projekt ütemezés. Solver használata. Salamon Júlia Projekt ütemezés Számos nagy projekt tervezésekor használják a CMP (Critical Path Method - Kritikus út módszere) és a PERT (Program Evaluation

Részletesebben

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI,

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI, Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár PhD kurzus. KOKI, 2015.09.17. Mi a statisztika? A sokaság (a sok valami) feletti áttekintés megszerzése, a sokaságról való információszerzés eszköze.

Részletesebben

Számítógépes döntéstámogatás. Bevezetés és tematika

Számítógépes döntéstámogatás. Bevezetés és tematika SZDT-01 p. 1/27 Számítógépes döntéstámogatás Bevezetés és tematika Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás SZDT-01 p. 2/27 SZDT-01

Részletesebben

1 Betétlap. Oldalszám. X. Az adózó képviselői (szükség esetén több oldalon is részletezhető) 1. Képviselő neve: adószáma: Adóazonosító jele:

1 Betétlap. Oldalszám. X. Az adózó képviselői (szükség esetén több oldalon is részletezhető) 1. Képviselő neve: adószáma: Adóazonosító jele: 1 Betétlap X. Az adózó képviselői (szükség esetén több oldalon is részletezhető) Oldalszám 1. Képviselő neve: 2. Képviselő neve: 3. Képviselő neve: 4. Képviselő neve: 5. Képviselő neve: 6. Képviselő neve:

Részletesebben

13. A zöldborsó piacra jellemző keresleti és kínálati függvények a következők P= 600 Q, és P=100+1,5Q, ahol P Ft/kg, és a mennyiség kg-ban értendő.

13. A zöldborsó piacra jellemző keresleti és kínálati függvények a következők P= 600 Q, és P=100+1,5Q, ahol P Ft/kg, és a mennyiség kg-ban értendő. 1. Minden olyan jószágkosarat, amely azonos szükségletkielégítési szintet (azonos hasznosságot) biztosít a fogyasztó számára,.. nevezzük a. költségvetési egyenesnek b. fogyasztói térnek c. közömbösségi

Részletesebben

7. fejezet: Mutatók és tömbök

7. fejezet: Mutatók és tömbök 7. fejezet: Mutatók és tömbök Minden komolyabb programozási nyelvben vannak tömbök, amelyek gondos kezekben komoly fegyvert jelenthetnek. Először is tanuljunk meg tömböt deklarálni! //Tömbök használata

Részletesebben

IV. Változók és csoportok összehasonlítása

IV. Változók és csoportok összehasonlítása IV. Változók és csoportok összehasonlítása Tartalom Összetartozó és független minták Csoportosító változók Két összetartozó minta összehasonlítása Két független minta összehasonlítása Több független minta

Részletesebben

Programozási módszertan. Mohó algoritmusok

Programozási módszertan. Mohó algoritmusok PM-08 p. 1/17 Programozási módszertan Mohó algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu PM-08 p. 2/17 Bevezetés Dinamikus programozás

Részletesebben

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje Operációkutatás 1 NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.

Részletesebben

Mátrixjátékok tiszta nyeregponttal

Mátrixjátékok tiszta nyeregponttal 1 Mátrixjátékok tiszta nyeregponttal 1. Példa. Két játékos Aladár és Bendegúz rendelkeznek egy-egy tetraéderrel, melyek lapjaira rendre az 1, 2, 3, 4 számokat írták. Egy megadott jelre egyszerre felmutatják

Részletesebben

K oz ep ert ek es variancia azonoss ag anak pr ob ai: t-pr oba, F -pr oba m arcius 21.

K oz ep ert ek es variancia azonoss ag anak pr ob ai: t-pr oba, F -pr oba m arcius 21. Középérték és variancia azonosságának próbái: t-próba, F -próba 2012. március 21. Hipotézis álĺıtása Feltételezés: a minta egy adott szempont alapján más populációhoz tartozik, mint b minta. Nullhipotézis

Részletesebben

Excel. Nem összefügg tartomány kijelölése: miután a tartomány els részét kijelöltük, lenyomjuk és nyomva tartjuk a CTRL gombot.

Excel. Nem összefügg tartomány kijelölése: miután a tartomány els részét kijelöltük, lenyomjuk és nyomva tartjuk a CTRL gombot. Excel A tartomány és kijelölése Munkánk során gyakran elfordul, hogy nem egy, hanem több cellából álló területtel kell dolgoznunk. Ezt a területet tartománynak vagy blokknak nevezzük. Cella jelölése: például

Részletesebben

Gyártórendszerek Dinamikája. Gyártórendszerek jellemzése és szerkezete Gyártórendszerekkel kapcsolatos mérnöki feladatok

Gyártórendszerek Dinamikája. Gyártórendszerek jellemzése és szerkezete Gyártórendszerekkel kapcsolatos mérnöki feladatok GyRDin-02 p. 1/20 Gyártórendszerek Dinamikája Gyártórendszerek jellemzése és szerkezete Gyártórendszerekkel kapcsolatos mérnöki feladatok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék

Részletesebben

Javaslat a távhőszolgáltatás díjait szabályozó önkormányzati rendelet mellékletének módosítására

Javaslat a távhőszolgáltatás díjait szabályozó önkormányzati rendelet mellékletének módosítására Gödöllői Távhő Kft. ELŐTERJESZTÉS a Képviselő-testület 2005. december 15-i ülésére Tárgy: Javaslat a távhőszolgáltatás díjait szabályozó önkormányzati rendelet mellékletének módosítására Előterjesztő:

Részletesebben

A minőség gazdasági hatásai

A minőség gazdasági hatásai 5. A minőség gazdasági hatásai 5.1 A minőség költségei A minőség költségeit három nagy csoportra oszthatjuk: az első csoportot a minőség érdekében tett megelőző jellegű intézkedések költségei, a másodikat

Részletesebben

Varianciaanalízis 4/24/12

Varianciaanalízis 4/24/12 1. Feladat Egy póker kártya keverő gép a kártyákat random módon választja ki. A vizsgálatban 1600 választott kártya színei az alábbi gyakorisággal fordultak elő. Vizsgáljuk meg, hogy a kártyák kiválasztása

Részletesebben

Operációkutatás példatár

Operációkutatás példatár 1 Operációkutatás példatár 2 1. Lineáris programozási feladatok felírása és megoldása 1.1. Feladat Egy gazdálkodónak azt kell eldöntenie, hogy mennyi kukoricát és búzát vessen. Ha egységnyi földterületen

Részletesebben

a = 2 + [ i] b = ahol 1 i 162 a hallgató sorszáma a csatolt névsorban, [x] az x szám

a = 2 + [ i] b = ahol 1 i 162 a hallgató sorszáma a csatolt névsorban, [x] az x szám Döntéselmélet házi feladat, 2011-12 tanév II. félév A házi feladat beadása az aláírás feltétele. A házi feladatra adott minősítés az (anyag első felére vonatkozó) jegyben 40% súllyal szerepel, ennek megfelelően

Részletesebben

X PMS 2007 adatgyűjtés eredményeinek bemutatása X PMS ADATGYŰJTÉS

X PMS 2007 adatgyűjtés eredményeinek bemutatása X PMS ADATGYŰJTÉS X PMS ADATGYŰJTÉS 2007 1 Tartalom Összefoglalás...3 A kutatásba beválasztott betegek életkora... 4 A kutatásba bevont betegek nem szerinti megoszlása... 5 Az adatgyűjtés során feltárt diagnózisok megoszlása...

Részletesebben

Eloszlás-független módszerek (folytatás) 14. elıadás ( lecke) 27. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok

Eloszlás-független módszerek (folytatás) 14. elıadás ( lecke) 27. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok Eloszlás-független módszerek (folytatás) 14. elıadás (7-8. lecke) Illeszkedés-vizsgálat 7. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok elemzésére Illeszkedés-vizsgálat Gyakorisági sorok

Részletesebben

Bevezetés az operációkutatásba A lineáris programozás alapjai

Bevezetés az operációkutatásba A lineáris programozás alapjai Bevezetés az operációkutatásba A lineáris programozás alapjai Alkalmazott operációkutatás 1. elıadás 2008/2009. tanév 2008. szeptember 12. Mi az operációkutatás (operations research)? Kialakulása: II.

Részletesebben

Kísérő okmányok felvitele

Kísérő okmányok felvitele Kísérő okmányok felvitele Ez a menüpont lehetővé teszi, hogy direkt módon lehessen borkísérő okmányokat készíteni, az áttekintés használata nélkül. Borkísérő okmányok A menüpont a borkísérő okmányok karbantartására,

Részletesebben

Dr. Karácsony Zsolt. Miskolci Egyetem november

Dr. Karácsony Zsolt. Miskolci Egyetem november Valószínűségszámítás és Matematikai statisztika Dr. Karácsony Zsolt Miskolci Egyetem, Alkalmazott Matematikai Tanszék 2013-2014 tanév 1. félév Miskolci Egyetem 2013. november 11-18 - 25. Dr. Karácsony

Részletesebben

Második lépésben meg kell határozni, hogy az adott sávba jutó nettó árbevételhez mekkora összegő elábé + közvetített szolgáltatások értéke jut.

Második lépésben meg kell határozni, hogy az adott sávba jutó nettó árbevételhez mekkora összegő elábé + közvetített szolgáltatások értéke jut. Dr. Kovács Attila - PÉLDA Iparőzési adómegállapítás -> az elábé és a közvetített szolgáltatások értéke együttes összegének korlátos levonhatósága a nettó árbevételbıl 1. A szabályozás bemutatása egy példán

Részletesebben

Vajon, hogyan működne vállalata, ha a lehető leghatékonyabban használná ki a gyártás, logisztika során erőforrásait

Vajon, hogyan működne vállalata, ha a lehető leghatékonyabban használná ki a gyártás, logisztika során erőforrásait Gondolt már arra, hogy még a legjobban szervezett folyamatok mellett is van tartalék cégében? Tudta, hogy a kihasználatlan erőforrásokban - melyek értéke akár 30% is lehet - mennyi pénz rejtőzik? Vajon,

Részletesebben

A hitelösszehasonlító-program és a kapcsolódó adatszolgáltatás aktuális kérdései. Taksás Katalin Fogyasztóvédelmi osztály május 18.

A hitelösszehasonlító-program és a kapcsolódó adatszolgáltatás aktuális kérdései. Taksás Katalin Fogyasztóvédelmi osztály május 18. A hitelösszehasonlító-program és a kapcsolódó adatszolgáltatás aktuális kérdései Taksás Katalin Fogyasztóvédelmi osztály 2010. május 18. Jogszabályi háttér 45/2008. (XII. 31.) PM rendelet a hitelintézetek

Részletesebben

Gyakorló feladatok (szállítási feladat)

Gyakorló feladatok (szállítási feladat) Gyakorló feladatok (szállítási feladat) 1. feladat Egy élelmiszeripari vállalat 3 konzervgyárából lát el 4 nagy bevásárlóközpontot áruval. Az egyes gyárak által szállítható mennyiségek és az áruházak igényei,

Részletesebben

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai

A szórások vizsgálata. Az F-próba. A döntés. Az F-próba szabadsági fokai 05..04. szórások vizsgálata z F-próba Hogya foguk hozzá? Nullhipotézis: a két szórás azoos, az eltérés véletle (mitavétel). ullhipotézishez tartozik egy ú. F-eloszlás. Szabadsági fokok: számláló: - evező:

Részletesebben

ADATKÖZLŐ LAP VAGYON- és FELELŐSSÉGBIZTOSÍTÁSI DÍJAJÁNLATHOZ

ADATKÖZLŐ LAP VAGYON- és FELELŐSSÉGBIZTOSÍTÁSI DÍJAJÁNLATHOZ ADATKÖZLŐ LAP VAGYON- és FELELŐSSÉGBIZTOSÍTÁSI DÍJAJÁNLATHOZ Szerződő adatai, ha eltér a biztosítottól: Cég neve: Székhely címe: Levelezési címe: Cégjegyzékszám: Adószám: Fő tevékenység: Kapcsolattartó

Részletesebben

Közfoglalkoztatás támogatás megállapítását segítő segédtábla használati útmutatója

Közfoglalkoztatás támogatás megállapítását segítő segédtábla használati útmutatója Közfoglalkoztatás támogatás megállapítását segítő segédtábla használati útmutatója 1.) Általános tudnivalók: A segédtábla két méretben készül, 10, és 50 sort lehet kitölteni. A tábla megnevezéséből amit

Részletesebben