Számítógépes döntéstámogatás. Döntések fuzzy környezetben Közelítő következtetések
|
|
- Fruzsina Vinczené
- 8 évvel ezelőtt
- Látták:
Átírás
1 BLSZM-09 p. 1/17 Számítógépes döntéstámogatás Döntések fuzzy környezetben Közelítő következtetések Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék
2 BLSZM-09 p. 2/17 Döntési szituáció Operációkutatásban a döntéhozatal alapproblémájának formalizálása: 1. Adott a lehetséges alternatíváknak egy jól definiált A halmaza. 2. Az A halmazon definiálunk egy célkritériumot, amely minden alternatívánál pontosan visszatükrözi a döntéshozó rangsorolását. 3. A célkritériumot megadó g : A R valós értékű fügvény esetén olyan a Aalternatívát kell találni, amelyre g(a ) g(a) a A-ra. Az a az optimális döntést adja. Gyakorlatban: több cél, több kritérium alapján kell dönteni.
3 BLSZM-09 p. 3/17 Több cél, több kritérium egyidőben nem lehet minden kritérium szerint optimális megoldást adni kompromisszumos megoldás ha egy alternatíva néhány kritériumnál jobb a többi alternatívánál, rendszerint a további kritériumok szerint már rosszabb több alternatívapár nem hasonlítható össze a végső rendezést adó reláció alkalmazásával többkritériumos döntéshozatalnál több g függvény alapján kell az alternatívákat kiértékelni Modellek: MCDM = multiple criteria decision making
4 BLSZM-09 p. 4/17 MCDM Lépések: 1. a probléma definiálása, struktúrája 2. a kritériumok megválasztása 3. az alternatívák és kritériumok kapcsolatának megadása: mátrix forma (p ij : az i-edik alternatíva értékelését adja a j-edik kritérium szempontjából) folytonos, diszkrét adatokat felhasználó iteratív 4. aggregációs eljárás választás és rendezés
5 BLSZM-09 p. 5/17 Yager max-min módszere Lényege: Legyen A = {a 1,...,a n } az alternatívák egy véges sorozata. Legyen K = {k 1,...,k m } a fuzzy-kritériumoknak egy véges halmaza. Minden k j kritériumhoz (j = 1,...,m) a µ kj (a i ) tartalmazási függvény megadja, hogy milyen jó az a i alternatíva a k j cél szempontjából. Legyenek g 1,...,g m a kritériumok valós súlyszámai, és a súlyszámok összege legyen m. Képezzük k j kritériumnál a következő exponenciálisan súlyozott µ kj (x) tartalmazási függvényt µ kj (a) = [µ kj (a)] g j a A-ra
6 BLSZM-09 p. 6/17 Yager max-min módszere Aggregációs műveletként a minimum műveletet választva a A alternatívánál határozzuk meg az alternatíva µ D (a) hozzátartozási fokát a D fuzzy döntéshez: µ D (a) = min µ kj (a) j = 1,...,m Az a A optimális megoldásnak azon alternatívát kell választanunk, melynél µ D (a) a legnagyobb: µ D (a ) = max(µ D (a)) a A
7 BLSZM-09 p. 7/17 Közelítő következtetések Esettanulmány: Vállalati hitelképesség vizsgálata A vállalat hitelképességét több olyan szempont, kritérium alapján határozza meg a bank, melyek fuzzy halmazokkal jellemezhetők és az eredményt a fuzzy logika módszereivel határozza meg. 1. megközelítés: 28 kritérium - hitelképesség kritériumok hierarchikus struktúrába rendezése - 50 kérelmező adatai alapján 14 fuzzy-logika-művelet kombinálásával összesítették a kritériumok értékeit egy közös, a hitelképességet kifejező értékbe vizsgálatok a feladat nagyon összetett, az eredmény a műveletek választása mellett függ a kritériumok súlyozásától és a kritériumérték definiálásától
8 BLSZM-09 p. 8/17 Vállalati hitelképesség vizsgálata 2. megközelítés: szabályok felírása fuzzy szakértői rendszer a hitelképesség fokának meghatározására 31 kritérium kritériumok közti hierarchia meghatározása a 3 szintű kritériumstruktúra elemei közt a kapcsolatot szabályokkal írták le
9 Összefüggések 2,3 BLSZM-09 p. 9/17
10 Összefüggések 4 BLSZM-09 p. 10/17
11 BLSZM-09 p. 11/17 Cash Flow ráta, dinamikus eladósodás foka A Cash Flow rátát osztályzatokkal és nyelvi változókkal a következőképp definiálták: A dinamikus eladósodás fokát (DEF) hasonlóan definiálták:
12 BLSZM-09 p. 12/17 Szabályok A saját finanszírozási erőt aggregáló szabályok táblázata:
13 BLSZM-09 p. 13/17 Vállalati hitelképesség vizsgálata A működés lényege: Ha az első szinten nemcsak a CF-ráta és a DEF, hanem a többi kritérium értéke is rendelkezésre áll, akkor a rendszer párhuzamosan vizsgálva minden kritériumot, adatvezérelt következtetéssel végrehajtva a szabályokat, folyamatosan aggregálja a nyelvi változók értékeit, végül egy közös értékbe. Mivel 31 kritériummal kell dolgozni és ezek adott hierarchia szerint kapcsolódnak egymáshoz, blokkokba csoportosítva célszerű a fuzzy kritériumokat feldolgozni. Egy lehetséges csoportosítása a kritériumoknak legyen pl. az FB1,FB2,...,FB6.
14 Vállalati hitelképesség vizsgálata BLSZM-09 p. 14/17
15 Vállalati hitelképesség vizsgálata BLSZM-09 p. 15/17
16 Vállalati hitelképesség vizsgálata Nézzük a szabályok működését pl. az A vállalat esetén: A 4.1%-os érték a CF-ráta rossz és közepes nyelvi változóit különböző mértékben aktivizálja. A 7.9 év a DEF közepes és rossz nyelvi változóit aktivizálja. E változók az 1., 2., 4. és 5. szabályt egyszerre aktivizálják és a közös, aggregált eredményt a saját finanszírozási erő nagyon rossz, rossz és közepes nyelvi változók különbözőképp aktivizált halmazainak együttese lesz. Az aktivizálás mértékét a nyelvi változók tartalmazási függvényei befolyásolják. Pl. a DEF közepes nyelvi változója a 7.9 értéknél a 0.43 tartalmazási függvény értéket veszi fel. Így a szabály konklúziójában található nyelvi változó görbéjét minden ponton 0.43-mal szorozza. Az eredmény-defuzzifikálás egyetlen értéket jelöl ki végeredménynek. BLSZM-09 p. 16/17
17 BLSZM-09 p. 17/17 Vállalati hitelképesség vizsgálata Eredmények: Az eredmények fuzzy halmazai jól szemléltetik, hogy a három vállalat saját finanszírozási ereje különbözőképpen aktivizált halmazokból számolható és defuzzifikálással összehasonlítható eredményeket kapunk: Az eredmény csak egy részeredmény a teljes rendszerben. Hasonló módon minden blokkot felírva, ill. előtte minden kritériumot definiálva, a rendszer a kiszámolt értékeket rendre továbbítja a következő blokk felé, és az utolsó, FB6 blokk pedig a végeredményt, a hitelképesség fokát szolgáltatja.
Intelligens technikák k a
Intelligens technikák k a döntéstámogatásban Döntések fuzzy környezetben Starkné Dr. Werner Ágnes 1 Példa: Alternatívák: a 1,a 2,a 3 Kritériumok: k 1,k 2, k 3,k 4 Az alternatívák értékelését az egyes kritériumok
Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA
SZDT-03 p. 1/24 Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás
Számítógépes döntéstámogatás. Genetikus algoritmusok
BLSZM-10 p. 1/18 Számítógépes döntéstámogatás Genetikus algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu BLSZM-10 p. 2/18 Bevezetés 1950-60-as
Programozási módszertan. Dinamikus programozás: A leghosszabb közös részsorozat
PM-07 p. 1/13 Programozási módszertan Dinamikus programozás: A leghosszabb közös részsorozat Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu PM-07
Algoritmusok Tervezése. Fuzzy rendszerek Dr. Bécsi Tamás
Algoritmusok Tervezése Fuzzy rendszerek Dr. Bécsi Tamás Bevezetés Mese a homokkupacról és a hidegről és a hegyekről Bevezetés, Fuzzy történet Két értékű logika, Boole algebra Háromértékű logika n értékű
Döntéselméleti modellek
Döntéselméleti modellek gyakorlat Berta Árpád Követelmények A félév során 40 pont szerezhető 0-19 pont : elégtelen (1) 20-24 pont : elégséges (2) 25-29 pont : közepes (3) 30-34 pont : jó (4) 35-40 pont
Összehasonlítások hibái
Összehasonlítások hibái Kiegészítő anyag BME Filozófia és Tudománytörténet Tanszék http://www.filozofia.bme.hu/ Összehasonlítások Az összehasonlítás alapkérdése: a lehetőségek közül melyik a legjobb egy
Programozási módszertan. Mohó algoritmusok
PM-08 p. 1/17 Programozási módszertan Mohó algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu PM-08 p. 2/17 Bevezetés Dinamikus programozás
Számítógépes döntéstámogatás. Bevezetés és tematika
SZDT-01 p. 1/18 Számítógépes döntéstámogatás Bevezetés és tematika Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás SZDT-01 p. 2/18 SZDT-01
Döntéselőkészítés. I. előadás. Döntéselőkészítés. Előadó: Dr. Égertné dr. Molnár Éva. Informatika Tanszék A 602 szoba
I. előadás Előadó: Dr. Égertné dr. Molnár Éva Informatika Tanszék A 602 szoba Tárggyal kapcsolatos anyagok megtalálhatók: http://www.sze.hu/~egertne Konzultációs idő: (páros tan. hét) csütörtök 10-11 30
A F u z z y C L I P S a l a p j a i
A F u z z y C L I P S a l a p j a i A CLIPS rendszer bovítése a bizonytalan információk hatékony kezelése céljából. K é t f é l e b i z o n y t a l a n s á g t á m o g a t á s a : Pontosan nem megfogalmazható
Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió
SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás
4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI
4. Fuzzy relációk Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Klasszikus relációk Halmazok Descartes-szorzata Relációk 2 Fuzzy relációk Fuzzy relációk véges alaphalmazok
Programozási módszertan. Függvények rekurzív megadása "Oszd meg és uralkodj" elv, helyettesítő módszer, rekurziós fa módszer, mester módszer
PM-03 p. 1/13 Programozási módszertan Függvények rekurzív megadása "Oszd meg és uralkodj" elv, helyettesítő módszer, rekurziós fa módszer, mester módszer Werner Ágnes Villamosmérnöki és Információs Rendszerek
10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK
MATEMATIK A 9. évfolyam 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK Tanári útmutató 2 MODULLEÍRÁS A modul
Dinamikus modellek szerkezete, SDG modellek
Diagnosztika - 3. p. 1/2 Modell Alapú Diagnosztika Diszkrét Módszerekkel Dinamikus modellek szerkezete, SDG modellek Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék Diagnosztika - 3.
Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA
SZDT-04 p. 1/30 Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás
Dr. Kalló Noémi. Termelés- és szolgáltatásmenedzsment. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék. Dr.
Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Ismertesse a legfontosabb előrejelzési módszereket és azok gyakorlati
Intelligens irányítások
Intelligens irányítások Fuzzy halmazok Ballagi Áron Széchenyi István Egyetem Automatizálási Tsz. Arisztotelészi szi logika 2 Taichi Yin-Yang Yang logika 3 Hagyományos és Fuzzy halmaz Egy hagyományos halmaz
Páros összehasonlítás mátrixokból számolt súlyvektorok Pareto-optimalitása
Páros összehasonlítás mátrixokból számolt súlyvektorok Pareto-optimalitása Bozóki Sándor 1,2, Fülöp János 1,3 1 MTA SZTAKI; 2 Budapesti Corvinus Egyetem 3 Óbudai Egyetem XXXI. Magyar Operációkutatási Konferencia
5. A kiterjesztési elv, nyelvi változók
5. A kiterjesztési elv, nyelvi változók Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 A kiterjesztési elv 2 Nyelvi változók A kiterjesztési elv 237 A KITERJESZTÉSI ELV A
Bevezetés Standard 1 vállalatos feladatok Standard több vállalatos feladatok 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 10. Előadás Vállalatelhelyezés Vállalatelhelyezés Amikor egy új telephelyet kell nyitni,
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék 2017/18 2. félév 3. Előadás Dr. Kulcsár Gyula egyetemi docens Kereső algoritmusok alkalmazása
Történet John Little (1970) (Management Science cikk)
Információ menedzsment Szendrői Etelka Rendszer- és Szoftvertechnológia Tanszék szendroi@witch.pmmf.hu Vezetői információs rendszerek Döntéstámogató rendszerek (Decision Support Systems) Döntések információn
1. Alapfogalmak Algoritmus Számítási probléma Specifikáció Algoritmusok futási ideje
1. Alapfogalmak 1.1. Algoritmus Az algoritmus olyan elemi műveletekből kompozíciós szabályok szerint felépített összetett művelet, amelyet megadott feltételt teljesítő bemeneti adatra végrehajtva, a megkívánt
Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és
Lineáris algebra numerikus módszerei
Hermite interpoláció Tegyük fel, hogy az x 0, x 1,..., x k [a, b] különböző alappontok (k n), továbbá m 0, m 1,..., m k N multiplicitások úgy, hogy Legyenek adottak k m i = n + 1. i=0 f (j) (x i ) = y
I. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI
I. A DIGITÁLIS ÁRAMKÖRÖK ELMÉLETI ALAPJAI 1 A digitális áramkörökre is érvényesek a villamosságtanból ismert Ohm törvény és a Kirchhoff törvények, de az elemzés és a tervezés rendszerint nem ezekre épül.
Többtényezős döntési problémák
KIPA módszer: Lépései: 1. értékelési tényezők páros elrendezése, 2. páros összehasonlítás elvégzése, 3. egyéni preferencia táblázatok felvétele, konzisztencia mutatók meghatározása, 4. aggregált preferencia
Gauss-Seidel iteráció
Közelítő és szimbolikus számítások 5. gyakorlat Iterációs módszerek: Jacobi és Gauss-Seidel iteráció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 ITERÁCIÓS
7. Gyakorlat A relációs adatmodell műveleti része
7. Gyakorlat A relációs adatmodell műveleti része Relációs algebra: az operandusok és az eredmények relációk; azaz a relációs algebra műveletei zártak a relációk halmazára Műveletei: Egy operandusú Két
Vállalatgazdaságtan. Minden, amit a Vállalatról tudni kell
Vállalatgazdaságtan Minden, amit a Vállalatról tudni kell 1 Termelési rendszer vizsgálata 2 képzeljük el az alábbi helyzetet örököltünk egy gyárat mit csináljunk vele? működtessük de hogyan? Hogyan működik
Páros összehasonlítás mátrixok empirikus vizsgálata. Bozóki Sándor
Páros összehasonlítás mátrixok empirikus vizsgálata Bozóki Sándor MTA SZTAKI Operációkutatás és Döntési Rendszerek Kutatócsoport Budapesti Corvinus Egyetem Operációkutatás és Aktuáriustudományok Tanszék
Operációkutatás. Vaik Zsuzsanna. ajánlott jegyzet: Szilágyi Péter: Operációkutatás
Operációkutatás Vaik Zsuzsanna Vaik.Zsuzsanna@ymmfk.szie.hu ajánlott jegyzet: Szilágyi Péter: Operációkutatás Operációkutatás Követelmények: Aláírás feltétele: foglalkozásokon való részvétel + a félév
VÁLLALATGAZDASÁGTAN II. Döntési Alapfogalmak
Vállalkozási VÁLLALATGAZDASÁGTAN II. Tantárgyfelelős: Prof. Dr. Illés B. Csaba Előadó: Dr. Gyenge Balázs Az ökonómiai döntés fogalma Vállalat Környezet Döntések sorozata Jövő jövőre vonatkozik törekszik
Számítógépes döntéstámogatás. Statisztikai elemzés
SZDT-03 p. 1/22 Számítógépes döntéstámogatás Statisztikai elemzés Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás SZDT-03 p. 2/22 Rendelkezésre
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 1. estis képzés 2017. ősz 1. Diszkrét matematika 1. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
Adatszerkezetek Adatszerkezet fogalma. Az értékhalmaz struktúrája
Adatszerkezetek Összetett adattípus Meghatározói: A felvehető értékek halmaza Az értékhalmaz struktúrája Az ábrázolás módja Műveletei Adatszerkezet fogalma Direkt szorzat Minden eleme a T i halmazokból
TARTALOMJEGYZÉK. TARTALOMJEGYZÉK...vii ELŐSZÓ... xiii BEVEZETÉS A lágy számításról A könyv célkitűzése és felépítése...
TARTALOMJEGYZÉK TARTALOMJEGYZÉK...vii ELŐSZÓ... xiii BEVEZETÉS...1 1. A lágy számításról...2 2. A könyv célkitűzése és felépítése...6 AZ ÖSSZETEVŐ LÁGY RENDSZEREK...9 I. BEVEZETÉS...10 3. Az összetevő
A Termelésmenedzsment alapjai tárgy gyakorló feladatainak megoldása
azdaság- és Társadalomtudományi Kar Ipari Menedzsment és Vállakozásgazdaságtan Tanszék A Termelésmenedzsment alapjai tárgy gyakorló feladatainak megoldása Készítette: dr. Koltai Tamás egyetemi tanár Budapest,.
Többtényezős döntési problémák
KIPA módszer: Lépései:. értékelési tényezők páros elrendezése, 2. páros összehasonlítás elvégzése, 3. egyéni preferencia táblázatok felvétele, konzisztencia mutatók meghatározása, 4. aggregált preferencia
2018, Diszkrét matematika
Diszkrét matematika 4. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2018, őszi félév Miről volt szó az elmúlt előadáson? számtartományok: racionális
TÖBBSZEMPONTÚ DÖNTÉSI MODELL ALKALMAZÁSA A HADITECHNIKAI ESZKÖZÖK FEJLESZTÉSÉNEK ÉS KORSZERŰSÍTÉSÉNEK FOLYAMATÁBAN
XIII. Évfolyam 4. szám 2018. december TÖBBSZEMPONTÚ DÖNTÉSI MODELL ALKALMAZÁSA A HADITECHNIKAI ESZKÖZÖK FEJLESZTÉSÉNEK ÉS KORSZERŰSÍTÉSÉNEK FOLYAMATÁBAN APPLICATION OF MULTI-CRITERIA DECISION MAKING IN
Megkülönböztetett kiszolgáló routerek az
Megkülönböztetett kiszolgáló routerek az Interneten Megkülönböztetett kiszolgálás A kiszolgáló architektúrák minősége az Interneten: Integrált kiszolgálás (IntServ) Megkülönböztetett kiszolgálás (DiffServ)
Gyártórendszerek Dinamikája. Gyártórendszerek jellemzése és szerkezete Gyártórendszerekkel kapcsolatos mérnöki feladatok
GyRDin-02 p. 1/20 Gyártórendszerek Dinamikája Gyártórendszerek jellemzése és szerkezete Gyártórendszerekkel kapcsolatos mérnöki feladatok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék
A multikritériumos elemzés célja, alkalmazási területe, adat-transzformációs eljárások, az osztályozási eljárások lényege
A multkrtérumos elemzés célja, alkalmazás területe, adat-transzformácós eljárások, az osztályozás eljárások lényege Cél: tervváltozatok, objektumok értékelése (helyzetértékelés), döntéshozatal segítése
Logika es sz am ıt aselm elet I. r esz Logika 1/36
1/36 Logika és számításelmélet I. rész Logika 2/36 Elérhetőségek Tejfel Máté Déli épület, 2.606 matej@inf.elte.hu http://matej.web.elte.hu Tankönyv 3/36 Tartalom 4/36 Bevezető fogalmak Ítéletlogika Ítéletlogika
Gyártórendszerek irányítási struktúrái
GyRDin-10 p. 1/2 Gyártórendszerek Dinamikája Gyártórendszerek irányítási struktúrái Hangos Katalin Villamosmérnöki és Információs Rendszerek Tanszék e-mail: hangos@scl.sztaki.hu GyRDin-10 p. 2/2 Tartalom
A félév során előkerülő témakörök
A félév során előkerülő témakörök rekurzív algoritmusok rendező algoritmusok alapvető adattípusok, adatszerkezetek, és kapcsolódó algoritmusok dinamikus programozás mohó algoritmusok gráf algoritmusok
Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei
A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.
Nemlineáris programozás 2.
Optimumszámítás Nemlineáris programozás 2. Többváltozós optimalizálás feltételek mellett. Lagrange-feladatok. Nemlineáris programozás. A Kuhn-Tucker feltételek. Konvex programozás. Sydsaeter-Hammond: 18.1-5,
Bozóki Sándor február 16. Érzékenységvizsgálat a Promethee módszertanban p. 1/18
Érzékenységvizsgálat a Promethee módszertanban Bozóki Sándor 2011. február 16. Érzékenységvizsgálat a Promethee módszertanban p. 1/18 Vázlat PROMETHEE Parciális érzékenységvizsgálat egy szempontsúly változhat
KOVÁCS BÉLA, MATEMATIKA I.
KOVÁCS BÉLA, MATEmATIkA I. 4 IV. FÜGGVÉNYEk 1. LEkÉPEZÉSEk, függvények Definíció Legyen és két halmaz. Egy függvény -ből -ba egy olyan szabály, amely minden elemhez pontosan egy elemet rendel hozzá. Az
6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK. BSc Matematika I. BGRMA1HNND, BGRMA1HNNC
6. ELŐADÁS DIFFERENCIÁLSZÁMÍTÁS II. DIFFERENCIÁLÁSI SZABÁLYOK BSc Matematika I. BGRMAHNND, BGRMAHNNC A következő diákon szereplő állítások mindegyikét az előadáson fogjuk igazolni, és példákkal bőségesen
Eötvös Loránd Tudományegyetem Természettudományi Kar. Fuzzy optimalizálás. BSc Szakdolgozat
Eötvös Loránd Tudományegyetem Természettudományi Kar Fuzzy optimalizálás BSc Szakdolgozat Készítette: Rajzinger Zsanett Matematika BSc Matematikai elemző szakirány Témavezető: Fullér Róbert Óbudai Egyetem
Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK
Sorozatok határértéke SOROZAT FOGALMA, MEGADÁSA, ÁBRÁZOLÁSA; KORLÁTOS ÉS MONOTON SOROZATOK Sorozat fogalma Definíció: Számsorozaton olyan függvényt értünk, amelynek értelmezési tartománya a pozitív egész
Diszkrét matematika I.
Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 3. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Relációk Diszkrét matematika I. középszint 2014.
Előfeltétel: legalább elégséges jegy Diszkrét matematika II. (GEMAK122B) tárgyból
ÜTEMTERV Programozás-elmélet c. tárgyhoz (GEMAK233B, GEMAK233-B) BSc gazdaságinformatikus, programtervező informatikus alapszakok számára Óraszám: heti 2+0, (aláírás+kollokvium, 3 kredit) 2019/20-es tanév
Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével
Ellátási lánc optimalizálás P-gráf módszertan alkalmazásával mennyiségi és min ségi paraméterek gyelembevételével Pekárdy Milán, Baumgartner János, Süle Zoltán Pannon Egyetem, Veszprém XXXII. Magyar Operációkutatási
PTE PMMFK Levelező-távoktatás, villamosmérnök szak
PTE PMMFK Levelező-távoktatás, villamosmérnök szak MATEMATIKA (A tantárgy tartalma és a tananyag elsajátításának időterve.) Összeállította: Kis Miklós adjunktus Tankönyvek Megegyeznek az 1. és 2. félévben
Nagy Gábor compalg.inf.elte.hu/ nagy ősz
Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.
Logika es sz am ıt aselm elet I. r esz Logika Harmadik el oad as 1/33
1/33 Logika és számításelmélet I. rész Logika Harmadik előadás Tartalom 2/33 Elsőrendű logika bevezetés Az elsőrendű logika szintaxisa 3/33 Nulladrendű állítás Az ítéletlogikában nem foglalkoztunk az álĺıtások
MENEDZSMENT ALAPJAI. Problémamegoldás, Döntéshozatal
MENEDZSMENT ALAPJAI Problémamegoldás, Döntéshozatal PROBLÉMAMEGOLDÁS, DÖNTÉSHOZATAL 1. A problémamegoldás folyamata, módszerei 2. A vezetői döntések típusai 3. Döntéshozatali folyamat 4. Vezetői döntéshozótípusok
Megnevezés 2008 2009
Vagyon Tartósan befektetett eszközök aránya Befektetett eszközök / Eszközök összesen Befektetett eszközök fedezettsége Saját tőke / Befektetett eszközök Tárgyi eszközök fedezettsége Saját tőke / Tárgyi
Fraktálok. Hausdorff távolság. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék március 14.
Fraktálok Hausdorff távolság Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2015. március 14. TARTALOMJEGYZÉK 1 of 36 Halmazok távolsága ELSŐ MEGKÖZELÍTÉS Legyen (S, ρ) egy metrikus tér, A, B S, valamint
Biometria az orvosi gyakorlatban. Számítógépes döntéstámogatás
SZDT-01 p. 1/23 Biometria az orvosi gyakorlatban Számítógépes döntéstámogatás Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Gyakorlat SZDT-01 p.
Digitális jelfeldolgozás
Digitális jelfeldolgozás Kvantálás Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék magyar.attila@virt.uni-pannon.hu 2010. szeptember 15. Áttekintés
BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai
BOOLE ALGEBRA Logika: A konjunkció és diszjunkció tulajdonságai 1.a. A B B A 2.a. (A B) C A (B C) 3.a. A (A B) A 4.a. I A I 5.a. A (B C) (A B) (A C) 6.a. A A I 1.b. A B B A 2.b. (A B) C A (B C) 3.b. A
Függvény határérték összefoglalás
Függvény határérték összefoglalás Függvény határértéke: Def: Függvény: egyértékű reláció. (Vagyis minden értelmezési tartománybeli elemhez, egyértelműen rendelünk hozzá egy elemet az értékkészletből. Vagyis
Gyártórendszerek dinamikája
GYRD-7 p. 1/17 Gyártórendszerek dinamikája Gyártásütemezés: az ütemezések analízise Gantt-chart módszerrel, az optimalizálási feladat kitűzése és változatai, megoldás a kritikus út módszerrel Werner Ágnes
Dunaújvárosi Főiskola Informatikai Intézet
Dunaújvárosi Főiskola Informatikai Intézet Bizonytalanságkezelés Dr. Seebauer Márta főiskolai tanár seebauer.marta@szgti.bmf.hu Bizonytalan tudás forrása A klasszikus logikában a kijelentések vagy igazak
Dr. Kalló Noémi. Termelésszervezés, Termelési és szolgáltatási döntések elemzése. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék
Termelésszervezés, Termelési és szolgáltatási döntések elemzése egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelésszervezés 17.Ismertesse az anyagszükséglet-tervezés input információit,
Totális Unimodularitás és LP dualitás. Tapolcai János
Totális Unimodularitás és LP dualitás Tapolcai János tapolcai@tmit.bme.hu 1 Optimalizálási feladat kezelése NP-nehéz Hatékony megoldás vélhetően nem létezik Jó esetben hatékony algoritmussal közelíteni
Diszkrét matematika I.
Diszkrét matematika I. középszint 2013 ősz 1. Diszkrét matematika I. középszint 9. előadás Mérai László merai@compalg.inf.elte.hu compalg.inf.elte.hu/ merai Komputeralgebra Tanszék 2013 ősz Halmazok Diszkrét
Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén
Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén Dombi József Szegedi Tudományegyetem Bevezetés - ID3 (Iterative Dichotomiser 3) Az ID algoritmusok egy elemhalmaz felhasználásával
Struktúra nélküli adatszerkezetek
Struktúra nélküli adatszerkezetek Homogén adatszerkezetek (minden adatelem azonos típusú) osztályozása Struktúra nélküli (Nincs kapcsolat az adatelemek között.) Halmaz Multihalmaz Asszociatív 20:24 1 A
Alapszintű formalizmusok
Alapszintű formalizmusok dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Mit szeretnénk elérni? Informális tervek Informális követelmények Formális modell Formalizált követelmények
2018, Diszkrét matematika
Diszkrét matematika 3. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2018, őszi félév Miről volt szó az elmúlt előadáson? számtartományok: természetes
Összeállította Horváth László egyetemi tanár
Óbudai Egyetem Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek Intézet Intelligens Mérnöki Rendszerek Szakirány a Mérnök informatikus alapszakon Összeállította Horváth László Budapest, 2011
Opkut deníciók és tételek
Opkut deníciók és tételek Készítette: Bán József Deníciók 1. Deníció (Lineáris programozási feladat). Keressük meg adott lineáris, R n értelmezési tartományú függvény, az ún. célfüggvény széls értékét
Számítógépes döntéstámogatás. Fogalmakat is kezelni tudó számítógépes döntéstámogatás A DoctuS rendszer
SZDT-07 p. 1/20 Számítógépes döntéstámogatás Fogalmakat is kezelni tudó számítógépes döntéstámogatás A DoctuS rendszer Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu
Döntési rendszerek I.
Döntési rendszerek I. SZTE Informatikai Intézet Számítógépes Optimalizálás Tanszék Készítette: London András 3. Gyakorlat Egy újságárus 20 centért szerez be egy adott napilapot a kiadótól és 25-ért adja
Integrált gyártórendszerek. Ágens technológia - ágens rendszer létrehozása Gyakorlat
IGYR p. 1/17 Integrált gyártórendszerek Ágens technológia - ágens rendszer létrehozása Gyakorlat Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu IGYR
minden x D esetén, akkor x 0 -at a függvény maximumhelyének mondjuk, f(x 0 )-at pedig az (abszolút) maximumértékének.
Függvények határértéke és folytonossága Egy f: D R R függvényt korlátosnak nevezünk, ha a függvényértékek halmaza korlátos. Ha f(x) f(x 0 ) teljesül minden x D esetén, akkor x 0 -at a függvény maximumhelyének
6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének
6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük
Adatszerkezetek 2. Dr. Iványi Péter
Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat
Intelligens irányítások
Intelligens irányítások Fuzzy következtető rendszerek Ballagi Áron Széchenyi István Egyetem Automatizálási Tsz. 1 Fuzzy következtető rendszer Fuzzy következtető Szabálybázis Fuzzifikáló Defuzzifikáló 2
Algoritmizálás és adatmodellezés tanítása 6. előadás
Algoritmizálás és adatmodellezés tanítása 6. előadás Összetett típusok 1. Rekord 2. Halmaz (+multihalmaz, intervallumhalmaz) 3. Tömb (vektor, mátrix) 4. Szekvenciális file (input, output) Pap Gáborné,
A fontosabb definíciók
A legfontosabb definíciókat jelöli. A fontosabb definíciók [Descartes szorzat] Az A és B halmazok Descartes szorzatán az A és B elemeiből képezett összes (a, b) a A, b B rendezett párok halmazát értjük,
Hatékonyság 1. előadás
Hatékonyság 1. előadás Mi a hatékonyság Bevezetés A hatékonyság helye a programkészítés folyamatában: csak HELYES programra Erőforrásigény: a felhasználó és a fejlesztő szempontjából A hatékonyság mérése
Mátrix-alapú projektkockázatmenedzsment
Mátrix-alapú projektkockázatmenedzsment Hegedűs Csaba, Kosztyán Zsolt Tibor Pannon Egyetem, Kvantitatív Módszerek Intézeti Tanszék XXXII. Magyar Operációkutatási Konferencia Cegléd, 2017.06.14-16. Informatikai
Beruházási és finanszírozási döntések
Beruházási és finanszírozási döntések Dr. Farkas Szilveszter PhD, egyetemi docens BGF, PSZK, Pénzügy Intézeti Tanszék farkas.szilveszter@pszfb.bgf.hu, http://dr.farkasszilveszter.hu Tematika és tananyag
E.4 Markov-láncok E.4 Markov-láncok. Sok sorbanállási hálózat viselkedése leírható "folytonos idejű Markovláncok " segítségével.
E.4 Markov-láncok Sok sorbanállási hálózat viselkedése leírható "folytonos idejű Markovláncok " segítségével. Egy Markov-láncot (MC) meghatároznak az alapját adó sorbanállási hálózat állapotai és az ezek
Kutatás-fejlesztési eredmények a Számítógépes Algoritmusok és Mesterséges Intelligencia Tanszéken. Dombi József
Kutatás-fejlesztési eredmények a Számítógépes Algoritmusok és Mesterséges Intelligencia Tanszéken Dombi József Mesterséges intelligencia Klasszikus megközelítés (A*, kétszemélyes játékok, automatikus tételbizonyítás,
Vezetői információs rendszerek
Vezetői információs rendszerek Kiadott anyag: Vállalat és információk Elekes Edit, 2015. E-mail: elekes.edit@eng.unideb.hu Anyagok: eng.unideb.hu/userdir/vezetoi_inf_rd 1 A vállalat, mint információs rendszer
Követelmény az 5. évfolyamon félévkor matematikából
Követelmény az 5. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Néhány elem kiválasztása adott szempont szerint. Néhány elem sorba rendezése, az összes lehetséges sorrend felsorolása.
Termék modell. Definíció:
Definíció: Termék modell Összetett, többfunkciós, integrált modell (számítógépes reprezentáció) amely leír egy műszaki objektumot annak különböző életfázis szakaszaiban: tervezés, gyártás, szerelés, szervízelés,
Programozás. Bevezetés. Fodor Attila. Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék
Programozás Fodor Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék foa@almos.vein.hu 2010. február 11. Tantárgy célja, szükséges ismeretek Tantárgy célja,
Alternatívák rangsora Rangsor módszerek. Debreceni Egyetem
Döntéstámogató Rendszerek VII. előadás Bekéné Rácz Anett Debreceni Egyetem Definíciók Példa rangsorfordulásra Rangsorokkal kapcsolatos fogalmak Condorcet nyertes: Az az alternatíva, amely az összes többi