Termék modell. Definíció:

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Termék modell. Definíció:"

Átírás

1

2 Definíció: Termék modell Összetett, többfunkciós, integrált modell (számítógépes reprezentáció) amely leír egy műszaki objektumot annak különböző életfázis szakaszaiban: tervezés, gyártás, szerelés, szervízelés, újrafeldolgozás, stb. Termékmodell = adatok rendezett halmaza műszaki, gazdasági, egyéb Számítógépes reprezentáció: létrehozás, szerkesztés, tárolás, megjelenítés

3 Termékmodell = aspektusmodellek halmaza: Koncepcionális modell Geometriai Sajátosság Összeállítás Analízis Dokumentációs Gyártási. Termék modell

4 Geometriai modell Tárgy Matematikai (Geometriai) modell Számítógépes modell Tervezés Analízis fizikai modell, képlet, adat ötlet, egyenlet, adatstruktúra, vázlat függvény algoritmus program Dokumetáció Gyártás Geometriai Modell (definíció: rendezett adathalmaz egy valós vagy tervezett objektum metrikus viszonyainak leírására.

5 Geometriai modell Tartalom: azonosítók geometria: geometriai alapelemek(3d) paraméterek (méretek, forma) lokalizáció(transzláció, forgatás) topológia: topológiai alapelemek + kapcsolatok attribútumok: pl. fizikai tulajdonságok (numerikus, szöveges, szimbolikus) megjelenítési információk: parameters (színek, textúrák)

6 Geometriai modell Terek koordináta rendszerek(kr) fizikai (objektum) tér világ KR modell tér modell KR megjelenítési tér megjelenítési KR Modell típusok adat orientált (explicit) eljárás orientált (implicit)

7 Geometriai modell modell KR világ KR megjelenítési KR

8 3D objektumok geometriai modelljei Drótváz modell Geometria: Topológia: pontok, vonalak 3D a rajzmodell általánosítása 3D geometriai alapelemek, 3D transzformációk csúcsok, élek(élhurkok)

9 3D objektumok geometriai modelljei Drótváz modell Nem egyértelmű reprezentáció

10 3D objektumok geometriai modelljei Drótváz modell Alkalmazás: koncepcionális tervezés, csőhálózat, rúdszerkezet

11 3D objektumok geometriai modelljei Drótváz modell Előnyök: Nem számítható: Számítható: egyszerűség, alacsony erőforrás igény (tárolás, számítás) a modell valóságossága, felületek, tömegek ütközés, NC szerszámpálya, profil (sziluett) vonalak, rejtett vonalak pontok közötti távolság, axonometrikus kép

12 3D objektumok geometriai modelljei Drótváz modell felületvonalakkal kiegészítve Virtuális élek Felület imitáció Drótváz adatstruktúra

13 3D objektumok geometriai modelljei Felületmodell Geometria: Topológia : Alkalmazás: Számítható: felületek(élek mint metszésvonalak) nincs közvetlenül reprezentálva komplex geometria, egyszerű topológia membránok, héjak, lemezalkatrészek NC szerszámpálya, ütközés, valósághű megjelenítés, (takarás, sziluett)

14 3D objektumok geometriai modelljei Felülettípusok: sík négyzetes felületek szabadformájú (parametrikus) felületek

15 3D objektumok geometriai modelljei Testmodell Geometria: + Topológia: Alkalmazás: pontok, vonalak, felületek az adatstruktúrában reprezentálva egyszerű geometria, komplex topológia mindenfajta műszaki objektum

16 3D objektumok geometriai modelljei Számítógépes reprezentáció: Számítógépes reprezentációk : CSG: (alaptestek+ Boole műveletek) nem kiértékelt + = B C1 S1 - = S1 C2 S

17 3D objektumok geometriai modelljei B-rep: palástmodell - kiértékelt

18 3D objektumok geometriai modelljei Felületosztályok: sík henger, kúp, gömb, (tórusz) sarok és éllekerekítő szabadformájú(szobor)

19 3D objektumok geometriai modelljei Térfogatmodell Típusok cellamodell hasáblebontásos(octtree ) izomorf felbontás mátrix struktúra rekurzív, hierarchikus felbontás fa struktúra

20 3D objektumok geometriai modelljei Térfogat modell Diszkrét reprezentáció Közelítő reprezentáció Térfogati információk Alkalmazások: Bonyolult formájú természeti objektumok (fa, emberi test) Bonyolult formájú műszaki objektumok

21 Geometriai modellek a CAD rendszerekben Palástmodell reprezentáció (B-rep): Palást: véges, folytonos, zárt Topológia kapcsolódás, struktúra geometria által indukált topológia Elemei: csúcs él élhurok(gyűrű) lap palást lyuk test V E R F B H S

22 Geometriai modellek a CAD rendszerekben dimenzió topológiai elem geometriai elem definiálás 0 csúcs pont 1 pont 1 él görbe 2 pont 2 lap felület 3 pont 3 test test 4 pont

23 Geometriai modellek a CAD rendszerekben B Rep. modell struktúra test Topológia Geometria palást lap felület élhurok él csúcs görbe pont

24 Geometriai modellek a CAD rendszerekben Kombinatorikus topológia Euler Poincaré (Poliéder) tétel gömbbel homeomorf testekre V E + F = e Euler karakterisztika: e =2

25 Geometriai modellek a CAD rendszerekben = = = de! = 2

26 Geometriai modellek a CAD rendszerekben Az Euler-Poincaré összefüggés általánosítása több palást (B) (1) (2) V E + F = 2B belső élhurok (R b ) (2) (1) V E + (F R b ) = 2B átmenő lyuk - tórusz topológia (1) V E + F R b = 2(B H) (2)

27 Geometriai modellek a CAD rendszerekben Szerkesztő technikák: (Palástmodell létrehozása) Vetületek összekapcsolása interaktív / automatikus (felületek megadása) geometriai komplexitás egyértelműség Pásztázás felületek térbeli mozgatása eltolás (különösen: kihúzás, süllyesztés) forgatás görbe menti mozgatás

28 Geometriai modellek a CAD rendszerekben Szerkesztő technikák (Palástmodell létrehozása) CSG: elemi testek /pl. primitívek/+ halmazműveletek Local operációk élletörés, éllekerekítés

Parametrikus tervezés

Parametrikus tervezés 2012.03.31. Statikus modell Dinamikus modell Parametrikus tervezés Módosítások a tervezés folyamán Konstrukciós variánsok (termékcsaládok) Parametrikus Modell Parametrikus tervezés Paraméterek (változók

Részletesebben

(Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja.

(Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja. Testmodellezés Testmodellezés (Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja. A tervezés (modellezés) során megadjuk a objektum geometria

Részletesebben

CAD Rendszerek I. Sajátosság alapú tervezés - Szinkron modellezés

CAD Rendszerek I. Sajátosság alapú tervezés - Szinkron modellezés CAD Rendszerek I. Sajátosság alapú tervezés - Szinkron modellezés Farkas Zsolt Budapesti Műszaki és Gazdaságtudományi Egyetem, Gép- és Terméktervezés Tanszék 1/ 14 Tartalom -Sajátosság alapú tervezés:

Részletesebben

Geometriai modellezés. Szécsi László

Geometriai modellezés. Szécsi László Geometriai modellezés Szécsi László Adatáramlás vezérlés Animáció világleírás Modellezés kamera Virtuális világ kép Képszintézis A modellezés részfeladatai Geometria megadása [1. előadás] pont, görbe,

Részletesebben

Számítógépes Grafika SZIE YMÉK

Számítógépes Grafika SZIE YMÉK Számítógépes Grafika SZIE YMÉK Analóg - digitális Analóg: a jel értelmezési tartománya (idő), és az értékkészletes is folytonos (pl. hang, fény) Diszkrét idejű: az értelmezési tartomány diszkrét (pl. a

Részletesebben

Elengedhetetlen a játékokban, mozi produkciós eszközökben Nélküle kvantum hatás lép fel. Az objektumok áthaladnak a többi objektumon

Elengedhetetlen a játékokban, mozi produkciós eszközökben Nélküle kvantum hatás lép fel. Az objektumok áthaladnak a többi objektumon Bevezetés Ütközés detektálás Elengedhetetlen a játékokban, mozi produkciós eszközökben Nélküle kvantum hatás lép fel Az objektumok áthaladnak a többi objektumon A valósághű megjelenítés része Nem tisztán

Részletesebben

2014/2015. tavaszi félév

2014/2015. tavaszi félév Hajder L. és Valasek G. hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom Geometria modellezés 1 Geometria modellezés 2 Geometria modellezés

Részletesebben

Feladatok. Tervek alapján látvány terv készítése. Irodai munka Test modellezés. Létező objektum számítógépes modelljének elkészítése

Feladatok. Tervek alapján látvány terv készítése. Irodai munka Test modellezés. Létező objektum számítógépes modelljének elkészítése Virtuális valóság Feladatok Tervek alapján látvány terv készítése Irodai munka Test modellezés Létező objektum számítógépes modelljének elkészítése Geodéziai mérések Fotogrammetriai feldolgozás Egyszerű

Részletesebben

3D számítógépes geometria és alakzatrekonstrukció

3D számítógépes geometria és alakzatrekonstrukció 3D számítógépes geometria és alakzatrekonstrukció 14. Digitális Alakzatrekonstrukció - Bevezetés http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr.

Részletesebben

MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2005

MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2005 2005 1. * Halmazok, halmazműveletek, nevezetes ponthalmazok 2. Számhalmazok, halmazok számossága 3. Hatványozás, hatványfüggvény 4. Gyökvonás, gyökfüggvény 5. A logaritmus. Az exponenciális és a logaritmus

Részletesebben

Autodesk Inventor Suite

Autodesk Inventor Suite 1 / 5 Autodesk Inventor Suite 2 / 5 Autodesk Inventor Suite Az Autodesk Inventor Suite egy olyan parametrikus tervező - modellező szoftver, melynek segítségével hatékonyan hozhatjuk létre alkatrészeink

Részletesebben

CAD-alapjai (jegyzet)

CAD-alapjai (jegyzet) CAD-alapjai (jegyzet) 1. CAD (Computer Aided Design) számítógéppel segített tervezés; tervezési koncepciók létrehozása, módosítások megvalósítása, elemzések elvégzésére, tervezés optimálása, korábban rajzok

Részletesebben

Összeállította Horváth László egyetemi tanár

Összeállította Horváth László egyetemi tanár Óbudai Egyetem Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek Intézet Intelligens Mérnöki Rendszerek Szakirány a Mérnök informatikus alapszakon Összeállította Horváth László Budapest, 2011

Részletesebben

Lemezalkatrész modellezés. SolidEdge. alkatrészen

Lemezalkatrész modellezés. SolidEdge. alkatrészen A példa megnevezése: A példa száma: A példa szintje: Modellezõ rendszer: Kapcsolódó TÁMOP tananyag rész: A feladat rövid leírása: Lemezalkatrész modellezés SZIE-A4 alap közepes - haladó SolidEdge CAD 3D

Részletesebben

AutoCAD testmodellezés

AutoCAD testmodellezés Jakubek Lajos AutoCAD testmodellezés Mintapéldák Az AutoCAD ACIS alapú Szilárdtest Modellező Modulja egy lemez és egy szilárdtest modellező rendszert foglal magába. A modellező rendszer integrált része

Részletesebben

Vida János. Geometriai modellezés III. Görbék és felületek

Vida János. Geometriai modellezés III. Görbék és felületek Vida János Geometriai modellezés III. Görbék és felületek Oktatási segédlet Piszkozat Budapest, 2010 1 E segédletet az ELTE Informatikai Karának azok a beiratkozott hallgatói használhatják, akik A geometriai

Részletesebben

időpont? ütemterv számonkérés segédanyagok

időpont? ütemterv számonkérés segédanyagok időpont? ütemterv számonkérés segédanyagok 1. Bevezetés Végeselem-módszer Számítógépek alkalmazása a szerkezettervezésben: 1. a geometria megadása, tervkészítés, 2. műszaki számítások: - analitikus számítások

Részletesebben

A számítógépes grafika alapjai kurzus, vizsgatételek és tankönyvi referenciák 2014

A számítógépes grafika alapjai kurzus, vizsgatételek és tankönyvi referenciák 2014 Pázmány Péter Katolikus Egyetem Információs Technológiai Kar A számítógépes grafika alapjai kurzus, vizsgatételek és tankönyvi referenciák 2014 Benedek Csaba A vizsga menete: a vizsgázó egy A illetve egy

Részletesebben

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben?

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben? . Mi az (x, y) koordinátákkal megadott pont elforgatás uténi két koordinátája, ha α szöggel forgatunk az origó körül? x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs

Részletesebben

Lemezalkatrész modellezés. SolidEdge. alkatrészen

Lemezalkatrész modellezés. SolidEdge. alkatrészen A példa megnevezése: A példa száma: A példa szintje: Modellezõ rendszer: Kapcsolódó TÁMOP tananyag rész: A feladat rövid leírása: Lemezalkatrész modellezés SZIE-A5 alap közepes - haladó SolidEdge CAD 3D

Részletesebben

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 15. Digitális Alakzatrekonstrukció Méréstechnológia, Ponthalmazok regisztrációja http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiiav54

Részletesebben

A tér lineáris leképezései síkra

A tér lineáris leképezései síkra A tér lineáris leképezései síkra Az ábrázoló geometria célja: A háromdimenziós térben elhelyezkedő alakzatok helyzeti és metrikus viszonyainak egyértelmű és egyértelműen rekonstruálható módon történő ábrázolása

Részletesebben

Robotika. Kinematika. Magyar Attila

Robotika. Kinematika. Magyar Attila Robotika Kinematika Magyar Attila amagyar@almos.vein.hu Miről lesz szó? Bevezetés Merev test pozíciója és orientációja Rotáció Euler szögek Homogén transzformációk Direkt kinematika Nyílt kinematikai lánc

Részletesebben

Információ megjelenítés Számítógépes ábrázolás. Dr. Iványi Péter

Információ megjelenítés Számítógépes ábrázolás. Dr. Iványi Péter Információ megjelenítés Számítógépes ábrázolás Dr. Iványi Péter Raszterizáció OpenGL Mely pixelek vannak a primitíven belül fragment generálása minden ilyen pixelre Attribútumok (pl., szín) hozzárendelése

Részletesebben

Az igény szerinti betöltés mindig aktív az egyszerűsített megjelenítéseknél. Memória megtakarítás 40%.

Az igény szerinti betöltés mindig aktív az egyszerűsített megjelenítéseknél. Memória megtakarítás 40%. Négy új diagnosztikai eszköz. Továbbfejlesztett hibajavítás a gyakori vázlat problémákhoz. Helyi szerelési gyorsmenü. A szerelési referencia kezelő megmutatja a kapcsolódó referenciát. Továbbfejlesztett

Részletesebben

7. Koordináta méréstechnika

7. Koordináta méréstechnika 7. Koordináta méréstechnika Coordinate Measuring Machine: CMM, 3D-s mérőgép Egyiptomi piramis kövek mérése i.e. 1440 Egyiptomi mérővonalzó, Amenphotep fáraó (i.e. 1550) alkarjának hossza: 524mm A koordináta

Részletesebben

TÉRINFORMATIKAI ÉS TÁVÉRZÉKELÉSI ALKALMAZÁSOK FEJLESZTÉSE

TÉRINFORMATIKAI ÉS TÁVÉRZÉKELÉSI ALKALMAZÁSOK FEJLESZTÉSE Topológiai algoritmusok és adatszerkezetek TÉRINFORMATIKAI ÉS TÁVÉRZÉKELÉSI ALKALMAZÁSOK FEJLESZTÉSE Cserép Máté mcserep@caesar.elte.hu 2015. május 5. EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR BEVEZETŐ

Részletesebben

A gyártástervezés modelljei. Dr. Mikó Balázs

A gyártástervezés modelljei. Dr. Mikó Balázs Óbudai Egyetem Bánki Donát Gépész és Biztonságtechnikai Mérnöki Kar Anyagtudományi és Gyártástechnológiai Intézet ermelési folyamatok II. A gyártástervezés modelljei Dr. Mikó Balázs miko.balazs@bgk.uni-obuda.hu

Részletesebben

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel

Részletesebben

A CAD rendszerek felépítése,szolgáltatások szintje Integrált gépészeti tervező rendszerek Analízis, technológiai modul Programozási lehetőségek

A CAD rendszerek felépítése,szolgáltatások szintje Integrált gépészeti tervező rendszerek Analízis, technológiai modul Programozási lehetőségek A CAD rendszerek felépítése,szolgáltatások szintje Integrált gépészeti tervező rendszerek Analízis, technológiai modul Programozási lehetőségek II. előadás 2010. április 7. 1/14 A CAD rendszerek felépítése

Részletesebben

Mit jelent a CAD rendszerek integrációja? Ismertesse a kernel főbb funkcióit!

Mit jelent a CAD rendszerek integrációja? Ismertesse a kernel főbb funkcióit! Mit jelent a CAD rendszerek integrációja? Ismertesse a kernel főbb funkcióit! A CAD rendszerek integrációjának kétféle iránya figyelhető meg. Egyrészt a CAD rendszerek bizonyos funkciói beépülnek más alkalmazásokba,

Részletesebben

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Halmazok Halmazok egyenlősége Részhalmaz, valódi részhalmaz Üres halmaz Véges és végtelen halmaz Halmazműveletek (unió, metszet,

Részletesebben

Tanmenetjavaslat. Téma Óraszám Tananyag Fogalmak Összefüggések Eszközök Kitekintés. Helyi érték, alaki érték. Számegyenes.

Tanmenetjavaslat. Téma Óraszám Tananyag Fogalmak Összefüggések Eszközök Kitekintés. Helyi érték, alaki érték. Számegyenes. Heti 4 óra esetén, 37 tanítási hétre összesen 148 óra áll rendelkezésre. A tanmenet 132 óra beosztását tartalmazza. Heti 5 óra esetén összesen 37-tel több órában dolgozhatunk. Ez összesen 185 óra. Itt

Részletesebben

TERMÉKSZIMULÁCIÓ Modellek, szimuláció TERMÉKMODELL

TERMÉKSZIMULÁCIÓ Modellek, szimuláció TERMÉKMODELL TERMÉKSZIMULÁCIÓ Modellek, szimuláció TERMÉKMODELL 1-2. hét 2011. február 8. Összeállította: Dr. Kovács Zsolt egyetemi tanár Modell Az eredeti leképezése A szó eredete: latin modus, modulus (mérték, mód,

Részletesebben

3.1. ábra. a) manifold modell (a hasáb is és a henger is test); b) nem manifold modell (a hasáb test, a henger felület).

3.1. ábra. a) manifold modell (a hasáb is és a henger is test); b) nem manifold modell (a hasáb test, a henger felület). 3. GEOMETRIAI MODELLEZÉS Molnár László Dr. Váradi Károly Általános értelemben a modell nem más, mint a valós vagy elképzelt objektum mása, annak szőkített információkkal való leképzése. A számítógépes

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 19 XIX A HATÁROZOTT INTEGRÁL ALkALmAZÁSAI 1 TERÜLET ÉS ÍVHOSSZ SZÁmÍTÁSA Területszámítás Ha f az [a,b] intervallumon nemnegatív, folytonos függvény, akkor az görbe, az x tengely,

Részletesebben

Máté: Számítógépes grafika alapjai

Máté: Számítógépes grafika alapjai Történeti áttekintés Interaktív grafikai rendszerek A számítógépes grafika osztályozása Valós és képzeletbeli objektumok (pl. tárgyak képei, függvények) szintézise számítógépes modelljeikből (pl. pontok,

Részletesebben

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804)

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804) Matematika A definíciókat és tételeket (bizonyítás nélkül) ki kell mondani, a tananyagrészekhez tartozó alap- és közepes nehézségű feladatokat kell tudni megoldani A javítóvizsga 60 -es írásbeliből áll.

Részletesebben

Lengyelné Dr. Szilágyi Szilvia április 7.

Lengyelné Dr. Szilágyi Szilvia április 7. ME, Anaĺızis Tanszék 2010. április 7. , alapfogalmak 2.1. Definíció A H 1, H 2,..., H n R (ahol n 2 egész szám) nemüres valós számhalmazok H 1 H 2... H n Descartes-szorzatán a következő halmazt értjük:

Részletesebben

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / tanév

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / tanév 9. évfolyam I. Halmazok Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / 2017. tanév 1. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 2. Intervallumok 3. Halmazműveletek

Részletesebben

10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK

10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK MATEMATIK A 9. évfolyam 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK Tanári útmutató 2 MODULLEÍRÁS A modul

Részletesebben

3. előadás. Elemi geometria Terület, térfogat

3. előadás. Elemi geometria Terület, térfogat 3. előadás Elemi geometria Terület, térfogat Tetraéder Négy, nem egy síkban lévő pont által meghatározott test. 4 csúcs, 6 él, 4 lap Tetraéder Minden tetraédernek egyértelműen létezik körülírt- és beírt

Részletesebben

Az osztályozóvizsgák követelményrendszere MATEMATIKA

Az osztályozóvizsgák követelményrendszere MATEMATIKA Az osztályozóvizsgák követelményrendszere MATEMATIKA 1. Számok, számhalmazok A 9. évfolyam során feldolgozásra kerülő témakörök: A nyelvi előkészítő és a két tanítási nyelvű osztályok tananyaga: A számfogalom

Részletesebben

Revit alapozó tanfolyam

Revit alapozó tanfolyam Revit alapozó tanfolyam Tematika Tanfolyam hossza: 3 nap 1. nap 1. Felhasználói felület 1.1 A Felhasználói felület elemei 1.2 Beállítási lehetőségek 2. Revit alapok 2.1 BIM alapok 2.2 Mi a különbség a

Részletesebben

CAD ALAPJAI. (A számítógéppel segített mérnöki tevékenység CAD/CAM/CAE) Váradi Károly előadás-vázlata. A CAD, CAM és CAE értelmezése (1)

CAD ALAPJAI. (A számítógéppel segített mérnöki tevékenység CAD/CAM/CAE) Váradi Károly előadás-vázlata. A CAD, CAM és CAE értelmezése (1) CAD ALAPJAI (A számítógéppel segített mérnöki tevékenység CAD/CAM/CAE) Váradi Károly előadás-vázlata Főbb témakörök: - Számítógéppel segített termékfejlesztés - Számítógépes grafika - Geometriai modellezés

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 12 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Emelt

Részletesebben

Tartalomjegyzék. 1. Előszó 1

Tartalomjegyzék. 1. Előszó 1 Tartalomjegyzék 1. Előszó 1 2. Halmazok, relációk, függvények 3 2.1. Halmazok, relációk, függvények A............... 3 2.1.1. Halmazok és relációk................... 3 2.1.2. Relációk inverze és kompozíciója............

Részletesebben

Dr. Mikó Balázs miko.balazs@bgk.uni-obuda.hu

Dr. Mikó Balázs miko.balazs@bgk.uni-obuda.hu Gyártórendszerek mechatronikája Termelési folyamatok II. 02 CAD rendszerek Dr. Mikó Balázs miko.balazs@bgk.uni-obuda.hu miko.balazs@bgk.uni-obuda.hu 1 Óbudai Egyetem Bánki Donát Gépész és Biztonságtechnikai

Részletesebben

SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL

SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL MAGYAR TUDOMÁNY NAPJA KONFERENCIA 2010 GÁBOR DÉNES FŐISKOLA CSUKA ANTAL TARTALOM A KÍSÉRLET ÉS MÉRÉS JELENTŐSÉGE A MÉRNÖKI GYAKORLATBAN, MECHANIKAI FESZÜLTSÉG

Részletesebben

Egyenes mert nincs se kezdő se végpontja

Egyenes mert nincs se kezdő se végpontja Szakasz mert van két végpontja Egyenes mert nincs se kezdő se végpontja Tört vonal Szög mert van két szára és csúcsa Félegyenes mert van egy kezdőpontja 5 1 1 Két egyenes egymásra merőleges ha egymással

Részletesebben

Technikai áttekintés SimDay 2013. H. Tóth Zsolt FEA üzletág igazgató

Technikai áttekintés SimDay 2013. H. Tóth Zsolt FEA üzletág igazgató Technikai áttekintés SimDay 2013 H. Tóth Zsolt FEA üzletág igazgató Next Limit Technologies Alapítva 1998, Madrid Számítógépes grafika Tudományos- és mérnöki szimulációk Mottó: Innováció 2 Kihívás Technikai

Részletesebben

Matematika gyógyszerészhallgatók számára. A kollokvium főtételei tanév

Matematika gyógyszerészhallgatók számára. A kollokvium főtételei tanév Matematika gyógyszerészhallgatók számára A kollokvium főtételei 2015-2016 tanév A1. Függvénytani alapfogalmak. Kölcsönösen egyértelmű függvények és inverzei. Alkalmazások. Alapfogalmak: függvény, kölcsönösen

Részletesebben

A tételsor a 12/2013. (III. 29.) NFM rendelet foglalt szakképesítés szakmai és vizsgakövetelménye alapján készült. 2/33

A tételsor a 12/2013. (III. 29.) NFM rendelet foglalt szakképesítés szakmai és vizsgakövetelménye alapján készült. 2/33 A vizsgafeladat ismertetése: A vizsgázó a térinformatika és a geodézia tudásterületei alapján összeállított komplex központi tételekből felel, folytat szakmai beszélgetést. Amennyiben a tétel kidolgozásához

Részletesebben

CAD technikák A számítógépes tervezési módszerek hatása a tervezési folyamatokra

CAD technikák A számítógépes tervezési módszerek hatása a tervezési folyamatokra A számítógépes tervezési módszerek hatása a tervezési folyamatokra VII. előadás 2008. március 31. A számítógéppel segített tervezés napjainkra már ipari technológiává vált. A mai integrált terméktervező

Részletesebben

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA A TÁMOP 3.1.4. EU-s pályázat megvalósításához a matematika (9. b/fizika) tárgy tanmenete a matematika kompetenciaterület A típusú

Részletesebben

Absztrakció. Objektum orientált programozás Bevezetés. Általános Informatikai Tanszék Utolsó módosítás:

Absztrakció. Objektum orientált programozás Bevezetés. Általános Informatikai Tanszék Utolsó módosítás: Objektum orientált programozás Bevezetés Miskolci Egyetem Általános Informatikai Tanszék Utolsó módosítás: 2008. 03. 04. OOPALAP / 1 A program készítés Absztrakciós folyamat, amelyben a valós világban

Részletesebben

Foglalkozási napló. CAD-CAM informatikus 14. évfolyam

Foglalkozási napló. CAD-CAM informatikus 14. évfolyam Foglalkozási napló a 20 /20. tanévre CAD-CAM informatikus 14. évfolyam (OKJ száma: 54 41 01) szakma gyakorlati oktatásához A napló vezetéséért felelős: A napló megnyitásának dátuma: A napló lezárásának

Részletesebben

Geometria 1 normál szint

Geometria 1 normál szint Geometria 1 normál szint Naszódi Márton nmarci@math.elte.hu www.math.elte.hu/ nmarci ELTE TTK Geometriai Tsz. Budapest Geometria 1 p.1/4 Vizsga 1. Írásban, 90 perc. 2. Index nélkül nem lehet vizsgázni!

Részletesebben

Fröccsöntés, fröccsöntő szerszámok. Fröccsöntő gépek

Fröccsöntés, fröccsöntő szerszámok. Fröccsöntő gépek Fröccsöntés, fröccsöntő szerszámok 1 Fröccsöntő gépek 2 1 Fröccsöntési folyamat 3 Fröccsöntő gép struktúrája 4 2 Egységek Fröccsegység 5 Egységek Fröccs egység Csiga mozgató mechanizmus Alapanyag tároló

Részletesebben

SZERKEZETFÖLDTANI OKTATÓPROGRAM, VETŐMENTI ELMOZDULÁSOK MODELLEZÉSÉRE. Kaczur Sándor Fintor Krisztián kaczur@gdf.hu, efkrisz@gmail.

SZERKEZETFÖLDTANI OKTATÓPROGRAM, VETŐMENTI ELMOZDULÁSOK MODELLEZÉSÉRE. Kaczur Sándor Fintor Krisztián kaczur@gdf.hu, efkrisz@gmail. SZERKEZETFÖLDTANI OKTATÓPROGRAM, VETŐMENTI ELMOZDULÁSOK MODELLEZÉSÉRE Kaczur Sándor Fintor Krisztián kaczur@gdf.hu, efkrisz@gmail.com 2010 Tartalom Földtani modellezés lehetőségei Szimulációs szoftver,

Részletesebben

Dr. Mikó Balázs miko.balazs@bgk.uni-obuda.hu

Dr. Mikó Balázs miko.balazs@bgk.uni-obuda.hu Gyártórendszerek mechatronikája Termelési folyamatok II. 01 Alapfogalmak Dr. Mikó Balázs miko.balazs@bgk.uni-obuda.hu miko.balazs@bgk.uni-obuda.hu 1 Óbudai Egyetem Bánki Donát Gépész és Biztonságtechnikai

Részletesebben

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA 1 SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 x 3 = 111 A tanmenet 101 óra beosztását tartalmazza. A dolgozatok írása és javítása 10 órát foglal

Részletesebben

TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI. 1. Bevezetés

TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI. 1. Bevezetés TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI Dr. Goda Tibor egyetemi docens Gép- és Terméktervezés Tanszék 1. Bevezetés 1.1. A végeselem módszer alapjai - diszkretizáció, - szerkezet felbontása kicsi szabályos elemekre

Részletesebben

Érettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél

Érettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél Emelt szintű matematika érettségi előkészítő 11. évfolyam Tematikai egység/fejlesztési cél Órakeret 72 óra Kötelező Szabad Összesen 1. Gondolkodási módszerek Halmazok, matematikai logika, kombinatorika,

Részletesebben

Matematika tanmenet 12. osztály (heti 4 óra)

Matematika tanmenet 12. osztály (heti 4 óra) Matematika tanmenet 12. osztály (heti 4 óra) Tankönyv: Ábrahám Gábor Dr. Kosztolányiné Nagy Erzsébet Tóth Julianna: Matematika 12. középszint Példatárak: Fuksz Éva Riener Ferenc: Érettségi feladatgyűjtemény

Részletesebben

Matematika emelt szint a 11-12.évfolyam számára

Matematika emelt szint a 11-12.évfolyam számára Német Nemzetiségi Gimnázium és Kollégium Budapest Helyi tanterv Matematika emelt szint a 11-12.évfolyam számára 1 Emelt szintű matematika 11 12. évfolyam Ez a szakasz az érettségire felkészítés időszaka

Részletesebben

Mesh generálás. IványiPéter

Mesh generálás. IványiPéter Mesh generálás IványiPéter drview Grafikus program MDF file-ok szerkesztéséhez. A mesh generáló program bemenetét itt szerkesztjük meg. http://www.hexahedron.hu/personal/peteri/sx/index.html Pont létrehozásához

Részletesebben

Matematika. Specializáció. 11 12. évfolyam

Matematika. Specializáció. 11 12. évfolyam Matematika Specializáció 11 12. évfolyam Ez a szakasz az eddigi matematikatanulás 12 évének szintézisét adja. Egyben kiteljesíti a kapcsolatokat a többi tantárggyal, a mindennapi élet matematikaigényes

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 7 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. Tankönyv nyolcadikosoknak. címû tankönyveihez

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. Tankönyv nyolcadikosoknak. címû tankönyveihez TANMENETJAVASLAT Dr. Korányi Erzsébet MATEMATIKA Tankönyv nyolcadikosoknak címû tankönyveihez 8. OSZTÁLY Óraszám 1. 1 2. Halmazok ismétlés Tk. 6/1 5. Gyk. 3 6/1 10. 2. 3 4. A logikai szita Tk. 9 10/6 20.

Részletesebben

TANMENET. Matematika

TANMENET. Matematika Bethlen Gábor Református Gimnázium és Szathmáry Kollégium 6800 Hódmezővásárhely, Szőnyi utca 2. Telefon: +36-62-241-703 www.bgrg.hu OM: 029736 TANMENET Matematika 2016/2017 9. B tagozat Összeállította:

Részletesebben

FANUC Robotics Roboguide

FANUC Robotics Roboguide FANUC Robotics Roboguide 2010. február 9. Mi Mi az az a ROBOGUIDE Robot rendszer animációs eszköz ROBOGUIDE is an off-line eszköz a robot rendszer beállításához és karbantartásához ROBOGUIDE is an on-line

Részletesebben

11. modul: LINEÁRIS FÜGGVÉNYEK

11. modul: LINEÁRIS FÜGGVÉNYEK MATEMATIK A 9. évfolyam 11. modul: LINEÁRIS FÜGGVÉNYEK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 11. modul: LINEÁRIS FÜGGVÉNYEK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

A végeselem módszer alapjai. 2. Alapvető elemtípusok

A végeselem módszer alapjai. 2. Alapvető elemtípusok A végeselem módszer alapjai Előadás jegyzet Dr. Goda Tibor 2. Alapvető elemtípusok - A 3D-s szerkezeteket vagy szerkezeti elemeket gyakran egyszerűsített formában modellezzük rúd, gerenda, 2D-s elemek,

Részletesebben

Csoportosítás. Térinformatikai műveletek, elemzések. Csoportosítás. Csoportosítás

Csoportosítás. Térinformatikai műveletek, elemzések. Csoportosítás. Csoportosítás Csoportosítás Térinformatikai műveletek, elemzések Leíró (attribútum) adatokra vonatkozó kérdések, műveletek, elemzések, csoportosítások,... Térbeli (geometriai) adatokra vonatkozó kérdések, műveletek

Részletesebben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben Tartalom Előszó 13 1. Halmazok; a matematikai logika elemei 15 1.1. A halmaz fogalma; jelölések 15 1.2. Részhalmazok; komplementer halmaz 16 1.3. Halmazműveletek 17 1.4. A halmazok ekvivalenciája 20 1.5.

Részletesebben

Láthatósági kérdések

Láthatósági kérdések Láthatósági kérdések Láthatósági algoritmusok Adott térbeli objektum és adott nézőpont esetén el kell döntenünk, hogy mi látható az adott alakzatból a nézőpontból, vagy irányából nézve. Az algoritmusok

Részletesebben

Görbe- és felületmodellezés. Szplájnok Felületmodellezés

Görbe- és felületmodellezés. Szplájnok Felületmodellezés Görbe- és felületmodellezés Szplájnok Felületmodellezés Spline (szplájn) Spline: Szakaszosan, parametrikus polinomokkal leírt görbe A spline nevét arról a rugalmasan hajlítható vonalzóról kapta, melyet

Részletesebben

V É G E S E L E M M Ó D S Z E R M É R N Ö K I M E C H A N I K A I A L K A LM A Z Á S A I

V É G E S E L E M M Ó D S Z E R M É R N Ö K I M E C H A N I K A I A L K A LM A Z Á S A I ALKALMAZOTT MECHANIKA TANSZÉK V É G E S E L E M M Ó D S Z E R M É R N Ö K I M E C H A N I K A I A L K A LM A Z Á S A I Előadásvázlat a Multidiszciplináris Műszaki Tudományi Doktori Iskola hallgatói számára

Részletesebben

Dr. Mikó Balázs BGRKG14NNM / NEC. miko.balazs@bgk.uni-obuda.hu

Dr. Mikó Balázs BGRKG14NNM / NEC. miko.balazs@bgk.uni-obuda.hu Óbudai Egyetem Bánki Donát Gépész és Biztonságtechnikai Mérnöki Kar Anyagtudományi és Gyártástechnológiai Intézet BGRKG14NNM / NEC Dr. Mikó Balázs miko.balazs@bgk.uni-obuda.hu A gyártástervezés feladata

Részletesebben

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás

3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 3D - geometriai modellezés, alakzatrekonstrukció, nyomtatás 1a. Bevezetés http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiiav54 Dr. Várady Tamás, Dr. Salvi Péter BME, Villamosmérnöki

Részletesebben

Az AutoCAD Architecture 2012 újdonságai

Az AutoCAD Architecture 2012 újdonságai Az AutoCAD Architecture 2012 újdonságai Hörcsik CAD Tanácsadó Kft. 2011. június AutoCAD Architecture 2012 újdonságok 1 Tartalomjegyzék 1. Alapvető újdonságok AutoCAD 2012... 3 1.1 AutoCAD WS Online AutoCAD

Részletesebben

FRAKTÁLGEOMETRIA. Példák fraktálokra I. Czirbusz Sándor február 1. Komputeralgebra Tanszék ELTE Informatika Kar

FRAKTÁLGEOMETRIA. Példák fraktálokra I. Czirbusz Sándor február 1. Komputeralgebra Tanszék ELTE Informatika Kar Példák fraktálokra I Czirbusz Sándor czirbusz@gmail.com Komputeralgebra Tanszék ELTE Informatika Kar 2010. február 1. Vázlat 1 Mi a fraktál? 2 A konstrukció Egyszerű tulajdonságok Triadikus ábrázolás Transzlációk

Részletesebben

Analízis előadás és gyakorlat vázlat

Analízis előadás és gyakorlat vázlat Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 2010-11. I. Félév 2 1. fejezet Számhalmazok és tulajdonságaik 1.1. Nevezetes számhalmazok ➀ a) jelölése: N b)

Részletesebben

13. modul: MÁSODFOKÚ FÜGGVÉNYEK

13. modul: MÁSODFOKÚ FÜGGVÉNYEK MATEMATIK A 9. évfolyam 13. modul: MÁSODFOKÚ FÜGGVÉNYEK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 13. modul: MÁSODFOKÚ FÜGGVÉNYEK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály

Részletesebben

I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek, a halmazelmélet elemei, a logika elemei. 1. Számfogalom, műveletek (4 óra)

I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek, a halmazelmélet elemei, a logika elemei. 1. Számfogalom, műveletek (4 óra) MATEMATIKA NYEK-humán tanterv Matematika előkészítő év Óraszám: 36 óra Tanítási ciklus 1 óra / 1 hét Részletes felsorolás A tananyag felosztása: I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek,

Részletesebben

MATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, 2014. szeptember

MATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, 2014. szeptember MATEMATIKA TANMENET 9. osztály 4 óra/hét Budapest, 2014. szeptember 2 Évi óraszám: 144 óra Heti óraszám: 4 óra Ismerkedés, év elejei feladatok, szintfelmérő írása 2 óra I. Kombinatorika, halmazok 13 óra

Részletesebben

1. Mit jelent a CAD rendszerek integrációja? Ismertesse a kernel főbb funkcióit! (E-book 29-34)

1. Mit jelent a CAD rendszerek integrációja? Ismertesse a kernel főbb funkcióit! (E-book 29-34) 1. Mit jelent a CAD rendszerek integrációja? Ismertesse a kernel főbb funkcióit! (E-book 29-34) CAD rendszerek integrációjának kétféle iránya figyelhető meg. Egyrészt a CAD rendszerek bizonyos funkciói

Részletesebben

1. Bevezetés A C++ nem objektumorientált újdonságai 3

1. Bevezetés A C++ nem objektumorientált újdonságai 3 Előszó xiii 1. Bevezetés 1 2. A C++ nem objektumorientált újdonságai 3 2.1. A C és a C++ nyelv 3 2.1.1. Függvényparaméterek és visszatérési érték 3 2.1.2. A main függvény 4 2.1.3. A bool típus 4 2.1.4.

Részletesebben

Programozási környezetek

Programozási környezetek KOVÁSZNAI GERGELY ÉS BIRÓ CSABA EKF TTK Információtechnológia Tanszék Programozási környezetek Alkalmazható természettudományok oktatása a tudásalapú társadalomban TÁMOP-4.1.2.A/1-11/1-2011-0038 WPF Bevezetés

Részletesebben

Mágnesszelep analízise. IX. ANSYS felhasználói konferencia 2010 Előadja: Gráf Márton

Mágnesszelep analízise. IX. ANSYS felhasználói konferencia 2010 Előadja: Gráf Márton Mágnesszelep analízise MaxwellbenésSimplorerben IX. ANSYS felhasználói konferencia 2010 Előadja: Gráf Márton Diesel hidegindítás A hidegindítási rendszerek szerepe A dízelmotorokban az égés öngyulladás

Részletesebben

Helyi tanterv Német nyelvű matematika érettségi előkészítő. 11. évfolyam

Helyi tanterv Német nyelvű matematika érettségi előkészítő. 11. évfolyam Helyi tanterv Német nyelvű matematika érettségi előkészítő 11. évfolyam Tematikai egység címe órakeret 1. Gondolkodási és megismerési módszerek 10 óra 2. Geometria 30 óra 3. Számtan, algebra 32 óra Az

Részletesebben

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006

Részletesebben

Logisztikai szimulációs módszerek

Logisztikai szimulációs módszerek Üzemszervezés Logisztikai szimulációs módszerek Dr. Juhász János Integrált, rugalmas gyártórendszerek tervezésénél használatos szimulációs módszerek A sztochasztikus külső-belső tényezőknek kitett folyamatok

Részletesebben

3D számítógépes geometria és alakzatrekonstrukció

3D számítógépes geometria és alakzatrekonstrukció 3D számítógépes geometria és alakzatrekonstrukció 2a. Háromszöghálók http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr. Salvi Péter BME, Villamosmérnöki

Részletesebben

YBL - SGYMMAT2012XA Matematika II.

YBL - SGYMMAT2012XA Matematika II. YBL - SGYMMAT2012XA Matematika II. Tantárgyfelelős: Dr. Joós Antal Tárgyelőadó: Dr. Joós Antal Tantárgyi leírás Oktatási cél: Azoknak a matematikai alapoknak a megszerzése, melyek a szaktárgyak elsajátításához

Részletesebben

Klár Gergely 2010/2011. tavaszi félév

Klár Gergely 2010/2011. tavaszi félév Számítógépes Grafika Klár Gergely tremere@elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2010/2011. tavaszi félév Tartalom Pont 1 Pont 2 3 4 5 Tartalom Pont Descartes-koordináták Homogén koordináták

Részletesebben

V. 3D-s tervezés a szilárdtest modellezővel

V. 3D-s tervezés a szilárdtest modellezővel V. 3D-s tervezés a szilárdtest modellezővel ARCHline.XP 2005 16. 3D Beállítások 1077 16. 3D Beállítások A 3D-s elemek fejezetben az ARCHline.XP 2005 szilárdtest modellező eszközét mutatjuk be. A parancsokkal

Részletesebben

MATEMATIKA. 9 10. évfolyam. Célok és feladatok. Fejlesztési követelmények

MATEMATIKA. 9 10. évfolyam. Célok és feladatok. Fejlesztési követelmények MATEMATIKA 9 10. évfolyam 1066 MATEMATIKA 9 10. évfolyam Célok és feladatok A matematikatanítás célja és ennek kapcsán feladata, hogy megalapozza a tanulók korszerű, alkalmazásra képes matematikai műveltségét,

Részletesebben

Top art technológiai megoldások a műemlékvédelemben, építészetben. Fehér András Mensor 3D

Top art technológiai megoldások a műemlékvédelemben, építészetben. Fehér András Mensor 3D Top art technológiai megoldások a műemlékvédelemben, építészetben Fehér András Mensor 3D PROLÓG 40-50 % tudja mi a szkennelés 44% nem akarja a 3D digitalizálást 68% akarja a 3D digitalizálást LÉZERSZKENNEREL

Részletesebben