Páros összehasonlítás mátrixok empirikus vizsgálata. Bozóki Sándor

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Páros összehasonlítás mátrixok empirikus vizsgálata. Bozóki Sándor"

Átírás

1 Páros összehasonlítás mátrixok empirikus vizsgálata Bozóki Sándor MTA SZTAKI Operációkutatás és Döntési Rendszerek Kutatócsoport Budapesti Corvinus Egyetem Operációkutatás és Aktuáriustudományok Tanszék április 23. p. 1/24

2 Az előadásban Temesi Józseffel, Dezső Lindával és Poesz Attilával közös kutatásaink előzményei és célkitűzései szerepelnek. Temesi József: BCE Operációkutatás és Aktuáriustudományok Tanszék Dezső Linda: BCE ISP, SZTE-GTK Poesz Attila: BCE Közgazdaságtani Doktori Iskola p. 2/24

3 Vázlat Többszempontú döntések Páros összehasonlítás mátrixok Korábbi empirikus vizsgálatok Céljaink, hipotéziseink, kérdéseink p. 3/24

4 Példák többszempontú döntési feladatokra: szegedi villamostender és trolitender A 4-es metró nyomvonal-változatainak összehasonlító vizsgálata környezeti hatástanulmányok p. 4/24

5 A többszempontú döntési problémák jellemzői: A szempontok sokszor egymásnak ellentmondóak Nincs (matematikai értelemben vett) egyetlen legjobb megoldás Szubjektív tényezők szerepeltetése Csoportos döntéshozatal p. 5/24

6 A döntési feladat célja: adott alternatívák közül adott szempontoknak összességében legjobban megfelelő legjobb alternatíva kiválasztása vagy az alternatívák rangsorolása. A megoldáshoz szükség van a szempontsúlyokra, és az alternatívák szempontok szerinti értékelésére. p. 6/24

7 p. 7/24

8 Páros összehasonlítások Condorcet szavazási modellje (1780) Thorndike, Thurstone (1920, 1927) Guilford (1936) Churchman-Ackoff (1957) Saaty (1980) p. 8/24

9 Tegyük fel egy pillanatra, hogy a döntéshozó ismeri a w 1,w 2,..., szempontsúlyokat. Az w 1 x ij := w i w j szabályt alkalmazva minden i, j indexpárra írjuk fel az alábbi négyzetes mátrixot: w 1 1 w 1 w w 2 w w 2 w w w w X = w 3 w 3 w w 1 w w w 2 p. 9/24

10 w 1 1 w 1 w w 2 w w 2 w w w w X = w 3 w 3 w w 1 w w 1 w 2 w Ekkor minden i,j,k = 1,...,n indexre. x ij > 0, x ij = 1 x ji, x ij x jk = x ik. Az x ij elem megmutatja, hogy az i-edik szempont hányszor fontosabb a j-edik szempontnál. p. 10/24

11 A továbbiakban feltesszük, hogy a döntéshozó nem ismeri számszerűen a w 1,w 2,..., szempontsúlyokat. A páros összehasonlítás mátrix ekkor is felírható, ha a döntéshozó meg tudja válaszolni a Hányszor fontosabb az i-edik szempont a j-edik szempontnál? típusú kérdéseket minden i, j pár esetén: 1 a 12 a a 1n a 21 1 a a 2n A = a 31 a a 3n a n1 a n2 a n3... 1, p. 11/24

12 1 a 12 a a 1n a 21 1 a a 2n A = a 31 a a 3n a n1 a n2 a n ahol i,j = 1,...,n re, a ij > 0, a ij = 1 a ji. A feladat: a fenti A páros összehasonlítás mátrix ismeretében a w = (w 1,w 2,..., ) R n + súlyvektor meghatározása vagy legalábbis közelítése. p. 12/24

13 Adott A = 1 a 12 a a 1n a 21 1 a a 2n a 31 a a 3n a n1 a n2 a n ismeretében keressük a w 1,w 2,..., R + változók azon értékeit, amelyre az X = 1 w 2 w 1 1 w 3 w 1 w 3. w 1 w 1 w 2 w 1 w 3... w 2 w w 2.. w 2 w 1 w 2 w w mátrix közel van a döntéshozó által kitöltött A mátrixhoz. A feladatnak számos matematikai modellje és megoldása létezik, távolságminimalizálók és nem távolságminimalizálók egyaránt.. p. 13/24

14 A páronként összehasonlítandó objektumok lehetnek: Szempontok fontossága (szempontsúlyok) Alternatívák értékelése adott szempont szerint Döntéshozói szavazóerők (kompetenciasúlyok) Események szubjektív valószínűsége... p. 14/24

15 Hasonlítsa össze az A és B elemeket! Melyik tetszik jobban? Hányszor jobban tetszik? Arányskála 1 - ugyanannyira tetszik 3 - mérsékelten jobban tetszik 5 - sokkal jobban tetszik 7 - nagyon sokkal jobban tetszik 9 - rendkívüli mértékben jobban tetszik Köztes értékek is felhasználhatók, pl. 2 vagy 1.5 p. 15/24

16 Empirikus vizsgálatok A páros összehasonlítás mátrixok témájában ezres nagyságrendű cikk született. Ezek közül foglalkozik a valós szituációkból származó mátrixok vizsgálatával. p. 16/24

17 Példa empirikus vizsgálatra Gass és Standard (2002) kimutatták, hogy ha az módon mutatjuk be az arányskálát, akkor a döntéshozók által beírt páratlan értékek gyakorisága szer nagyobb, mint a párosaké. Poesz Attila (2008) is kimutatta a fenti jelenséget egy olyan mátrixokból álló mintán, amelyek valós problémákból származnak és tudományos folyóiratokban esettanulmányként publikált dolgozatokban szerepelnek. p. 17/24

18 Saját kísérleteink 2009 őszén kezdtük el felépíteni a kísérleteket, behatárolni a vizsgálandó kérdéseket. A kérdőíveket leteszteltük, az éles kísérleteket a jövő héten kezdjük. p. 18/24

19 Kérdéseink, hipotéziseink a páros összehasonlítások sorrendjének hatása a feladat objektív-szubjektív jellege a mátrix méretének (= az összehasonlítandó elemek számának) szerepe p. 19/24

20 p. 20/24

21 p. 21/24

22 p. 22/24

23 Amiről ma nem volt szó a kísérleteink eredményei a páros összehasonlítás mátrix inkonzisztenciájának mérése nem teljesen kitöltött páros összehasonlítás mátrixok p. 23/24

24 Köszönöm a figyelmet. bozoki p. 24/24

Oktatói önéletrajz Bozóki Sándor

Oktatói önéletrajz Bozóki Sándor egyetemi docens Közgazdaságtudományi Kar Operációkutatás és Aktuáriustudományok Tanszék Karrier Felsőfokú végzettségek: 1996-2001 ELTE-TTK, alkalmazott matematikus 1999-2003 ELTE-TTK, matematika tanár

Részletesebben

Néhány elemmel konzisztenssé tehető páros összehasonlítás mátrixok

Néhány elemmel konzisztenssé tehető páros összehasonlítás mátrixok Néhány elemmel konzisztenssé tehető páros összehasonlítás mátrixok Poesz Attila BCE Operációkutatás és Aktuáriustudományok Tanszék 2010. április 1. Poesz A. () Következetlenség 2010. április 1. 1 / 28

Részletesebben

5. Analytic Hierarchy Process (AHP)

5. Analytic Hierarchy Process (AHP) 5 Analytic Hierarchy Process (AHP) (ld Temesi J: A döntéselmélet alapjai, 120-128) (Rapcsák T: Többszempontú döntési problémák I ld http://wwwoplabsztakihu/tanszek/download/ ITobbsz-dont-modszpdf) 51 Bevezetés

Részletesebben

Bozóki Sándor február 16. Érzékenységvizsgálat a Promethee módszertanban p. 1/18

Bozóki Sándor február 16. Érzékenységvizsgálat a Promethee módszertanban p. 1/18 Érzékenységvizsgálat a Promethee módszertanban Bozóki Sándor 2011. február 16. Érzékenységvizsgálat a Promethee módszertanban p. 1/18 Vázlat PROMETHEE Parciális érzékenységvizsgálat egy szempontsúly változhat

Részletesebben

Többszempontú döntési módszerek, modellek Dr. Stettner Eleonóra

Többszempontú döntési módszerek, modellek Dr. Stettner Eleonóra Kaposvári Egyetem Gazdaságtudományi Kar Kari Tudományos Diákköri Tanács TDK módszertani kurzus 3. alkalom Többszempontú döntési módszerek, modellek Dr. Stettner Eleonóra 2016. április 4. A kurzus a Nemzeti

Részletesebben

Oktatói önéletrajz Csató László

Oktatói önéletrajz Csató László tanársegéd Közgazdaságtudományi Kar Operációkutatás és Aktuáriustudományok Tanszék Operációkutatás és Aktuáriustudományok Tanszék Karrier Felsőfokú végzettségek: 2009-2011 Budapesti Corvinus Egyetem Közgazdaságtudományi

Részletesebben

Alternatívák rangsora Rangsor módszerek. Debreceni Egyetem

Alternatívák rangsora Rangsor módszerek. Debreceni Egyetem Döntéstámogató Rendszerek VII. előadás Bekéné Rácz Anett Debreceni Egyetem Definíciók Példa rangsorfordulásra Rangsorokkal kapcsolatos fogalmak Condorcet nyertes: Az az alternatíva, amely az összes többi

Részletesebben

Témaválasztás, kutatási kérdések, kutatásmódszertan

Témaválasztás, kutatási kérdések, kutatásmódszertan Témaválasztás, kutatási kérdések, kutatásmódszertan Dr. Dernóczy-Polyák Adrienn PhD egyetemi adjunktus, MMT dernoczy@sze.hu A projekt címe: Széchenyi István Egyetem minőségi kutatói utánpótlás nevelésének

Részletesebben

Döntéselőkészítés. XII. előadás. Döntéselőkészítés

Döntéselőkészítés. XII. előadás. Döntéselőkészítés XII. előadás Többszempontú döntések elmélete MAUT (Multi Attribute Utility Theory ) A többszempontú döntési feladatok megoldásának lépései: A döntési feladat felépítése: a) a cél megfogalmazása, b) az

Részletesebben

Budapesti Corvinus Egyetem. Közgazdaságtani Ph.D. Program

Budapesti Corvinus Egyetem. Közgazdaságtani Ph.D. Program Budapesti Corvinus Egyetem Közgazdaságtani Ph.D. Program SÚLYOZÁS PÁROS ÖSSZEHASONLÍTÁSSAL ÉS ÉRTÉKELÉS HASZNOSSÁGI FÜGGVÉNYEKKEL A TÖBBSZEMPONTÚ DÖNTÉSI FELADATOKBAN Ph.D. értekezés tézisgyűjtemény Bozóki

Részletesebben

Számítógépes döntéstámogatás. Döntések fuzzy környezetben Közelítő következtetések

Számítógépes döntéstámogatás. Döntések fuzzy környezetben Közelítő következtetések BLSZM-09 p. 1/17 Számítógépes döntéstámogatás Döntések fuzzy környezetben Közelítő következtetések Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu

Részletesebben

VÁLLALATGAZDASÁGTAN II. Döntési Alapfogalmak

VÁLLALATGAZDASÁGTAN II. Döntési Alapfogalmak Vállalkozási VÁLLALATGAZDASÁGTAN II. Tantárgyfelelős: Prof. Dr. Illés B. Csaba Előadó: Dr. Gyenge Balázs Az ökonómiai döntés fogalma Vállalat Környezet Döntések sorozata Jövő jövőre vonatkozik törekszik

Részletesebben

EGYSZERŰ ÉS ABSZOLÚT TÖBBSÉGI SZAVAZÁS

EGYSZERŰ ÉS ABSZOLÚT TÖBBSÉGI SZAVAZÁS EGYSZERŰ ÉS ABSZOLÚT TÖBBSÉGI SZAVAZÁS A választások és a szavazások többszempontú döntési problémák a szavazók valamilyen módon döntenek a jelöltekről a választási bizottság a szavazás után megállapítja,

Részletesebben

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015 A mérés problémája a pedagógiában Dr. Nyéki Lajos 2015 A mérés fogalma Mérésen olyan tevékenységet értünk, amelynek eredményeként a vizsgált jelenség számszerűen jellemezhetővé, más hasonló jelenségekkel

Részletesebben

Mérés és skálaképzés. Kovács István. BME Menedzsment és Vállalatgazdaságtan Tanszék

Mérés és skálaképzés. Kovács István. BME Menedzsment és Vállalatgazdaságtan Tanszék Mérés és skálaképzés Kovács István BME Menedzsment és Vállalatgazdaságtan Tanszék Miröl is lesz ma szó? Mi is az a mérés? A skálaképzés alapjai A skálaképzés technikái Összehasonlító skálák Nem összehasonlító

Részletesebben

Milyen kérdések megoldásához kérnek segítséget és hol támaszkodnak saját erőforrásaikra a felsőoktatási hallgatók?

Milyen kérdések megoldásához kérnek segítséget és hol támaszkodnak saját erőforrásaikra a felsőoktatási hallgatók? Milyen kérdések megoldásához kérnek segítséget és hol támaszkodnak saját erőforrásaikra a felsőoktatási hallgatók? László Noémi, Felsőoktatási Tanácsadás Egyesület, laszlo.noemi@gmail.com Kiss István,

Részletesebben

A társadalomtudományi kutatás teljes íve és alapstratégiái. áttekintés

A társadalomtudományi kutatás teljes íve és alapstratégiái. áttekintés A társadalomtudományi kutatás teljes íve és alapstratégiái áttekintés A folyamat alapvetı felépítését tekintve kétféle sémát írhatunk le: az egyik a kvantitatív kutatás sémája a másik a kvalitatív kutatás

Részletesebben

Többszempontú döntési módszerek

Többszempontú döntési módszerek XI. előadás Többszempontú döntési módszerek Mindennapi tapasztalat: döntési helyzetbe kerülve több változat (alternatíva) között kell (lehet) választani, az alternatívákat kölönféle szempontok szerint

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.08. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)

Részletesebben

Többszempontú döntési problémák

Többszempontú döntési problémák Budapesti Corvinus Egyetem MTA Számítástechnikai és Automatizálási Kutató Intézetébe kihelyezett Gazdasági Döntések Tanszék Rapcsák Tamás Többszempontú döntési problémák Egyetemi oktatáshoz segédanyag

Részletesebben

Fogalmak Navigare necesse est

Fogalmak Navigare necesse est Döntéselmélet Fogalmak Navigare necesse est - dönteni mindenkinek kell A döntés nem vezetői privilégium: de! vezetői kompetencia, a vezetői döntések hatása Fogalmak II. A döntés célirányos választás adott

Részletesebben

Dr. Piskóti István Marketing Intézet. Marketing 2.

Dr. Piskóti István Marketing Intézet. Marketing 2. Kutatni kell kutatni jó! - avagy a MIR és a marketingkutatás módszerei Dr. Piskóti István Marketing Intézet Marketing 2. Marketing-menedzsment A marketing összes feladatát és aktivitásait összefoglalóan,

Részletesebben

Döntéselőkészítés. I. előadás. Döntéselőkészítés. Előadó: Dr. Égertné dr. Molnár Éva. Informatika Tanszék A 602 szoba

Döntéselőkészítés. I. előadás. Döntéselőkészítés. Előadó: Dr. Égertné dr. Molnár Éva. Informatika Tanszék A 602 szoba I. előadás Előadó: Dr. Égertné dr. Molnár Éva Informatika Tanszék A 602 szoba Tárggyal kapcsolatos anyagok megtalálhatók: http://www.sze.hu/~egertne Konzultációs idő: (páros tan. hét) csütörtök 10-11 30

Részletesebben

A pedagógiai kutatás metodológiai alapjai. Dr. Nyéki Lajos 2015

A pedagógiai kutatás metodológiai alapjai. Dr. Nyéki Lajos 2015 A pedagógiai kutatás metodológiai alapjai Dr. Nyéki Lajos 2015 A pedagógiai kutatás jellemző sajátosságai A pedagógiai kutatás célja a személyiség fejlődése, fejlesztése során érvényesülő törvényszerűségek,

Részletesebben

Nem teljesen kitöltött páros összehasonlítás mátrixok aggregálása

Nem teljesen kitöltött páros összehasonlítás mátrixok aggregálása Nem teljesen kitöltött páros összehasonlítás mátrixok aggregálása Szakdolgozat Írta: Ábele-Nagy Kristóf Közgazdasági elemz mesterszak Témavezet : Bozóki Sándor, egyetemi adjunktus Operációkutatás és Aktuáriustudományok

Részletesebben

Bozóki Sándor SÚLYOZÁS PÁROS ÖSSZEHASONLÍTÁSSAL ÉS ÉRTÉKELÉS HASZNOSSÁGI FÜGGVÉNYEKKEL A TÖBBSZEMPONTÚ DÖNTÉSI FELADATOKBAN

Bozóki Sándor SÚLYOZÁS PÁROS ÖSSZEHASONLÍTÁSSAL ÉS ÉRTÉKELÉS HASZNOSSÁGI FÜGGVÉNYEKKEL A TÖBBSZEMPONTÚ DÖNTÉSI FELADATOKBAN Bozóki Sándor SÚLYOZÁS PÁROS ÖSSZEHASONLÍTÁSSAL ÉS ÉRTÉKELÉS HASZNOSSÁGI FÜGGVÉNYEKKEL A TÖBBSZEMPONTÚ DÖNTÉSI FELADATOKBAN MTA SZTAKI-ba kihelyezett Gazdasági Döntések Tanszék Témavezető: Dr. Rapcsák

Részletesebben

Opkut deníciók és tételek

Opkut deníciók és tételek Opkut deníciók és tételek Készítette: Bán József Deníciók 1. Deníció (Lineáris programozási feladat). Keressük meg adott lineáris, R n értelmezési tartományú függvény, az ún. célfüggvény széls értékét

Részletesebben

Érdekességek az elemi matematika köréből

Érdekességek az elemi matematika köréből Érdekességek az elemi matematika köréből Csizmadia László Bolyai Intézet, Szegedi Tudományegyetem Kutatók éjszakája Szeged, SZTE L. Csizmadia (Szeged) Kutatók éjszakája 2011. 2011.09.23. 1 / 17 Társasház

Részletesebben

Az értékelés során következtetést fogalmazhatunk meg a

Az értékelés során következtetést fogalmazhatunk meg a Az értékelés során következtetést fogalmazhatunk meg a a tanuló teljesítményére, a tanulási folyamatra, a célokra és követelményekre a szülők teljesítményére, a tanulási folyamatra, a célokra és követelményekre

Részletesebben

SEGÉDLET A 2009/2010. TANÉVI BEMENETI MÉRÉS ISKOLAJELENTÉS ÉRTELMEZÉSÉHEZ

SEGÉDLET A 2009/2010. TANÉVI BEMENETI MÉRÉS ISKOLAJELENTÉS ÉRTELMEZÉSÉHEZ Ú T M U T A T Ó SEGÉDLET A 2009/2010. TANÉVI BEMENETI MÉRÉS ISKOLAJELENTÉS ÉRTELMEZÉSÉHEZ 2009. december A 2009/2010. tanévi bemeneti mérés eredményeiről egyetlen Iskolajelentést kap az iskola. Ez egy

Részletesebben

Szavazási eljárások Fejezetek a döntéselméletből

Szavazási eljárások Fejezetek a döntéselméletből Szavazási eljárások Fejezetek a döntéselméletből Rebák Örs 2013. november 26. 1. Bevezetés A bevezetésben tárgyaltakat ismertnek teszem fel, közlésük csupán a teljesség kedvéért történik, illetve mert

Részletesebben

Hallgatói preferencia rangsorok készítése a jelentkezések alapján

Hallgatói preferencia rangsorok készítése a jelentkezések alapján Hallgatói preferencia rangsorok készítése a jelentkezések alapján Telcs András, Kosztyán Zsolt Tibor, Török Ádám Pannon Egyetem, Kvantitatív Módszerek Tanszék, MTA Kutatócsoport Tartalom Bevezetés Forrásadatok

Részletesebben

A kutatási program céljai és eredményei

A kutatási program céljai és eredményei This project is co-funded by the Seventh Framework Programme for Research and Technological Development of the European Union A kutatási program céljai és eredményei Tóth István János* *MTA KRTK KTI, Corruption

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

A VIZUÁLIS TÖMEGMÉDIA HATÁSA SERDÜLŐ LÁNYOK ÉS FIATAL NŐK TESTKÉPÉRE ÉS TESTTEL KAPCSOLATOS ATTITŰDJÉRE

A VIZUÁLIS TÖMEGMÉDIA HATÁSA SERDÜLŐ LÁNYOK ÉS FIATAL NŐK TESTKÉPÉRE ÉS TESTTEL KAPCSOLATOS ATTITŰDJÉRE A VIZUÁLIS TÖMEGMÉDIA HATÁSA SERDÜLŐ LÁNYOK ÉS FIATAL NŐK TESTKÉPÉRE ÉS TESTTEL KAPCSOLATOS ATTITŰDJÉRE Készítette: Szabó Orsolya 2012. június 22. A témaválasztás indoklása - Saját élmény, tapasztalat

Részletesebben

PHR Egészségjelentések szakpolitikai döntéshozatalra gyakorolt hatásának felmérésre című Európai Uniós projekt előzetes eredményei

PHR Egészségjelentések szakpolitikai döntéshozatalra gyakorolt hatásának felmérésre című Európai Uniós projekt előzetes eredményei PIA-PHR PHR Egészségjelentések szakpolitikai döntéshozatalra gyakorolt hatásának felmérésre című Európai Uniós projekt előzetes eredményei Kaposvári Csilla TÁRKI HÁTTÉR Előzmény EU Népegészségügyi Akcióprogram

Részletesebben

Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt

Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Modern műszeres analitika szeminárium Néhány egyszerű statisztikai teszt Galbács Gábor KIUGRÓ ADATOK KISZŰRÉSE STATISZTIKAI TESZTEKKEL Dixon Q-tesztje Gyakori feladat az analitikai kémiában, hogy kiugrónak

Részletesebben

KÖZGAZDASÁGTAN GAZDASÁGI INFORMATIKUSOKNAK. Elérhetőség

KÖZGAZDASÁGTAN GAZDASÁGI INFORMATIKUSOKNAK. Elérhetőség KÖZGAZDASÁGTAN GAZDASÁGI INFORMATIKUSOKNAK Oktatók Csongrádi Gyöngyi Kiss Gabriella Dr. Nagy András Elérhetőség Hivatalos honlap http://www.bgf.hu/pszk /szervezetiegysegeink/oktatasiszervezetiegysegek

Részletesebben

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.

Részletesebben

Tehetséggondozás a felsőoktatásban

Tehetséggondozás a felsőoktatásban Tehetséggondozás a felsőoktatásban 2010. március 29. Dr. Hudecz Ferenc, az ELTE rektora A felsőoktatás hosszútávú céljai Magas színvonalú és versenyképes tudás elérhetővé tétele az egyén számára. A kiművelt

Részletesebben

EGÉSZSÉG-GAZDASÁGTAN

EGÉSZSÉG-GAZDASÁGTAN EGÉSZSÉG-GAZDASÁGTAN Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék, az MTA Közgazdaságtudományi

Részletesebben

A multikritériumos elemzés célja, alkalmazási területe, adat-transzformációs eljárások, az osztályozási eljárások lényege

A multikritériumos elemzés célja, alkalmazási területe, adat-transzformációs eljárások, az osztályozási eljárások lényege A multkrtérumos elemzés célja, alkalmazás területe, adat-transzformácós eljárások, az osztályozás eljárások lényege Cél: tervváltozatok, objektumok értékelése (helyzetértékelés), döntéshozatal segítése

Részletesebben

Kérdıívek, tesztek I. Kérdıívek

Kérdıívek, tesztek I. Kérdıívek Kérdıívek, tesztek I. Kérdıívek Kérdıíves vizsgálat céljára alkalmas témák A kérdıíves vizsgálatok alkalmasak leíró, magyarázó és felderítı célokra. Leginkább olyan kutatásban használják, amelyekben az

Részletesebben

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla

Kvadratikus alakok és euklideszi terek (előadásvázlat, október 5.) Maróti Miklós, Kátai-Urbán Kamilla Kvadratikus alakok és euklideszi terek (előadásvázlat, 0. október 5.) Maróti Miklós, Kátai-Urbán Kamilla Az előadáshoz ajánlott jegyzet: Szabó László: Bevezetés a lineáris algebrába, Polygon Kiadó, Szeged,

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Véleménypolarizáció és választási részvétel. Kmetty Zoltán MTA- ELTE- PERIPATO

Véleménypolarizáció és választási részvétel. Kmetty Zoltán MTA- ELTE- PERIPATO Véleménypolarizáció és választási részvétel Kmetty Zoltán MTA- ELTE- PERIPATO Tartalom Problémafelvetés Magyarázati sémák Indikátorok, modellek Eredmények Választási verseny és részvétel összefüggése Kistelepülések

Részletesebben

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA A VALÓSZÍNŰSÉGI SZEMLÉLET ALAPOZÁSA 1-6. OSZTÁLY A biztos, a lehetetlen és a lehet, de nem biztos események megkülünböztetése Valószínűségi játékok, kísérletek események

Részletesebben

Az InCites használata az intézményi produktivitás

Az InCites használata az intézményi produktivitás Az InCites használata az intézményi produktivitás mérésére A Web of Science, mint adatháttér Horváth Dániel MTA KIK TTO 2014. szeptember 24. Korábbi tapasztalatok Tisztítás nélküli és tisztított megoszlások,

Részletesebben

LOVASKOCSIVAL AZ INFORMÁCIÓS SZUPERSZTRÁDÁN. információtartalma 2006-2010 2011/1

LOVASKOCSIVAL AZ INFORMÁCIÓS SZUPERSZTRÁDÁN. információtartalma 2006-2010 2011/1 LOVASKOCSIVAL AZ INFORMÁCIÓS SZUPERSZTRÁDÁN Magyar egyetemi honlapok információtartalma 2006-2010 2011/1 LOVASKOCSIVAL AZ INFORMÁCIÓS SZUPERSZTRÁDÁN Magyar egyetemi honlapok információtartalma 2006-2010

Részletesebben

Analitikus hierarchia eljárás. Módszertani alapok, algoritmus és számpélda

Analitikus hierarchia eljárás. Módszertani alapok, algoritmus és számpélda Analitikus hierarchia eljárás Módszertani alapok, algoritmus és számpélda Készítette: Dr. Kiss Ferenc 2009. Tartalom Az Analitikus Hierarchia eljárás...3 Alapelvek és a szempontrendszer kialakítása...

Részletesebben

MATEMATIKAI STANDARDFEJLESZTÉS

MATEMATIKAI STANDARDFEJLESZTÉS XXI. Századi Közoktatás (fejlesztés, koordináció) II. szakasz TÁMOP-3.1.1-11/1-2012-0001 MATEMATIKAI STANDARDFEJLESZTÉS Csapodi Csaba Tartalom 1. Az első változat elkészítése és a tapasztalatok 2. A második

Részletesebben

Drogkutatások Magyarországon: helyzetértékelés és következtetések

Drogkutatások Magyarországon: helyzetértékelés és következtetések Drogkutatások és drogpolitika Prioritások, szükségletek, finanszírozás c. Konferencia Budapest, 2010. február 18. Drogkutatások Magyarországon: helyzetértékelés és következtetések Demetrovics Zsolt 1,2

Részletesebben

Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat

Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi fizika és statisztika I. előadás 2016.11.09 Orvosi

Részletesebben

Verbális adatszerzési technikák. interjú

Verbális adatszerzési technikák. interjú Verbális adatszerzési technikák interjú Az interjú a kérdıívekkel együtt a társadalomtudományokban nagyon gyakran használt felmérés (survey) módszer egyik fajtája. A felmérés információgyőjtı módszer leíró

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai Az Országos Középiskolai Tanulmányi Verseny 006-007. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Melyek azok a pozitív egészek, amelyeknek pontosan négy pozitív

Részletesebben

Mai és régi idők tenisze

Mai és régi idők tenisze Mai és régi idők tenisze A nem teljesen kitöltött páros összehasonlítás mátrixok egy alkalmazása Temesi József, Csató László, Bozóki Sándor Megjelent: Solymosi Tamás Temesi József (szerk.): Egyensúly és

Részletesebben

Eloszlás-független módszerek (folytatás) 14. elıadás ( lecke) 27. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok

Eloszlás-független módszerek (folytatás) 14. elıadás ( lecke) 27. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok Eloszlás-független módszerek (folytatás) 14. elıadás (7-8. lecke) Illeszkedés-vizsgálat 7. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok elemzésére Illeszkedés-vizsgálat Gyakorisági sorok

Részletesebben

Negatív alapú számrendszerek

Negatív alapú számrendszerek 2015. március 4. Negatív számok Legyen b > 1 egy adott egész szám. Ekkor bármely N 0 egész szám egyértelműen felírható N = m a k b k k=1 alakban, ahol 0 a k < b egész szám. Negatív számok Legyen b > 1

Részletesebben

ELEMZŐ KAPACITÁS FEJLESZTÉSE, MÓDSZERTANI FEJLESZTÉS MEGVALÓSÍTÁSA

ELEMZŐ KAPACITÁS FEJLESZTÉSE, MÓDSZERTANI FEJLESZTÉS MEGVALÓSÍTÁSA TÁMOP-2.4.8-12/1-2012-0001 A munkahelyi egészség és biztonság fejlesztése, a munkaügyi ellenőrzés fejlesztése ELEMZŐ KAPACITÁS FEJLESZTÉSE, MÓDSZERTANI FEJLESZTÉS MEGVALÓSÍTÁSA Előadó: Szentesi Fekete

Részletesebben

A hallgatói preferenciák elemzése statisztikai módszerekkel

A hallgatói preferenciák elemzése statisztikai módszerekkel A hallgatói preferenciák elemzése statisztikai módszerekkel Kosztyán Zsolt Tibor 1, Katona Attila Imre 1, Neumanné Virág Ildikó 2, Telcs András 1 1,2 Pannon Egyetem, 1 Kvantitatív Módszerek Intézeti Tanszék,

Részletesebben

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7.

Fourier-sorok. Lengyelné Dr. Szilágyi Szilvia. 2010. április 7. ME, Anaĺızis Tanszék 21. április 7. A Taylor-polinom ill. Taylor-sor hátránya, hogy az adott függvényt csak a sorfejtés helyén ill. annak környezetében közeĺıti jól. A sorfejtés helyétől távolodva a közeĺıtés

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre

Részletesebben

HORVÁTH ZSÓFIA 1. Beadandó feladat (HOZSAAI.ELTE) ápr 7. 8-as csoport

HORVÁTH ZSÓFIA 1. Beadandó feladat (HOZSAAI.ELTE) ápr 7. 8-as csoport 10-es Keressünk egy egész számokat tartalmazó négyzetes mátrixban olyan oszlopot, ahol a főátló alatti elemek mind nullák! Megolda si terv: Specifika cio : A = (mat: Z n m,ind: N, l: L) Ef =(mat = mat`)

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi

Részletesebben

Oktatói önéletrajz Dr. Temesi József

Oktatói önéletrajz Dr. Temesi József egyetemi tanár Közgazdaságtudományi Kar Operációkutatás és Aktuáriustudományok Tanszék Karrier Felsőfokú végzettségek: 1969-1974 MKKE, népgazdasági tervező-elemző szak, gazdaságmatematikai szakágazat Tudományos

Részletesebben

Biomatematika 13. Varianciaanaĺızis (ANOVA)

Biomatematika 13. Varianciaanaĺızis (ANOVA) Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 13. Varianciaanaĺızis (ANOVA) Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:

Részletesebben

Orvosi szociológia (1. szeminárium) KUTATÁSMÓDSZERTAN

Orvosi szociológia (1. szeminárium) KUTATÁSMÓDSZERTAN Orvosi szociológia (1. szeminárium) KUTATÁSMÓDSZERTAN (Babbie) 1. Konceptualizáció 2. Operacionalizálás 3. Mérés 4. Adatfeldolgozás 5. Elemzés 6. Felhasználás KUTATÁS LÉPÉSEI 1. Konceptualizáció 2. Operacionalizálás

Részletesebben

Szerző: Sztárayné Kézdy Éva Lektor: Fokasz Nikosz TÁMOP-4.1.2.A/1-11/1-2011-0091 INFORMÁCIÓ - TUDÁS ÉRVÉNYESÜLÉS

Szerző: Sztárayné Kézdy Éva Lektor: Fokasz Nikosz TÁMOP-4.1.2.A/1-11/1-2011-0091 INFORMÁCIÓ - TUDÁS ÉRVÉNYESÜLÉS Kutatásmódszertan és prezentációkészítés 3. rész: Kvantitatív és kvalitatív kutatási módszerek Szerző: Sztárayné Kézdy Éva Lektor: Fokasz Nikosz Harmadik rész Kvantitatív és kvalitatív kutatási módszerek

Részletesebben

Kutatás-fejlesztési eredmények a Számítógépes Algoritmusok és Mesterséges Intelligencia Tanszéken. Dombi József

Kutatás-fejlesztési eredmények a Számítógépes Algoritmusok és Mesterséges Intelligencia Tanszéken. Dombi József Kutatás-fejlesztési eredmények a Számítógépes Algoritmusok és Mesterséges Intelligencia Tanszéken Dombi József Mesterséges intelligencia Klasszikus megközelítés (A*, kétszemélyes játékok, automatikus tételbizonyítás,

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:

Részletesebben

TANTÁRGYI ÚTMUTATÓ. Döntési módszerek

TANTÁRGYI ÚTMUTATÓ. Döntési módszerek III. évfolyam szakirány BA TANTÁRGYI ÚTMUTATÓ Döntési módszerek TÁVOKTATÁS Tanév 2014/2015 II- félév A KURZUS ALAPADATAI Tárgy megnevezése: Döntési módszerek Tanszék: Matematika-Statisztika Tantárgyfelelős

Részletesebben

Adatok statisztikai értékelésének főbb lehetőségei

Adatok statisztikai értékelésének főbb lehetőségei Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció

Részletesebben

A HR gyakorlatok alakulása - nemzetközi összehasonlítás fókuszban a közép-keleteurópai és hazai sajátosságokkal. Kovács Ildikó Éva Tanszéki mérnök

A HR gyakorlatok alakulása - nemzetközi összehasonlítás fókuszban a közép-keleteurópai és hazai sajátosságokkal. Kovács Ildikó Éva Tanszéki mérnök A HR gyakorlatok alakulása - nemzetközi összehasonlítás fókuszban a közép-keleteurópai és hazai sajátosságokkal Kovács Ildikó Éva Tanszéki mérnök VIII. NEMZETKÖZI TANÁCSADÓI KONFRERENCIA 2016. október

Részletesebben

Lineáris algebra (10A103)

Lineáris algebra (10A103) Lineáris algebra (10A103) Dr. Hartmann Miklós Tudnivalók Honlap: http://www.math.u-szeged.hu/~hartm Jegyzet: Megyesi László: Lineáris algebra. Vizsga: írásbeli, feltétele a Lineáris algebra gyakorlat teljesítése.

Részletesebben

Bevezető Mi a statisztika? Mérés Csoportosítás

Bevezető Mi a statisztika? Mérés Csoportosítás Gazdaságstatisztika 1. előadás Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Oktatók Előadó Kóczy Á. László (koczy.laszlo@kgk.bmf.hu) Fogadóóra: szerda 11:30 11:55, TA125 Gyakorlatvezető

Részletesebben

A társadalomkutatás módszerei I. Outline. A mintavételi hiba és konfidencia-intervallum Elmélet. Szükséges képletek: Tehát:

A társadalomkutatás módszerei I. Outline. A mintavételi hiba és konfidencia-intervallum Elmélet. Szükséges képletek: Tehát: A társadalomkutatás módszerei I. 10. hét Daróczi Gergely Budapesti Corvinus Egyetem 2011. november 17. Outline 1 Ismétlés Számítási feladat Egyéb példák 2 A mintavételi hiba dichotóm változók esetében

Részletesebben

Szabályozók felülvizsgálata Ellenőrzési-mátrix

Szabályozók felülvizsgálata Ellenőrzési-mátrix Szabályozók felülvizsgálata Ellenőrzési-mátrix Laukó Krisztina SZTE SZAKK, intézményi koordinátor 35. NEVES Betegbiztonsági Fórum, 2016. 06. 23. Előzmények 1998 Mintaklinika program 2002 az összes szervezeti

Részletesebben

AZ ÚJGENERÁCIÓS TANKÖNYVEK

AZ ÚJGENERÁCIÓS TANKÖNYVEK A Nemzeti Alaptantervhez illeszkedő tankönyv-, taneszköz-, és Nemzeti Közoktatási Portál fejlesztése TÁMOP-3.1.2-B/13-2013-0001 AZ ÚJGENERÁCIÓS TANKÖNYVEK Kojanitz László szakmai vezető A projekt célja

Részletesebben

PIACKUTATÁS (MARKETINGKUTATÁS)

PIACKUTATÁS (MARKETINGKUTATÁS) PIACKUTATÁS (MARKETINGKUTATÁS). FŐBB PONTOK A kutatási terv fogalmának meghatározása, a különböző kutatási módszerek osztályozása, a feltáró és a következtető kutatási módszerek közötti különbségtétel

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.

Részletesebben

FELHASZNÁLÓI KÉZIKÖNYV

FELHASZNÁLÓI KÉZIKÖNYV többszempontú csoportos döntéstámogató szoftver EGY A ÉS WINGDSS PÉLDAFELADAT A KIÉRTÉKELÉS FÜGGELÉK 4.1 RENDSZERBEN FELÉPÍTÉSE LÉPÉSEI FELHASZNÁLÓI KÉZIKÖNYV Operációkutatás MTA és Döntési SZTAKI Rendszerek

Részletesebben

Nemparametrikus tesztek. 2014. december 3.

Nemparametrikus tesztek. 2014. december 3. Nemparametrikus tesztek 2014. december 3. Nemparametrikus módszerek Alkalmazásuk: nominális adatok (gyakoriságok) esetén, ordinális adatok esetén, metrikus adatok esetén (intervallum és arányskála), ha

Részletesebben

BCE, Tájépítészeti Kar, Tájtervezési és Területfejlesztési Tanszék. MTA, Ökológiai és Botanikai Intézet

BCE, Tájépítészeti Kar, Tájtervezési és Területfejlesztési Tanszék. MTA, Ökológiai és Botanikai Intézet Budapesti Élőlények tájindikátorként Corvinus Egyetem való alkalmazhatósága a tájértékelésben Prezentáció cím egy Nagy vagy Gergőkét Gábor sor, 1, Czúcz balrazárva Bálint 2 1 BCE, Tájépítészeti Kar, Tájtervezési

Részletesebben

A diplomás pályakezdők és felsőoktatási intézmények vállalati szemmel kutatási program ismertetése

A diplomás pályakezdők és felsőoktatási intézmények vállalati szemmel kutatási program ismertetése MKIK Gazdaság és Vállalkozáskutató Intézet A diplomás pályakezdők és felsőoktatási intézmények vállalati szemmel kutatási program ismertetése Tóth István János, PhD ügyvezető Előadás a Felsőoktatási Kerekasztal

Részletesebben

HOGYAN JELEZHETŐ ELŐRE A

HOGYAN JELEZHETŐ ELŐRE A HOGYAN JELEZHETŐ ELŐRE A MUNKATÁRSAK BEVÁLÁSA? A BELSŐ ÉRTÉKELŐ KÖZPONT MÓDSZEREI ÉS S BEVÁLÁSVIZSG SVIZSGÁLATA Budapest, 2010.03.25. PSZE HR Szakmai nap Előadó: Besze Judit BÉK módszergazda. 1/28 BEVÁLÁS

Részletesebben

Boldogság - itthon vagy külföldön? Kőrössy Judit Kékesi Márk Csabai Márta

Boldogság - itthon vagy külföldön? Kőrössy Judit Kékesi Márk Csabai Márta Boldogság - itthon vagy külföldön? Kőrössy Judit Kékesi Márk Csabai Márta Boldogság kutatás 1960-as évek: mai értelemben vett boldogság kutatások kezdete 1980-as évek: szubjektív jóllét fogalma 1990-es

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani

Részletesebben

[GVMGS11MNC] Gazdaságstatisztika

[GVMGS11MNC] Gazdaságstatisztika [GVMGS11MNC] Gazdaságstatisztika 1. előadás Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Óbudai Egyetem Oktatók Előadó Kóczy Á. László (koczy.laszlo@kgk.uni-obuda.hu)

Részletesebben

Melléklet. 1. sz. melléklet Sorszám: Tisztelt Tanárnő! Tisztelt Tanár Úr!

Melléklet. 1. sz. melléklet Sorszám: Tisztelt Tanárnő! Tisztelt Tanár Úr! Melléklet 1. sz. melléklet Sorszám: Tisztelt Tanárnő! Tisztelt Tanár Úr! TDK-dolgozatomat a fogalmazás tanításáról írom. A dolgozathoz egy felmérés is tartozik, amelyben 10. osztályos tanulók kijavított

Részletesebben

Ütemezési modellek. Az ütemezési problémák osztályozása

Ütemezési modellek. Az ütemezési problémák osztályozása Ütemezési modellek Az ütemezési problémák osztályozása Az ütemezési problémákban adott m darab gép és n számú munka, amelyeket az 1,..., n számokkal fogunk sorszámozni. A feladat az, hogy ütemezzük az

Részletesebben

A beruházások döntés-előkészítésének folyamata a magyar feldolgozóipari vállalatoknál

A beruházások döntés-előkészítésének folyamata a magyar feldolgozóipari vállalatoknál A beruházások döntés-előkészítésének folyamata a magyar feldolgozóipari vállalatoknál Szűcsné Markovics Klára egyetemi tanársegéd Miskolci Egyetem, Gazdálkodástani Intézet vgtklara@uni-miskolc.hu Tudományos

Részletesebben

Bevándorlók Magyarországon. Kováts András MTA TK Kisebbségkutató Intézet

Bevándorlók Magyarországon. Kováts András MTA TK Kisebbségkutató Intézet Bevándorlók Magyarországon Kováts András MTA TK Kisebbségkutató Intézet Az elemzés fókusza Miben mások a határon túli magyarok, mint a többi bevándorolt? Kik a sikeres migránsok ma Magyarországon? A magyar

Részletesebben

Súlyok meghatározása páros összehasonlítás mátrixok legkisebb négyzetes közelítése alapján

Súlyok meghatározása páros összehasonlítás mátrixok legkisebb négyzetes közelítése alapján Súlyok meghatározása páros összehasonlítás mátrixok legkisebb négyzetes közelítése alapján Bozóki Sándor Kivonat A páros összehasonlítások módszere a többszempontú döntési feladatok megoldásának egy lehetséges

Részletesebben

MTA, Ökológiai Kutatóközpont, Ökológiai és Botanikai Intézet

MTA, Ökológiai Kutatóközpont, Ökológiai és Botanikai Intézet Budapesti Agrártájak Corvinus elemzése növénytani Egyetemés madártani mérőszámok alapján Prezentáció cím egy Nagy vagy Gergő két Gábor sor, 1, Czúcz balrazárva Bálint 2 1 BCE, Tájépítészeti Kar, Tájtervezési

Részletesebben

A felsőoktatásban dolgozók tudásértékesítési lehetőségei kutatók részvétele a tudásáramlás szektoraiban

A felsőoktatásban dolgozók tudásértékesítési lehetőségei kutatók részvétele a tudásáramlás szektoraiban A felsőoktatásban dolgozók tudásértékesítési lehetőségei kutatók részvétele a tudásáramlás szektoraiban Apró Melinda Hülber László SZTE-BTK Neveléstudományi Doktori Iskola Az LLL fogalom átalakulása lisszaboni

Részletesebben

Környezetelemzés módszerei

Környezetelemzés módszerei MISKOLCI EGYETEM Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Számvitel Intézeti Tanszék Környezetelemzés módszerei Dr. Musinszki Zoltán A vállalkozás és környezete Közgazdasági

Részletesebben

Bizalom szerepe válságban Diadikus jelenségek vizsgálata a gazdálkodástudományban

Bizalom szerepe válságban Diadikus jelenségek vizsgálata a gazdálkodástudományban A gazdasági válság hatása a szervezetek mőködésére és vezetésére Tudomány napi konferencia MTA Székház, Felolvasóterem 2012. november 20. Bizalom szerepe válságban Diadikus jelenségek vizsgálata a gazdálkodástudományban

Részletesebben

Mintavétel a gyakorlatban

Mintavétel a gyakorlatban Mintavétel a gyakorlatban Tóth Gergely ELTE-TÁTK, Doktori iskola Statisztika tanszék 1 Hol találkozhatunk mintavétellel Közvéleménykutatások A XY Intézet 2011. október 17-19. között, 500 fő telefonos megkérdezésével,

Részletesebben

A társadalomkutatás módszerei I.

A társadalomkutatás módszerei I. A társadalomkutatás módszerei I. 2. hét Daróczi Gergely Budapesti Corvinus Egyetem 2011. IX. 22. Outline 1 Bevezetés 2 Társadalomtudományi módszerek Beavatkozásmentes vizsgálatok Kvalitatív terepkutatás

Részletesebben