Az értékelés során következtetést fogalmazhatunk meg a

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Az értékelés során következtetést fogalmazhatunk meg a"

Átírás

1 Az értékelés során következtetést fogalmazhatunk meg a a tanuló teljesítményére, a tanulási folyamatra, a célokra és követelményekre a szülők teljesítményére, a tanulási folyamatra, a célokra és követelményekre a tanuló teljesítményére, az értékelési folyamatra, a célokra és követelményekre A tesztfelület kialakítása során figyelembe kell venni az életkori sajátosságokat. A medializált tananyag és az online teszt innstruktortanulóinterakciója. szinkron és aszinkron módon valósulhat meg szinkron vagy aszinkron módon valósulhat meg csak szinkron módon valósulhat meg Mi a diagnosztikus értékelés feladata? A tanulási folyamat eredményesség mérése A tanuló órai teljesítményének mérése A kiindulási szint mérése A tesztek összeállításának első lépése a kérdéstípusok kiválasztása, mert a teszt alapja a cél és tananyagelemzés. A: igaz, indoklás igaz, összefüggés van. B: igaz, indoklás igaz, összefüggés nincs. C: igaz, indoklás hamis. D: hamis, indoklás igaz. E: hamis, indoklás hamis.

2 A feladattípust a követelményszintnek megfelelően kell kiválasztani, mivel a félreértelmezhető feladat során validitási probléma léphet fel. A: igaz, indoklás igaz, összefüggés van. B: igaz, indoklás igaz, összefüggés nincs. C: igaz, indoklás hamis. D: hamis, indoklás igaz. E: hamis, indoklás hamis. Az egyszerű választásos feladatokat más néven szoros értelemben vett feladatválasztásos feladatnak is nevezzük. A kiegészítéses feladat megoldása egy-egy szóval, betűvel, számmal, szóval stb. történhet. Az érvényesség a teszt mérési eredményének pontosságára mutat. Hamis Az itemhehézség a rosz és a jó megoldások hányadosával számítható ki. Hamis

3 Melyik állítás hamis a móduszra? leíró, jósló szerepe van, mivel a tipikus értékre (tipikus eredmény, vélemény) mutat rá. alkalmas az eloszlás gyors jellemzésére is, abban az esetben, ha a mintának egy módusza van alkalmas az eloszlás gyors jellemzésére is, abban az esetben, ha a mintának nincs módusza Az a szám, amelytől az adatok eltéréseinek összege zérus a minta átlaga a minta módusza a minta médiána A korrelációs együttes szignifikancia vizsgálata megmutatja, hogy egy adott, többdimenziós minta esetén a változók közötti összefüggés milyen valószínűséggel a véletlen műve. Hamis A kereszttáblákat két paraméteres változó összefüggésének vizsgálatánál alkalmazható. A Moodle az illetéktelen hozzáférést megengedi. Hamis A felületen ingyenes, de regisztrációhoz kötött kérdőívszerkesztő portál ad lehetőséget az online teszt szerkesztéséhez. A szoftver a kitöltött tesztet nem képes javítani, értékelni. Hamis

4 Az online tesztek tévedése, hibája a minimumra csökkenthető. A teszt eredményei automatikusan a program által, de a kutató tanár által is feldolgozható. Az online teszt a programozottságától és a beállítástól függően többször is áttekinthető. A mérés az értékelési folyamat fázisa, melynek során a tanulmányi eredmények összesítése mérőeszköz segítségével gyűjtünk adatokat a tanulási folyamat tervezése A mérés az értékelési folyamat fázisa, melynek során a tanulmányi eredmények összesítése mérőeszköz segítségével gyűjtünk adatokat a tanulási folyamat tervezése Az alapadatokat közvetlenül számlálás vagy mérés eredményeként kapjuk, mivel a leszármaztatott adatok számolás eredményeként kapott értékek (viszonyszámok, átlagok, mutatószámok). A: igaz, indoklás igaz, összefüggés van. B: igaz, indoklás igaz, összefüggés nincs. C: igaz, indoklás hamis. D: hamis, indoklás igaz. E: hamis, indoklás hamis.

5 A gráf az adott objektumok közötti kapcsolat modellezésére alkalmas, mivel a tananyag elemzése a logikai struktúráját tárja fel. A: igaz, indoklás igaz, összefüggés van. B: igaz, indoklás igaz, összefüggés nincs. C: igaz, indoklás hamis. D: hamis, indoklás igaz. E: hamis, indoklás hamis. A gráf az adott objektumok közötti kapcsolat modellezésére alkalmas, mivel a tananyag elemzése a logikai struktúráját tárja fel. A: igaz, indoklás igaz, összefüggés van. B: igaz, indoklás igaz, összefüggés nincs. C: igaz, indoklás hamis. D: hamis, indoklás igaz. E: hamis, indoklás hamis. Mit értünk item alatt? Azon egyének, jelenségek összessége, akikről az információt kapjuk A tesztek legkisebb önállóan értékelhető egységét jellemző adat. Információs rendszer. Melyik hamis a klasszikus tesztelmélet axiómái szempontjából? A hiba átlaga, más szóval várható értéke zérus. A hiba annál nagyobb,, minél többször ismételjük a mérést A hiba és a valódi érték között kapcsolat nincs, azaz a korreláció zérus

6 A lehetőséget ad teamban történő feladatvégzésre, csapatmunkára. A moodle lehetőséget ad a tanárnak a kurzushoz tartozóadatok,tevékenységek vezérlését.

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015 A mérés problémája a pedagógiában Dr. Nyéki Lajos 2015 A mérés fogalma Mérésen olyan tevékenységet értünk, amelynek eredményeként a vizsgált jelenség számszerűen jellemezhetővé, más hasonló jelenségekkel

Részletesebben

7. 1. A formatív értékelés és lehetséges módjai (szóbeli, feladatlapos, számítógépes) az oktatásban. - valamilyen jelenségről, ill.

7. 1. A formatív értékelés és lehetséges módjai (szóbeli, feladatlapos, számítógépes) az oktatásban. - valamilyen jelenségről, ill. 7. 1. A formatív értékelés és lehetséges módjai (szóbeli, feladatlapos, számítógépes) az oktatásban Pedagógiai értékelés fogalma: Az értékelés során értéket állapítunk meg: közvetlenül: közvetve: - valamilyen

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

Bevezető Mi a statisztika? Mérés Csoportosítás

Bevezető Mi a statisztika? Mérés Csoportosítás Gazdaságstatisztika 1. előadás Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Oktatók Előadó Kóczy Á. László (koczy.laszlo@kgk.bmf.hu) Fogadóóra: szerda 11:30 11:55, TA125 Gyakorlatvezető

Részletesebben

Matematikai geodéziai számítások 6.

Matematikai geodéziai számítások 6. Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre

Részletesebben

ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN!

ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN! A1 A2 A3 (8) A4 (12) A (40) B1 B2 B3 (15) B4 (11) B5 (14) Bónusz (100+10) Jegy NÉV (nyomtatott nagybetűvel) CSOPORT: ALÁÍRÁS: ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN! 2011. december 29. Általános tudnivalók:

Részletesebben

[GVMGS11MNC] Gazdaságstatisztika

[GVMGS11MNC] Gazdaságstatisztika [GVMGS11MNC] Gazdaságstatisztika 1. előadás Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Óbudai Egyetem Oktatók Előadó Kóczy Á. László (koczy.laszlo@kgk.uni-obuda.hu)

Részletesebben

18. modul: STATISZTIKA

18. modul: STATISZTIKA MATEMATIK A 9. évfolyam 18. modul: STATISZTIKA KÉSZÍTETTE: LÖVEY ÉVA, GIDÓFALVI ZSUZSA MODULJÁNAK FELHASZNÁLÁSÁVAL Matematika A 9. évfolyam. 18. modul: STATISZTIKA Tanári útmutató 2 A modul célja Időkeret

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

OKM ISKOLAI EREDMÉNYEK

OKM ISKOLAI EREDMÉNYEK OKM ISKOLAI EREDMÉNYEK Statisztikai alapfogalmak Item Statisztikai alapfogalmak Átlag Leggyakrabban: számtani átlag Egyetlen számadat jól jellemzi az eredményeket Óvatosan: elfed Statisztikai alapfogalmak

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.

Részletesebben

VENDÉGLÁTÓ-IDEGENFORGALMI ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA

VENDÉGLÁTÓ-IDEGENFORGALMI ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA VENDÉGLÁTÓ-IDEGENFORGALMI ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA A vizsga részei Középszint Emelt szint 180 perc 15 perc 180 perc 20 perc 100 pont 50 pont 100 pont 50 pont A vizsgán használható segédeszközök

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 063 ÉRETTSÉGI VIZSGA 006. február. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv Mérések, mérési eredmények, mérési bizonytalanság A mérések általános és alapvető metrológiai fogalmai és definíciói mérés Műveletek összessége, amelyek célja egy mennyiség értékének meghatározása. mérési

Részletesebben

kodolosuli.hu: Interaktív, programozást tanító portál BALLA TAMÁS, DR. KIRÁLY SÁNDOR NETWORKSHOP 2017, SZEGED

kodolosuli.hu: Interaktív, programozást tanító portál BALLA TAMÁS, DR. KIRÁLY SÁNDOR NETWORKSHOP 2017, SZEGED kodolosuli.hu: Interaktív, programozást tanító portál BALLA TAMÁS, DR. KIRÁLY SÁNDOR NETWORKSHOP 2017, SZEGED A közoktatásban folyó informatika oktatásával kapcsolatos elvárások Állami szereplő: Az informatikaoktatás

Részletesebben

Centura Szövegértés Teszt

Centura Szövegértés Teszt Centura Szövegértés Teszt Megbízhatósági vizsgálata Tesztfejlesztők: Megbízhatósági vizsgálatot végezte: Copyright tulajdonos: Bóka Ferenc, Németh Bernadett, Selmeci Gábor Bodor Andrea Centura Kft. Dátum:

Részletesebben

A Statisztika alapjai

A Statisztika alapjai A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati

Részletesebben

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM. STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése

Részletesebben

1/8. Iskolai jelentés. 10.évfolyam matematika

1/8. Iskolai jelentés. 10.évfolyam matematika 1/8 2009 Iskolai jelentés 10.évfolyam matematika 2/8 Matematikai kompetenciaterület A fejlesztés célja A kidolgozásra kerülő programcsomagok az alább felsorolt készségek, képességek közül a számlálás,

Részletesebben

ELEMZŐ SZOFTVEREK. A tanárok elemző munkáját támogatja három, egyszerűen használható, minimális alkalmazói ismereteket igénylő Excel állomány.

ELEMZŐ SZOFTVEREK. A tanárok elemző munkáját támogatja három, egyszerűen használható, minimális alkalmazói ismereteket igénylő Excel állomány. ELEMZŐ SZOFTVEREK A tanárok elemző munkáját támogatja három, egyszerűen használható, minimális alkalmazói ismereteket igénylő Excel állomány. FELADAT-ITEMELEMZÉS munkalap A munkalapon a feladatok, feladatelemek

Részletesebben

smepro.eu tananyagbázis és kurzusrendszer portálok felépítése

smepro.eu tananyagbázis és kurzusrendszer portálok felépítése smepro.eu tananyagbázis és kurzusrendszer portálok felépítése Az SMELearning módszertan egyik legfontosabb ajánlása, egybehangzóan az előzetes szükségletelemzés következtetéseivel a következő: a kis-és

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint ÉRETTSÉGI VIZSGA 2005. november 5. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM A dolgozatokat az útmutató utasításai szerint, jól követhetően

Részletesebben

Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely.

Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely. Kiválasztás A változó szerint Egymintás t-próba Mann-Whitney U-test paraméteres nem-paraméteres Varianciaanalízis De melyiket válasszam? Kétmintás t-próba Fontos, hogy mindig a kérdésnek és a változónak

Részletesebben

Szerzők: Kmetty Zoltán Lektor: Fokasz Nikosz TÁMOP A/1-11/ INFORMÁCIÓ - TUDÁS ÉRVÉNYESÜLÉS

Szerzők: Kmetty Zoltán Lektor: Fokasz Nikosz TÁMOP A/1-11/ INFORMÁCIÓ - TUDÁS ÉRVÉNYESÜLÉS Kutatásmódszertan és prezentációkészítés 2. rész: Kutatási terv készítése Szerzők: Kmetty Zoltán Lektor: Fokasz Nikosz Második rész Kutatási terv készítése (Babbie 2008 alapján) Tartalomjegyzék Kutatási

Részletesebben

10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK

10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK MATEMATIK A 9. évfolyam 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK Tanári útmutató 2 MODULLEÍRÁS A modul

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

Kompetencia alapú videointerjú platform A KIVÁLASZTÁS ÚJ ÉLMÉNYE

Kompetencia alapú videointerjú platform A KIVÁLASZTÁS ÚJ ÉLMÉNYE Kompetencia alapú videointerjú platform A KIVÁLASZTÁS ÚJ ÉLMÉNYE Professzionális kiválasztási megoldás azoknak, akik nem elégszenek meg a hagyományos kiválasztási folyamatok hatékonyságával. Gyors Hatékony

Részletesebben

On-line értékelési módszerek II. Lengyelné Molnár Tünde

On-line értékelési módszerek II. Lengyelné Molnár Tünde On-line értékelési módszerek II. Lengyelné Molnár Tünde MÉDIAINFORMATIKAI KIADVÁNYOK On-line értékelési módszerek II. Lengyelné Molnár Tünde Eger, 2013 Korszerű információtechnológiai szakok magyarországi

Részletesebben

A DigiKresz internetes gyakorló program hatékony segítség az elméleti oktatást követő vizsga eredményességének növelésében.

A DigiKresz internetes gyakorló program hatékony segítség az elméleti oktatást követő vizsga eredményességének növelésében. DIGIKRESZ internetes gyakorló program Kedves Felhasználó! A DigiKresz internetes gyakorló program hatékony segítség az elméleti oktatást követő vizsga eredményességének növelésében. A program előnyei a

Részletesebben

Országos kompetenciamérés eredménye az EKF Gyakorlóiskolában

Országos kompetenciamérés eredménye az EKF Gyakorlóiskolában Országos kompetenciamérés eredménye az EKF Gyakorlóiskolában A mérések és a hozzá tartozó dokumentumok itt tekinthetõk meg. Intézményi jelentés A 2001 õszén elkezdõdött Országos kompetenciamérések sorában

Részletesebben

KERESKEDELMI ÉS MARKETING ALAPISMERETEK ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA

KERESKEDELMI ÉS MARKETING ALAPISMERETEK ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA KERESKEDELMI ÉS MARKETING ALAPISMERETEK ÉRETTSÉGI VIZSGA A vizsga részei II. A VIZSGA LEÍRÁSA Középszint Emelt szint 180 perc 15 perc 180 perc 20 perc 100 pont 50 pont 100 pont 50 pont A vizsgán használható

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

A társadalomtudományi kutatás teljes íve és alapstratégiái. áttekintés

A társadalomtudományi kutatás teljes íve és alapstratégiái. áttekintés A társadalomtudományi kutatás teljes íve és alapstratégiái áttekintés A folyamat alapvetı felépítését tekintve kétféle sémát írhatunk le: az egyik a kvantitatív kutatás sémája a másik a kvalitatív kutatás

Részletesebben

Távoktatás. a távoktatás olyan oktatási forma, amelyben az oktató és a tanulók térben és/vagy időben elkülönülnek egymástól a tananyag hordozója lehet

Távoktatás. a távoktatás olyan oktatási forma, amelyben az oktató és a tanulók térben és/vagy időben elkülönülnek egymástól a tananyag hordozója lehet Mathias-Institut 1 Távoktatás a távoktatás olyan oktatási forma, amelyben az oktató és a tanulók térben és/vagy időben elkülönülnek egymástól a tananyag hordozója lehet szöveg grafika audió videó weboldal

Részletesebben

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.08. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)

Részletesebben

Témaválasztás, kutatási kérdések, kutatásmódszertan

Témaválasztás, kutatási kérdések, kutatásmódszertan Témaválasztás, kutatási kérdések, kutatásmódszertan Dr. Dernóczy-Polyák Adrienn PhD egyetemi adjunktus, MMT dernoczy@sze.hu A projekt címe: Széchenyi István Egyetem minőségi kutatói utánpótlás nevelésének

Részletesebben

Roma fiatalok a középiskolában: Beszámoló a TÁRKI Életpálya-felmérésének 2006 és 2012 közötti hullámaiból

Roma fiatalok a középiskolában: Beszámoló a TÁRKI Életpálya-felmérésének 2006 és 2012 közötti hullámaiból Roma fiatalok a középiskolában: Beszámoló a TÁRKI Életpálya-felmérésének 2006 és 2012 közötti hullámaiból Hajdu Tamás 1 Kertesi Gábor 1 Kézdi Gábor 1,2 1 MTA KRTK KTI 2 CEU Szirák 2014.11.29. Hajdu - Kertesi

Részletesebben

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése 4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól

Részletesebben

S atisztika 2. előadás

S atisztika 2. előadás Statisztika 2. előadás 4. lépés Terepmunka vagy adatgyűjtés Kutatási módszerek osztályozása Kutatási módszer Feltáró kutatás Következtető kutatás Leíró kutatás Ok-okozati kutatás Keresztmetszeti kutatás

Részletesebben

KÖZGAZDASÁG ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA. Emelt szint. 180 perc 20 perc 100 pont 50 pont

KÖZGAZDASÁG ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA. Emelt szint. 180 perc 20 perc 100 pont 50 pont KÖZGAZDASÁG ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA A vizsga részei 180 perc 20 perc 100 pont 50 pont A vizsgán használható segédeszközök A vizsgázó biztosítja A vizsgabizottságot

Részletesebben

Matematika feladatbank I. Statisztika. és feladatgyűjtemény középiskolásoknak

Matematika feladatbank I. Statisztika. és feladatgyűjtemény középiskolásoknak Matematika feladatbank I. Statisztika Elméleti összefoglaló és feladatgyűjtemény középiskolásoknak ÍRTA ÉS ÖSSZEÁLLÍTOTTA: Dugasz János 2011 Fapadoskonyv.hu Kft. Dugasz János Tartalom Bevezető 7 Adatok

Részletesebben

A NEMZETI KÖZOKTATÁSI PORTÁL JELENTŐSÉGE A HATÁRON TÚLI ISKOLÁK SZEMPONTJÁBÓL

A NEMZETI KÖZOKTATÁSI PORTÁL JELENTŐSÉGE A HATÁRON TÚLI ISKOLÁK SZEMPONTJÁBÓL A NEMZETI ALAPTANTERVHEZ ILLESZKEDŐ TANKÖNYV, TANESZKÖZ ÉS NEMZETI KÖZOKTATÁSI PORTÁL FEJLESZTÉSE TÁMOP-3.1.2-B/13-2013-0001 A NEMZETI KÖZOKTATÁSI PORTÁL JELENTŐSÉGE A HATÁRON TÚLI ISKOLÁK SZEMPONTJÁBÓL

Részletesebben

Áruforgalom tervezése. 1. óra A gazdasági statisztika alapjai Alapfogalmak, viszonyszámok

Áruforgalom tervezése. 1. óra A gazdasági statisztika alapjai Alapfogalmak, viszonyszámok Áruforgalom tervezése 1. óra A gazdasági statisztika alapjai Alapfogalmak, viszonyszámok Alapvető gazdasági számítások 1. Egy vállalkozás tevékenysége nagyon összetett. Szükség van arra, hogy ismerjük

Részletesebben

Akusztikai tervezés a geometriai akusztika módszereivel

Akusztikai tervezés a geometriai akusztika módszereivel Akusztikai tervezés a geometriai akusztika módszereivel Fürjes Andor Tamás BME Híradástechnikai Tanszék Kép- és Hangtechnikai Laborcsoport, Rezgésakusztika Laboratórium 1 Tartalom A geometriai akusztika

Részletesebben

Több valószínűségi változó együttes eloszlása, korreláció

Több valószínűségi változó együttes eloszlása, korreláció Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...

Részletesebben

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI,

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI, Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár PhD kurzus. KOKI, 2015.09.17. Mi a statisztika? A sokaság (a sok valami) feletti áttekintés megszerzése, a sokaságról való információszerzés eszköze.

Részletesebben

Általános tájékoztató a hétvégi házi feladatok és az iskolai dolgozatok szabályairól. Részlet az intézmény Helyi tantervéből

Általános tájékoztató a hétvégi házi feladatok és az iskolai dolgozatok szabályairól. Részlet az intézmény Helyi tantervéből Általános tájékoztató a hétvégi házi feladatok és az iskolai dolgozatok szabályairól Részlet az intézmény Helyi tantervéből 8. A tanuló értékelése, minősítése, ellenőrzése A nevelő-oktató munka értékelésének

Részletesebben

Felsőoktatási digitális tananyagok publikálása NetLEARN alapon

Felsőoktatási digitális tananyagok publikálása NetLEARN alapon Felsőoktatási digitális tananyagok publikálása NetLEARN alapon Az előadás tartalma elearning piac szereplői elearning-implementáció feltételei Korszerű digitális tananyag kritériumai Digitális tananyag

Részletesebben

Teszt készítése Moodle kurzusokban

Teszt készítése Moodle kurzusokban Teszt készítése Moodle kurzusokban Az elsajátított tananyag ellenőrzésére szolgáló eszközök közül tanárok közt egyik legkedveltebb a teszt. A Moodle Teszt modulja nagyon sok opcióval rendelkezik, így tág

Részletesebben

STATISZTIKA I. Centrális mutatók. Helyzeti középértékek. Középértékek. Bimodális eloszlás, U. Módusz, Mo. 4. Előadás.

STATISZTIKA I. Centrális mutatók. Helyzeti középértékek. Középértékek. Bimodális eloszlás, U. Módusz, Mo. 4. Előadás. Centrális mutatók STATISZTIKA I. 4. Előadás Centrális mutatók 1/51 2/51 Középértékek Helyzeti középértékek A meghatározása gyakoriság vagy sorszám alapján Számítás nélkül Az elemek nagyság szerint rendezett

Részletesebben

KUTATÁSMÓDSZERTAN 4. ELŐADÁS. A minta és mintavétel

KUTATÁSMÓDSZERTAN 4. ELŐADÁS. A minta és mintavétel KUTATÁSMÓDSZERTAN 4. ELŐADÁS A minta és mintavétel 1 1. A MINTA ÉS A POPULÁCIÓ VISZONYA Populáció: tágabb halmaz, alapsokaság a vizsgálandó csoport egésze Minta: részhalmaz, az alapsokaság azon része,

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0511 ÉRETTSÉGI VIZSGA 005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

EGY PROBLEMATIKUS TANANYAGFEJLESZTÉS

EGY PROBLEMATIKUS TANANYAGFEJLESZTÉS EGY PROBLEMATIKUS TANANYAGFEJLESZTÉS Kriskó Edina PTE BTK krisko.edina@communicatio.hu Muhari Csilla DE IK csmuhari@yahoo.com Feladat Két tantárgyi tematikából, s a mögöttük meghúzódó elméleti tárgyból

Részletesebben

Informatika a valós világban: a számítógépek és környezetünk kapcsolódási lehetőségei

Informatika a valós világban: a számítógépek és környezetünk kapcsolódási lehetőségei Informatika a valós világban: a számítógépek és környezetünk kapcsolódási lehetőségei Dr. Gingl Zoltán SZTE, Kísérleti Fizikai Tanszék Szeged, 2000 Február e-mail : gingl@physx.u-szeged.hu 1 Az ember kapcsolata

Részletesebben

A PEDAGÓGIAI HOZZÁADOTT ÉRTÉK

A PEDAGÓGIAI HOZZÁADOTT ÉRTÉK A PEDAGÓGIAI HOZZÁADOTT ÉRTÉK A PEDAGÓGIAI HOZZÁADOTT ÉRTÉK FOGALMA Az iskolai munka minőségének, hatékonyságának mutatója Azt mutatja meg, hogy az iskola egy adott időszakban mennyivel járul hozzá a tanulók

Részletesebben

2.1. Az oktatási folyamat tervezésének rendszerszemléletű modellje.

2.1. Az oktatási folyamat tervezésének rendszerszemléletű modellje. 2.1. Az oktatási folyamat tervezésének rendszerszemléletű modellje. Az oktatási folyamat tervezése a központi kerettanterv alapján a helyi tanterv elkészítésével kezdődik. A szakmai munkaközösség tagjai

Részletesebben

Kalibrálás és mérési bizonytalanság. Drégelyi-Kiss Ágota I

Kalibrálás és mérési bizonytalanság. Drégelyi-Kiss Ágota I Kalibrálás és mérési bizonytalanság Drégelyi-Kiss Ágota I. 120. dregelyi.agota@bgk.uni-obuda.hu Kalibrálás Azoknak a mőveleteknek az összessége, amelyekkel meghatározott feltételek mellett megállapítható

Részletesebben

Populációbecslések és monitoring

Populációbecslések és monitoring Populációbecslések és monitoring A becslés szerepe az ökológiában és a vadgazdálkodásban. A becslési módszerek csoportosítása. Teljes számlálás. Statisztikai alapfogalmak. Fontos lehet tudnunk, hogy hány

Részletesebben

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség.

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. 1. tétel Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. A valószínűségszámítás tárgya: véletlen tömegjelenségek vizsgálata. véletlen: a kísérlet kimenetelét

Részletesebben

11. modul: LINEÁRIS FÜGGVÉNYEK

11. modul: LINEÁRIS FÜGGVÉNYEK MATEMATIK A 9. évfolyam 11. modul: LINEÁRIS FÜGGVÉNYEK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 11. modul: LINEÁRIS FÜGGVÉNYEK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA A VALÓSZÍNŰSÉGI SZEMLÉLET ALAPOZÁSA 1-6. OSZTÁLY A biztos, a lehetetlen és a lehet, de nem biztos események megkülünböztetése Valószínűségi játékok, kísérletek események

Részletesebben

SZÁMÍTÓGÉPES GRAFIKA KÉPZÉSI PROGRAM

SZÁMÍTÓGÉPES GRAFIKA KÉPZÉSI PROGRAM SZÁMÍTÓGÉPES GRAFIKA KÉPZÉSI PROGRAM a Felnőttképzésről szóló 2013. évi LXXVII. tv. 12. (1) bekezdésének megfelelően. A képzési program Megnevezése Nyilvántartásba vételi száma Számítógépes grafika E-000976/2014/D002

Részletesebben

Oktatói weboldalak vizsgálata hallgatói szemszögből

Oktatói weboldalak vizsgálata hallgatói szemszögből Oktatói weboldalak vizsgálata hallgatói szemszögből Hallgatói és oktatói igények összevetése NETWORKSHOP KONFERENCIA 2013. március 26-28. Kvaszingerné Prantner Csilla Eszterházy Károly Főiskola csilla@ektf.hu

Részletesebben

A SIOK Beszédes József Általános Iskola évi kompetenciamérés eredményeinek elemzése és hasznosítása

A SIOK Beszédes József Általános Iskola évi kompetenciamérés eredményeinek elemzése és hasznosítása A SIOK Beszédes József Általános Iskola 2011. évi kompetenciamérés eredményeinek elemzése és hasznosítása A jelentésben szereplő tanulók száma 2011. évi méréskor 6. a osztály: 24 fő 6. b osztály: 32 fő

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA KÖZÉPSZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2006. február 21. OKTATÁSI MINISZTÉRIUM

JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA KÖZÉPSZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2006. február 21. OKTATÁSI MINISZTÉRIUM Matematika középszint Javítási-értékelési útmutató 063 MATEMATIKA KÖZÉPSZINT% ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ ÉRETTSÉGI VIZSGA 006. február. OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek

Részletesebben

A TANKÖNYVEK KIPRÓBÁLÁSÁNAK ESZKÖZRENDSZERE

A TANKÖNYVEK KIPRÓBÁLÁSÁNAK ESZKÖZRENDSZERE A NEMZETI ALAPTANTERVHEZ ILLESZKEDŐ TANKÖNYV, TANESZKÖZ ÉS NEMZETI KÖZNEVELÉSI PORTÁL FEJLESZTÉSE TÁMOP-3.1.2-B/13-2013-0001 A TANKÖNYVEK KIPRÓBÁLÁSÁNAK ESZKÖZRENDSZERE Kerber Zoltán A tankönyvek jóváhagyása

Részletesebben

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani

Részletesebben

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető!

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető! BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, 2012.. Név:... Neptun kód:... Érdemjegy:..... STATISZTIKA II. VIZSGADOLGOZAT Feladatok 1. 2. 3. 4. 5. 6. Összesen Szerezhető pontszám 21 20 7 22

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 2. FELADATSORHOZ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI 2. FELADATSORHOZ JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI. FELADATSORHOZ Formai előírások: A dolgozatot a vizsgázó által használt színűtől eltérő színű tollal kell javítani, és a tanári gyakorlatnak

Részletesebben

Az Excel táblázatkezelő program használata a matematika és a statisztika tantárgyak oktatásában

Az Excel táblázatkezelő program használata a matematika és a statisztika tantárgyak oktatásában Az Excel táblázatkezelő program használata a matematika és a statisztika tantárgyak oktatásában Hódiné Szél Margit SZTE MGK 1 A XXI. században az informatika rohamos terjedése miatt elengedhetetlen, hogy

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 051 É RETTSÉGI VIZSGA 005. október 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 0711 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

Közúti forgalomszámlálás e_sensor rendszerrel. 2012.06.04 2012.06.10 Budapest dugódíj projekt (sajtóanyag)

Közúti forgalomszámlálás e_sensor rendszerrel. 2012.06.04 2012.06.10 Budapest dugódíj projekt (sajtóanyag) Közúti forgalomszámlálás e_sensor rendszerrel 2012.06.04 2012.06.10 Budapest dugódíj projekt (sajtóanyag) 1 Cégbemutató A Sensor Technologies Kft. videó analitikai rendszereket fejleszt budapesti székhellyel.

Részletesebben

Verbális adatszerzési technikák. interjú

Verbális adatszerzési technikák. interjú Verbális adatszerzési technikák interjú Az interjú a kérdıívekkel együtt a társadalomtudományokban nagyon gyakran használt felmérés (survey) módszer egyik fajtája. A felmérés információgyőjtı módszer leíró

Részletesebben

Használati útmutató Szaktanácsadók számára NAK e-learning rendszerhez Bejelentkezés Moodle rendszerbe

Használati útmutató Szaktanácsadók számára NAK e-learning rendszerhez Bejelentkezés Moodle rendszerbe Használati útmutató Szaktanácsadók számára NAK e-learning rendszerhez Bejelentkezés Moodle rendszerbe 1 1. A belépés Nyissa meg a kepzes.nak.hu honlapot. A belépéshez tetszés szerint kattintson a honlap

Részletesebben

A Tisza-parti Általános Iskola. angol szintmérőinek. értékelése. (Quick Placement Tests)

A Tisza-parti Általános Iskola. angol szintmérőinek. értékelése. (Quick Placement Tests) A Tisza-parti Általános Iskola angol szintmérőinek értékelése (Quick Placement Tests) Készítette: Hajdú Erzsébet Tóth Márta 2009/2010 Ismertető a szintmérésről Mért tanulók: 8. évfolyam és 6. évfolyam,

Részletesebben

Biometria gyakorló feladatok BsC hallgatók számára

Biometria gyakorló feladatok BsC hallgatók számára Biometria gyakorló feladatok BsC hallgatók számára 1. Egy üzem alkalmazottainak megoszlása az elért teljesítmény %-a szerint a következı: Norma teljesítmény % Dolgozók száma 60-80 30 81-90 70 91-100 90

Részletesebben

Steps Towards an Ontology Based Learning Environment. Anita Pintér Corvinno Technologia Transzfer Kft apinter@corvinno.hu

Steps Towards an Ontology Based Learning Environment. Anita Pintér Corvinno Technologia Transzfer Kft apinter@corvinno.hu Steps Towards an Ontology Based Learning Environment Anita Pintér Corvinno Technologia Transzfer Kft apinter@corvinno.hu Ontológia alapú elektronikus tanulási környezet megteremtése Anita Pintér Corvinno

Részletesebben

A statisztika oktatásáról konkrétan

A statisztika oktatásáról konkrétan A világ statisztikája a statisztika világa ünnepi konferencia Esztergom, 2010.október 15. A statisztika oktatásáról konkrétan Dr. Varga Beatrix PhD. egyetemi docens MISKOLCI EGYETEM Üzleti Statisztika

Részletesebben

TANANYAGFEJLESZTÉS TÁMOP TÁMOGATÁSSAL. Dr. Simonics István Óbudai Egyetem Trefort Ágoston Mérnökpedagógiai Központ

TANANYAGFEJLESZTÉS TÁMOP TÁMOGATÁSSAL. Dr. Simonics István Óbudai Egyetem Trefort Ágoston Mérnökpedagógiai Központ TANANYAGFEJLESZTÉS TÁMOP TÁMOGATÁSSAL Dr. Simonics István Óbudai Egyetem Trefort Ágoston Mérnökpedagógiai Központ TÁMOP-4.1.2.B.2-13/1-2013-0002 - "A műszaki és humán szakterület szakmai pedagógusképzésének

Részletesebben

Szám-Adó Kft. 2011.Október 27. Előadó: Lengyel Zoltán. Szociális Intézmények III. Szakmai Találkozója

Szám-Adó Kft. 2011.Október 27. Előadó: Lengyel Zoltán. Szociális Intézmények III. Szakmai Találkozója Előadó: Lengyel Zoltán Szociális Intézmények III. Szakmai Találkozója 1 Napi elektronikus adatszolgáltatás Mivel jár ez? - Internet kapcsolat szükséges hozzá - Fenntartói e-képviselők regisztrációja, képzése

Részletesebben

Orvosi szociológia (1. szeminárium) KUTATÁSMÓDSZERTAN

Orvosi szociológia (1. szeminárium) KUTATÁSMÓDSZERTAN Orvosi szociológia (1. szeminárium) KUTATÁSMÓDSZERTAN (Babbie) 1. Konceptualizáció 2. Operacionalizálás 3. Mérés 4. Adatfeldolgozás 5. Elemzés 6. Felhasználás KUTATÁS LÉPÉSEI 1. Konceptualizáció 2. Operacionalizálás

Részletesebben

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes

Részletesebben

Multimédia anyagok szerkesztése kurzus hatékonyságnövelése web alapú projekt módszer alkalmazásával

Multimédia anyagok szerkesztése kurzus hatékonyságnövelése web alapú projekt módszer alkalmazásával Multimédia anyagok szerkesztése kurzus hatékonyságnövelése web alapú projekt módszer alkalmazásával Béres Ilona Heller Farkas Főiskola Turcsányi-Szabó Márta ELTE-IK Média és Oktatásinformatika Tanszék

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:

Részletesebben

Kérdıívek, tesztek I. Kérdıívek

Kérdıívek, tesztek I. Kérdıívek Kérdıívek, tesztek I. Kérdıívek Kérdıíves vizsgálat céljára alkalmas témák A kérdıíves vizsgálatok alkalmasak leíró, magyarázó és felderítı célokra. Leginkább olyan kutatásban használják, amelyekben az

Részletesebben

Gyakorlat 8 1xANOVA. Dr. Nyéki Lajos 2016

Gyakorlat 8 1xANOVA. Dr. Nyéki Lajos 2016 Gyakorlat 8 1xANOVA Dr. Nyéki Lajos 2016 A probléma leírása Azt vizsgáljuk, hogy milyen hatása van a család jövedelmének a tanulók szövegértés teszten elért tanulmányi eredményeire. A minta 59 iskola adatait

Részletesebben

OOP. Alapelvek Elek Tibor

OOP. Alapelvek Elek Tibor OOP Alapelvek Elek Tibor OOP szemlélet Az OOP szemlélete szerint: a valóságot objektumok halmazaként tekintjük. Ezen objektumok egymással kapcsolatban vannak és együttműködnek. Program készítés: Absztrakciós

Részletesebben

ÁVF oktatási és közösségi portál

ÁVF oktatási és közösségi portál 2011 --- Általános Vállalkozási Fıiskola --- ÁVF oktatási és közösségi portál A portált azért hoztuk létre, hogy az elektronikus oktatástámogatás modern eszközei mellett közösségi és karrierépítési lehetıségeket

Részletesebben

Parametrikus tervezés

Parametrikus tervezés 2012.03.31. Statikus modell Dinamikus modell Parametrikus tervezés Módosítások a tervezés folyamán Konstrukciós variánsok (termékcsaládok) Parametrikus Modell Parametrikus tervezés Paraméterek (változók

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

KÉZILABDÁZÁS AZ ISKOLÁBAN. Juhász István MKSZ szakmai igazgató európai mesteredző, főiskolai docens

KÉZILABDÁZÁS AZ ISKOLÁBAN. Juhász István MKSZ szakmai igazgató európai mesteredző, főiskolai docens KÉZILABDÁZÁS AZ ISKOLÁBAN Juhász István MKSZ szakmai igazgató európai mesteredző, főiskolai docens A program beindításának indoklása Egy gyermek élete olyan, mint egy papírlap. Minden arra járó nyomot

Részletesebben

Gyakorlatias tanácsok PLA fejlesztőknek

Gyakorlatias tanácsok PLA fejlesztőknek Gyakorlatias tanácsok PLA fejlesztőknek Beszédes Nimród Attiláné Békéscsabai Regionális Képző Központ Képzési igazgatóhelyettes 2007. november 28-30. A jogszabályi háttérről 2001. évi CI. törvény 24/2004.

Részletesebben

MINTAFELADATOK. 1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti:

MINTAFELADATOK. 1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti: 1. Az alábbi diagram egy kiskereskedelmi lánc boltjainak forgalomkoncentrációját szemlélteti: 100% 90% 80% 70% 60% 50% 2010 2011 40% 30% 20% 10% 0% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% a) Nevezze

Részletesebben