Mérés és skálaképzés. Kovács István. BME Menedzsment és Vállalatgazdaságtan Tanszék

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Mérés és skálaképzés. Kovács István. BME Menedzsment és Vállalatgazdaságtan Tanszék"

Átírás

1 Mérés és skálaképzés Kovács István BME Menedzsment és Vállalatgazdaságtan Tanszék

2 Miröl is lesz ma szó? Mi is az a mérés? A skálaképzés alapjai A skálaképzés technikái Összehasonlító skálák Nem összehasonlító skálák

3 A fejlődés és az ellenőrzés első lépése a mérés. Ha nem tudsz megmérni valamit, akkor meg sem értheted azt. Ha meg sem értheted azt, akkor nem is tudod ellenőrizni. Ha nem tudod ellenőrizni, akkor nem is tudod fejleszteni. H. James Harrington

4 Mi is az a mérés? Számok vagy egyéb szimbólumok vizsgálati egységek jellemzőihez történő, előre meghatározott szabályok szerinti hozzárendelése.

5 Figyelembe vett tényezök A marketingkut.ban a számokat általában meghatározott céllal rendeljük a vizsgálati egységekhez. A vizsgálati egységek egyes attribútumaihoz rendelünk számokat és nem magához a vizsgálati egységekhez Nem minden tevékenység igényel mérést, amivel a kutatók foglalkoznak. A szabály meghatározása, amely alapján a számokat a vizsgálati egységek jellemzőihez rendeljük

6 Ne feledjük Bármilyen döntéshez vagy döntéssorozathoz számtalan mérést lehet végezni, számtalan módon, de tökéletes bizonyosságra nincs reális esély. A vezetőségnek olyan módszerre van szüksége, amely a döntési lehetőségek elemzésével csökkenti a bizonytalanságot.

7 Megválaszolandó kérdések Milyen döntést kell támogatnia a mérésnek? Hogyan lehet meghatározni a megmérendő dolog megfigyelhető következményeit? Pontosan hogyan befolyásolja az eredmény a döntéshozatal folyamatát? Mennyi információval rendelkezünk a mérés pillanatában? Mekkora a pluszinformáció értéke?

8 Skálaképzés A skálaképzés a mérés kiterjesztéseként is értelmezhető Egy skála kialakítása, amelyen a mért vizsgálati egységek elhelyezkednek.

9 A skálaképzés alapjai Cél, hogy objektív mérési rendszert alakítsunk ki. Mérhetővé tegyük a megkérdezetteknek a kutatás tárgyához kötődő viszonyát 4 elsődleges skálázási technikát különböztetünk meg

10 Elsödleges mérési skálák Névleges Sorrendi Arány Második helyezett Első helyezett Harmadik helyezett 9,1 9,6 8,2 14,1 13,4 15,2 Intervallum A teljesítmény értékelése 0-10ig terjedő skálán A célba érés ideje másodpercben 10

11 Névleges skála Olyan skála, ahol az értékek vizsgálati egységek csoportosítását, azonosítását szolgáló címkék. Az értékek azonosító címkeként funkcionálnak Minden számot kizárólag egy vizsgálati egységhez rendelnek Pl. tanulmányban számot rendelünk a válaszadókhoz

12 Névleges skála II. A számok nem tükröznek mennyiséget Azok, akiknek magasabb a TAJ száma jobbak? TAJ szám átlaga? Főleg gyakoriságokat értékeljük Százalékszámítás Módusz X2 és binomiális próbák

13 Sorrendi skála A vizsgálati egységekhez rendelt számok jelzik valamely tulajdonság meglétének relatív mértékét. Így az is meghatározható, hogy egy vizsgálati egység kisebb vagy nagyobb mértékben rendelkezik-e az adott tulajdonsággal, mint egy másik vizsgálati egység.

14 Sorrendi skála II. Egyfajta rangsoroló skála Egy egység kisebb vagy nagyobb mértékben rendelkezik-e az adott tulajdonsággal A sorrendben első egység jobban rendelkezik az adott tulajdonsággal, mint az őt követő, azt viszont nem tudjuk, hogy milyen mértékben marad le a második Pl. minőségi sorrendek, helyezések stb.

15 Sorrendi skála III. Relatív attitűd, vélemény, percepció és preferencia mérésben alkalmazzuk Az azonos vizsgálati egységek azonos helyezést kapnak Percentilisen alapuló statisztikai számítások Kvartilis-, medián-, rangkoreláció

16 intervallum skála Értékei vizsgálati egységek értékelésére szolgálnak. A skálapontok közötti távolságok egyenlők, és kifejezik a mért tulajdonságban lévő különbségeket. Sorrendi információkat is tartalmaz Objektumok közötti összehasonlítás

17 intervallum skála II. Bármely két szomszédos skálapont értéke közötti különbség megegyezik az intervallumskála bármely más két szomszédos értékének különbségével. A skálaértékek között állandó, ill. egyenlő a különbség

18 Arányskála A legmagasabb rendű skála. Lehetővé teszi a vizsgálati egységek azonosítását, csoportosítását, és intervallum vagy különbségek összehasonlítását. A skálaértékekből arányokat is lehet számolni. Nem csak azt mondhatjuk, hogy 2 5 közötti különbség megegyezik a 14 és 17 közöttivel, de azt is, hogy a 14 abszolút értékben hétszer nagyobb a 2.nél.

19 A skálaképzési technikák ÖSSZEHASONLÍTÓ SKÁLA nem metrikus Arra alkalmas, hogy a vizsgált egységek, pl. márkák összehasonlítását elvégezzük, azok kedveltsége szerint. Hátránya, hogy az eredményeket csak egymáshoz viszonyítva értelmezhetjük, önmagukban nem. NEM ÖSSZEHASONLÍTÓ SKÁLA - metrikus Minden vizsgálati egységet a többitől függetlenül mérnek. Ezek a skálatípusok intervallum vagy arány szintű skálák. Gyakrabban alkalmazzuk.

20 Páros összehasonlítás Összehasonlító skálák Rangsor Konstans összegű Skálázási technikák Q-rendező technika és egyéb eljárások Nem összehasonlító skálák Folytonos értékelő skála Tételes értékelő skála Likert skála Szemantikus differenciálskála Stapel skála

21 Páros összehasonlítás A válaszadó egyszerre két tárgyat értékel, és kiválaszt közülük egyet valamilyen szempont szerint. A kapott adatok általában sorrendi skálának felelnek meg. Pl. Tescóban gyakrabban vásárolok, mint a Matchban. Főleg termékek esetében alkalmazzák. A márkát részesíti előnyben a B márkával szemben, és B-t részesíti előnyben C-vel szemben, akkor A-t is előnyben részesíti C-vel szemben

22 Rangsorskála A válaszadók több vizsgálati egységet értékelnek egyszerre, és valamely szempont alapján rangsorolják azokat. Hasonlít a valódi vásárlási helyzetre Gyorsan lebonyolítható és megérthető

23 Konstans összegü skála A válaszadók egy meghatározott szempont alapján adott pontértéket vagy más konstans összeget (pl. pénzösszeget) osztanak el a vizsgálati egységek között. Amennyiben egy tulajdonság közömbös, a válaszadó nullával is jelölheti. Amennyiben dupla olyan fontos, mint egy másik, a válaszadó dupla annyi pontot ad a tulajdonságnak

24 Q-rendezötechnika A vizsgálati egységek rangsorolását azok egy adott szempont szerinti hasonlóságára alapozva végzi el. Új termék koncepciók tesztelése több terméktulajdonságot kell értékelni A vizsgálati egységekből csoportokat kell alkotniuk

25 Folytonos értékelöskála Kategóriák nincsenek behatárolva Könnyű választani a válaszadónak A kutató felosztja a vonalat a kívánatos számú kategóriákra Grafikus értékelőskálának is nevezik, ahol a válaszadók egy egyenes vonal megfelelő pozíciójának megjelölésével értékelik a vizsgálati egységeket. A vonal két végén a vizsgált változó szélső értékei találhatóak. Nagyon Közepes Nagyon rossz jó Valószínűleg a legrosszabb I Valószínűleg a legjobb Hogyan ítéli meg az XY márkát?

26 Diszkrét értékelöskála A számok vagy rövid leírások szerepelnek minden egyes kategóriánál. A kategóriák a skálán elfoglalt helyük alapján sorrendbe vannak állítva. Likert skála Szemantikus differenciál skála Stappel skála

27 Likert skála Mérési skála 5 válaszkategóriával, amelyek a teljes mértékben egyetért és az egyáltalán nem ért egyet végpontok között helyezkednek el. A válaszadónak jelölnie kell, mennyire ért egyet egy sor, a vizsgálati egységre vonatkozó állítással. Attitűdmérésre szolgál Fontos a megfelelő kódolás

28 Szemantikus differenciálskála Szervezet vagy márka imázsának vizsgálata során alkalmazott Érthető végpontok szükségesek Körültekintést igényel Hétfokú értékelőskála szemantikus jelentésű, ellentétes végpontokkal.

29 Stapel skála Attitűdmérésre használható skála, amelyben egy jelző szerepel egy páros számú értéksor közepén. A válaszadótól azt kérjük, mennyire pontosan írja le a jelző az adott vizsgálati egységet. Összeállítása egyszerű és nincs szükség két végpontra.

30 Alapvetö szabályok A kategóriák száma Páros vagy páratlan kategória A kategóriaértékek meghatározása számmal, szövegesen Kiegyensúlyozott vagy nem kiegyensúlyozott skála Kényszerítő vagy nem kényszerítő skála Fizikai megjelenés

31 Az alábbi képek segítségével értékelje, hogy milyen volt az elöadás: Köszönöm a figyelmet!

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015 A mérés problémája a pedagógiában Dr. Nyéki Lajos 2015 A mérés fogalma Mérésen olyan tevékenységet értünk, amelynek eredményeként a vizsgált jelenség számszerűen jellemezhetővé, más hasonló jelenségekkel

Részletesebben

STATISZTIKA I. A változók mérési szintjei. Nominális változók. Alacsony és magas mérési szint. Nominális változó ábrázolása

STATISZTIKA I. A változók mérési szintjei. Nominális változók. Alacsony és magas mérési szint. Nominális változó ábrázolása A változók mérési szintjei STATISZTIKA I. 3. Előadás Az adatok mérési szintjei, Viszonyszámok A változók az alábbi típusba tartozhatnak: Nominális (kategorikus és diszkrét) Ordinális Intervallum skála

Részletesebben

Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás

Mintavétel fogalmai STATISZTIKA, BIOMETRIA. Mintavételi hiba. Statisztikai adatgyűjtés. Nem véletlenen alapuló kiválasztás STATISZTIKA, BIOMETRIA. Előadás Mintavétel, mintavételi technikák, adatbázis Mintavétel fogalmai A mintavételt meg kell tervezni A sokaság elemei: X, X X N, lehet véges és végtelen Mintaelemek: x, x x

Részletesebben

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM. STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése

Részletesebben

K Ö R N Y E Z E T É S P I A C E L E M Z É S A M A R K E T I N G K U T A T Á S M Ó D S Z E R E I

K Ö R N Y E Z E T É S P I A C E L E M Z É S A M A R K E T I N G K U T A T Á S M Ó D S Z E R E I K Ö R N Y E Z E T É S P I A C E L E M Z É S A M A R K E T I N G K U TAT Á S M Ó D S Z E R E I MARKETING GYAKO RL AT 2. ISMÉTLŐ KÉRDÉSEK Milyen követelményeket állíthatunk az információkkal szemben? Mi

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus

Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus Gyakorisági sorok Mennyiségi ismérv jellemző rangsor készítünk. (pl. napi jegyeladások száma) A gyakorisági sor képzése igazából tömörítést jelent Nagyszámú

Részletesebben

Bevezető Mi a statisztika? Mérés Csoportosítás

Bevezető Mi a statisztika? Mérés Csoportosítás Gazdaságstatisztika 1. előadás Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Oktatók Előadó Kóczy Á. László (koczy.laszlo@kgk.bmf.hu) Fogadóóra: szerda 11:30 11:55, TA125 Gyakorlatvezető

Részletesebben

[GVMGS11MNC] Gazdaságstatisztika

[GVMGS11MNC] Gazdaságstatisztika [GVMGS11MNC] Gazdaságstatisztika 1. előadás Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Óbudai Egyetem Oktatók Előadó Kóczy Á. László (koczy.laszlo@kgk.uni-obuda.hu)

Részletesebben

2. előadás. Viszonyszámok típusai

2. előadás. Viszonyszámok típusai 2. előadás Viszonyszámok típusai Mérési skálák Nominális /névleges skála: kötetlen hozzárendelése a számoknak Sorrendi / Ordinális skála: sokaság egyedeinek egy közös tulajdonság szerinti sorbarendezése

Részletesebben

Sta t ti t s i zt z i t k i a 1. előadás

Sta t ti t s i zt z i t k i a 1. előadás Statisztika 1 előadás Témakörök Statisztikai alapfogalmak Statisztikai sorok Mennyiségi sorok csoportosítása Statisztikai táblák Statisztika fogalma Gyakorlati tevékenység Adatok összessége Módszertan

Részletesebben

Dr. Piskóti István Marketing Intézet. Marketing 2.

Dr. Piskóti István Marketing Intézet. Marketing 2. Kutatni kell kutatni jó! - avagy a MIR és a marketingkutatás módszerei Dr. Piskóti István Marketing Intézet Marketing 2. Marketing-menedzsment A marketing összes feladatát és aktivitásait összefoglalóan,

Részletesebben

KÖZLEKEDÉSÜZEMI ÉS KÖZLEKEDÉSGAZDASÁGI TANSZÉK. Prof. Dr. Tánczos Lászlóné 2015

KÖZLEKEDÉSÜZEMI ÉS KÖZLEKEDÉSGAZDASÁGI TANSZÉK. Prof. Dr. Tánczos Lászlóné 2015 KÖZLEKEDÉSÜZEMI ÉS KÖZLEKEDÉSGAZDASÁGI TANSZÉK Prof. Dr. Tánczos Lászlóné 2015 KÖZLEKEDÉSGAZDASÁGTAN BSc. I. KAMATOS KAMATSZÁMÍTÁS (jövőbeni érték számítása) C t = C 0 * (1 + i) t ahol C t a 0. évben ismert

Részletesebben

A statisztika alapjai - Bevezetés az SPSS-be -

A statisztika alapjai - Bevezetés az SPSS-be - A statisztika alapjai - Bevezetés az SPSS-be - Kvantitatív statisztikai módszerek Petrovics Petra, Géczi-Papp Renáta SPSS alapok Statistical Package for Social Sciences SPSS nézetek: Data View Variable

Részletesebben

Bevezetés az SPSS program használatába

Bevezetés az SPSS program használatába Bevezetés az SPSS program használatába Statisztikai szoftver alkalmazás Géczi-Papp Renáta SPSS alapok Statistical Package for Social Sciences SPSS nézetek: Data View Variable View Output Viewer Sintax

Részletesebben

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció

Részletesebben

Matematikai statisztikai elemzések 2.

Matematikai statisztikai elemzések 2. Matematikai statisztikai elemzések 2. Helyzetmutatók, átlagok, kvantilisek. A szórás és szóródás Prof. Dr. Závoti, József Matematikai statisztikai elemzések 2.: Helyzetmutatók, átlagok, Prof. Dr. Závoti,

Részletesebben

Vizuális adatelemzés

Vizuális adatelemzés Vizuális adatelemzés Salánki Ágnes, Guta Gábor, PhD Dr. Pataricza András Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek

Részletesebben

Páros összehasonlítás mátrixok empirikus vizsgálata. Bozóki Sándor

Páros összehasonlítás mátrixok empirikus vizsgálata. Bozóki Sándor Páros összehasonlítás mátrixok empirikus vizsgálata Bozóki Sándor MTA SZTAKI Operációkutatás és Döntési Rendszerek Kutatócsoport Budapesti Corvinus Egyetem Operációkutatás és Aktuáriustudományok Tanszék

Részletesebben

A fejlesztés várt eredményei a 1. évfolyam végén

A fejlesztés várt eredményei a 1. évfolyam végén A tanuló legyen képes: A fejlesztés várt eredményei a 1. évfolyam végén - Halmazalkotásra, összehasonlításra az elemek száma szerint; - Állítások igazságtartalmának eldöntésére, állítások megfogalmazására;

Részletesebben

Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok

Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris

Részletesebben

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció

Részletesebben

Kérdőíves vizsgálatok

Kérdőíves vizsgálatok Kérdőíves vizsgálatok A kérdőíves vizsgálat fogalma, célja, fajtái Fogalma: Célja: Fajtái: A tudományos adatgyűjtés egyik módszere Kérdőív segítségével térképezik fel a megkérdezettek véleményét, tudását,

Részletesebben

Munkakörtervezés és -értékelés

Munkakörtervezés és -értékelés Munkakörtervezés és Emberierőforrás-menedzsment Dr. Finna Henrietta egyetemi adjunktus Dr. Finna Henrietta: Atipikus foglalkoztatás Munkakör-áttervezés A munkakörtervezés egy olyan folyamat, amelyben egy

Részletesebben

A II. kategória Fizika OKTV mérési feladatainak megoldása

A II. kategória Fizika OKTV mérési feladatainak megoldása Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett

Részletesebben

Matematika. 1. osztály. 2. osztály

Matematika. 1. osztály. 2. osztály Matematika 1. osztály - képes halmazokat összehasonlítani az elemek száma szerint, halmazt alkotni; - képes állítások igazságtartalmának eldöntésére, állításokat megfogalmazni; - halmazok elemeit összehasonlítja,

Részletesebben

3. ZH FOGALMAI. Döntéshozó: Az a személy (vagy csoport), aki a cselekvési változatok közül választ egyet.

3. ZH FOGALMAI. Döntéshozó: Az a személy (vagy csoport), aki a cselekvési változatok közül választ egyet. 3. ZH FOGALMAI Döntési helyzet: Az olyan helyzet, amelyekben az egyén vagy csoport, azaz a döntést hozó legalább két cselekvési változat (cselekvési mód) közötti választás problémájával áll szemben. A

Részletesebben

Környezet és piacelemzés a marketingkutatás módszerei

Környezet és piacelemzés a marketingkutatás módszerei Környezet és piacelemzés a marketingkutatás módszerei MARKETING - 2. előadás Prof. Dr. Piskóti István intézetigazgató 1 Mai kérdésköreink 1. A marketing, mint tudatos, tervezett tevékenység 2. Marketingkutatás,

Részletesebben

SZÁMÍTÓGÉPES ADATFELDOLGOZÁS

SZÁMÍTÓGÉPES ADATFELDOLGOZÁS SZÁMÍTÓGÉPES ADATFELDOLGOZÁS A TÁBLÁZATKEZELŐK Irodai munka megkönnyítése Hatékony a nyilvántartások, gazdasági, pénzügyi elemzések, mérési kiértékelések, beszámolók stb. készítésében. Alkalmazható továbbá

Részletesebben

A GDP hasonlóképpen nem tükrözi a háztartások közötti munka- és termékcseréket.

A GDP hasonlóképpen nem tükrözi a háztartások közötti munka- és termékcseréket. FŐBB MUTATÓK A regionális GDP adatok minősége alapvetően 3 tényezőtől függ: az alkalmazott számítási módszertől a felhasznált adatok minőségétől a vizsgált területi egység nagyságától. A TERÜLETI EGYENLŐTLENSÉGEK

Részletesebben

A Kecskeméti Jubileum paradicsomfajta érésdinamikájának statisztikai vizsgálata

A Kecskeméti Jubileum paradicsomfajta érésdinamikájának statisztikai vizsgálata Borsa Béla FVM Mezőgazdasági Gépesítési Intézet 2100 Gödöllő, Tessedik S.u.4. Tel.: (28) 511 611 E.posta: borsa@fvmmi.hu A Kecskeméti Jubileum paradicsomfajta érésdinamikájának statisztikai vizsgálata

Részletesebben

Ösztönzés menedzsment II.

Ösztönzés menedzsment II. 6. előadás 1 Ösztönzés menedzsment II. 2 Az egyéni munkabér a következő elemekből épül fel: 1) Alapbér 2) Törzsbér 3) Pótlék 4) Prémium 5) Jutalom ( bónusz ) 6) Kiegészítő fizetés 7) Egyéb bér 3 Az egyéni

Részletesebben

Korrelációs kapcsolatok elemzése

Korrelációs kapcsolatok elemzése Korrelációs kapcsolatok elemzése 1. előadás Kvantitatív statisztikai módszerek Két változó közötti kapcsolat Független: Az X ismérv szerinti hovatartozás ismerete nem ad semmilyen többletinformációt az

Részletesebben

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Klaszteranalízis Hasonló dolgok csoportosítását jelenti, gyakorlatilag az osztályozás szinonimájaként értelmezhetjük. A klaszteranalízis célja A klaszteranalízis alapvető célja, hogy a megfigyelési egységeket

Részletesebben

Iránytű a budapesti olimpiához Az Iránytű Intézet októberi közvélemény-kutatásának eredményei

Iránytű a budapesti olimpiához Az Iránytű Intézet októberi közvélemény-kutatásának eredményei Iránytű a budapesti olimpiához Az Iránytű Intézet októberi közvélemény-kutatásának eredményei Módszertan Kutatásunk ezerfős mintára épül. A feldolgozott adatok a megyei és fővárosi nem- és korösszetétel,

Részletesebben

Orvosi szociológia (1. szeminárium) KUTATÁSMÓDSZERTAN

Orvosi szociológia (1. szeminárium) KUTATÁSMÓDSZERTAN Orvosi szociológia (1. szeminárium) KUTATÁSMÓDSZERTAN (Babbie) 1. Konceptualizáció 2. Operacionalizálás 3. Mérés 4. Adatfeldolgozás 5. Elemzés 6. Felhasználás KUTATÁS LÉPÉSEI 1. Konceptualizáció 2. Operacionalizálás

Részletesebben

Környezet és piacelemzés a marketingkutatás módszerei

Környezet és piacelemzés a marketingkutatás módszerei Környezet és piacelemzés a marketingkutatás módszerei MARKETING - 3. előadás Prof. Dr. Piskóti István intézetigazgató 1 Mai kérdésköreink 1.A marketing, mint tudatos, tervezett tevékenység 2. Marketing

Részletesebben

A statisztika alapjai - Bevezetés az SPSS-be -

A statisztika alapjai - Bevezetés az SPSS-be - A statisztika alapjai - Bevezetés az SPSS-be - Petrovics Petra PhD Hallgató SPSS (Statistical Package for the Social Sciences ) 2 file: XY.sav - Data View XY.spv - Output Ez lehet hosszabb név is Rövid

Részletesebben

Halmazelmélet. 1. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Halmazelmélet p. 1/1

Halmazelmélet. 1. előadás. Farkas István. DE ATC Gazdaságelemzési és Statisztikai Tanszék. Halmazelmélet p. 1/1 Halmazelmélet 1. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék Halmazelmélet p. 1/1 A halmaz fogalma, jelölések A halmaz fogalmát a matematikában nem definiáljuk, tulajdonságaival

Részletesebben

Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás

Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás STATISZTIKA Hipotézis, sejtés 11. Előadás Hipotézisvizsgálatok, nem paraméteres próbák Tudományos hipotézis Nullhipotézis felállítása (H 0 ): Kétmintás hipotézisek Munkahipotézis (H a ) Nullhipotézis (H

Részletesebben

Statisztika. Politológus képzés. Daróczi Gergely április 17. Politológia Tanszék

Statisztika. Politológus képzés. Daróczi Gergely április 17. Politológia Tanszék Statisztika Politológus képzés Daróczi Gergely Politológia Tanszék 2012. április 17. Outline 1 Leíró statisztikák 2 Középértékek Példa 3 Szóródási mutatók Példa 4 Néhány megjegyzés a grafikonokról 5 Számítások

Részletesebben

VÁLLALATGAZDASÁGTAN II. Döntési Alapfogalmak

VÁLLALATGAZDASÁGTAN II. Döntési Alapfogalmak Vállalkozási VÁLLALATGAZDASÁGTAN II. Tantárgyfelelős: Prof. Dr. Illés B. Csaba Előadó: Dr. Gyenge Balázs Az ökonómiai döntés fogalma Vállalat Környezet Döntések sorozata Jövő jövőre vonatkozik törekszik

Részletesebben

Dr. Nagy Zita Barbara igazgatóhelyettes KÖVET Egyesület a Fenntartható Gazdaságért november 15.

Dr. Nagy Zita Barbara igazgatóhelyettes KÖVET Egyesület a Fenntartható Gazdaságért november 15. Dr. Nagy Zita Barbara igazgatóhelyettes KÖVET Egyesület a Fenntartható Gazdaságért 2018. november 15. PÉNZ a boldogság bitorlója? A jövedelemegyenlőtlenség természetes határa A boldog ember gondolata a

Részletesebben

MINTAVÉTELEZÉS. Alaptípusai: sampling. véletlen érvényesítésére v. mellőzzük azt. = preferenciális mintav. = véletlen mintav.

MINTAVÉTELEZÉS. Alaptípusai: sampling. véletlen érvényesítésére v. mellőzzük azt. = preferenciális mintav. = véletlen mintav. A teljes alapsokaságot nem ismerhetjük meg. MINTAVÉTELEZÉS Fontossága: minden későbbi értékelés ezen alapszik. Alaptípusai: Szubjektív folyamat Objektív folyamat (non-probabilistic) (probabilistic) sampling

Részletesebben

Statisztikai alapok. Leíró statisztika Lineáris módszerek a statisztikában

Statisztikai alapok. Leíró statisztika Lineáris módszerek a statisztikában Statisztikai alapok Leíró statisztika Lineáris módszerek a statisztikában Tudományosan és statisztikailag tesztelhető állítások? A keserűcsokoládé finomabb, mint a tejcsoki. A patkány a legrondább állat,

Részletesebben

Áramköri elemek mérése ipari módszerekkel

Áramköri elemek mérése ipari módszerekkel 3. aboratóriumi gyakorlat Áramköri elemek mérése ipari módszerekkel. dolgozat célja oltmérők, ampermérők használata áramköri elemek mérésénél, mérési hibák megállapítása és azok függősége a használt mérőműszerek

Részletesebben

Adatok statisztikai értékelésének főbb lehetőségei

Adatok statisztikai értékelésének főbb lehetőségei Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció

Részletesebben

A sokaság elemei közül a leggyakrabban előforduló érték. diszkrét folytonos

A sokaság elemei közül a leggyakrabban előforduló érték. diszkrét folytonos Középérték Középérték A középérték a statisztikai adatok tömör számszerű jellemzése. helyzeti középérték: módusz medián számított középérték: számtani átlag kronológikus átlag harmonikus átlag mértani

Részletesebben

A szegénység percepciója a visegrádi. országokban

A szegénység percepciója a visegrádi. országokban Közép-európai közvélemény: A szegénység percepciója a visegrádi országokban A Central European Opinion Research Group (CEORG) havi rendszeres közvéleménykutatása 2000. június CEORG Central European Opinion

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 7. MA3-7 modul. Helyzetmutatók, átlagok, kvantilisek

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 7. MA3-7 modul. Helyzetmutatók, átlagok, kvantilisek Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematika III. 7. MA3-7 modul Helyzetmutatók, átlagok, kvantilisek SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról

Részletesebben

Populációbecslések és monitoring

Populációbecslések és monitoring Populációbecslések és monitoring A becslés szerepe az ökológiában és a vadgazdálkodásban. A becslési módszerek csoportosítása. Teljes számlálás. Statisztikai alapfogalmak. Fontos lehet tudnunk, hogy hány

Részletesebben

2015. évi Bolyai János Megyei Matematikaverseny MEGOLDÁSI ÉS ÉRTÉKELÉSI ÚTMUTATÓ 12. évfolyam

2015. évi Bolyai János Megyei Matematikaverseny MEGOLDÁSI ÉS ÉRTÉKELÉSI ÚTMUTATÓ 12. évfolyam 01. évi Bolyai János Megyei Matematikaverseny MEGOLDÁSI ÉS ÉRTÉKELÉSI ÚTMUTATÓ 1. évfolyam A közölt megoldási utak a feladatoknak nem az egyetlen helyes megoldási módját adják meg, több eltérő megoldás

Részletesebben

Biostatisztika Összefoglalás

Biostatisztika Összefoglalás Biostatisztika Összefoglalás A biostatisztika vizsga A biostatisztika vizsga az Orvosi fizika és statisztika I. fizika vizsgájával egy napon történik. A vizsga keretében 30 perc alatt 0 kérdésre kell válaszolni

Részletesebben

A sokaság/minta eloszlásának jellemzése

A sokaság/minta eloszlásának jellemzése 3. előadás A sokaság/mnta eloszlásának jellemzése tpkus értékek meghatározása; az adatok különbözőségének vzsgálata, a sokaság/mnta eloszlásgörbéjének elemzése. Eloszlásjellemzők Középértékek helyzet (Me,

Részletesebben

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA 1 SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 x 3 = 111 A tanmenet 101 óra beosztását tartalmazza. A dolgozatok írása és javítása 10 órát foglal

Részletesebben

Összehasonlítások hibái

Összehasonlítások hibái Összehasonlítások hibái Kiegészítő anyag BME Filozófia és Tudománytörténet Tanszék http://www.filozofia.bme.hu/ Összehasonlítások Az összehasonlítás alapkérdése: a lehetőségek közül melyik a legjobb egy

Részletesebben

Biomatematika 13. Varianciaanaĺızis (ANOVA)

Biomatematika 13. Varianciaanaĺızis (ANOVA) Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 13. Varianciaanaĺızis (ANOVA) Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:

Részletesebben

Országos kompetenciamérés eredményeinek kiértékelése 6. és 8. évfolyamokon 2012

Országos kompetenciamérés eredményeinek kiértékelése 6. és 8. évfolyamokon 2012 Országos kompetenciamérés eredményeinek kiértékelése 6. és 8. évfolyamokon 2012 A hatodik osztályban 12 tanulóból 11 írta meg az országos kompetenciamérést. Ebből 1 fő SNI-s, 3 fő BTMN-es tanuló. Mentesítést

Részletesebben

Számelmélet Megoldások

Számelmélet Megoldások Számelmélet Megoldások 1) Egy számtani sorozat második tagja 17, harmadik tagja 1. a) Mekkora az első 150 tag összege? (5 pont) Kiszámoltuk ebben a sorozatban az első 111 tag összegét: 5 863. b) Igaz-e,

Részletesebben

Kutatói pályára felkészítı modul

Kutatói pályára felkészítı modul Kutatói pályára felkészítı modul Kutatói pályára felkészítı kutatási ismeretek modul Tudomáyos kutatási alapayag feldolgozása, elemzési ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI

Részletesebben

Bevezető Mi a statisztika? Mérés Feldolgozás Adatok rendezése Adatok jellemzése Időbeli elemzés Feladatok. Statisztika I.

Bevezető Mi a statisztika? Mérés Feldolgozás Adatok rendezése Adatok jellemzése Időbeli elemzés Feladatok. Statisztika I. Statisztika I. 1. előadás: A statisztika alapfogalmai Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Óbudai Egyetem A kurzusról A kurzus célja

Részletesebben

Elemi statisztika fizikusoknak

Elemi statisztika fizikusoknak 1. oldal Elemi statisztika fizikusoknak Pollner Péter Biológiai Fizika Tanszék pollner@elte.hu Az adatok leírása, megismerése és összehasonlítása 2-1 Áttekintés 2-2 Gyakoriság eloszlások 2-3 Az adatok

Részletesebben

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006

Részletesebben

számított mező, számított tétel

számított mező, számított tétel számított mező, számított tétel A pivot táblában négy számított objektumot hozhatunk létre. Ebből kettőnek a képletét közvetlenül a felhasználó szerkeszti meg, a másik kettőét a program állítja össze.

Részletesebben

I. BESZÁLLÍTÓI TELJESÍTMÉNYEK ÉRTÉKELÉSE

I. BESZÁLLÍTÓI TELJESÍTMÉNYEK ÉRTÉKELÉSE I. BESZÁLLÍTÓI TELJESÍTMÉNYEK ÉRTÉKELÉSE Komplex termékek gyártására jellemző, hogy egy-egy termékbe akár több ezer alkatrész is beépül. Ilyenkor az alkatrészek általában sok különböző beszállítótól érkeznek,

Részletesebben

A versenytársak elemzése. Máté Domicián

A versenytársak elemzése. Máté Domicián A versenytársak elemzése Máté Domicián A stratégiai menedzsment területei Stratégia tervezése Stratégia bevezetése Stratégia ellenőrzése A stratégiai tervezés lépései Nábrádi An A külső és belső környezet

Részletesebben

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai Változékonyság (szóródás) STATISZTIKA I. 5. Előadás Szóródási mutatók A középértékek a sokaság elemeinek értéknagyságbeli különbségeit eltakarhatják. A változékonyság az azonos tulajdonságú, de eltérő

Részletesebben

Oktatásmarketing Piackutatás 4. Skálatípusok- skálatechnikák az eredmények bemutatása

Oktatásmarketing Piackutatás 4. Skálatípusok- skálatechnikák az eredmények bemutatása Oktatásmarketing Piackutatás 4. Skálatípusok- skálatechnikák az eredmények bemutatása Dr. Benkei-Kovács Balázs egyetemi adjunktus ELTE PPK Skálatechnikák Rangsorolás / Sorba rendezés Összehasonlítás /

Részletesebben

Faktoranalízis az SPSS-ben

Faktoranalízis az SPSS-ben Faktoranalízis az SPSS-ben Kvantitatív statisztikai módszerek Petrovics Petra Feladat Megnyitás: faktor.sav Fogyasztók materialista vonásai (Richins-skála) Forrás: Sajtos-Mitev, 250.oldal Faktoranalízis

Részletesebben

Populációbecslések és monitoring

Populációbecslések és monitoring Populációbecslések és monitoring A becslés szerepe az ökológiában és a vadgazdálkodásban. A becslési módszerek csoportosítása. Teljes számlálás. Statisztikai alapfogalmak. Fontos lehet tudnunk, hogy hány

Részletesebben

Félidőben félsiker Részleges eredmények a kutatásalapú kémiatanulás terén

Félidőben félsiker Részleges eredmények a kutatásalapú kémiatanulás terén Félidőben félsiker Részleges eredmények a kutatásalapú kémiatanulás terén Szalay Luca 1, Tóth Zoltán 2, Kiss Edina 3 MTA-ELTE Kutatásalapú Kémiatanítás Kutatócsoport 1 ELTE, Kémiai Intézet, luca@caesar.elte.hu

Részletesebben

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani

Részletesebben

Megoldások. Az ismérv megnevezése közös megkülönböztető 2007. szeptember 10-én Cégbejegyzés időpontja

Megoldások. Az ismérv megnevezése közös megkülönböztető 2007. szeptember 10-én Cégbejegyzés időpontja Megoldások 1. feladat A sokaság: 2007. szeptember 12-én a Miskolci Egyetem GT-204-es tankör statisztika óráján lévő tagjai az A 1 épület III. em. 53-as teremben 8-10-ig. Közös ismérv Megkülönböztető ismérv

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Oldd meg a következő egyenleteket! (Alaphalmaz: Z) a) (x 1) (x + 1) 7x + 1 = x (4 + x) + 2 b) 1 2 [5 (x 1) (1 + 2x) 2 4x] = (7 x) x c) 2 (x + 5) (x 2) 2 + (x + 1) 2 = 6 (2x + 1) d) 6 (x 8)

Részletesebben

A F u z z y C L I P S a l a p j a i

A F u z z y C L I P S a l a p j a i A F u z z y C L I P S a l a p j a i A CLIPS rendszer bovítése a bizonytalan információk hatékony kezelése céljából. K é t f é l e b i z o n y t a l a n s á g t á m o g a t á s a : Pontosan nem megfogalmazható

Részletesebben

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus. Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza

Részletesebben

Többtényezős döntési problémák

Többtényezős döntési problémák KIPA módszer: Lépései: 1. értékelési tényezők páros elrendezése, 2. páros összehasonlítás elvégzése, 3. egyéni preferencia táblázatok felvétele, konzisztencia mutatók meghatározása, 4. aggregált preferencia

Részletesebben

Gyakorlatias tanácsok PLA fejlesztőknek

Gyakorlatias tanácsok PLA fejlesztőknek Gyakorlatias tanácsok PLA fejlesztőknek Beszédes Nimród Attiláné Békéscsabai Regionális Képző Központ Képzési igazgatóhelyettes 2007. november 28-30. A jogszabályi háttérről 2001. évi CI. törvény 24/2004.

Részletesebben

MARKETINGKUTATÁS DEFINÍCIÓJA

MARKETINGKUTATÁS DEFINÍCIÓJA Gyakorlatorientált képzési programok kidolgozása a turisztikai desztináció menedzsment és a kapcsolódó ismeretanyagok oktatására TÁMOP-4.1.2-08/1/A-2009-0034 projekt Regionális turisztikai menedzsment

Részletesebben

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás

STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika

Részletesebben

Matematika III. 8. A szórás és a szóródás egyéb mérőszámai Prof. Dr. Závoti, József

Matematika III. 8. A szórás és a szóródás egyéb mérőszámai Prof. Dr. Závoti, József Matematika III. 8. A szórás és a szóródás egyéb Prof. Dr. Závoti, József Matematika III. 8. : A szórás és a szóródás egyéb Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027

Részletesebben

Hajder Levente 2018/2019. II. félév

Hajder Levente 2018/2019. II. félév Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2018/2019. II. félév Tartalom 1 2 Törtvonal Felületi folytonosságok B-spline Spline variánsok Felosztott (subdivision) görbék

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Próba érettségi feladatsor április I. RÉSZ

Próba érettségi feladatsor április I. RÉSZ Név: osztály: Próba érettségi feladatsor 2007 április 17-18 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti keretbe

Részletesebben

A hallgató neve:. MENTORTANÁR SEGÉDANYAG ÉS FELADATMEGOLDÓ FÜZET SZERKESZTİ:

A hallgató neve:. MENTORTANÁR SEGÉDANYAG ÉS FELADATMEGOLDÓ FÜZET SZERKESZTİ: A hallgató neve:. MENTORTANÁR SEGÉDANYAG ÉS FELADATMEGOLDÓ FÜZET SZERKESZTİ: AZ ELMÉLETI ÉS GYAKORLATI PEDAGÓGIAI TUDÁS FELTÁRÁSÁNAK NÉHÁNY MÓDSZERE 1. INTERJÚ Szóbeli kikérdezésen alapuló vizsgálati módszer.

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

Környezet és piacelemzés a marketingkutatás módszerei

Környezet és piacelemzés a marketingkutatás módszerei Környezet és piacelemzés a marketingkutatás módszerei MARKETING - 3. előadás Prof. Dr. Piskóti István intézetigazgató 1 Mai kérdésköreink 1. A marketing, mint tudatos, tervezett tevékenység 2. Marketingkutatás,

Részletesebben

Numerikus integrálás

Numerikus integrálás Közelítő és szimbolikus számítások 11. gyakorlat Numerikus integrálás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján 1. Határozatlan integrál

Részletesebben

352 Nevezetes egyenlôtlenségek. , az átfogó hossza 81 cm

352 Nevezetes egyenlôtlenségek. , az átfogó hossza 81 cm 5 Nevezetes egyenlôtlenségek a b 775 Legyenek a befogók: a, b Ekkor 9 + $ ab A maimális ab terület 0, 5cm, az átfogó hossza 8 cm a b a b 776 + # +, azaz a + b $ 88, tehát a keresett minimális érték: 88

Részletesebben

Környezet és piacelemzés a marketingkutatás módszerei

Környezet és piacelemzés a marketingkutatás módszerei Környezet és piacelemzés a marketingkutatás módszerei MARKETING - 3. előadás Prof. Dr. Piskóti István intézetigazgató 1 Mai kérdésköreink 1.A marketing, mint tudatos, tervezett tevékenység 2. Marketing

Részletesebben

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 Mérési hibák súlya és szerepe a mérési eredményben A mérési hibák csoportosítása A hiba rendűsége Mérési bizonytalanság Standard és kiterjesztett

Részletesebben

Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék

Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék 2017/18 2. félév 3. Előadás Dr. Kulcsár Gyula egyetemi docens Kereső algoritmusok alkalmazása

Részletesebben

Tájékoztató a Rendszeres Tanulmányi Ösztöndíj Modulóban található adataival kapcsolatban

Tájékoztató a Rendszeres Tanulmányi Ösztöndíj Modulóban található adataival kapcsolatban Tájékoztató a Rendszeres Tanulmányi Ösztöndíj Modulóban található adataival kapcsolatban Az alábbiakban részletezzük, hogy a Modulo Átlag módosítási kérvényén belül található adatok pontosan mit jelentenek.

Részletesebben

JA45 Cserkeszőlői Petőfi Sándor Általános Iskola (OM: ) 5465 Cserkeszőlő, Ady Endre utca 1.

JA45 Cserkeszőlői Petőfi Sándor Általános Iskola (OM: ) 5465 Cserkeszőlő, Ady Endre utca 1. ORSZÁGOS KOMPETENCIAMÉRÉS EREDMÉNYEINEK ÉRTÉKELÉSE LÉTSZÁMADATOK Intézményi, telephelyi jelentések elemzése SZÖVEGÉRTÉS 2016 6. a 6. b osztály 1. ÁTLAGEREDMÉNYEK A tanulók átlageredménye és az átlag megbízhatósági

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

6. Folytonosság. pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények

6. Folytonosság. pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények 6. Folytonosság pontbeli folytonosság, intervallumon való folytonosság, folytonos függvények Egy függvény egy intervallumon folytonos, ha annak miden pontjában folytonos. folytonos függvények tulajdonságai

Részletesebben

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA A VALÓSZÍNŰSÉGI SZEMLÉLET ALAPOZÁSA 1-6. OSZTÁLY A biztos, a lehetetlen és a lehet, de nem biztos események megkülünböztetése Valószínűségi játékok, kísérletek események

Részletesebben

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ)

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba

Részletesebben