Mérés és skálaképzés. Kovács István. BME Menedzsment és Vállalatgazdaságtan Tanszék

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Mérés és skálaképzés. Kovács István. BME Menedzsment és Vállalatgazdaságtan Tanszék"

Átírás

1 Mérés és skálaképzés Kovács István BME Menedzsment és Vállalatgazdaságtan Tanszék

2 Miröl is lesz ma szó? Mi is az a mérés? A skálaképzés alapjai A skálaképzés technikái Összehasonlító skálák Nem összehasonlító skálák

3 A fejlődés és az ellenőrzés első lépése a mérés. Ha nem tudsz megmérni valamit, akkor meg sem értheted azt. Ha meg sem értheted azt, akkor nem is tudod ellenőrizni. Ha nem tudod ellenőrizni, akkor nem is tudod fejleszteni. H. James Harrington

4 Mi is az a mérés? Számok vagy egyéb szimbólumok vizsgálati egységek jellemzőihez történő, előre meghatározott szabályok szerinti hozzárendelése.

5 Figyelembe vett tényezök A marketingkut.ban a számokat általában meghatározott céllal rendeljük a vizsgálati egységekhez. A vizsgálati egységek egyes attribútumaihoz rendelünk számokat és nem magához a vizsgálati egységekhez Nem minden tevékenység igényel mérést, amivel a kutatók foglalkoznak. A szabály meghatározása, amely alapján a számokat a vizsgálati egységek jellemzőihez rendeljük

6 Ne feledjük Bármilyen döntéshez vagy döntéssorozathoz számtalan mérést lehet végezni, számtalan módon, de tökéletes bizonyosságra nincs reális esély. A vezetőségnek olyan módszerre van szüksége, amely a döntési lehetőségek elemzésével csökkenti a bizonytalanságot.

7 Megválaszolandó kérdések Milyen döntést kell támogatnia a mérésnek? Hogyan lehet meghatározni a megmérendő dolog megfigyelhető következményeit? Pontosan hogyan befolyásolja az eredmény a döntéshozatal folyamatát? Mennyi információval rendelkezünk a mérés pillanatában? Mekkora a pluszinformáció értéke?

8 Skálaképzés A skálaképzés a mérés kiterjesztéseként is értelmezhető Egy skála kialakítása, amelyen a mért vizsgálati egységek elhelyezkednek.

9 A skálaképzés alapjai Cél, hogy objektív mérési rendszert alakítsunk ki. Mérhetővé tegyük a megkérdezetteknek a kutatás tárgyához kötődő viszonyát 4 elsődleges skálázási technikát különböztetünk meg

10 Elsödleges mérési skálák Névleges Sorrendi Arány Második helyezett Első helyezett Harmadik helyezett 9,1 9,6 8,2 14,1 13,4 15,2 Intervallum A teljesítmény értékelése 0-10ig terjedő skálán A célba érés ideje másodpercben 10

11 Névleges skála Olyan skála, ahol az értékek vizsgálati egységek csoportosítását, azonosítását szolgáló címkék. Az értékek azonosító címkeként funkcionálnak Minden számot kizárólag egy vizsgálati egységhez rendelnek Pl. tanulmányban számot rendelünk a válaszadókhoz

12 Névleges skála II. A számok nem tükröznek mennyiséget Azok, akiknek magasabb a TAJ száma jobbak? TAJ szám átlaga? Főleg gyakoriságokat értékeljük Százalékszámítás Módusz X2 és binomiális próbák

13 Sorrendi skála A vizsgálati egységekhez rendelt számok jelzik valamely tulajdonság meglétének relatív mértékét. Így az is meghatározható, hogy egy vizsgálati egység kisebb vagy nagyobb mértékben rendelkezik-e az adott tulajdonsággal, mint egy másik vizsgálati egység.

14 Sorrendi skála II. Egyfajta rangsoroló skála Egy egység kisebb vagy nagyobb mértékben rendelkezik-e az adott tulajdonsággal A sorrendben első egység jobban rendelkezik az adott tulajdonsággal, mint az őt követő, azt viszont nem tudjuk, hogy milyen mértékben marad le a második Pl. minőségi sorrendek, helyezések stb.

15 Sorrendi skála III. Relatív attitűd, vélemény, percepció és preferencia mérésben alkalmazzuk Az azonos vizsgálati egységek azonos helyezést kapnak Percentilisen alapuló statisztikai számítások Kvartilis-, medián-, rangkoreláció

16 intervallum skála Értékei vizsgálati egységek értékelésére szolgálnak. A skálapontok közötti távolságok egyenlők, és kifejezik a mért tulajdonságban lévő különbségeket. Sorrendi információkat is tartalmaz Objektumok közötti összehasonlítás

17 intervallum skála II. Bármely két szomszédos skálapont értéke közötti különbség megegyezik az intervallumskála bármely más két szomszédos értékének különbségével. A skálaértékek között állandó, ill. egyenlő a különbség

18 Arányskála A legmagasabb rendű skála. Lehetővé teszi a vizsgálati egységek azonosítását, csoportosítását, és intervallum vagy különbségek összehasonlítását. A skálaértékekből arányokat is lehet számolni. Nem csak azt mondhatjuk, hogy 2 5 közötti különbség megegyezik a 14 és 17 közöttivel, de azt is, hogy a 14 abszolút értékben hétszer nagyobb a 2.nél.

19 A skálaképzési technikák ÖSSZEHASONLÍTÓ SKÁLA nem metrikus Arra alkalmas, hogy a vizsgált egységek, pl. márkák összehasonlítását elvégezzük, azok kedveltsége szerint. Hátránya, hogy az eredményeket csak egymáshoz viszonyítva értelmezhetjük, önmagukban nem. NEM ÖSSZEHASONLÍTÓ SKÁLA - metrikus Minden vizsgálati egységet a többitől függetlenül mérnek. Ezek a skálatípusok intervallum vagy arány szintű skálák. Gyakrabban alkalmazzuk.

20 Páros összehasonlítás Összehasonlító skálák Rangsor Konstans összegű Skálázási technikák Q-rendező technika és egyéb eljárások Nem összehasonlító skálák Folytonos értékelő skála Tételes értékelő skála Likert skála Szemantikus differenciálskála Stapel skála

21 Páros összehasonlítás A válaszadó egyszerre két tárgyat értékel, és kiválaszt közülük egyet valamilyen szempont szerint. A kapott adatok általában sorrendi skálának felelnek meg. Pl. Tescóban gyakrabban vásárolok, mint a Matchban. Főleg termékek esetében alkalmazzák. A márkát részesíti előnyben a B márkával szemben, és B-t részesíti előnyben C-vel szemben, akkor A-t is előnyben részesíti C-vel szemben

22 Rangsorskála A válaszadók több vizsgálati egységet értékelnek egyszerre, és valamely szempont alapján rangsorolják azokat. Hasonlít a valódi vásárlási helyzetre Gyorsan lebonyolítható és megérthető

23 Konstans összegü skála A válaszadók egy meghatározott szempont alapján adott pontértéket vagy más konstans összeget (pl. pénzösszeget) osztanak el a vizsgálati egységek között. Amennyiben egy tulajdonság közömbös, a válaszadó nullával is jelölheti. Amennyiben dupla olyan fontos, mint egy másik, a válaszadó dupla annyi pontot ad a tulajdonságnak

24 Q-rendezötechnika A vizsgálati egységek rangsorolását azok egy adott szempont szerinti hasonlóságára alapozva végzi el. Új termék koncepciók tesztelése több terméktulajdonságot kell értékelni A vizsgálati egységekből csoportokat kell alkotniuk

25 Folytonos értékelöskála Kategóriák nincsenek behatárolva Könnyű választani a válaszadónak A kutató felosztja a vonalat a kívánatos számú kategóriákra Grafikus értékelőskálának is nevezik, ahol a válaszadók egy egyenes vonal megfelelő pozíciójának megjelölésével értékelik a vizsgálati egységeket. A vonal két végén a vizsgált változó szélső értékei találhatóak. Nagyon Közepes Nagyon rossz jó Valószínűleg a legrosszabb I Valószínűleg a legjobb Hogyan ítéli meg az XY márkát?

26 Diszkrét értékelöskála A számok vagy rövid leírások szerepelnek minden egyes kategóriánál. A kategóriák a skálán elfoglalt helyük alapján sorrendbe vannak állítva. Likert skála Szemantikus differenciál skála Stappel skála

27 Likert skála Mérési skála 5 válaszkategóriával, amelyek a teljes mértékben egyetért és az egyáltalán nem ért egyet végpontok között helyezkednek el. A válaszadónak jelölnie kell, mennyire ért egyet egy sor, a vizsgálati egységre vonatkozó állítással. Attitűdmérésre szolgál Fontos a megfelelő kódolás

28 Szemantikus differenciálskála Szervezet vagy márka imázsának vizsgálata során alkalmazott Érthető végpontok szükségesek Körültekintést igényel Hétfokú értékelőskála szemantikus jelentésű, ellentétes végpontokkal.

29 Stapel skála Attitűdmérésre használható skála, amelyben egy jelző szerepel egy páros számú értéksor közepén. A válaszadótól azt kérjük, mennyire pontosan írja le a jelző az adott vizsgálati egységet. Összeállítása egyszerű és nincs szükség két végpontra.

30 Alapvetö szabályok A kategóriák száma Páros vagy páratlan kategória A kategóriaértékek meghatározása számmal, szövegesen Kiegyensúlyozott vagy nem kiegyensúlyozott skála Kényszerítő vagy nem kényszerítő skála Fizikai megjelenés

31 Az alábbi képek segítségével értékelje, hogy milyen volt az elöadás: Köszönöm a figyelmet!

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015 A mérés problémája a pedagógiában Dr. Nyéki Lajos 2015 A mérés fogalma Mérésen olyan tevékenységet értünk, amelynek eredményeként a vizsgált jelenség számszerűen jellemezhetővé, más hasonló jelenségekkel

Részletesebben

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM. STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

Bevezető Mi a statisztika? Mérés Csoportosítás

Bevezető Mi a statisztika? Mérés Csoportosítás Gazdaságstatisztika 1. előadás Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Oktatók Előadó Kóczy Á. László (koczy.laszlo@kgk.bmf.hu) Fogadóóra: szerda 11:30 11:55, TA125 Gyakorlatvezető

Részletesebben

[GVMGS11MNC] Gazdaságstatisztika

[GVMGS11MNC] Gazdaságstatisztika [GVMGS11MNC] Gazdaságstatisztika 1. előadás Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Óbudai Egyetem Oktatók Előadó Kóczy Á. László (koczy.laszlo@kgk.uni-obuda.hu)

Részletesebben

Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus

Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus Gyakorisági sorok Mennyiségi ismérv jellemző rangsor készítünk. (pl. napi jegyeladások száma) A gyakorisági sor képzése igazából tömörítést jelent Nagyszámú

Részletesebben

Sta t ti t s i zt z i t k i a 1. előadás

Sta t ti t s i zt z i t k i a 1. előadás Statisztika 1 előadás Témakörök Statisztikai alapfogalmak Statisztikai sorok Mennyiségi sorok csoportosítása Statisztikai táblák Statisztika fogalma Gyakorlati tevékenység Adatok összessége Módszertan

Részletesebben

Dr. Piskóti István Marketing Intézet. Marketing 2.

Dr. Piskóti István Marketing Intézet. Marketing 2. Kutatni kell kutatni jó! - avagy a MIR és a marketingkutatás módszerei Dr. Piskóti István Marketing Intézet Marketing 2. Marketing-menedzsment A marketing összes feladatát és aktivitásait összefoglalóan,

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Matematikai statisztikai elemzések 2.

Matematikai statisztikai elemzések 2. Matematikai statisztikai elemzések 2. Helyzetmutatók, átlagok, kvantilisek. A szórás és szóródás Prof. Dr. Závoti, József Matematikai statisztikai elemzések 2.: Helyzetmutatók, átlagok, Prof. Dr. Závoti,

Részletesebben

Vizuális adatelemzés

Vizuális adatelemzés Vizuális adatelemzés Salánki Ágnes, Guta Gábor, PhD Dr. Pataricza András Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics

Részletesebben

Páros összehasonlítás mátrixok empirikus vizsgálata. Bozóki Sándor

Páros összehasonlítás mátrixok empirikus vizsgálata. Bozóki Sándor Páros összehasonlítás mátrixok empirikus vizsgálata Bozóki Sándor MTA SZTAKI Operációkutatás és Döntési Rendszerek Kutatócsoport Budapesti Corvinus Egyetem Operációkutatás és Aktuáriustudományok Tanszék

Részletesebben

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek

Részletesebben

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció

Részletesebben

Orvosi szociológia (1. szeminárium) KUTATÁSMÓDSZERTAN

Orvosi szociológia (1. szeminárium) KUTATÁSMÓDSZERTAN Orvosi szociológia (1. szeminárium) KUTATÁSMÓDSZERTAN (Babbie) 1. Konceptualizáció 2. Operacionalizálás 3. Mérés 4. Adatfeldolgozás 5. Elemzés 6. Felhasználás KUTATÁS LÉPÉSEI 1. Konceptualizáció 2. Operacionalizálás

Részletesebben

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet

Miskolci Egyetem Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Klaszteranalízis Hasonló dolgok csoportosítását jelenti, gyakorlatilag az osztályozás szinonimájaként értelmezhetjük. A klaszteranalízis célja A klaszteranalízis alapvető célja, hogy a megfigyelési egységeket

Részletesebben

A II. kategória Fizika OKTV mérési feladatainak megoldása

A II. kategória Fizika OKTV mérési feladatainak megoldása Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett

Részletesebben

Munkakörtervezés és -értékelés

Munkakörtervezés és -értékelés Munkakörtervezés és Emberierőforrás-menedzsment Dr. Finna Henrietta egyetemi adjunktus Dr. Finna Henrietta: Atipikus foglalkoztatás Munkakör-áttervezés A munkakörtervezés egy olyan folyamat, amelyben egy

Részletesebben

A Kecskeméti Jubileum paradicsomfajta érésdinamikájának statisztikai vizsgálata

A Kecskeméti Jubileum paradicsomfajta érésdinamikájának statisztikai vizsgálata Borsa Béla FVM Mezőgazdasági Gépesítési Intézet 2100 Gödöllő, Tessedik S.u.4. Tel.: (28) 511 611 E.posta: borsa@fvmmi.hu A Kecskeméti Jubileum paradicsomfajta érésdinamikájának statisztikai vizsgálata

Részletesebben

Iránytű a budapesti olimpiához Az Iránytű Intézet októberi közvélemény-kutatásának eredményei

Iránytű a budapesti olimpiához Az Iránytű Intézet októberi közvélemény-kutatásának eredményei Iránytű a budapesti olimpiához Az Iránytű Intézet októberi közvélemény-kutatásának eredményei Módszertan Kutatásunk ezerfős mintára épül. A feldolgozott adatok a megyei és fővárosi nem- és korösszetétel,

Részletesebben

Ösztönzés menedzsment II.

Ösztönzés menedzsment II. 6. előadás 1 Ösztönzés menedzsment II. 2 Az egyéni munkabér a következő elemekből épül fel: 1) Alapbér 2) Törzsbér 3) Pótlék 4) Prémium 5) Jutalom ( bónusz ) 6) Kiegészítő fizetés 7) Egyéb bér 3 Az egyéni

Részletesebben

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA 1 SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 x 3 = 111 A tanmenet 101 óra beosztását tartalmazza. A dolgozatok írása és javítása 10 órát foglal

Részletesebben

MINTAVÉTELEZÉS. Alaptípusai: sampling. véletlen érvényesítésére v. mellőzzük azt. = preferenciális mintav. = véletlen mintav.

MINTAVÉTELEZÉS. Alaptípusai: sampling. véletlen érvényesítésére v. mellőzzük azt. = preferenciális mintav. = véletlen mintav. A teljes alapsokaságot nem ismerhetjük meg. MINTAVÉTELEZÉS Fontossága: minden későbbi értékelés ezen alapszik. Alaptípusai: Szubjektív folyamat Objektív folyamat (non-probabilistic) (probabilistic) sampling

Részletesebben

Statisztika. Politológus képzés. Daróczi Gergely április 17. Politológia Tanszék

Statisztika. Politológus képzés. Daróczi Gergely április 17. Politológia Tanszék Statisztika Politológus képzés Daróczi Gergely Politológia Tanszék 2012. április 17. Outline 1 Leíró statisztikák 2 Középértékek Példa 3 Szóródási mutatók Példa 4 Néhány megjegyzés a grafikonokról 5 Számítások

Részletesebben

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék

Jelek és rendszerek 1. 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék Jelek és rendszerek 1 10/9/2011 Dr. Buchman Attila Informatikai Rendszerek és Hálózatok Tanszék 1 Ajánlott irodalom: FODOR GYÖRGY : JELEK ÉS RENDSZEREK EGYETEMI TANKÖNYV Műegyetemi Kiadó, Budapest, 2006

Részletesebben

VÁLLALATGAZDASÁGTAN II. Döntési Alapfogalmak

VÁLLALATGAZDASÁGTAN II. Döntési Alapfogalmak Vállalkozási VÁLLALATGAZDASÁGTAN II. Tantárgyfelelős: Prof. Dr. Illés B. Csaba Előadó: Dr. Gyenge Balázs Az ökonómiai döntés fogalma Vállalat Környezet Döntések sorozata Jövő jövőre vonatkozik törekszik

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 7. MA3-7 modul. Helyzetmutatók, átlagok, kvantilisek

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 7. MA3-7 modul. Helyzetmutatók, átlagok, kvantilisek Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematika III. 7. MA3-7 modul Helyzetmutatók, átlagok, kvantilisek SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról

Részletesebben

Gyakorlatias tanácsok PLA fejlesztőknek

Gyakorlatias tanácsok PLA fejlesztőknek Gyakorlatias tanácsok PLA fejlesztőknek Beszédes Nimród Attiláné Békéscsabai Regionális Képző Központ Képzési igazgatóhelyettes 2007. november 28-30. A jogszabályi háttérről 2001. évi CI. törvény 24/2004.

Részletesebben

Adatok statisztikai értékelésének főbb lehetőségei

Adatok statisztikai értékelésének főbb lehetőségei Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció

Részletesebben

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai

STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai Változékonyság (szóródás) STATISZTIKA I. 5. Előadás Szóródási mutatók A középértékek a sokaság elemeinek értéknagyságbeli különbségeit eltakarhatják. A változékonyság az azonos tulajdonságú, de eltérő

Részletesebben

Megoldások. Az ismérv megnevezése közös megkülönböztető 2007. szeptember 10-én Cégbejegyzés időpontja

Megoldások. Az ismérv megnevezése közös megkülönböztető 2007. szeptember 10-én Cégbejegyzés időpontja Megoldások 1. feladat A sokaság: 2007. szeptember 12-én a Miskolci Egyetem GT-204-es tankör statisztika óráján lévő tagjai az A 1 épület III. em. 53-as teremben 8-10-ig. Közös ismérv Megkülönböztető ismérv

Részletesebben

Biostatisztika Összefoglalás

Biostatisztika Összefoglalás Biostatisztika Összefoglalás A biostatisztika vizsga A biostatisztika vizsga az Orvosi fizika és statisztika I. fizika vizsgájával egy napon történik. A vizsga keretében 30 perc alatt 0 kérdésre kell válaszolni

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA A VALÓSZÍNŰSÉGI SZEMLÉLET ALAPOZÁSA 1-6. OSZTÁLY A biztos, a lehetetlen és a lehet, de nem biztos események megkülünböztetése Valószínűségi játékok, kísérletek események

Részletesebben

Bevezető Mi a statisztika? Mérés Feldolgozás Adatok rendezése Adatok jellemzése Időbeli elemzés Feladatok. Statisztika I.

Bevezető Mi a statisztika? Mérés Feldolgozás Adatok rendezése Adatok jellemzése Időbeli elemzés Feladatok. Statisztika I. Statisztika I. 1. előadás: A statisztika alapfogalmai Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Óbudai Egyetem A kurzusról A kurzus célja

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I

Részletesebben

Kutatói pályára felkészítı modul

Kutatói pályára felkészítı modul Kutatói pályára felkészítı modul Kutatói pályára felkészítı kutatási ismeretek modul Tudomáyos kutatási alapayag feldolgozása, elemzési ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI

Részletesebben

Biomatematika 13. Varianciaanaĺızis (ANOVA)

Biomatematika 13. Varianciaanaĺızis (ANOVA) Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 13. Varianciaanaĺızis (ANOVA) Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:

Részletesebben

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes

Részletesebben

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont) 1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)

Részletesebben

I. BESZÁLLÍTÓI TELJESÍTMÉNYEK ÉRTÉKELÉSE

I. BESZÁLLÍTÓI TELJESÍTMÉNYEK ÉRTÉKELÉSE I. BESZÁLLÍTÓI TELJESÍTMÉNYEK ÉRTÉKELÉSE Komplex termékek gyártására jellemző, hogy egy-egy termékbe akár több ezer alkatrész is beépül. Ilyenkor az alkatrészek általában sok különböző beszállítótól érkeznek,

Részletesebben

Érettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél

Érettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél Emelt szintű matematika érettségi előkészítő 11. évfolyam Tematikai egység/fejlesztési cél Órakeret 72 óra Kötelező Szabad Összesen 1. Gondolkodási módszerek Halmazok, matematikai logika, kombinatorika,

Részletesebben

10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK

10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK MATEMATIK A 9. évfolyam 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK Tanári útmutató 2 MODULLEÍRÁS A modul

Részletesebben

7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel?

7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? 7. Számelmélet I. Nulladik ZH-ban láttuk: 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? ELTE 2006. október 27. (matematika

Részletesebben

Populációbecslések és monitoring

Populációbecslések és monitoring Populációbecslések és monitoring A becslés szerepe az ökológiában és a vadgazdálkodásban. A becslési módszerek csoportosítása. Teljes számlálás. Statisztikai alapfogalmak. Fontos lehet tudnunk, hogy hány

Részletesebben

MARKETINGKUTATÁS DEFINÍCIÓJA

MARKETINGKUTATÁS DEFINÍCIÓJA Gyakorlatorientált képzési programok kidolgozása a turisztikai desztináció menedzsment és a kapcsolódó ismeretanyagok oktatására TÁMOP-4.1.2-08/1/A-2009-0034 projekt Regionális turisztikai menedzsment

Részletesebben

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás

biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani

Részletesebben

Matematika III. 8. A szórás és a szóródás egyéb mérőszámai Prof. Dr. Závoti, József

Matematika III. 8. A szórás és a szóródás egyéb mérőszámai Prof. Dr. Závoti, József Matematika III. 8. A szórás és a szóródás egyéb Prof. Dr. Závoti, József Matematika III. 8. : A szórás és a szóródás egyéb Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

A hallgató neve:. MENTORTANÁR SEGÉDANYAG ÉS FELADATMEGOLDÓ FÜZET SZERKESZTİ:

A hallgató neve:. MENTORTANÁR SEGÉDANYAG ÉS FELADATMEGOLDÓ FÜZET SZERKESZTİ: A hallgató neve:. MENTORTANÁR SEGÉDANYAG ÉS FELADATMEGOLDÓ FÜZET SZERKESZTİ: AZ ELMÉLETI ÉS GYAKORLATI PEDAGÓGIAI TUDÁS FELTÁRÁSÁNAK NÉHÁNY MÓDSZERE 1. INTERJÚ Szóbeli kikérdezésen alapuló vizsgálati módszer.

Részletesebben

Próba érettségi feladatsor április I. RÉSZ

Próba érettségi feladatsor április I. RÉSZ Név: osztály: Próba érettségi feladatsor 2007 április 17-18 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti keretbe

Részletesebben

Pénzügyi matematika. Vizsgadolgozat I. RÉSZ. 1. Deniálja pontosan, mit értünk amerikai vételi opció alatt!

Pénzügyi matematika. Vizsgadolgozat I. RÉSZ. 1. Deniálja pontosan, mit értünk amerikai vételi opció alatt! NÉV: NEPTUN KÓD: Pénzügyi matematika Vizsgadolgozat I. RÉSZ Az ebben a részben feltett 4 kérdés közül legalább 3-ra kell hibátlan választ adni ahhoz, hogy a vizsga sikeres lehessen. Kett vagy kevesebb

Részletesebben

Oktatásmarketing Piackutatás 4. Skálatípusok- skálatechnikák az eredmények bemutatása

Oktatásmarketing Piackutatás 4. Skálatípusok- skálatechnikák az eredmények bemutatása Oktatásmarketing Piackutatás 4. Skálatípusok- skálatechnikák az eredmények bemutatása Dr. Benkei-Kovács Balázs egyetemi adjunktus ELTE PPK Skálatechnikák Rangsorolás / Sorba rendezés Összehasonlítás /

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ)

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba

Részletesebben

Tájékoztató a Rendszeres Tanulmányi Ösztöndíj Modulóban található adataival kapcsolatban

Tájékoztató a Rendszeres Tanulmányi Ösztöndíj Modulóban található adataival kapcsolatban Tájékoztató a Rendszeres Tanulmányi Ösztöndíj Modulóban található adataival kapcsolatban Az alábbiakban részletezzük, hogy a Modulo Átlag módosítási kérvényén belül található adatok pontosan mit jelentenek.

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

Országos kompetenciamérés eredményei Kiskulcsosi Általános Iskola 035857 Telephelyi jelentés 6. 8. évfolyam szövegértés

Országos kompetenciamérés eredményei Kiskulcsosi Általános Iskola 035857 Telephelyi jelentés 6. 8. évfolyam szövegértés Országos kompetenciamérés eredményei Kiskulcsosi Általános Iskola 035857 Telephelyi jelentés 6. 8. évfolyam szövegértés Karcag, 2011. április 4. Horváthné Pandur Tünde munkaközösség vezető Kiskulcsosi

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.

Részletesebben

11. modul: LINEÁRIS FÜGGVÉNYEK

11. modul: LINEÁRIS FÜGGVÉNYEK MATEMATIK A 9. évfolyam 11. modul: LINEÁRIS FÜGGVÉNYEK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 11. modul: LINEÁRIS FÜGGVÉNYEK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

A évi dolgozói elégedettség-mérés eredményeinek rövid összefoglalója

A évi dolgozói elégedettség-mérés eredményeinek rövid összefoglalója A 2012. évi dolgozói elégedettség-mérés eredményeinek rövid összefoglalója készítette: Humánpolitikai és Szervezetfejlesztési Igazgatóság 2012. december 2/8 Bevezetés Az elmúlt évhez hasonlóan a Humánpolitikai

Részletesebben

KOLTAI ZOLTÁN, PTE FEEK. A geográfus útjai Tóth József Emlékkonferencia március 18.

KOLTAI ZOLTÁN, PTE FEEK. A geográfus útjai Tóth József Emlékkonferencia március 18. PIACKUTATÁS A MAGYAR TELEPÜLÉSEKRŐL, A TELEPÜLÉSEK VERSENYKÉPESSÉGÉRŐL KICSIT MÁSKÉNT KOLTAI ZOLTÁN, PTE FEEK A geográfus útjai Tóth József Emlékkonferencia 2014. március 18. KUTATANDÓ PROBLÉMA (2004/05

Részletesebben

Vállalkozási finanszírozás kollokvium

Vállalkozási finanszírozás kollokvium Harsányi János Főiskola Gazdaságtudományok tanszék Vállalkozási finanszírozás kollokvium E Név: soport: Tagozat: Elért pont: Érdemjegy: Javította: 43 50 pont jeles 35 42 pont jó 27 34 pont közepes 19 26

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai változók Adatok megtekintése

Matematikai alapok és valószínőségszámítás. Statisztikai változók Adatok megtekintése Matematikai alapok és valószínőségszámítás Statisztikai változók Adatok megtekintése Statisztikai változók A statisztikai elemzések során a vizsgálati, vagy megfigyelési egységeket különbözı jellemzık

Részletesebben

Az értékelés a Móricz Zsigmond Gimnázium 3 gimnáziumi osztályának eredményei alapján készült, 102 tanuló adatai kerültek feldolgozásra.

Az értékelés a Móricz Zsigmond Gimnázium 3 gimnáziumi osztályának eredményei alapján készült, 102 tanuló adatai kerültek feldolgozásra. I. A Gimnáziumi ágazat Az értékelés a Móricz Zsigmond Gimnázium 3 gimnáziumi osztályának eredményei alapján készült, 102 tanuló adatai kerültek feldolgozásra. matematika Az eredmények szerint a 4 évfolyamos

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:

Részletesebben

Faktoranalízis az SPSS-ben

Faktoranalízis az SPSS-ben Faktoranalízis az SPSS-ben = Adatredukciós módszer Petrovics Petra Doktorandusz Feladat Megnyitás: faktoradat_msc.sav Forrás: Sajtos-Mitev 250.oldal Fogyasztók materialista vonásai (Richins-skála) Faktoranalízis

Részletesebben

Nemparametrikus tesztek. 2014. december 3.

Nemparametrikus tesztek. 2014. december 3. Nemparametrikus tesztek 2014. december 3. Nemparametrikus módszerek Alkalmazásuk: nominális adatok (gyakoriságok) esetén, ordinális adatok esetén, metrikus adatok esetén (intervallum és arányskála), ha

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

A mérés. A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell

A mérés. A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell A mérés A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell törekedni, minél közelebb kerülni a mérés során a valós mennyiség megismeréséhez. Mérési

Részletesebben

Robotika. Relatív helymeghatározás Odometria

Robotika. Relatív helymeghatározás Odometria Robotika Relatív helymeghatározás Odometria Differenciális hajtás c m =πd n /nc e c m D n C e n = hány mm-t tesz meg a robot egy jeladó impulzusra = névleges kerék átmérő = jeladó fölbontása (impulzus/ford.)

Részletesebben

Lakossági vélemények a közbiztonságról és a halálbüntetésrôl a közép-kelet-európai országokban

Lakossági vélemények a közbiztonságról és a halálbüntetésrôl a közép-kelet-európai országokban Közép-európai közvélemény: Lakossági vélemények a közbiztonságról és a halálbüntetésrôl a közép-kelet-európai országokban A Central European Opinion Research Group (CEORG) havi rendszeres közvéleménykutatása

Részletesebben

matematikai statisztika

matematikai statisztika Az újságokban, plakátokon, reklámkiadványokban sokszor találkozunk ilyen grafikonokkal, ezért szükséges, hogy megértsük, és jól tudjuk értelmezni őket. A második grafikon ismerős lehet, hiszen a függvények

Részletesebben

Emberi erőforrás gazdálkodás

Emberi erőforrás gazdálkodás Munkakör értékelés 1 AZ ELŐADÁS VÁZLATA, TÉMAKÖREI Munkakör értékelés Kompetencia, kompetencia típusok Munkaköri leírás 2 Munkakör értékelés fogalma A munkakör-értékelés kö éték olyan folyamat, amelynek

Részletesebben

Mikroökonómia II. B. ELTE TáTK Közgazdaságtudományi Tanszék. 8. hét AZ INFORMÁCIÓ ÉS KOCKÁZAT KÖZGAZDASÁGTANA, 1. rész

Mikroökonómia II. B. ELTE TáTK Közgazdaságtudományi Tanszék. 8. hét AZ INFORMÁCIÓ ÉS KOCKÁZAT KÖZGAZDASÁGTANA, 1. rész MIKROÖKONÓMIA II. B ELTE TáTK Közgazdaságtudományi Tanszék Mikroökonómia II. B AZ INFORMÁCIÓ ÉS KOCKÁZAT KÖZGAZDASÁGTANA, 1. rész Készítette: Szakmai felel s: 2011. február A tananyagot készítette: Jack

Részletesebben

BIOMETRIA (H 0 ) 5. Előad. zisvizsgálatok. Hipotézisvizsg. Nullhipotézis

BIOMETRIA (H 0 ) 5. Előad. zisvizsgálatok. Hipotézisvizsg. Nullhipotézis Hipotézis BIOMETRIA 5. Előad adás Hipotézisvizsg zisvizsgálatok Tudományos hipotézis Nullhipotézis feláll llítása (H ): Kétmintás s hipotézisek Munkahipotézis (H a ) Nullhipotézis (H ) > = 1 Statisztikai

Részletesebben

P Á L Y A V Á L A S Z T Á S I

P Á L Y A V Á L A S Z T Á S I SZÜLŐI ELÉGEDETTSÉGMÉRÉS P Á L Y A V Á L A S Z T Á S I T E V É K E N Y S É G, P Á L Y A I R Á N Y Í T Á S EGRY JÓZSEF ÁLTALÁNOS ISKOLA ÉS ALAPFOKÚ MŰVÉSZETOKTATÁSI INTÉZMÉNY KESZTHELY 2 0 1 1-2 0 1 2 Készítette:

Részletesebben

Gyakorlat 8 1xANOVA. Dr. Nyéki Lajos 2016

Gyakorlat 8 1xANOVA. Dr. Nyéki Lajos 2016 Gyakorlat 8 1xANOVA Dr. Nyéki Lajos 2016 A probléma leírása Azt vizsgáljuk, hogy milyen hatása van a család jövedelmének a tanulók szövegértés teszten elért tanulmányi eredményeire. A minta 59 iskola adatait

Részletesebben

Több valószínűségi változó együttes eloszlása, korreláció

Több valószínűségi változó együttes eloszlása, korreláció Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...

Részletesebben

GAZDASÁGI STATISZTIKA

GAZDASÁGI STATISZTIKA GAZDASÁGI STATISZTIKA Dr. Kun István GÁBOR DÉNES FŐISKOLA Tantárgy: Gazdasági statisztika Kódszám: 224 Lapszám: 1 TÉMAKÖRÖK A STATISZTIKA ALAPFOGALMAI STATISZTIKAI SOROK STATISZTIKAI TÁBLÁK ÖSSZETETT VISZONYSZÁMOK

Részletesebben

Válogatott fejezetek a közlekedésgazdaságtanból

Válogatott fejezetek a közlekedésgazdaságtanból Válogatott fejezetek a közlekedésgazdaságtanból 2. Választási modellek Levelező tagozat 2015 ősz Készítette: Prileszky István http://www.sze.hu/~prile Fogalmak Választási modellek célja: annak megjósolása,

Részletesebben

Tűzoltási technikák műszaki és gazdasági hatékonysága összetevőinek vizsgálata Halassy Gábor*, Dr. Restás Ágoston**

Tűzoltási technikák műszaki és gazdasági hatékonysága összetevőinek vizsgálata Halassy Gábor*, Dr. Restás Ágoston** Tűzoltási technikák műszaki és gazdasági hatékonysága összetevőinek vizsgálata Halassy Gábor*, Dr. Restás Ágoston** *Nemzeti Közszolgálati Egyetem Katonai Műszaki Doktori Iskola H-1011 Budapest, Hungary

Részletesebben

MIKROÖKONÓMIA II. B. Készítette: K hegyi Gergely. Szakmai felel s: K hegyi Gergely. 2011. február

MIKROÖKONÓMIA II. B. Készítette: K hegyi Gergely. Szakmai felel s: K hegyi Gergely. 2011. február MIKROÖKONÓMIA II. B Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

Boldogság - itthon vagy külföldön? Kőrössy Judit Kékesi Márk Csabai Márta

Boldogság - itthon vagy külföldön? Kőrössy Judit Kékesi Márk Csabai Márta Boldogság - itthon vagy külföldön? Kőrössy Judit Kékesi Márk Csabai Márta Boldogság kutatás 1960-as évek: mai értelemben vett boldogság kutatások kezdete 1980-as évek: szubjektív jóllét fogalma 1990-es

Részletesebben

Szükség van-e kamarai nyilvántartásra?

Szükség van-e kamarai nyilvántartásra? Felmérés az iparkamarai szolgáltatásokról és díjakról kutatási jelentés A felmérés A Magyar Adótanácsadók és Könyvviteli Szolgáltatok Országos Egyesülete 2015 március 3-a és 18-a között online felmérést

Részletesebben

Zempléni gyümölcsalapú kézműves élelmiszerek fogyasztói magtartásának vizsgálata a nők körében

Zempléni gyümölcsalapú kézműves élelmiszerek fogyasztói magtartásának vizsgálata a nők körében Debreceni Egyetem Gazdaságtudományi Kar XXXII. Országos Tudományos Diákköri Konferencia Közgazdaságtudományi Szekció Fogyasztói magatartás 1. Zempléni gyümölcsalapú kézműves élelmiszerek fogyasztói magtartásának

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804)

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804) Matematika A definíciókat és tételeket (bizonyítás nélkül) ki kell mondani, a tananyagrészekhez tartozó alap- és közepes nehézségű feladatokat kell tudni megoldani A javítóvizsga 60 -es írásbeliből áll.

Részletesebben

Király Zoltán, Kondé Zoltán, Kovács Antal, Lévai Annamária 2006

Király Zoltán, Kondé Zoltán, Kovács Antal, Lévai Annamária 2006 A Network-Elemzés - és felhasználása általános iskolai osztályok társas szerkezetének és a szerveződésért felelős személyes tulajdonságok feltárására Király Zoltán, Kondé Zoltán, Kovács Antal, Lévai Annamária

Részletesebben

Szoftver-mérés. Szoftver metrikák. Szoftver mérés

Szoftver-mérés. Szoftver metrikák. Szoftver mérés Szoftver-mérés Szoftver metrikák Szoftver mérés Szoftver jellemz! megadása numerikus értékkel Technikák, termékek, folyamatok objektív összehasonlítása Mér! szoftverek, programok CASE eszközök Kevés szabványos

Részletesebben

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31. Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert

Részletesebben

Tantárgyi útmutató. 1. A tantárgy helye a szaki hálóban. 2. A tantárgyi program általános célja. Statisztika 1.

Tantárgyi útmutató. 1. A tantárgy helye a szaki hálóban. 2. A tantárgyi program általános célja. Statisztika 1. Tantárgyi útmutató 1. A tantárgy helye a szaki hálóban Gazdálkodási és menedzsment szakirány áttekintő tanterv Nagyításhoz kattintson a képre! Turizmus - vendéglátás szakirány áttekintő tanterv Nagyításhoz

Részletesebben

7.2. A készségek és az oktatás jövedelemben megtérülő hozama

7.2. A készségek és az oktatás jövedelemben megtérülő hozama 7.2. A készségek és az oktatás jövedelemben megtérülő hozama A neoklasszikus közgazdasági elmélet szerint a termelés végső értékéhez jobban hozzájáruló egyének számára elvárt a magasabb kereset. Sőt, mi

Részletesebben

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása 1 Információk 2 A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin Elérhetőség mesko.katalin@tfk.kefo.hu Fogadóóra: szerda 9:50-10:35 Számonkérés időpontok Április 25. 9 00 Május 17. 9 00 Június

Részletesebben

Fogalmak Navigare necesse est

Fogalmak Navigare necesse est Döntéselmélet Fogalmak Navigare necesse est - dönteni mindenkinek kell A döntés nem vezetői privilégium: de! vezetői kompetencia, a vezetői döntések hatása Fogalmak II. A döntés célirányos választás adott

Részletesebben

OKTV 2007/2008 Informatika II. kategória döntő forduló Feladatlap. Oktatási Hivatal

OKTV 2007/2008 Informatika II. kategória döntő forduló Feladatlap. Oktatási Hivatal Feladatlap Kedves Versenyző! A megoldások értékelésénél csak a programok futási eredményeit vesszük tekintetbe. Ezért igen fontos a specifikáció pontos betartása. Ha például a feladat szövege adatok valamilyen

Részletesebben

Kérdés Lista. A Magyarországon alkalmazott rajzlapoknál mekkora az oldalak aránya?

Kérdés Lista. A Magyarországon alkalmazott rajzlapoknál mekkora az oldalak aránya? Kérdés Lista információ megjelenítés :: műszaki rajz T A darabjegyzék előállítása során milyen sorrendben számozzuk a tételeket? Adjon meg legalább két módszert! T A Magyarországon alkalmazott rajzlapoknál

Részletesebben

Kalibrálás és mérési bizonytalanság. Drégelyi-Kiss Ágota I

Kalibrálás és mérési bizonytalanság. Drégelyi-Kiss Ágota I Kalibrálás és mérési bizonytalanság Drégelyi-Kiss Ágota I. 120. dregelyi.agota@bgk.uni-obuda.hu Kalibrálás Azoknak a mőveleteknek az összessége, amelyekkel meghatározott feltételek mellett megállapítható

Részletesebben

Statisztikai alapfogalmak

Statisztikai alapfogalmak Statisztika I. KÉPLETEK 2011-2012-es tanév I. félév Statisztikai alapfogalmak Adatok pontossága Mért adat Abszolút hibakorlát Relatív hibakorlát Statisztikai elemzések viszonyszámokkal : a legutolsó kiírt

Részletesebben

ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN!

ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN! A1 A2 A3 (8) A4 (12) A (40) B1 B2 B3 (15) B4 (11) B5 (14) Bónusz (100+10) Jegy NÉV (nyomtatott nagybetűvel) CSOPORT: ALÁÍRÁS: ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN! 2011. december 29. Általános tudnivalók:

Részletesebben