Többszempontú döntési módszerek
|
|
- Hunor Molnár
- 2 évvel ezelőtt
- Látták:
Átírás
1 XI. előadás Többszempontú döntési módszerek Mindennapi tapasztalat: döntési helyzetbe kerülve több változat (alternatíva) között kell (lehet) választani, az alternatívákat kölönféle szempontok szerint vizsgáljuk meg a döntéshez. pl. autó vásárlás: ár, üzemeltetési ktg, szerviz Döntési feladatok jellegzetessége: értékelési szempontok általában - lényegesen eltérőek lehetnek (pl. szín, teljesítmény), - egymásnak ellentmondóak lehetnek (pl. a legjobb a legdrágább), - szubjektívek lehetnek. 1
2 Probléma kezelése nem egyszerű nincs egységesen elfogadott megoldó algoritmus a különböző objektív és szubjektív szempontok szerinti értékelésre. Fontos a döntési feladat megoldása során az eredmények szemléletes bemutatása (megjelenítése), és értelmezése. Többszempontú döntések elmélete MAUT (Multi Attribute Utility Theory ) Utilitás: hasznosság, az emberi döntések egyik alapja. Általában ha egy döntéshozó két lehetőség közül megfontolások alapján az egyiket választja, akkor azért tette ezt, mert ennek a lehetőségnek számára nagyobb volt a utilitása. (Ugyanazon dolog hasznossága különböző személyek vagy csoportok számára más és más lehet.) Többszempontú döntési feladatok modellezése: Pl. fagylaltbolt helyének meghatározása. A vezetés üzleti szempontból a legjobb helyet akarja kiválasztani ez a cél. A vezetők szerint fontos az üzlet láthatósága, a környéken levő fagylaltozók száma, az arra járók (potenciális vásárlók) száma, a helybérleti díj értéke ezek a szempontok. Előzetes vizsgálat alapján 3 helyszín jöhet szóba: -sétáló utca sok tizenévessel, turistával bérleti díj itt magas -belvárosi főút sok hivatalnok járókelővel kisebb bérleti díj -forgalmas külvárosi központ nagy a konkurencia ezek az alternatívák. 2
3 Vegyük észre: - minden alternatívának lehet jó és rossz oldala, - szempontok között lehetnek mennyiségi és nem számszerüsíthetők egyaránt. Jelölje a továbbiakban A 1,A 2,,A n az alternatívákat, C 1,C 2,,C m a szempontokat. Feladatunkban 3 alternatíva és 4 szempont adható meg a fagylaltozó helyének meghatározásakor: A 1 : egy sétáló utca sok (este is ott levő) köztudottan fagylalt kedvelővel A 2 :kevésbé drága belvárosi főút, ahol este kevesen járnak A 3 :forgalmas külvárosi központ nagy konkurenciával C 1 : a környéken levő konkurens fagylaltboltok száma. C 2 : az arra járók (lehetséges vásárlók) száma a lehetséges forgalom mértéke. C 3 : a helybérleti díj nagysága. C 4 : az üzlet láthatósága. C 1,C 2,C 3 szempontok objektívek : hozzájuk tartozó értékek megadhatók (ismertek vagy becsülhető). C 4 szempont szubjektív : értéke a döntéshozó szubjektív értékelésétől függ, és minőségi mutató. Szubjektív értékelés lehet pl.: - nagyon jól látható, - közepesen jól látható, - rosszul látható. 3
4 A döntéshozó a problémától függően több szubjektív értékelésből is választhat. A döntési feladatokhoz egy döntési táblázat rendelhető, a konkrét esetben: A 1 A 2 A 3 C 1 a 11 a 12 a 13 C 2 a 21 a 22 a 23 C 3 a 31 a 32 a 33 C 4 Ahol -a ij i,j=1,2,3 a j-edik alternatívához az i-edik objektív szemponthoz rendelhető számérték, - negyedik sorba a szubjektív értékelések közül valamelyik. Felmerülő kérdések, nehézségek: - hogyan lehet összegezni a szubjektív és objektív értékeléseket, tudva, hogy a szubjektív értékelések nehezen számszerűsíthetők, - a döntési táblázat értékei gyakran különböző skálákhoz tartoznak (névleges- ház ára; rangsor; intervallum értékiskolai osztályzat; arányossági (hányados) érték)) - szempontok között különböző dimenziójú fizikai mennyiségek vannak. 4
5 Többszempontú döntési feladat megoldásánál az alternatívák ismeretében a megoldandó probléma lehet: a legjobb alternatíva kiválasztása, a néhány legjobb alternatíva kiválasztása, az alternatívákhoz rendelhető névleges érték meghatározása, olyan alternatívahalmaz meghatározása, amely optimális a cél szempontjából, alternatívák rangsorának meghatározása. Feladat: A döntési feladat színes televízió vásárlása. Az előzetes felmérések után öt féle típus megvétele jöhet szóba, azaz az alternatívák az egyes típusú TV készülékeknl A 1,A 2,A 3,A 4,A 5. Az értékelési szempontok legyenek a következők: C 1 : színhűség ; C 2 : TV-hez illő TV állvány vásárlási lehetősége ; C 3 : ár ; C 4 : megbízhatósági mutatók ; C 5 : alkatrészpótlási lehetőség ; C 6 : esztétikai szempontok. 5
6 A döntési feladat megoldása során a rendelkezésre álló adatok segítségével elkészítjük a döntési táblázatot: Színhűség gyenge jó közepes közepes kiváló TV állvány nincs nincs van van rendelhető Ár 32 eft 38 eft 42 eft 48 eft 52 eft Megbízhatóság közepes közepes gyenge megbízható megbízható Alkatrészpótlás bizt. bizt. bizt. bizt. nem bizt. Esztétika jó közepes közepes jó jó Olvassuk ki a megoldást a döntési táblázatból egyszerű döntési elvek alapján. Egyszerű döntési elvek: POLANO módszer (Szubjektív értékelések számszerűsítése :további módszerek alkalmazásához szükséges lépés) Dominancia MaxMin és MaxMax szabály Szűrési módszerek (Szempontok súlyozása) Lexikografikus rendezés 6
7 POLANO módszer POLicy ANalysis of Oosterschelde A módszert a Rand Corporation dolgozta ki árvízvédelmi beruházások összehasonlítására. A módszer lényege: A döntési mátrix sorai a szempontokat, oszlopai az alternatívákat tartalmazzák sorok oszlopok metszetében az A j alternatíva C i szempont szerinti értéke (értékelése) áll. Ezen értékeléseket preferenciaazonos csoportokba soroljuk: minden szempontnál külön-külön meghatározzuk, hogy mely értékeket tartunk pl. jónak, közepesnek ill. rossznak. A döntési táblázat ezután az értékelések helyett pl. színekkel jelzi a besorolásokat. A döntési táblázat színei: döntéshozó kategóriába sorolása alapján Az alternatíva az adott szempont szerint : jó közepes rossz Színhűség gyenge jó közepes közepes kiváló TV állvány nincs nincs van van rendelhető Ár 32 eft 38 eft 42 eft 48 eft 52 eft Megbízhatóság közepes közepes gyenge megbízható megbízható Alkatrészpótlás bizt. bizt. bizt. bizt. nem bizt. Esztétika jó közepes közepes jó jó legjobbnak adódó:a 4 7
8 A döntési táblázat színei: döntéshozó kategóriába sorolása alapján Az alternatíva az adott szempont szerint : jó közepes rossz Színhűség TV állvány Ár Megbízhatóság Alkatrészpótlás Esztétika legjobbnak adódó:a 4 Munkahelyválasztás POLANO elemzéssel: Fizetés 200 eft 160 eft 180 eft 130 eft 70 eft Érdekesség Távolság 15 km 4 km 0 km 6 km 2 km Kötött m. idő 95 % 100 % 75 % 10 % 80 % Autó használat nem nem nem nem igen jó közepes gyenge 8
9 Munkahelyválasztás POLANO elemzéssel: Fizetés 200 eft 160 eft 180 eft 130 eft Érdekesség Távolság 2 km Kötött m. idő Autó használat igen jó közepes gyenge legjobbnak adódó:a 3 A módszer előnyei: - eljárás egyszerű, könnyen kezelhető, számítástechnikai háttér nem szükséges, - szempontok egymás közötti kapcsolatát nem kell figyelembe venni, - egyszerűsége miatt döntések indoklásában jól használható, - megtartja a többszempontúságot. A módszer hátrányai: - közvetlenül nem alkalmas a legjobb alternatíva kiválasztására, - nem alkalmas az alternatívák sorrendjének felállítására, - nem alkalmas annak feltárására, hogy a döntés mennyire érzékeny az egyes szempontok vagy értékelések változására, - nem képes az egyes szempontok fontosságának (súlyának) figyelembevételére. 9
10 A módszer lényege: Szubjektív értékelések számszerűsítése A döntési mátrix sorai a szempontokat, oszlopai az alternatívákat tartalmazzák sorok oszlopok metszetében az A j alternatíva C i szempont szerinti értéke (értékelése) áll. Ha a döntési táblázatok szubjektív értékeléseket is tartalmaznak, akkor ezeket az értékeléseket számszerűsíteni kell. Vezessük be a következő skálát: 1: nagyon gyenge; nincs benne; nem biztosított; 3: gyenge; 5: közepes; átlagos; rendelhető; 7: jó; 9: kiváló; beépített; megbízható; biztosított; Ezeket az értékeket felhasználva a döntési táblázat: Színhűség TV állvány Ár 32 eft 38 eft 42 eft 48 eft 52 eft Megbízhatóság Alkatrészpótlás Esztétika A táblázat adatai nem homogének transzformálás 0 és 1 közé. 10
11 Lehetséges transzformáció: táblázat soraiban levő értékek normálása. Arányossági skálára való áttérés, ahol a maximum érték 1 ezt az adott szempont szerinti legjobb alternatíva(ák) kapja(ják), a többi pedig arányosan kisebb lesz, de 0-nál nem kisebb. Képlettel: b ij = a ij / max a ij, b ij = min a ij / a ij, j b ij = 1 / (a ij + 1), j ha az i-edik szempont szerint a nagyobb érték a jobb; ha az i-edik szempont szerint a legkisebb érték a jobb, de min a ij 0; ha az i-edik szempont szerint a legkisebb érték a jobb, de min a ij = 0; j j Ezeket az értékeket felhasználva a döntési táblázat: Színhűség 3/9 7/9 5/9 5/9 1 TV állvány 1/9 1/ /9 Ár 1 16/19 16/21 16/24 16/26 Megbízhatóság 5/9 5/9 3/9 1 1 Alkatrészpótlás /9 Esztétika 1 5/7 5/
12 Dominancia Dominált alternatíva: Végezzük el az alternatívák számszerű értékelését. Ha ezután van olyan alternatíva, aminek az értékelése minden szempont szerint alatta marad egy másiknak, esetleg egyes szempontok szerint az értékelések megegyeznek, akkor a gyengébb értékelést kapott alternatíva dominált. Ha a szempontok függetlennek tekinthetők, akkor nem racionális egy dominált alternatívát választani legjobbnak. A nem dominált alternatívákat efficiens vagy Pareto-optimális megoldásoknak nevezik. A dominált alternatívákat figyelmen kívül lehet hagyni a további vizsgálatok során. Legyen A 1 és A 2 két alternatíva, amiket C 1 és C 2 szempontok szerint kell értékelni, és mindkét esetben a nagyobb érték a jobb. Tekintsünk öt különböző értékelést: 1. példa 2. példa 3. példa 4. példa 5. példa C 1 C 2 C 1 C 2 C 1 C 2 C 1 C 2 C 1 C 2 A A példa: A 1 egyedül efficiens megoldás, ez a javasolt alternatíva 2. példa: egyik sem jobb minden szempont szerint további információk nélkül nem lehet a jobbat kiválasztani 3. példa: A 1 jobbnak tűnik 4. és 5. példa : két egymáshoz közeli értékelés 12
13 MaxMin és MaxMax szabály Pesszimista döntéshozó esete: mindegyik alternatíva esetén a legrosszabb értéket tekinti a gyenge láncszemnek a legjobb döntés érdekében az alternatívák leggyengébb értékei közül a legnagyobb értékkel rendelkező alternatívát választja. Színhűség 3/9 7/9 5/9 5/9 1 TV állvány 1/9 1/ /9 Ár 1 16/19 16/21 16/23 16/26 Megbízhatóság 5/9 5/9 3/9 1 1 Alkatrészpótlás /9 Esztétika 1 5/7 5/7 1 1 legjobbnak adódó:a 4 MaxMin és MaxMax szabály Optimista döntéshozó esete: csak a legjobb értékeket veszi figyelembe a legjobb döntés érdekében az alternatívák legjobb értékei közül a legnagyobb értékkel rendelkező alternatívát választja. Színhűség 3/9 7/9 5/9 5/9 1 TV állvány 1/9 1/ /9 Ár 1 16/19 16/21 16/23 16/26 Megbízhatóság 5/9 5/9 3/9 1 1 Alkatrészpótlás /9 Esztétika 1 5/7 5/7 1 1 Mindet kiválasztjuk 13
14 Szűrési módszerek A szűrési módszerek az alternatívák halmazát szűrik, azaz szűkítik. A modellek olyan alternatívákat keresnek, amelyek bizonyos feltételeknek eleget tesznek, kérdésben megfogalmazva: 1. Az alternatíva rendelkezik-e bizonyos tulajdonsággal? 2. Az alternatíva rendelkezik-e egy bizonyos szempont valamilyen adott szintjével? Három változatot vizsgálunk. Mindegyiknél első lépés a döntési táblázat összeállítása. I. változat: Minden értékelési szemponthoz megadunk egy minimum feltételt, majd azokat az alternatívákat fogadjuk el, amelyek minden szempont szerint teljesítik ezeket. Így az alternatívákat két csoportra osztjuk: jó és rossz alternatívákra. (Ezt szokás alkalmazni fontos pozíció betöltésére kiírt pályázatnál, amikor nem lehet hogy a jelölt bármelyik szempont szerint megbukjon.) Tekintsük a TV vásárlási feladatot! 14
15 A szükséges (minimum) feltételek: C 1 : színhűség legalább közepes legyen C 2 : TV állvány legalább rendelhető legyen C 3 : ár legfeljebb Ft legyen C 4 : megbízhatóság legalább közepes legyen C 5 : alkatrészpótlás biztosított legyen C 6 : esztétika legalább közepes legyen Színhűség gyenge jó közepes közepes kiváló TV állvány nincs nincs van van rendelhető Ár 32 eft 38 eft 42 eft 48 eft 52 eft Megbízhatóság közepes közepes gyenge megbízható megbízható Alkatrészpótlás bizt. bizt. bizt. bizt. nem bizt. Esztétika jó közepes közepes jó jó Hiányzik: A 1 C 1,C 2 A 2 C 2 A 3 C 4 A 4 A 5 C 3,C 5 Jó alternatíva:a 4 II. változat: Ebben az esetben meghatározóan fontos szempontok szerint az egyedi kiválóságot keressük, a valamilyen szempont szerint a kiemelkedő(ke)t. ( Az előbbi I. változat a minden szempont szerint megbízhatókat választotta ki: minden szempont szerint egy adott küszöbértéktől jobb értékelést kapottat kerestük.) A kiválasztott értékelési szemponthoz, vagy minden értékelési szemponthoz megadunk elegendő feltételeket, majd azokat az alternatívákat keressük, fogadjuk el jónak, amelyek legalább egy szempont esetén teljesítik az elégséges feltételt. Így osztjuk az alternatívákat jó és rossz alternatívákra. Tekintsük a TV vásárlási feladatot! 15
16 Az elégséges feltételek: C 1 : színhűség kiváló legyen C 2 : TV állvány vásárolható legyen C 3 : ár Ft alatt legyen C 4 : megbízhatóság megbízható legyen C 5 : alkatrészpótlás - ( nem tekintjük szűrési szempontnak) C 6 : esztétika kiváló legyen Színhűség gyenge jó közepes közepes kiváló TV állvány nincs nincs van van rendelhető Ár 32 eft 38 eft 42 eft 48 eft 52 eft Megbízhatóság közepes közepes gyenge megbízható megbízható Alkatrészpótlás bizt. bizt. bizt. bizt. nem bizt. Esztétika jó közepes közepes jó jó Teljesíti: A 1 egyet se A 2 egyet se A 3 C 2 A 4 C 2,C 4 A 5 C 1,C 4 Jó alternatíva: A 3,A 4,A 5 III. változat: Minden értékelési szemponthoz megadunk egy feltételt, majd összeszámoljuk, hogy az egyes alternatívák hány szempont esetén felelnek meg. Így az alternatívákat legfeljebb m+1 osztályba soroljuk. (m az értékelési szempontok száma) A feltételek teljesülését ill. nem teljesülését egy mátrixban lehet megadni : a C i i=1,,m sorok és az A j j=1,,n oszlopok metszéspontjában 1 áll, ha az A j alternatíva teljesíti a C i értékelési szempontnál adott feltételt, egyébként 0. Tekintsük a TV vásárlási feladatot! 16
17 A feltételek: C 1 : színhűség legalább jó legyen C 2 : TV állvány legalább rendelhető legyen C 3 : ár legfeljebb Ft legyen C 4 : megbízhatóság legalább közepesen megbízható legyen C 5 : alkatrészpótlás biztosított legyen C 6 : esztétika legalább jó legyen Színhűség TV állvány Ár Megbízhatóság Alkatrészpótlás Esztétika Jósági mutató: A 1 4 A 2 4 A 3 2 A 4 4 A 5 4 Legkevésbé az A 3 jó A módszer előnyei: - mindhárom változat egyszerű, könnyen kezelhető, számítástechnikai háttér nem szükséges, - tetszőleges skálán értelmezett adatokra alkalmazható, - nagyszámú alternatíva kiértékelésére is használható, - az eljárások gyorsak, I. és II. esetén még gyorsítható, mert nem kell minden alternatívát az összes szempont szerint kiértékelni. (ha találunk egy olyan értékelési szempontot pl. I.-ben, amelyet a vizsgált alternatíva nem teljesít, akkor azt a továbbiakban már nem kell vizsgálni.) 17
18 A módszer hátrányai: - a szempontokat nem kezeli együtt, ezért nem veszi figyelembe, hogy az egyes szempontok szerinti hátrányokat más szempontok szerinti előnyök kiegyenlíthetik, - nem adja meg az alternatívák sorrendjét, - a rendelkezésre álló információk nagy részét nem használja fel, mert minden értékelési szempontnál csak az adott feltétel teljesülését vizsgálja, a teljesítés minőségét és mértékét nem, - a szubjektív feltételeknek nagyon nagy jelentősége lehet. Szempontok súlyozása A feladatoknál a szempontok fontossága között nagy különbség lehet. Pl. a fagylaltozó helyének meghatározásánál a bérleti díj nagysága lényegesen fontosabb lehet, mint az üzlet láthatósága, vagy a TV vásárlásakor az ár valószínűleg sokkal fontosabb, mint a teletext megléte. A több szempontú döntési feladatok megoldásánál lényeges elem az értékelési szempontok fontosság szerinti sorbarendezése vagy fontosság szerinti súlyozása. Ez nem könnyű feladat. A súlyozás előnye, hogy segítségével meghatározható a legjobb alternatíva, és az alternatívák rangsora is. 18
19 Lexikografikus rendezési módszer A módszer használja a szempontok fontosság szerinti sorrendjét és az alternatívákat is sorba rendezi. Ennél a módszernél nem szükséges a döntési táblázat teljes kitöltése és bármilyen skálán értelmezett adatok esetén is használható. A módszer lépései: 1. Először meghatározzuk az összes értékelési szempontot. 2. Majd fontossági sorrendbe rendezzük őket. 3. A legfontosabbnak tartott értékelési szempont szerint sorba rendezzük az alternatívákat ha egyértelmű a rendezés, ismert a sorrend. Lexikografikus rendezési módszer 4. Ha a legfontosabbnak tartott szempont szerint két vagy több alternatíva ugyanazt az értékelést kapta, akkor a fontossági sorrendben következő értékelési szempont szerinti értékelést kell figyelembe venni sorberendezésnél. 5. Ha ez sem dönt, akkor annak a szempontnak a figyelembevételéig kell folytatni az eljárást, ahol a holtverseny már eldől. Tekintsük a TV vásárlási feladatot! 19
20 Legfontosabb szempont legyen a színhűség ez alapján kell sorba rendezni az alternatívákat. Színhűség C 1 gyenge jó közepes közepes kiváló Az adódik, hogy a legjobb az A 5, az A 2 a második,az A 3 és az A 4 egyforma jó, az A 1 az utolsó. A 3 és A 4 között a második legfontosabb szempont szerint kell dönteni. Legyen a további fontossági sorrend C 5,C 4,C 3. Ár C 3 32 eft 38 eft 42 eft 48 eft 52 eft Megbízhatóság C 4 közepes közepes gyenge megbízható megbízható Alkatrészpótlás C 5 bizt. bizt. bizt. bizt. nem bizt. C 5 nem dönt C 4 igen A sorrend: A 5,A 2,A 4,A 3,A 1 A módszer előnyei: - a módszer egyszerű, könnyen kezelhető, számítástechnikai háttér nem szükséges, - tetszőleges skálán értelmezett adatokra alkalmazható, - nem kell a teljes döntési táblát meghatározni, csak fontosság szerint sorba rakni a szempontokat, - egyszerűsége ellenére is sorba rendezi az alternatívákat. A módszer hátrányai: -a szempontokat külön kezeli és ezért nem veszi figyelembe, hogy a hátrányok más szempontoknál jelentkező előnyökkel kiegyenlíthetők, - az információk nagy részét nem használja fel, - a módszer nem alkalmas annak feltárására, hogy a döntés mennyire érzékeny az egyes szempontok vagy értékelések megváltozására. 20
21 Lexikografikus rendezési módszer Egy hölgy azon gondolkozik, hogyan válasszon hódolói közül. Négy szempontja van, melyek fontossági sorrendben a következők: műveltség, egészség, anyagi helyzet és külső megjelenés. A szempontokra a következő kategóriákat állítja fel: műveltség: 3-nagyon jó, 2-jó, 1-rossz egészség: 3-nagyon jó, 2-jó, 1-rossz anyagi helyzet: 5-nagyon gazdag, 4-gazdag, 3 jómódú, 2-szegény, 1-nagyon szegény külső megjelenés:4-nagyon csinos, 3-csinos, 2-nem vonzó, 1- csúnya A hölgy ezek alapján értékeli az udvarlóit (A 1,A 2 ): A 1 -(2,2,4,1) és A 2 -(2,2,3,3) Kit választ LRM szerint? Összefoglalva: A többszempontú döntési feladatok megoldásának lépései: 1. A döntési feladat felépítése: a) a cél megfogalmazása, b) az alternatívák kiválasztása, c) a szempontok meghatározása. 2. A döntési feladat megoldása: a) minden alternatíva kiértékelése minden szempont szerint (döntési táblázat megadása), b) a szempontok súlyainak meghatározása, c) az értékelések és a súlyozás összegzése. 21
22 Összefoglalva: A többszempontú döntési eljárás kiválasztására egyértelmű szabály nem adható meg ( ez is egy többszempontú döntési probléma) csak a konkrét döntési probléma ismeretében lehet a legjobb eljárást kiválasztani. 22
Döntéselőkészítés. XII. előadás. Döntéselőkészítés
XII. előadás Többszempontú döntések elmélete MAUT (Multi Attribute Utility Theory ) A többszempontú döntési feladatok megoldásának lépései: A döntési feladat felépítése: a) a cél megfogalmazása, b) az
Többszempontú döntési módszerek, modellek Dr. Stettner Eleonóra
Kaposvári Egyetem Gazdaságtudományi Kar Kari Tudományos Diákköri Tanács TDK módszertani kurzus 3. alkalom Többszempontú döntési módszerek, modellek Dr. Stettner Eleonóra 2016. április 4. A kurzus a Nemzeti
Többszempontú döntési problémák
Budapesti Corvinus Egyetem MTA Számítástechnikai és Automatizálási Kutató Intézetébe kihelyezett Gazdasági Döntések Tanszék Rapcsák Tamás Többszempontú döntési problémák Egyetemi oktatáshoz segédanyag
Alternatívák rangsora Rangsor módszerek. Debreceni Egyetem
Döntéstámogató Rendszerek VII. előadás Bekéné Rácz Anett Debreceni Egyetem Definíciók Példa rangsorfordulásra Rangsorokkal kapcsolatos fogalmak Condorcet nyertes: Az az alternatíva, amely az összes többi
A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015
A mérés problémája a pedagógiában Dr. Nyéki Lajos 2015 A mérés fogalma Mérésen olyan tevékenységet értünk, amelynek eredményeként a vizsgált jelenség számszerűen jellemezhetővé, más hasonló jelenségekkel
Mátrixjátékok tiszta nyeregponttal
1 Mátrixjátékok tiszta nyeregponttal 1. Példa. Két játékos Aladár és Bendegúz rendelkeznek egy-egy tetraéderrel, melyek lapjaira rendre az 1, 2, 3, 4 számokat írták. Egy megadott jelre egyszerre felmutatják
Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók
Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz
Mérés és skálaképzés. Kovács István. BME Menedzsment és Vállalatgazdaságtan Tanszék
Mérés és skálaképzés Kovács István BME Menedzsment és Vállalatgazdaságtan Tanszék Miröl is lesz ma szó? Mi is az a mérés? A skálaképzés alapjai A skálaképzés technikái Összehasonlító skálák Nem összehasonlító
Fogalmak Navigare necesse est
Döntéselmélet Fogalmak Navigare necesse est - dönteni mindenkinek kell A döntés nem vezetői privilégium: de! vezetői kompetencia, a vezetői döntések hatása Fogalmak II. A döntés célirányos választás adott
Méréselmélet MI BSc 1
Mérés és s modellezés 2008.02.15. 1 Méréselmélet - bevezetés a mérnöki problémamegoldás menete 1. A probléma kitűzése 2. A hipotézis felállítása 3. Kísérlettervezés 4. Megfigyelések elvégzése 5. Adatok
VÁLLALATGAZDASÁGTAN II. Döntési Alapfogalmak
Vállalkozási VÁLLALATGAZDASÁGTAN II. Tantárgyfelelős: Prof. Dr. Illés B. Csaba Előadó: Dr. Gyenge Balázs Az ökonómiai döntés fogalma Vállalat Környezet Döntések sorozata Jövő jövőre vonatkozik törekszik
A számítástudomány alapjai
A számítástudomány alapjai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Legszélesebb utak Katona Gyula Y. (BME SZIT) A számítástudomány
Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes
Mérés és modellezés Méréstechnika VM, GM, MM 1
Mérés és modellezés 2008.02.04. 1 Mérés és modellezés A mérnöki tevékenység alapeleme a mérés. A mérés célja valamely jelenség megismerése, vizsgálata. A mérés tervszerűen végzett tevékenység: azaz rögzíteni
Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 A NÖVÉNYTERMESZTÉSI ÁGAZATOK ÖKONÓMIÁJA
Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 A NÖVÉNYTERMESZTÉSI ÁGAZATOK ÖKONÓMIÁJA 11. Előadás Az üzleti terv tartalmi követelményei Az üzleti terv tartalmi követelményei
5. Analytic Hierarchy Process (AHP)
5 Analytic Hierarchy Process (AHP) (ld Temesi J: A döntéselmélet alapjai, 120-128) (Rapcsák T: Többszempontú döntési problémák I ld http://wwwoplabsztakihu/tanszek/download/ ITobbsz-dont-modszpdf) 51 Bevezetés
LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL
LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL x 1-2x 2 6 -x 1-3x 3 = -7 x 1 - x 2-3x 3-2 3x 1-2x 2-2x 3 4 4x 1-2x 2 + x 3 max Alapfogalmak: feltételrendszer (narancs színnel jelölve), célfüggvény
értékel függvény: rátermettségi függvény (tness function)
Genetikus algoritmusok globális optimalizálás sok lehetséges megoldás közül keressük a legjobbat értékel függvény: rátermettségi függvény (tness function) populáció kiválasztjuk a legrátermettebb egyedeket
Algoritmusok bonyolultsága
Algoritmusok bonyolultsága 5. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 27 Gazdaságos faváz Kruskal-algoritmus Joseph Kruskal (1928 2010) Legyen V = {v 1, v 2,..., v n }, E = {e 1, e 2,...,
Táblázatos adatok használata
Táblázatos adatok használata Tartalomjegyzék 1. Az adatok rendezése...2 2. Keresés a táblázatban...2 3. A megjelenő oszlopok kiválasztása...3 4. Az oszlopok sorrendjének meghatározása...4 5. Az oszlopok
Páros összehasonlítás mátrixok empirikus vizsgálata. Bozóki Sándor
Páros összehasonlítás mátrixok empirikus vizsgálata Bozóki Sándor MTA SZTAKI Operációkutatás és Döntési Rendszerek Kutatócsoport Budapesti Corvinus Egyetem Operációkutatás és Aktuáriustudományok Tanszék
Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 15. Nemparaméteres próbák Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date: November
Operációkutatás vizsga
Operációkutatás vizsga A csoport Budapesti Corvinus Egyetem 2007. január 9. Egyéb gyakorló és vizsgaanyagok találhatók a honlapon a Letölthető vizsgasorok, segédanyagok menüpont alatt. OPERÁCIÓKUTATÁS
EGYSZERŰ ÉS ABSZOLÚT TÖBBSÉGI SZAVAZÁS
EGYSZERŰ ÉS ABSZOLÚT TÖBBSÉGI SZAVAZÁS A választások és a szavazások többszempontú döntési problémák a szavazók valamilyen módon döntenek a jelöltekről a választási bizottság a szavazás után megállapítja,
3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek
3. Előadás Megyesi László: Lineáris algebra, 47. 50. oldal. Gondolkodnivalók Determinánsok 1. Gondolkodnivaló Determinánselméleti tételek segítségével határozzuk meg a következő n n-es determinánst: 1
1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)
1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)
Válogatott fejezetek a közlekedésgazdaságtanból
Válogatott fejezetek a közlekedésgazdaságtanból 2. Választási modellek Levelező tagozat 2015 ősz Készítette: Prileszky István http://www.sze.hu/~prile Fogalmak Választási modellek célja: annak megjósolása,
KUTATÁSMÓDSZERTAN 4. ELŐADÁS. A minta és mintavétel
KUTATÁSMÓDSZERTAN 4. ELŐADÁS A minta és mintavétel 1 1. A MINTA ÉS A POPULÁCIÓ VISZONYA Populáció: tágabb halmaz, alapsokaság a vizsgálandó csoport egésze Minta: részhalmaz, az alapsokaság azon része,
Felhasználói kézikönyv. Bankszámlaválasztó program
Felhasználói kézikönyv Bankszámlaválasztó program Egy jól megválasztott számlacsomaggal éves szinten akár több ezer forint is megtakarítható. Ezért évente legalább egyszer célszerű rászánni az időt az
Aromo Szöveges értékelés normál tantárggyal
Aromo Szöveges értékelés normál tantárggyal Aromo Iskolaadminisztrációs Szoftver Felhasználói kézikönyv -- Szöveges értékelés 1 Tartalomjegyzék Aromo Szöveges értékelés normál tantárggyal 1 Bevezetés 3
Mérés és modellezés 1
Mérés és modellezés 1 Mérés és modellezés A mérnöki tevékenység alapeleme a mérés. A mérés célja valamely jelenség megismerése, vizsgálata. A mérés tervszerűen végzett tevékenység: azaz rögzíteni kell
Számítógépes döntéstámogatás. Döntések fuzzy környezetben Közelítő következtetések
BLSZM-09 p. 1/17 Számítógépes döntéstámogatás Döntések fuzzy környezetben Közelítő következtetések Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu
OKTV 2005/2006 döntő forduló
Informatika I. (alkalmazói) kategória feladatai OKTV 2005/2006 döntő forduló Kedves Versenyző! A megoldások értékelésénél csak a programok futási eredményeit vesszük tekintetbe. Ezért igen fontos a specifikáció
Gyakorlatias tanácsok PLA fejlesztőknek
Gyakorlatias tanácsok PLA fejlesztőknek Beszédes Nimród Attiláné Békéscsabai Regionális Képző Központ Képzési igazgatóhelyettes 2007. november 28-30. A jogszabályi háttérről 2001. évi CI. törvény 24/2004.
A minőség gazdasági hatásai
5. A minőség gazdasági hatásai 5.1 A minőség költségei A minőség költségeit három nagy csoportra oszthatjuk: az első csoportot a minőség érdekében tett megelőző jellegű intézkedések költségei, a másodikat
Aromo Szöveges értékelés kódolt tantárggyal
Aromo Szöveges értékelés kódolt tantárggyal AROMO Iskolaadminisztrációs Szoftver - Felhasználói kézikönyv - Szöveges értékelés 1 Tartalomjegyzék Aromo Szöveges értékelés kódolt tantárggyal 1 Bevezetés
Hasonlóságelemzés COCO használatával
Hasonlóságelemzés COCO használatával Miért a CoCo?? Mire használhatom a CoCo-t?! Például megállapíthatom, hogy van-e a piacon olyan cég, amely az árhoz és a többiekhez képest kevesebbet vagy többet teljesít.?
STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai
Változékonyság (szóródás) STATISZTIKA I. 5. Előadás Szóródási mutatók A középértékek a sokaság elemeinek értéknagyságbeli különbségeit eltakarhatják. A változékonyság az azonos tulajdonságú, de eltérő
Hogyan fogalmazzuk meg egyszerűen, egyértelműen a programozóknak, hogy milyen lekérdezésre, kimutatásra, jelentésre van szükségünk?
Hogyan fogalmazzuk meg egyszerűen, egyértelműen a programozóknak, hogy milyen lekérdezésre, kimutatásra, jelentésre van szükségünk? Nem szükséges informatikusnak lennünk, vagy mélységében átlátnunk az
Programozási módszertan. Mohó algoritmusok
PM-08 p. 1/17 Programozási módszertan Mohó algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu PM-08 p. 2/17 Bevezetés Dinamikus programozás
6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének
6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük
Ismeretellenőrzés a Moodle rendszerben. Dr. Orbán Anna BCE
Ismeretellenőrzés a Moodle rendszerben Dr. Orbán Anna BCE Bemutatkozás 29 éves oktatási tapasztalat Ebből 24 év felsőoktatásban, informatikai tantárgyak oktatása nem informatikusoknak Oktatócsomag: jegyzet,
Aromo Szöveges Értékelés
Aromo Szöveges Értékelés AROMO Iskolaadminisztrációs Szoftver v2.50 - Felhasználói kézikönyv- Szöveges értékelés 1 Tartalomjegyzék Aromo Szöveges Értékelés 1 Bevezetés 3 A Szöveges Értékelés modul koncepciója
1/ gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI
/ Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI /. Legyen adott az alábbi LP-feladat: x + 4x + x 9 x + x x + x + x 6 x, x, x x + x +
Anyagszükséglet-tervezés gyakorlat. Termelésszervezés
Anyagszükséglet-tervezés gyakorlat egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Feladattípusok Egyszerű tételnagyság-képzési szabályok, heurisztikák, kapacitáskorlátos esetek (3 komponens,
Matematikai modellezés
Matematikai modellezés Bevezető A diasorozat a Döntési modellek című könyvhöz készült. Készítette: Dr. Ábrahám István Döntési folyamatok matematikai modellezése Az emberi tevékenységben meghatározó szerepe
1. ábra ábra
A kifejtési tétel A kifejtési tétel kimondásához először meg kell ismerkedni az előjeles aldetermináns fogalmával. Ha az n n-es A mátrix i-edik sorának és j-edik oszlopának kereszteződésében az elem áll,
Adatszerkezetek. Nevezetes algoritmusok (Keresések, rendezések)
Adatszerkezetek Nevezetes algoritmusok (Keresések, rendezések) Keresések A probléma általános megfogalmazása: Adott egy N elemű sorozat, keressük meg azt az elemet (határozzuk meg a helyét a sorozatban),
A multikritériumos elemzés célja, alkalmazási területe, adat-transzformációs eljárások, az osztályozási eljárások lényege
A multkrtérumos elemzés célja, alkalmazás területe, adat-transzformácós eljárások, az osztályozás eljárások lényege Cél: tervváltozatok, objektumok értékelése (helyzetértékelés), döntéshozatal segítése
Felvételi tematika INFORMATIKA
Felvételi tematika INFORMATIKA 2016 FEJEZETEK 1. Természetes számok feldolgozása számjegyenként. 2. Számsorozatok feldolgozása elemenként. Egydimenziós tömbök. 3. Mátrixok feldolgozása elemenként/soronként/oszloponként.
Megoldások. Az ismérv megnevezése közös megkülönböztető 2007. szeptember 10-én Cégbejegyzés időpontja
Megoldások 1. feladat A sokaság: 2007. szeptember 12-én a Miskolci Egyetem GT-204-es tankör statisztika óráján lévő tagjai az A 1 épület III. em. 53-as teremben 8-10-ig. Közös ismérv Megkülönböztető ismérv
angolul: greedy algorithms, románul: algoritmi greedy
Mohó algoritmusok angolul: greedy algorithms, románul: algoritmi greedy 1. feladat. Gazdaságos telefonhálózat építése Bizonyos városok között lehet direkt telefonkapcsolatot kiépíteni, pl. x és y város
A 2010/2011 tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának megoldása. II. (programozás) kategória
Oktatási Hivatal A 2010/2011 tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának megoldása II. (programozás) kategória 1. feladat: Párok (15 pont) Egy rendezvényre sok vendéget hívtak meg.
MÁV-START Tudáspróba Felhasználói kéziköny
MÁV-START Tudáspróba Felhasználói kéziköny Tartalomjegyzék Bejelentkezés a tudáspróbára... 3 Kijelentkezés... 3 Megkezdett tudáspróba folytatása... 4 Tudáspróba kiválasztása... 5 Tudáspróba kiválasztása...
Döntéselőkészítés. I. előadás. Döntéselőkészítés. Előadó: Dr. Égertné dr. Molnár Éva. Informatika Tanszék A 602 szoba
I. előadás Előadó: Dr. Égertné dr. Molnár Éva Informatika Tanszék A 602 szoba Tárggyal kapcsolatos anyagok megtalálhatók: http://www.sze.hu/~egertne Konzultációs idő: (páros tan. hét) csütörtök 10-11 30
Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
7. 1. A formatív értékelés és lehetséges módjai (szóbeli, feladatlapos, számítógépes) az oktatásban. - valamilyen jelenségről, ill.
7. 1. A formatív értékelés és lehetséges módjai (szóbeli, feladatlapos, számítógépes) az oktatásban Pedagógiai értékelés fogalma: Az értékelés során értéket állapítunk meg: közvetlenül: közvetve: - valamilyen
PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június KÖZÉPSZINT JAVÍTÁSI ÚTMUTATÓ. Vizsgafejlesztő Központ
PRÓBAÉRETTSÉGI 00. május-június MATEMATIKA KÖZÉPSZINT JAVÍTÁSI ÚTMUTATÓ Vizsgafejlesztő Központ Kedves Kolléga! Kérjük, hogy a dolgozatok javítását a javítási útmutató alapján végezze, a következők figyelembevételével.
FELHASZNÁLÓI KÉZIKÖNYV
többszempontú csoportos döntéstámogató szoftver EGY A ÉS WINGDSS PÉLDAFELADAT A KIÉRTÉKELÉS FÜGGELÉK 4.1 RENDSZERBEN FELÉPÍTÉSE LÉPÉSEI FELHASZNÁLÓI KÉZIKÖNYV Operációkutatás MTA és Döntési SZTAKI Rendszerek
1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI
/ Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI Normál feladatok megoldása szimplex módszerrel / / Normál feladatok megoldása szimplex
Általános algoritmustervezési módszerek
Általános algoritmustervezési módszerek Ebben a részben arra mutatunk példát, hogy miként használhatóak olyan általános algoritmustervezési módszerek mint a dinamikus programozás és a korlátozás és szétválasztás
Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA
SZDT-03 p. 1/24 Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás
A valós számok halmaza
VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben
15. LINEÁRIS EGYENLETRENDSZEREK
15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a
matematikai statisztika
Az újságokban, plakátokon, reklámkiadványokban sokszor találkozunk ilyen grafikonokkal, ezért szükséges, hogy megértsük, és jól tudjuk értelmezni őket. A második grafikon ismerős lehet, hiszen a függvények
Algoritmuselmélet. Legrövidebb utak, Bellmann-Ford, Dijkstra. Katona Gyula Y.
Algoritmuselmélet Legrövidebb utak, Bellmann-Ford, Dijkstra Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 3. előadás Katona Gyula Y. (BME
I. BESZÁLLÍTÓI TELJESÍTMÉNYEK ÉRTÉKELÉSE
I. BESZÁLLÍTÓI TELJESÍTMÉNYEK ÉRTÉKELÉSE Komplex termékek gyártására jellemző, hogy egy-egy termékbe akár több ezer alkatrész is beépül. Ilyenkor az alkatrészek általában sok különböző beszállítótól érkeznek,
Dr. Piskóti István Marketing Intézet. Marketing 2.
Kutatni kell kutatni jó! - avagy a MIR és a marketingkutatás módszerei Dr. Piskóti István Marketing Intézet Marketing 2. Marketing-menedzsment A marketing összes feladatát és aktivitásait összefoglalóan,
A Kecskeméti Református Általános Iskola évi országos kompetenciamérés eredményének értékelése. 1. táblázat
A Kecskeméti Református Általános Iskola 2014. évi országos kompetenciamérés eredményének értékelése Hatodik évfolyam. Létszámadatok: 1. táblázat A hatodik évfolyamon a 91 tanulóból 8 fő SNI és egyéb rész-képesség
Területi elemzések. Budapest, 2015. április
TeIR Területi elemzések Felhasználói útmutató Budapest, 2015. április Tartalomjegyzék 1. BEVEZETŐ... 3 2. AZ ELEMZÉSBEN SZEREPLŐ MUTATÓ KIVÁLASZTÁSA... 4 3. AZ ELEMZÉSI FELTÉTELEK DEFINIÁLÁSA... 5 3.1.
Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t
Ellenőrző kérdések 2. Kis dolgozat kérdései 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t 37. Ha t szintű indexet használunk,
Készlet nyilvántartó
Készlet nyilvántartó Szécsy Számítáatechnika 4080 Hajdúnánás, Ady krt. 21. 06 30 34 54 101 06 52 381 163 info@szecsy.hu www.szecsy.hu Belépés A lista lenyítása. A lenyíló listából az adatrögzítést végző
15. tétel. Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 30.
15. tétel Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 30. Edényrendezés Tegyük fel, hogy tudjuk, hogy a bemenő elemek (A[1..n] elemei) egy m elemű U halmazból kerülnek ki, pl. " A[i]-re
Bázistranszformáció és alkalmazásai
Bázistranszformáció és alkalmazásai Lineáris algebra gyakorlat Összeállította: Bogya Norbert Tartalomjegyzék 1 Elmélet Gyakorlati végrehajtás 2 Vektor bevitele a bázisba Rangszámítás Lineáris egyenletrendszer
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
Párhuzamos (fordított) szövegek többcélú felhasználása Három fő terület: 1. A szöveg előkészítése (mindhárom esetben):
Párhuzamos (fordított) szövegek többcélú felhasználása Három fő terület: A) egy-, két-, háromnyelvű (esetleg többnyelvű) szövegtár létrehozása: Ms Access B) egy- vagy kétnyelvű glosszárium készítése, bővítése
A kanonikus sokaság. :a hőtartály energiája
A kanonikus sokaság A mikrokanonikus sokaság esetén megtanultuk, hogy a megengedett mikroállapotok egyenértéküek, és a mikróállapotok száma minimális. A mikrókanónikus sokaság azonban nem a leghasznosabb
Dinamikus programozás - Szerelőszalag ütemezése
Dinamikus programozás - Szerelőszalag ütemezése A dinamikus programozás minden egyes részfeladatot és annak minden részfeladatát pontosan egyszer oldja meg, az eredményt egy táblázatban tárolja, és ezáltal
Dinamikus Költségelemzés (DCC): hatékony módszer a hatékony fejlesztésekért. Czeglédi Ildikó okl.közgazdász közművagyon-gazdálkodási szakértő
Dinamikus Költségelemzés (DCC): hatékony módszer a hatékony fejlesztésekért Czeglédi Ildikó okl.közgazdász közművagyon-gazdálkodási szakértő A módszertani fejlesztés szükségessége Elhúzódó projekt előkészítések
Bozóki Sándor február 16. Érzékenységvizsgálat a Promethee módszertanban p. 1/18
Érzékenységvizsgálat a Promethee módszertanban Bozóki Sándor 2011. február 16. Érzékenységvizsgálat a Promethee módszertanban p. 1/18 Vázlat PROMETHEE Parciális érzékenységvizsgálat egy szempontsúly változhat
Zárthelyi dolgozat feladatainak megoldása 2003. õsz
Zárthelyi dolgozat feladatainak megoldása 2003. õsz 1. Feladat 1. Milyen egységeket rendelhetünk az egyedi információhoz? Mekkora az átváltás közöttük? Ha 10-es alapú logaritmussal számolunk, a mértékegység
I. HUMÁN TELJESÍTMÉNYEK ÉRTÉKELÉSE
I. HUMÁN TELJESÍTMÉNYEK ÉRTÉKELÉSE I.1. Munkatársak kiválasztása hagyományos döntés alapján Jelen esettanulmányunk korábbi [1-3] publikációink összefoglalásának tekinthető. Tekintsük egy vállalat emberi
Gyakorlatok. P (n) = P (n 1) + 2P (n 2) + P (n 3) ha n 4, (utolsó lépésként l, hl, u, hu-t léphetünk).
Gyakorlatok Din 1 Jelölje P (n) azt a számot, ahányféleképpen mehetünk le egy n lépcsőfokból álló lépcsőn a következő mozgáselemek egy sorozatával (zárójelben, hogy mennyit mozgunk az adott elemmel): lépés
Mit tud a QFD? Dr. Topár József 1
Vevői igények A VEVŐ HANGJA A QFD olyan egyszerű szisztematikus módszert kínál, amellyel a vevő hangját a termékbe beépíthetjük. A QFD eredménye : Szisztematikusan tervek elkészítése arra, hogy hogyan
Determinánsok. A determináns fogalma olyan algebrai segédeszköz, amellyel. szolgáltat az előbbi kérdésekre, bár ez nem mindig hatékony.
Determinánsok A determináns fogalma olyan algebrai segédeszköz, amellyel jól jellemezhető a mátrixok invertálhatósága, a mátrix rangja. Segítségével lineáris egyenletrendszerek megoldhatósága dönthető
Programozás alapjai 9. előadás. Wagner György Általános Informatikai Tanszék
9. előadás Wagner György Általános Informatikai Tanszék Leszámoló rendezés Elve: a rendezett listában a j-ik kulcs pontosan j-1 kulcsnál lesz nagyobb. (Ezért ha egy kulcsról tudjuk, hogy 27 másiknál nagyobb,
Tartalom Keresés és rendezés. Vektoralgoritmusok. 1. fejezet. Keresés adatvektorban. A programozás alapjai I.
Keresés Rendezés Feladat Keresés Rendezés Feladat Tartalom Keresés és rendezés A programozás alapjai I. Hálózati Rendszerek és Szolgáltatások Tanszék Farkas Balázs, Fiala Péter, Vitéz András, Zsóka Zoltán
Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.
2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.08. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)
M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak!
Magyar Ifjúság 6 V SOROZATOK a) Három szám összege 76 E három számot tekinthetjük egy mértani sorozat három egymás után következő elemének vagy pedig egy számtani sorozat első, negyedik és hatodik elemének
Intelligens technikák k a
Intelligens technikák k a döntéstámogatásban Döntések fuzzy környezetben Starkné Dr. Werner Ágnes 1 Példa: Alternatívák: a 1,a 2,a 3 Kritériumok: k 1,k 2, k 3,k 4 Az alternatívák értékelését az egyes kritériumok
8.3. Az Információs és Kommunikációs Technológia és az olvasás-szövegértési készség
8.3. Az Információs és Kommunikációs Technológia és az olvasás-szövegértési készség Az IALS kutatás során felmerült egyik kulcskérdés az alapkészségeknek az egyéb készségekhez, mint például az Információs
KERESKEDELMI ÉS MARKETING ALAPISMERETEK ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA
KERESKEDELMI ÉS MARKETING ALAPISMERETEK ÉRETTSÉGI VIZSGA A vizsga részei II. A VIZSGA LEÍRÁSA Középszint Emelt szint 180 perc 15 perc 180 perc 20 perc 100 pont 50 pont 100 pont 50 pont A vizsgán használható
9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum.
Programozási tételek Programozási feladatok megoldásakor a top-down (strukturált) programtervezés esetén három vezérlési szerkezetet használunk: - szekvencia - elágazás - ciklus Eddig megismertük az alábbi
A 2014/2015 tanévi Országos Középiskolai Tanulmányi Verseny második forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória
Oktatási Hivatal A 2014/2015 tanévi Országos Középiskolai Tanulmányi Verseny második forduló javítási-értékelési útmutató INFORMATIKA II. (programozás) kategória Kérjük a tisztelt kollégákat, hogy az egységes
Számelméleti alapfogalmak
1 Számelméleti alapfogalmak 1 Definíció Az a IN szám osztója a b IN számnak ha létezik c IN melyre a c = b Jelölése: a b 2 Példa a 0 bármely a számra teljesül, mivel c = 0 univerzálisan megfelel: a 0 =
S Z Á L L Í T Á S I F E L A D A T
Döntéselmélet S Z Á L L Í T Á S I F E L A D A T Szállítási feladat meghatározása Speciális lineáris programozási feladat. Legyen adott m telephely, amelyeken bizonyos fajta, tetszés szerint osztható termékből
a = 2 + [ i] b = ahol 1 i 162 a hallgató sorszáma a csatolt névsorban, [x] az x szám
Döntéselmélet házi feladat, 2011-12 tanév II. félév A házi feladat beadása az aláírás feltétele. A házi feladatra adott minősítés az (anyag első felére vonatkozó) jegyben 40% súllyal szerepel, ennek megfelelően
Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei
A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.
FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Fizika középszint 1413 ÉRETTSÉGI VIZSGA 014. május 19. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA A dolgozatokat az útmutató utasításai szerint,