Többszempontú döntési módszerek

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Többszempontú döntési módszerek"

Átírás

1 XI. előadás Többszempontú döntési módszerek Mindennapi tapasztalat: döntési helyzetbe kerülve több változat (alternatíva) között kell (lehet) választani, az alternatívákat kölönféle szempontok szerint vizsgáljuk meg a döntéshez. pl. autó vásárlás: ár, üzemeltetési ktg, szerviz Döntési feladatok jellegzetessége: értékelési szempontok általában - lényegesen eltérőek lehetnek (pl. szín, teljesítmény), - egymásnak ellentmondóak lehetnek (pl. a legjobb a legdrágább), - szubjektívek lehetnek. 1

2 Probléma kezelése nem egyszerű nincs egységesen elfogadott megoldó algoritmus a különböző objektív és szubjektív szempontok szerinti értékelésre. Fontos a döntési feladat megoldása során az eredmények szemléletes bemutatása (megjelenítése), és értelmezése. Többszempontú döntések elmélete MAUT (Multi Attribute Utility Theory ) Utilitás: hasznosság, az emberi döntések egyik alapja. Általában ha egy döntéshozó két lehetőség közül megfontolások alapján az egyiket választja, akkor azért tette ezt, mert ennek a lehetőségnek számára nagyobb volt a utilitása. (Ugyanazon dolog hasznossága különböző személyek vagy csoportok számára más és más lehet.) Többszempontú döntési feladatok modellezése: Pl. fagylaltbolt helyének meghatározása. A vezetés üzleti szempontból a legjobb helyet akarja kiválasztani ez a cél. A vezetők szerint fontos az üzlet láthatósága, a környéken levő fagylaltozók száma, az arra járók (potenciális vásárlók) száma, a helybérleti díj értéke ezek a szempontok. Előzetes vizsgálat alapján 3 helyszín jöhet szóba: -sétáló utca sok tizenévessel, turistával bérleti díj itt magas -belvárosi főút sok hivatalnok járókelővel kisebb bérleti díj -forgalmas külvárosi központ nagy a konkurencia ezek az alternatívák. 2

3 Vegyük észre: - minden alternatívának lehet jó és rossz oldala, - szempontok között lehetnek mennyiségi és nem számszerüsíthetők egyaránt. Jelölje a továbbiakban A 1,A 2,,A n az alternatívákat, C 1,C 2,,C m a szempontokat. Feladatunkban 3 alternatíva és 4 szempont adható meg a fagylaltozó helyének meghatározásakor: A 1 : egy sétáló utca sok (este is ott levő) köztudottan fagylalt kedvelővel A 2 :kevésbé drága belvárosi főút, ahol este kevesen járnak A 3 :forgalmas külvárosi központ nagy konkurenciával C 1 : a környéken levő konkurens fagylaltboltok száma. C 2 : az arra járók (lehetséges vásárlók) száma a lehetséges forgalom mértéke. C 3 : a helybérleti díj nagysága. C 4 : az üzlet láthatósága. C 1,C 2,C 3 szempontok objektívek : hozzájuk tartozó értékek megadhatók (ismertek vagy becsülhető). C 4 szempont szubjektív : értéke a döntéshozó szubjektív értékelésétől függ, és minőségi mutató. Szubjektív értékelés lehet pl.: - nagyon jól látható, - közepesen jól látható, - rosszul látható. 3

4 A döntéshozó a problémától függően több szubjektív értékelésből is választhat. A döntési feladatokhoz egy döntési táblázat rendelhető, a konkrét esetben: A 1 A 2 A 3 C 1 a 11 a 12 a 13 C 2 a 21 a 22 a 23 C 3 a 31 a 32 a 33 C 4 Ahol -a ij i,j=1,2,3 a j-edik alternatívához az i-edik objektív szemponthoz rendelhető számérték, - negyedik sorba a szubjektív értékelések közül valamelyik. Felmerülő kérdések, nehézségek: - hogyan lehet összegezni a szubjektív és objektív értékeléseket, tudva, hogy a szubjektív értékelések nehezen számszerűsíthetők, - a döntési táblázat értékei gyakran különböző skálákhoz tartoznak (névleges- ház ára; rangsor; intervallum értékiskolai osztályzat; arányossági (hányados) érték)) - szempontok között különböző dimenziójú fizikai mennyiségek vannak. 4

5 Többszempontú döntési feladat megoldásánál az alternatívák ismeretében a megoldandó probléma lehet: a legjobb alternatíva kiválasztása, a néhány legjobb alternatíva kiválasztása, az alternatívákhoz rendelhető névleges érték meghatározása, olyan alternatívahalmaz meghatározása, amely optimális a cél szempontjából, alternatívák rangsorának meghatározása. Feladat: A döntési feladat színes televízió vásárlása. Az előzetes felmérések után öt féle típus megvétele jöhet szóba, azaz az alternatívák az egyes típusú TV készülékeknl A 1,A 2,A 3,A 4,A 5. Az értékelési szempontok legyenek a következők: C 1 : színhűség ; C 2 : TV-hez illő TV állvány vásárlási lehetősége ; C 3 : ár ; C 4 : megbízhatósági mutatók ; C 5 : alkatrészpótlási lehetőség ; C 6 : esztétikai szempontok. 5

6 A döntési feladat megoldása során a rendelkezésre álló adatok segítségével elkészítjük a döntési táblázatot: Színhűség gyenge jó közepes közepes kiváló TV állvány nincs nincs van van rendelhető Ár 32 eft 38 eft 42 eft 48 eft 52 eft Megbízhatóság közepes közepes gyenge megbízható megbízható Alkatrészpótlás bizt. bizt. bizt. bizt. nem bizt. Esztétika jó közepes közepes jó jó Olvassuk ki a megoldást a döntési táblázatból egyszerű döntési elvek alapján. Egyszerű döntési elvek: POLANO módszer (Szubjektív értékelések számszerűsítése :további módszerek alkalmazásához szükséges lépés) Dominancia MaxMin és MaxMax szabály Szűrési módszerek (Szempontok súlyozása) Lexikografikus rendezés 6

7 POLANO módszer POLicy ANalysis of Oosterschelde A módszert a Rand Corporation dolgozta ki árvízvédelmi beruházások összehasonlítására. A módszer lényege: A döntési mátrix sorai a szempontokat, oszlopai az alternatívákat tartalmazzák sorok oszlopok metszetében az A j alternatíva C i szempont szerinti értéke (értékelése) áll. Ezen értékeléseket preferenciaazonos csoportokba soroljuk: minden szempontnál külön-külön meghatározzuk, hogy mely értékeket tartunk pl. jónak, közepesnek ill. rossznak. A döntési táblázat ezután az értékelések helyett pl. színekkel jelzi a besorolásokat. A döntési táblázat színei: döntéshozó kategóriába sorolása alapján Az alternatíva az adott szempont szerint : jó közepes rossz Színhűség gyenge jó közepes közepes kiváló TV állvány nincs nincs van van rendelhető Ár 32 eft 38 eft 42 eft 48 eft 52 eft Megbízhatóság közepes közepes gyenge megbízható megbízható Alkatrészpótlás bizt. bizt. bizt. bizt. nem bizt. Esztétika jó közepes közepes jó jó legjobbnak adódó:a 4 7

8 A döntési táblázat színei: döntéshozó kategóriába sorolása alapján Az alternatíva az adott szempont szerint : jó közepes rossz Színhűség TV állvány Ár Megbízhatóság Alkatrészpótlás Esztétika legjobbnak adódó:a 4 Munkahelyválasztás POLANO elemzéssel: Fizetés 200 eft 160 eft 180 eft 130 eft 70 eft Érdekesség Távolság 15 km 4 km 0 km 6 km 2 km Kötött m. idő 95 % 100 % 75 % 10 % 80 % Autó használat nem nem nem nem igen jó közepes gyenge 8

9 Munkahelyválasztás POLANO elemzéssel: Fizetés 200 eft 160 eft 180 eft 130 eft Érdekesség Távolság 2 km Kötött m. idő Autó használat igen jó közepes gyenge legjobbnak adódó:a 3 A módszer előnyei: - eljárás egyszerű, könnyen kezelhető, számítástechnikai háttér nem szükséges, - szempontok egymás közötti kapcsolatát nem kell figyelembe venni, - egyszerűsége miatt döntések indoklásában jól használható, - megtartja a többszempontúságot. A módszer hátrányai: - közvetlenül nem alkalmas a legjobb alternatíva kiválasztására, - nem alkalmas az alternatívák sorrendjének felállítására, - nem alkalmas annak feltárására, hogy a döntés mennyire érzékeny az egyes szempontok vagy értékelések változására, - nem képes az egyes szempontok fontosságának (súlyának) figyelembevételére. 9

10 A módszer lényege: Szubjektív értékelések számszerűsítése A döntési mátrix sorai a szempontokat, oszlopai az alternatívákat tartalmazzák sorok oszlopok metszetében az A j alternatíva C i szempont szerinti értéke (értékelése) áll. Ha a döntési táblázatok szubjektív értékeléseket is tartalmaznak, akkor ezeket az értékeléseket számszerűsíteni kell. Vezessük be a következő skálát: 1: nagyon gyenge; nincs benne; nem biztosított; 3: gyenge; 5: közepes; átlagos; rendelhető; 7: jó; 9: kiváló; beépített; megbízható; biztosított; Ezeket az értékeket felhasználva a döntési táblázat: Színhűség TV állvány Ár 32 eft 38 eft 42 eft 48 eft 52 eft Megbízhatóság Alkatrészpótlás Esztétika A táblázat adatai nem homogének transzformálás 0 és 1 közé. 10

11 Lehetséges transzformáció: táblázat soraiban levő értékek normálása. Arányossági skálára való áttérés, ahol a maximum érték 1 ezt az adott szempont szerinti legjobb alternatíva(ák) kapja(ják), a többi pedig arányosan kisebb lesz, de 0-nál nem kisebb. Képlettel: b ij = a ij / max a ij, b ij = min a ij / a ij, j b ij = 1 / (a ij + 1), j ha az i-edik szempont szerint a nagyobb érték a jobb; ha az i-edik szempont szerint a legkisebb érték a jobb, de min a ij 0; ha az i-edik szempont szerint a legkisebb érték a jobb, de min a ij = 0; j j Ezeket az értékeket felhasználva a döntési táblázat: Színhűség 3/9 7/9 5/9 5/9 1 TV állvány 1/9 1/ /9 Ár 1 16/19 16/21 16/24 16/26 Megbízhatóság 5/9 5/9 3/9 1 1 Alkatrészpótlás /9 Esztétika 1 5/7 5/

12 Dominancia Dominált alternatíva: Végezzük el az alternatívák számszerű értékelését. Ha ezután van olyan alternatíva, aminek az értékelése minden szempont szerint alatta marad egy másiknak, esetleg egyes szempontok szerint az értékelések megegyeznek, akkor a gyengébb értékelést kapott alternatíva dominált. Ha a szempontok függetlennek tekinthetők, akkor nem racionális egy dominált alternatívát választani legjobbnak. A nem dominált alternatívákat efficiens vagy Pareto-optimális megoldásoknak nevezik. A dominált alternatívákat figyelmen kívül lehet hagyni a további vizsgálatok során. Legyen A 1 és A 2 két alternatíva, amiket C 1 és C 2 szempontok szerint kell értékelni, és mindkét esetben a nagyobb érték a jobb. Tekintsünk öt különböző értékelést: 1. példa 2. példa 3. példa 4. példa 5. példa C 1 C 2 C 1 C 2 C 1 C 2 C 1 C 2 C 1 C 2 A A példa: A 1 egyedül efficiens megoldás, ez a javasolt alternatíva 2. példa: egyik sem jobb minden szempont szerint további információk nélkül nem lehet a jobbat kiválasztani 3. példa: A 1 jobbnak tűnik 4. és 5. példa : két egymáshoz közeli értékelés 12

13 MaxMin és MaxMax szabály Pesszimista döntéshozó esete: mindegyik alternatíva esetén a legrosszabb értéket tekinti a gyenge láncszemnek a legjobb döntés érdekében az alternatívák leggyengébb értékei közül a legnagyobb értékkel rendelkező alternatívát választja. Színhűség 3/9 7/9 5/9 5/9 1 TV állvány 1/9 1/ /9 Ár 1 16/19 16/21 16/23 16/26 Megbízhatóság 5/9 5/9 3/9 1 1 Alkatrészpótlás /9 Esztétika 1 5/7 5/7 1 1 legjobbnak adódó:a 4 MaxMin és MaxMax szabály Optimista döntéshozó esete: csak a legjobb értékeket veszi figyelembe a legjobb döntés érdekében az alternatívák legjobb értékei közül a legnagyobb értékkel rendelkező alternatívát választja. Színhűség 3/9 7/9 5/9 5/9 1 TV állvány 1/9 1/ /9 Ár 1 16/19 16/21 16/23 16/26 Megbízhatóság 5/9 5/9 3/9 1 1 Alkatrészpótlás /9 Esztétika 1 5/7 5/7 1 1 Mindet kiválasztjuk 13

14 Szűrési módszerek A szűrési módszerek az alternatívák halmazát szűrik, azaz szűkítik. A modellek olyan alternatívákat keresnek, amelyek bizonyos feltételeknek eleget tesznek, kérdésben megfogalmazva: 1. Az alternatíva rendelkezik-e bizonyos tulajdonsággal? 2. Az alternatíva rendelkezik-e egy bizonyos szempont valamilyen adott szintjével? Három változatot vizsgálunk. Mindegyiknél első lépés a döntési táblázat összeállítása. I. változat: Minden értékelési szemponthoz megadunk egy minimum feltételt, majd azokat az alternatívákat fogadjuk el, amelyek minden szempont szerint teljesítik ezeket. Így az alternatívákat két csoportra osztjuk: jó és rossz alternatívákra. (Ezt szokás alkalmazni fontos pozíció betöltésére kiírt pályázatnál, amikor nem lehet hogy a jelölt bármelyik szempont szerint megbukjon.) Tekintsük a TV vásárlási feladatot! 14

15 A szükséges (minimum) feltételek: C 1 : színhűség legalább közepes legyen C 2 : TV állvány legalább rendelhető legyen C 3 : ár legfeljebb Ft legyen C 4 : megbízhatóság legalább közepes legyen C 5 : alkatrészpótlás biztosított legyen C 6 : esztétika legalább közepes legyen Színhűség gyenge jó közepes közepes kiváló TV állvány nincs nincs van van rendelhető Ár 32 eft 38 eft 42 eft 48 eft 52 eft Megbízhatóság közepes közepes gyenge megbízható megbízható Alkatrészpótlás bizt. bizt. bizt. bizt. nem bizt. Esztétika jó közepes közepes jó jó Hiányzik: A 1 C 1,C 2 A 2 C 2 A 3 C 4 A 4 A 5 C 3,C 5 Jó alternatíva:a 4 II. változat: Ebben az esetben meghatározóan fontos szempontok szerint az egyedi kiválóságot keressük, a valamilyen szempont szerint a kiemelkedő(ke)t. ( Az előbbi I. változat a minden szempont szerint megbízhatókat választotta ki: minden szempont szerint egy adott küszöbértéktől jobb értékelést kapottat kerestük.) A kiválasztott értékelési szemponthoz, vagy minden értékelési szemponthoz megadunk elegendő feltételeket, majd azokat az alternatívákat keressük, fogadjuk el jónak, amelyek legalább egy szempont esetén teljesítik az elégséges feltételt. Így osztjuk az alternatívákat jó és rossz alternatívákra. Tekintsük a TV vásárlási feladatot! 15

16 Az elégséges feltételek: C 1 : színhűség kiváló legyen C 2 : TV állvány vásárolható legyen C 3 : ár Ft alatt legyen C 4 : megbízhatóság megbízható legyen C 5 : alkatrészpótlás - ( nem tekintjük szűrési szempontnak) C 6 : esztétika kiváló legyen Színhűség gyenge jó közepes közepes kiváló TV állvány nincs nincs van van rendelhető Ár 32 eft 38 eft 42 eft 48 eft 52 eft Megbízhatóság közepes közepes gyenge megbízható megbízható Alkatrészpótlás bizt. bizt. bizt. bizt. nem bizt. Esztétika jó közepes közepes jó jó Teljesíti: A 1 egyet se A 2 egyet se A 3 C 2 A 4 C 2,C 4 A 5 C 1,C 4 Jó alternatíva: A 3,A 4,A 5 III. változat: Minden értékelési szemponthoz megadunk egy feltételt, majd összeszámoljuk, hogy az egyes alternatívák hány szempont esetén felelnek meg. Így az alternatívákat legfeljebb m+1 osztályba soroljuk. (m az értékelési szempontok száma) A feltételek teljesülését ill. nem teljesülését egy mátrixban lehet megadni : a C i i=1,,m sorok és az A j j=1,,n oszlopok metszéspontjában 1 áll, ha az A j alternatíva teljesíti a C i értékelési szempontnál adott feltételt, egyébként 0. Tekintsük a TV vásárlási feladatot! 16

17 A feltételek: C 1 : színhűség legalább jó legyen C 2 : TV állvány legalább rendelhető legyen C 3 : ár legfeljebb Ft legyen C 4 : megbízhatóság legalább közepesen megbízható legyen C 5 : alkatrészpótlás biztosított legyen C 6 : esztétika legalább jó legyen Színhűség TV állvány Ár Megbízhatóság Alkatrészpótlás Esztétika Jósági mutató: A 1 4 A 2 4 A 3 2 A 4 4 A 5 4 Legkevésbé az A 3 jó A módszer előnyei: - mindhárom változat egyszerű, könnyen kezelhető, számítástechnikai háttér nem szükséges, - tetszőleges skálán értelmezett adatokra alkalmazható, - nagyszámú alternatíva kiértékelésére is használható, - az eljárások gyorsak, I. és II. esetén még gyorsítható, mert nem kell minden alternatívát az összes szempont szerint kiértékelni. (ha találunk egy olyan értékelési szempontot pl. I.-ben, amelyet a vizsgált alternatíva nem teljesít, akkor azt a továbbiakban már nem kell vizsgálni.) 17

18 A módszer hátrányai: - a szempontokat nem kezeli együtt, ezért nem veszi figyelembe, hogy az egyes szempontok szerinti hátrányokat más szempontok szerinti előnyök kiegyenlíthetik, - nem adja meg az alternatívák sorrendjét, - a rendelkezésre álló információk nagy részét nem használja fel, mert minden értékelési szempontnál csak az adott feltétel teljesülését vizsgálja, a teljesítés minőségét és mértékét nem, - a szubjektív feltételeknek nagyon nagy jelentősége lehet. Szempontok súlyozása A feladatoknál a szempontok fontossága között nagy különbség lehet. Pl. a fagylaltozó helyének meghatározásánál a bérleti díj nagysága lényegesen fontosabb lehet, mint az üzlet láthatósága, vagy a TV vásárlásakor az ár valószínűleg sokkal fontosabb, mint a teletext megléte. A több szempontú döntési feladatok megoldásánál lényeges elem az értékelési szempontok fontosság szerinti sorbarendezése vagy fontosság szerinti súlyozása. Ez nem könnyű feladat. A súlyozás előnye, hogy segítségével meghatározható a legjobb alternatíva, és az alternatívák rangsora is. 18

19 Lexikografikus rendezési módszer A módszer használja a szempontok fontosság szerinti sorrendjét és az alternatívákat is sorba rendezi. Ennél a módszernél nem szükséges a döntési táblázat teljes kitöltése és bármilyen skálán értelmezett adatok esetén is használható. A módszer lépései: 1. Először meghatározzuk az összes értékelési szempontot. 2. Majd fontossági sorrendbe rendezzük őket. 3. A legfontosabbnak tartott értékelési szempont szerint sorba rendezzük az alternatívákat ha egyértelmű a rendezés, ismert a sorrend. Lexikografikus rendezési módszer 4. Ha a legfontosabbnak tartott szempont szerint két vagy több alternatíva ugyanazt az értékelést kapta, akkor a fontossági sorrendben következő értékelési szempont szerinti értékelést kell figyelembe venni sorberendezésnél. 5. Ha ez sem dönt, akkor annak a szempontnak a figyelembevételéig kell folytatni az eljárást, ahol a holtverseny már eldől. Tekintsük a TV vásárlási feladatot! 19

20 Legfontosabb szempont legyen a színhűség ez alapján kell sorba rendezni az alternatívákat. Színhűség C 1 gyenge jó közepes közepes kiváló Az adódik, hogy a legjobb az A 5, az A 2 a második,az A 3 és az A 4 egyforma jó, az A 1 az utolsó. A 3 és A 4 között a második legfontosabb szempont szerint kell dönteni. Legyen a további fontossági sorrend C 5,C 4,C 3. Ár C 3 32 eft 38 eft 42 eft 48 eft 52 eft Megbízhatóság C 4 közepes közepes gyenge megbízható megbízható Alkatrészpótlás C 5 bizt. bizt. bizt. bizt. nem bizt. C 5 nem dönt C 4 igen A sorrend: A 5,A 2,A 4,A 3,A 1 A módszer előnyei: - a módszer egyszerű, könnyen kezelhető, számítástechnikai háttér nem szükséges, - tetszőleges skálán értelmezett adatokra alkalmazható, - nem kell a teljes döntési táblát meghatározni, csak fontosság szerint sorba rakni a szempontokat, - egyszerűsége ellenére is sorba rendezi az alternatívákat. A módszer hátrányai: -a szempontokat külön kezeli és ezért nem veszi figyelembe, hogy a hátrányok más szempontoknál jelentkező előnyökkel kiegyenlíthetők, - az információk nagy részét nem használja fel, - a módszer nem alkalmas annak feltárására, hogy a döntés mennyire érzékeny az egyes szempontok vagy értékelések megváltozására. 20

21 Lexikografikus rendezési módszer Egy hölgy azon gondolkozik, hogyan válasszon hódolói közül. Négy szempontja van, melyek fontossági sorrendben a következők: műveltség, egészség, anyagi helyzet és külső megjelenés. A szempontokra a következő kategóriákat állítja fel: műveltség: 3-nagyon jó, 2-jó, 1-rossz egészség: 3-nagyon jó, 2-jó, 1-rossz anyagi helyzet: 5-nagyon gazdag, 4-gazdag, 3 jómódú, 2-szegény, 1-nagyon szegény külső megjelenés:4-nagyon csinos, 3-csinos, 2-nem vonzó, 1- csúnya A hölgy ezek alapján értékeli az udvarlóit (A 1,A 2 ): A 1 -(2,2,4,1) és A 2 -(2,2,3,3) Kit választ LRM szerint? Összefoglalva: A többszempontú döntési feladatok megoldásának lépései: 1. A döntési feladat felépítése: a) a cél megfogalmazása, b) az alternatívák kiválasztása, c) a szempontok meghatározása. 2. A döntési feladat megoldása: a) minden alternatíva kiértékelése minden szempont szerint (döntési táblázat megadása), b) a szempontok súlyainak meghatározása, c) az értékelések és a súlyozás összegzése. 21

22 Összefoglalva: A többszempontú döntési eljárás kiválasztására egyértelmű szabály nem adható meg ( ez is egy többszempontú döntési probléma) csak a konkrét döntési probléma ismeretében lehet a legjobb eljárást kiválasztani. 22

Többszempontú döntési problémák

Többszempontú döntési problémák Budapesti Corvinus Egyetem MTA Számítástechnikai és Automatizálási Kutató Intézetébe kihelyezett Gazdasági Döntések Tanszék Rapcsák Tamás Többszempontú döntési problémák Egyetemi oktatáshoz segédanyag

Részletesebben

Alternatívák rangsora Rangsor módszerek. Debreceni Egyetem

Alternatívák rangsora Rangsor módszerek. Debreceni Egyetem Döntéstámogató Rendszerek VII. előadás Bekéné Rácz Anett Debreceni Egyetem Definíciók Példa rangsorfordulásra Rangsorokkal kapcsolatos fogalmak Condorcet nyertes: Az az alternatíva, amely az összes többi

Részletesebben

Mátrixjátékok tiszta nyeregponttal

Mátrixjátékok tiszta nyeregponttal 1 Mátrixjátékok tiszta nyeregponttal 1. Példa. Két játékos Aladár és Bendegúz rendelkeznek egy-egy tetraéderrel, melyek lapjaira rendre az 1, 2, 3, 4 számokat írták. Egy megadott jelre egyszerre felmutatják

Részletesebben

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015 A mérés problémája a pedagógiában Dr. Nyéki Lajos 2015 A mérés fogalma Mérésen olyan tevékenységet értünk, amelynek eredményeként a vizsgált jelenség számszerűen jellemezhetővé, más hasonló jelenségekkel

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

Aromo Szöveges Értékelés

Aromo Szöveges Értékelés Aromo Szöveges Értékelés AROMO Iskolaadminisztrációs Szoftver v2.50 - Felhasználói kézikönyv- Szöveges értékelés 1 Tartalomjegyzék Aromo Szöveges Értékelés 1 Bevezetés 3 A Szöveges Értékelés modul koncepciója

Részletesebben

VÁLLALATGAZDASÁGTAN II. Döntési Alapfogalmak

VÁLLALATGAZDASÁGTAN II. Döntési Alapfogalmak Vállalkozási VÁLLALATGAZDASÁGTAN II. Tantárgyfelelős: Prof. Dr. Illés B. Csaba Előadó: Dr. Gyenge Balázs Az ökonómiai döntés fogalma Vállalat Környezet Döntések sorozata Jövő jövőre vonatkozik törekszik

Részletesebben

Operációkutatás vizsga

Operációkutatás vizsga Operációkutatás vizsga A csoport Budapesti Corvinus Egyetem 2007. január 9. Egyéb gyakorló és vizsgaanyagok találhatók a honlapon a Letölthető vizsgasorok, segédanyagok menüpont alatt. OPERÁCIÓKUTATÁS

Részletesebben

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL x 1-2x 2 6 -x 1-3x 3 = -7 x 1 - x 2-3x 3-2 3x 1-2x 2-2x 3 4 4x 1-2x 2 + x 3 max Alapfogalmak: feltételrendszer (narancs színnel jelölve), célfüggvény

Részletesebben

értékel függvény: rátermettségi függvény (tness function)

értékel függvény: rátermettségi függvény (tness function) Genetikus algoritmusok globális optimalizálás sok lehetséges megoldás közül keressük a legjobbat értékel függvény: rátermettségi függvény (tness function) populáció kiválasztjuk a legrátermettebb egyedeket

Részletesebben

Felhasználói kézikönyv. Bankszámlaválasztó program

Felhasználói kézikönyv. Bankszámlaválasztó program Felhasználói kézikönyv Bankszámlaválasztó program Egy jól megválasztott számlacsomaggal éves szinten akár több ezer forint is megtakarítható. Ezért évente legalább egyszer célszerű rászánni az időt az

Részletesebben

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 15. Nemparaméteres próbák Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date: November

Részletesebben

Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 A NÖVÉNYTERMESZTÉSI ÁGAZATOK ÖKONÓMIÁJA

Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 A NÖVÉNYTERMESZTÉSI ÁGAZATOK ÖKONÓMIÁJA Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 A NÖVÉNYTERMESZTÉSI ÁGAZATOK ÖKONÓMIÁJA 11. Előadás Az üzleti terv tartalmi követelményei Az üzleti terv tartalmi követelményei

Részletesebben

KUTATÁSMÓDSZERTAN 4. ELŐADÁS. A minta és mintavétel

KUTATÁSMÓDSZERTAN 4. ELŐADÁS. A minta és mintavétel KUTATÁSMÓDSZERTAN 4. ELŐADÁS A minta és mintavétel 1 1. A MINTA ÉS A POPULÁCIÓ VISZONYA Populáció: tágabb halmaz, alapsokaság a vizsgálandó csoport egésze Minta: részhalmaz, az alapsokaság azon része,

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

Gyakorlatias tanácsok PLA fejlesztőknek

Gyakorlatias tanácsok PLA fejlesztőknek Gyakorlatias tanácsok PLA fejlesztőknek Beszédes Nimród Attiláné Békéscsabai Regionális Képző Központ Képzési igazgatóhelyettes 2007. november 28-30. A jogszabályi háttérről 2001. évi CI. törvény 24/2004.

Részletesebben

MÁV-START Tudáspróba Felhasználói kéziköny

MÁV-START Tudáspróba Felhasználói kéziköny MÁV-START Tudáspróba Felhasználói kéziköny Tartalomjegyzék Bejelentkezés a tudáspróbára... 3 Kijelentkezés... 3 Megkezdett tudáspróba folytatása... 4 Tudáspróba kiválasztása... 5 Tudáspróba kiválasztása...

Részletesebben

Hasonlóságelemzés COCO használatával

Hasonlóságelemzés COCO használatával Hasonlóságelemzés COCO használatával Miért a CoCo?? Mire használhatom a CoCo-t?! Például megállapíthatom, hogy van-e a piacon olyan cég, amely az árhoz és a többiekhez képest kevesebbet vagy többet teljesít.?

Részletesebben

Hogyan fogalmazzuk meg egyszerűen, egyértelműen a programozóknak, hogy milyen lekérdezésre, kimutatásra, jelentésre van szükségünk?

Hogyan fogalmazzuk meg egyszerűen, egyértelműen a programozóknak, hogy milyen lekérdezésre, kimutatásra, jelentésre van szükségünk? Hogyan fogalmazzuk meg egyszerűen, egyértelműen a programozóknak, hogy milyen lekérdezésre, kimutatásra, jelentésre van szükségünk? Nem szükséges informatikusnak lennünk, vagy mélységében átlátnunk az

Részletesebben

PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június KÖZÉPSZINT JAVÍTÁSI ÚTMUTATÓ. Vizsgafejlesztő Központ

PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június KÖZÉPSZINT JAVÍTÁSI ÚTMUTATÓ. Vizsgafejlesztő Központ PRÓBAÉRETTSÉGI 00. május-június MATEMATIKA KÖZÉPSZINT JAVÍTÁSI ÚTMUTATÓ Vizsgafejlesztő Központ Kedves Kolléga! Kérjük, hogy a dolgozatok javítását a javítási útmutató alapján végezze, a következők figyelembevételével.

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

Ismeretellenőrzés a Moodle rendszerben. Dr. Orbán Anna BCE

Ismeretellenőrzés a Moodle rendszerben. Dr. Orbán Anna BCE Ismeretellenőrzés a Moodle rendszerben Dr. Orbán Anna BCE Bemutatkozás 29 éves oktatási tapasztalat Ebből 24 év felsőoktatásban, informatikai tantárgyak oktatása nem informatikusoknak Oktatócsomag: jegyzet,

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

A multikritériumos elemzés célja, alkalmazási területe, adat-transzformációs eljárások, az osztályozási eljárások lényege

A multikritériumos elemzés célja, alkalmazási területe, adat-transzformációs eljárások, az osztályozási eljárások lényege A multkrtérumos elemzés célja, alkalmazás területe, adat-transzformácós eljárások, az osztályozás eljárások lényege Cél: tervváltozatok, objektumok értékelése (helyzetértékelés), döntéshozatal segítése

Részletesebben

angolul: greedy algorithms, románul: algoritmi greedy

angolul: greedy algorithms, románul: algoritmi greedy Mohó algoritmusok angolul: greedy algorithms, románul: algoritmi greedy 1. feladat. Gazdaságos telefonhálózat építése Bizonyos városok között lehet direkt telefonkapcsolatot kiépíteni, pl. x és y város

Részletesebben

Közfoglalkoztatás támogatás megállapítását segítő segédtábla használati útmutatója

Közfoglalkoztatás támogatás megállapítását segítő segédtábla használati útmutatója Közfoglalkoztatás támogatás megállapítását segítő segédtábla használati útmutatója 1.) Általános tudnivalók: A segédtábla két méretben készül, 10, és 50 sort lehet kitölteni. A tábla megnevezéséből amit

Részletesebben

Megoldások. Az ismérv megnevezése közös megkülönböztető 2007. szeptember 10-én Cégbejegyzés időpontja

Megoldások. Az ismérv megnevezése közös megkülönböztető 2007. szeptember 10-én Cégbejegyzés időpontja Megoldások 1. feladat A sokaság: 2007. szeptember 12-én a Miskolci Egyetem GT-204-es tankör statisztika óráján lévő tagjai az A 1 épület III. em. 53-as teremben 8-10-ig. Közös ismérv Megkülönböztető ismérv

Részletesebben

Dinamikus Költségelemzés (DCC): hatékony módszer a hatékony fejlesztésekért. Czeglédi Ildikó okl.közgazdász közművagyon-gazdálkodási szakértő

Dinamikus Költségelemzés (DCC): hatékony módszer a hatékony fejlesztésekért. Czeglédi Ildikó okl.közgazdász közművagyon-gazdálkodási szakértő Dinamikus Költségelemzés (DCC): hatékony módszer a hatékony fejlesztésekért Czeglédi Ildikó okl.közgazdász közművagyon-gazdálkodási szakértő A módszertani fejlesztés szükségessége Elhúzódó projekt előkészítések

Részletesebben

FELHASZNÁLÓI KÉZIKÖNYV

FELHASZNÁLÓI KÉZIKÖNYV többszempontú csoportos döntéstámogató szoftver EGY A ÉS WINGDSS PÉLDAFELADAT A KIÉRTÉKELÉS FÜGGELÉK 4.1 RENDSZERBEN FELÉPÍTÉSE LÉPÉSEI FELHASZNÁLÓI KÉZIKÖNYV Operációkutatás MTA és Döntési SZTAKI Rendszerek

Részletesebben

Mobilalkalmazás! RÖVID ÁTTEKINTÉS: HOGYAN MŰKÖDIK AZ ALKALMAZÁS? " 2015, QBSW, Inc.

Mobilalkalmazás! RÖVID ÁTTEKINTÉS: HOGYAN MŰKÖDIK AZ ALKALMAZÁS?  2015, QBSW, Inc. Mobilalkalmazás! RÖVID ÁTTEKINTÉS: HOGYAN MŰKÖDIK AZ ALKALMAZÁS? " A City Monitor mobilalkalmazás lehetővé teszi" az állampolgárok számára, hogy a városukban felmerülő helyi problémákat könnyen és gyorsan

Részletesebben

Területi elemzések. Budapest, 2015. április

Területi elemzések. Budapest, 2015. április TeIR Területi elemzések Felhasználói útmutató Budapest, 2015. április Tartalomjegyzék 1. BEVEZETŐ... 3 2. AZ ELEMZÉSBEN SZEREPLŐ MUTATÓ KIVÁLASZTÁSA... 4 3. AZ ELEMZÉSI FELTÉTELEK DEFINIÁLÁSA... 5 3.1.

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak!

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak! Magyar Ifjúság 6 V SOROZATOK a) Három szám összege 76 E három számot tekinthetjük egy mértani sorozat három egymás után következő elemének vagy pedig egy számtani sorozat első, negyedik és hatodik elemének

Részletesebben

KERESKEDELMI ÉS MARKETING ALAPISMERETEK ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA

KERESKEDELMI ÉS MARKETING ALAPISMERETEK ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA KERESKEDELMI ÉS MARKETING ALAPISMERETEK ÉRETTSÉGI VIZSGA A vizsga részei II. A VIZSGA LEÍRÁSA Középszint Emelt szint 180 perc 15 perc 180 perc 20 perc 100 pont 50 pont 100 pont 50 pont A vizsgán használható

Részletesebben

1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI

1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI / Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI Normál feladatok megoldása szimplex módszerrel / / Normál feladatok megoldása szimplex

Részletesebben

Dr. Piskóti István Marketing Intézet. Marketing 2.

Dr. Piskóti István Marketing Intézet. Marketing 2. Kutatni kell kutatni jó! - avagy a MIR és a marketingkutatás módszerei Dr. Piskóti István Marketing Intézet Marketing 2. Marketing-menedzsment A marketing összes feladatát és aktivitásait összefoglalóan,

Részletesebben

KÖLTSÉG-HASZON ELEMZÉS A 2014-2020 PROGRAMOZÁSI IDŐSZAKBAN 2015.05.26.

KÖLTSÉG-HASZON ELEMZÉS A 2014-2020 PROGRAMOZÁSI IDŐSZAKBAN 2015.05.26. KÖLTSÉG-HASZON ELEMZÉS A 2014-2020 PROGRAMOZÁSI IDŐSZAKBAN 2015.05.26. A KÖLTSÉG-HASZON ELEMZÉS (CBA) CÉLJAI A strukturális és beruházási alapok (ESB alapok) felhasználásának feltétele: a támogatás indokoltsága.

Részletesebben

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t Ellenőrző kérdések 2. Kis dolgozat kérdései 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t 37. Ha t szintű indexet használunk,

Részletesebben

15. tétel. Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 30.

15. tétel. Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 30. 15. tétel Adatszerkezetek és algoritmusok vizsga Frissült: 2013. január 30. Edényrendezés Tegyük fel, hogy tudjuk, hogy a bemenő elemek (A[1..n] elemei) egy m elemű U halmazból kerülnek ki, pl. " A[i]-re

Részletesebben

A kanonikus sokaság. :a hőtartály energiája

A kanonikus sokaság. :a hőtartály energiája A kanonikus sokaság A mikrokanonikus sokaság esetén megtanultuk, hogy a megengedett mikroállapotok egyenértéküek, és a mikróállapotok száma minimális. A mikrókanónikus sokaság azonban nem a leghasznosabb

Részletesebben

Adóhátralék kezelés egyszerűen. Használati útmutató

Adóhátralék kezelés egyszerűen. Használati útmutató Használati útmutató Program indítása: A telepítés utáni első indításkor a program a szükséges alapbeállításokat elvégzi, és automatikusan újra indul. A főképernyőn a bejelentkezéshez mindig meg kell adni

Részletesebben

Készlet nyilvántartó

Készlet nyilvántartó Készlet nyilvántartó Szécsy Számítáatechnika 4080 Hajdúnánás, Ady krt. 21. 06 30 34 54 101 06 52 381 163 info@szecsy.hu www.szecsy.hu Belépés A lista lenyítása. A lenyíló listából az adatrögzítést végző

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

Függvények II. Indítsuk el az Excel programot! A minta alapján vigyük be a Munka1 munkalapra a táblázat adatait! 1. ábra Minta az adatbevitelhez

Függvények II. Indítsuk el az Excel programot! A minta alapján vigyük be a Munka1 munkalapra a táblázat adatait! 1. ábra Minta az adatbevitelhez Bevezetés Ebben a fejezetben megismerkedünk a Logikai függvények típusaival és elsajátítjuk alkalmazásukat. Jártasságot szerzünk bonyolultabb feladatok megoldásában, valamint képesek leszünk a függvények

Részletesebben

Döntéselőkészítés. I. előadás. Döntéselőkészítés. Előadó: Dr. Égertné dr. Molnár Éva. Informatika Tanszék A 602 szoba

Döntéselőkészítés. I. előadás. Döntéselőkészítés. Előadó: Dr. Égertné dr. Molnár Éva. Informatika Tanszék A 602 szoba I. előadás Előadó: Dr. Égertné dr. Molnár Éva Informatika Tanszék A 602 szoba Tárggyal kapcsolatos anyagok megtalálhatók: http://www.sze.hu/~egertne Konzultációs idő: (páros tan. hét) csütörtök 10-11 30

Részletesebben

Gyakorlatok. P (n) = P (n 1) + 2P (n 2) + P (n 3) ha n 4, (utolsó lépésként l, hl, u, hu-t léphetünk).

Gyakorlatok. P (n) = P (n 1) + 2P (n 2) + P (n 3) ha n 4, (utolsó lépésként l, hl, u, hu-t léphetünk). Gyakorlatok Din 1 Jelölje P (n) azt a számot, ahányféleképpen mehetünk le egy n lépcsőfokból álló lépcsőn a következő mozgáselemek egy sorozatával (zárójelben, hogy mennyit mozgunk az adott elemmel): lépés

Részletesebben

Zárthelyi dolgozat feladatainak megoldása 2003. õsz

Zárthelyi dolgozat feladatainak megoldása 2003. õsz Zárthelyi dolgozat feladatainak megoldása 2003. õsz 1. Feladat 1. Milyen egységeket rendelhetünk az egyedi információhoz? Mekkora az átváltás közöttük? Ha 10-es alapú logaritmussal számolunk, a mértékegység

Részletesebben

Általános algoritmustervezési módszerek

Általános algoritmustervezési módszerek Általános algoritmustervezési módszerek Ebben a részben arra mutatunk példát, hogy miként használhatóak olyan általános algoritmustervezési módszerek mint a dinamikus programozás és a korlátozás és szétválasztás

Részletesebben

Szöveges feladatok a mátrixaritmetika alkalmazására

Szöveges feladatok a mátrixaritmetika alkalmazására Szöveges feladatok a mátrixaritmetika alkalmazására Bevezetés: Tekintsük az alábbi -es mátrixot: A. Szorozzuk meg ezt jobbról egy alkalmas méretű (azaz -es) oszlopvektorral, amely az R tér kanonikus bázisának

Részletesebben

Rezsimegtakarítás modul a Társasház-Érték 2009 rendszerben

Rezsimegtakarítás modul a Társasház-Érték 2009 rendszerben Rezsimegtakarítás modul a Társasház-Érték 2009 rendszerben Tartalomjegyzék Vonatkozó jogszabályok... 2 Rezsimegtakarítás modul... 3 Bejövő számla iktatása... 3 Rezsicsökkentésről szóló havi hirdetmény...

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

8.3. Az Információs és Kommunikációs Technológia és az olvasás-szövegértési készség

8.3. Az Információs és Kommunikációs Technológia és az olvasás-szövegértési készség 8.3. Az Információs és Kommunikációs Technológia és az olvasás-szövegértési készség Az IALS kutatás során felmerült egyik kulcskérdés az alapkészségeknek az egyéb készségekhez, mint például az Információs

Részletesebben

Az interjú id pontja: Kezel hely kódszáma: Interjúkészít kódszáma: A kérdez súlyosság-értékelése. Név: A kliens kódja:

Az interjú id pontja: Kezel hely kódszáma: Interjúkészít kódszáma: A kérdez súlyosság-értékelése. Név: A kliens kódja: Név: A kliens kódja: Az interjú id pontja: Kezel hely kódszáma: Interjúkészít kódszáma: év hó nap A kérdez súlyosság-értékelése 0-1 Valódi probléma nem áll fenn /nincs szükség segítségre 2-3 Kevésbé súlyos

Részletesebben

Matematika feladatbank I. Statisztika. és feladatgyűjtemény középiskolásoknak

Matematika feladatbank I. Statisztika. és feladatgyűjtemény középiskolásoknak Matematika feladatbank I. Statisztika Elméleti összefoglaló és feladatgyűjtemény középiskolásoknak ÍRTA ÉS ÖSSZEÁLLÍTOTTA: Dugasz János 2011 Fapadoskonyv.hu Kft. Dugasz János Tartalom Bevezető 7 Adatok

Részletesebben

AZ EGYSZERŰ ELJÁRÁS AJÁNLATTÉTELI FELHÍVÁSA. Postai irányítószám: 8000. Telefon:, (22) 535 687. Ha attól eltérő, kérjük töltse ki az A.

AZ EGYSZERŰ ELJÁRÁS AJÁNLATTÉTELI FELHÍVÁSA. Postai irányítószám: 8000. Telefon:, (22) 535 687. Ha attól eltérő, kérjük töltse ki az A. 1 AZ EGYSZERŰ ELJÁRÁS AJÁNLATTÉTELI FELHÍVÁSA K/83 27/2009. Szolgáltatás I. SZAKASZ: AJÁNLATKÉRŐ I.1) NÉV, CÍM ÉS KAPCSOLATTARTÁSI PONT(OK) Hivatalos név: Fejér Megyei Szent György Kórház Postai cím: Seregélyesi

Részletesebben

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje Operációkutatás 1 NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.

Részletesebben

Adatbázis rendszerek 6.. 6. 1.1. Definíciók:

Adatbázis rendszerek 6.. 6. 1.1. Definíciók: Adatbázis Rendszerek Budapesti Műszaki és Gazdaságtudományi Egyetem Fotogrammetria és Térinformatika 6.1. Egyed relációs modell lényegi jellemzői 6.2. Egyed relációs ábrázolás 6.3. Az egyedtípus 6.4. A

Részletesebben

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI 4. Fuzzy relációk Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Klasszikus relációk Halmazok Descartes-szorzata Relációk 2 Fuzzy relációk Fuzzy relációk véges alaphalmazok

Részletesebben

Oktatás saját intézményben

Oktatás saját intézményben Oktatás saját intézményben A Humán-erőforrás Nyilvántartó Rendszerben rögzítendő adatok egyik nagy csoportját az egy-egy tanév megadott félévére vonatkozó oktatási tevékenységhez kapcsolódó adatok képezik,

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

ÉLELMISZER-IPARI ALAPISMERETEK ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA

ÉLELMISZER-IPARI ALAPISMERETEK ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA ÉLELMISZER-IPARI ALAPISMERETEK ÉRETTSÉGI VIZSGA A vizsga részei II. A VIZSGA LEÍRÁSA Középszint Emelt szint 180 perc 15 perc 240 perc 20 perc 100 pont 50 pont 100 pont 50 pont A vizsgán használható segédeszközök

Részletesebben

Programozási segédlet

Programozási segédlet Programozási segédlet Programozási tételek Az alábbiakban leírtam néhány alap algoritmust, amit ismernie kell annak, aki programozásra adja a fejét. A lista korántsem teljes, ám ennyi elég kell legyen

Részletesebben

Vállalkozási finanszírozás kollokvium

Vállalkozási finanszírozás kollokvium Harsányi János Főiskola Gazdaságtudományok tanszék Vállalkozási finanszírozás kollokvium E Név: soport: Tagozat: Elért pont: Érdemjegy: Javította: 43 50 pont jeles 35 42 pont jó 27 34 pont közepes 19 26

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

Kérem, ismerkedjen meg a DigitAudit program AuditTeszt moduljának Adatok tesztelése menüpontjával.

Kérem, ismerkedjen meg a DigitAudit program AuditTeszt moduljának Adatok tesztelése menüpontjával. Tisztelt Felhasználó! Kérem, ismerkedjen meg a DigitAudit program AuditTeszt moduljának Adatok tesztelése menüpontjával. A program céljai: A programot azért fejlesztettük ki, hogy segítséget adjunk a nagytömegű

Részletesebben

HASZNÁLATI ÚTMUTATÓ. Frissítve: 2012.12.03

HASZNÁLATI ÚTMUTATÓ. Frissítve: 2012.12.03 Frissítve: 2012.12.03 1. Bevezető A visszavett.hu egy aukciós oldal, ahol olyan eszközökre (gépjármű, haszongépjármű, stb.) lehet licitálni, amelyekre korábbi tulajdonosuk hitelt vett fel, vagy lízingelte,

Részletesebben

A Borda-szavazás Nash-implementálható értelmezési tartományai

A Borda-szavazás Nash-implementálható értelmezési tartományai A Borda-szavazás Nash-implementálható értelmezési tartományai Tasnádi Attila 2007. június 8. Alapfogalmak Jelölések: X az alternatívák véges nem üres halmaza (q = X ). Alapfogalmak Jelölések: X az alternatívák

Részletesebben

Lakóház tervezés ADT 3.3-al. Segédlet

Lakóház tervezés ADT 3.3-al. Segédlet Lakóház tervezés ADT 3.3-al Segédlet A lakóház tervezési gyakorlathoz főleg a Tervezés és a Dokumentáció menüket fogjuk használni az AutoDesk Architectural Desktop programból. A program centiméterben dolgozik!!!

Részletesebben

EAV v2.0 szoftver verzió újdonságok a v1.8.20 verzióhoz képest

EAV v2.0 szoftver verzió újdonságok a v1.8.20 verzióhoz képest EAV v2.0 szoftver verzió újdonságok a v1.8.20 verzióhoz képest Betegek keresése... 2 Csatolmány a betegkartonhoz... 2 Mérések összehasonlítása...3 Fejpontok... 4 Allergia teszt... 4 Balancer... 5 Étrend

Részletesebben

1. Bevezetés. 1. ábra

1. Bevezetés. 1. ábra Utókalkuláció modul 1. Bevezetés... 2 2. Paraméterezési lehetőségek... 3 2.1. Új és használt gépjármű beszerzés számlája... 5 2.2. Új és használt gépjármű eladás számlája... 6 2.3. Belső szerviz számla...

Részletesebben

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám. 1 Az utazó ügynök problémája Utazó ügynök feladat Adott n számú város és a városokat összekötő utak, amelyeknek ismert a hossza. Adott továbbá egy ügynök, akinek adott városból kiindulva, minden várost

Részletesebben

Microsoft Excel 2010. Gyakoriság

Microsoft Excel 2010. Gyakoriság Microsoft Excel 2010 Gyakoriság Osztályközös gyakorisági tábla Nagy számú mérési adatokat csoportokba (osztályokba) rendezése -> könnyebb áttekintés Osztályokban szereplő adatok száma: osztályokhoz tartozó

Részletesebben

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek 1 Diszkrét matematika II, 5 előadás Lineáris egyenletrendszerek Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach/ 2007 március 8 Egyenletrendszerek Középiskolás módszerek:

Részletesebben

KOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára. Szita formula

KOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára. Szita formula KOMBINATORIKA ELŐADÁS osztatlan matematka tanár hallgatók számára Szta formula Előadó: Hajnal Péter 2015. 1. Bevezető példák 1. Feladat. Hány olyan sorbaállítása van a a, b, c, d, e} halmaznak, amelyben

Részletesebben

összeadjuk 0-t kapunk. Képletben:

összeadjuk 0-t kapunk. Képletben: 814 A ferde kifejtés tétele Ha egy determináns valamely sorának elemeit egy másik sor elemeihez tartozó adjungáltakkal szorozzuk meg és a szorzatokat összeadjuk 0-t kapunk Képletben: n a ij A kj = 0, ha

Részletesebben

KÖNYVTÁRI KATALÓGUS HASZNÁLATI ÚTMUTATÓ

KÖNYVTÁRI KATALÓGUS HASZNÁLATI ÚTMUTATÓ KÖNYVTÁRI KATALÓGUS HASZNÁLATI ÚTMUTATÓ Mi az OPAC? Az OPAC az Online Public Access Catalogue rövidítése. Jelentése olyan számítógépes katalógus, mely nyilvános, bárki számára közvetlenül, általában ingyen

Részletesebben

Tájékoztató a Rendszeres Tanulmányi Ösztöndíj Modulóban található adataival kapcsolatban

Tájékoztató a Rendszeres Tanulmányi Ösztöndíj Modulóban található adataival kapcsolatban Tájékoztató a Rendszeres Tanulmányi Ösztöndíj Modulóban található adataival kapcsolatban Az alábbiakban részletezzük, hogy a Modulo Átlag módosítási kérvényén belül található adatok pontosan mit jelentenek.

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc PRÓBAÉRETTSÉGI 2004.május MATEMATIKA KÖZÉPSZINT I. 45 perc A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok

Részletesebben

Prediktív modellezés a Zsámbéki-medencében Padányi-Gulyás Gergely

Prediktív modellezés a Zsámbéki-medencében Padányi-Gulyás Gergely Prediktív modellezés a Zsámbéki-medencében Padányi-Gulyás Gergely Térinformatikai szoftverismeret I-II. BME Építőmérnöki Kar Általános- és Felsőgeodézia Tanszék Térinformatikus szakmérnök 2009/2010. tavaszi

Részletesebben

ENERGIA DETEKTÍVEK. Szükséges eszközök: Csoportonként egy számológép, Információ az általános háztartási cikkek árairól

ENERGIA DETEKTÍVEK. Szükséges eszközök: Csoportonként egy számológép, Információ az általános háztartási cikkek árairól ENERGIA DETEKTÍVEK Cél: A tanulók képesek legyenek az adott háztartási cikk vagy egyéb elektromos eszközök energia felhasználásáról szóló információkat megtalálni, tudják, hol kell az energia címkéket

Részletesebben

dr.xlsx A programról Szövegműveletekhez használható függvények

dr.xlsx A programról Szövegműveletekhez használható függvények dr.xlsx A programról A CD struktúrája A CD 9 munkafüzetben mutatja be a Microsoft Excel 2003, 2007 és 2010 függvényeit. Az egyes munkafüzetek a "tartalom" munkafüzetből érhetők el a munkafüzet nevére kattintással.

Részletesebben

Érettségi vizsga 2014/2015

Érettségi vizsga 2014/2015 Érettségi vizsga 2014/2015 1. Érettségi tantárgyai Öt tárgyból kell érettségi vizsgát tenni, és az öt közül négy kötelezően előírt: - Magyar nyelv és irodalom - Matematika - Történelem - Idegen nyelv Az

Részletesebben

A vállalati minőségi rendszer kiépítésének lehetőségei

A vállalati minőségi rendszer kiépítésének lehetőségei 6. A vállalati minőségi rendszer kiépítésének lehetőségei 6.1 A választás és az első lépés A vállalat több minőségi filozófia és minőségbiztosítási rendszer közül választhat, tetszése szerint dönthet.

Részletesebben

E L Ő T E R J E S Z T É S

E L Ő T E R J E S Z T É S E L Ő T E R J E S Z T É S Zirc Városi Önkormányzat Képviselő-testülete 2005. december 19-i ülésére Tárgy: Zirc Városi Önkormányzat 2006. évi belső ellenőrzési tervének kockázatelemzése Előterjesztés tartalma:

Részletesebben

Programozás I. zárthelyi dolgozat

Programozás I. zárthelyi dolgozat Programozás I. zárthelyi dolgozat 2013. november 11. 2-es szint: Laptopot szeretnénk vásárolni, ezért írunk egy programot, amelynek megadjuk a lehetséges laptopok adatait. A laptopok árát, memória méretét

Részletesebben

Mesterséges intelligencia 3. laborgyakorlat

Mesterséges intelligencia 3. laborgyakorlat Mesterséges intelligencia 3. laborgyakorlat Kétszemélyes játékok - Minimax A következő típusú játékok megoldásával foglalkozunk: (a) kétszemélyes, (b) determinisztikus, (c) zéróösszegű, (d) teljes információjú.

Részletesebben

Matematika kisérettségi I. rész 45 perc NÉV:...

Matematika kisérettségi I. rész 45 perc NÉV:... Matematika kisérettségi I. rész 45 perc NÉV:... 1. Az A halmaz elemei a háromnál nagyobb egyjegyű számok, a B halmaz elemei pedig a húsznál kisebb pozitív páratlan számok. Sorolja fel az halmaz elemeit!

Részletesebben

Kiváló energetikai minőség okostéglával! OKOSTÉGLA A+++

Kiváló energetikai minőség okostéglával! OKOSTÉGLA A+++ Kiváló energetikai minőség okostéglával! A+++ Megoldás falazatra Miért fontos a megfelelő téglaválasztás? Amikor téglaválasztás előtt állunk, gyakran nem is tudatosul bennünk, milyen fontos döntést kell

Részletesebben

Írja le, hogy műszakicikk-eladóként hogyan mutatná be a mosógépek választékát, hogyan ajánlaná az egyes termékeket!

Írja le, hogy műszakicikk-eladóként hogyan mutatná be a mosógépek választékát, hogyan ajánlaná az egyes termékeket! Írja le, hogy műszakicikk-eladóként hogyan mutatná be a mosógépek választékát, hogyan ajánlaná az egyes termékeket! Az eladás folyamata szakaszokra tagolódik, melyek a következők: A vásárló elégedett a

Részletesebben

Összegezés az ajánlatok elbírálásáról. 1. Az ajánlatkérő neve és címe: Szociális és Gyermekvédelmi Főigazgatóság 1132 Budapest, Visegrádi út 49.

Összegezés az ajánlatok elbírálásáról. 1. Az ajánlatkérő neve és címe: Szociális és Gyermekvédelmi Főigazgatóság 1132 Budapest, Visegrádi út 49. 9. melléklet a 92./2011. (XII.30.) NFM rendelethez Összegezés az ajánlatok elbírálásáról 1. Az ajánlatkérő neve és címe: Szociális és Gyermekvédelmi Főigazgatóság 1132 Budapest, Visegrádi út 49. 2. A közbeszerzés

Részletesebben

SZÁLLÍTÁSI FELADAT KÖRUTAZÁSI MODELL WINDOWS QUANTITATIVE SUPPORT BUSINESS PROGRAMMAL (QSB) JEGYZET Ábragyűjtemény Dr. Réger Béla LÉPÉSRŐL - LÉPÉSRE

SZÁLLÍTÁSI FELADAT KÖRUTAZÁSI MODELL WINDOWS QUANTITATIVE SUPPORT BUSINESS PROGRAMMAL (QSB) JEGYZET Ábragyűjtemény Dr. Réger Béla LÉPÉSRŐL - LÉPÉSRE SZÁLLÍTÁSI FELADAT KÖRUTAZÁSI MODELL WINDOWS QUANTITATIVE SUPPORT BUSINESS PROGRAMMAL (QSB) JEGYZET Ábragyűjtemény Dr. Réger Béla LÉPÉSRŐL - LÉPÉSRE KÖRUTAZÁSI MODELL AVAGY AZ UTAZÓÜGYNÖK PROBLÉMÁJA Induló

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2015/2016-2. Szegedi Tudományegyetem Informatikai Tanszékcsoport

Dualitás Dualitási tételek Általános LP feladat Komplementáris lazaság 2015/2016-2. Szegedi Tudományegyetem Informatikai Tanszékcsoport Operációkutatás I. 2015/2016-2. Szegedi Tudományegyetem Informatikai Tanszékcsoport Számítógépes Optimalizálás Tanszék 6. Előadás Árazási interpretáció Tekintsük újra az erőforrás allokációs problémát

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 6. MA3-6 modul. A statisztika alapfogalmai

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 6. MA3-6 modul. A statisztika alapfogalmai Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematika III. 6. MA3-6 modul A statisztika alapfogalmai SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999.

Részletesebben

Németh László Matematikaverseny, Hódmezővásárhely. 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa

Németh László Matematikaverseny, Hódmezővásárhely. 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa Németh László Matematikaverseny, Hódmezővásárhely 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa Feladatok csak szakközépiskolásoknak Sz 1. A C csúcs értelemszerűen az AB oldal felező

Részletesebben

ELEMI PROGRAMOZÁSI TÉTELEK

ELEMI PROGRAMOZÁSI TÉTELEK ELEMI PROGRAMOZÁSI TÉTELEK 1. FELADATMEGOLDÁS PROGRAMOZÁSI TÉTELEKKEL 1.1 A programozási tétel fogalma A programozási tételek típusalgoritmusok, amelyek alkalmazásával garantáltan helyes megoldást adhatunk

Részletesebben

ELEMI BÁZISTRANSZFORMÁCIÓ LÉPÉSEI 1.EGYSZERŰSÍTETT VÁLTOZAT. 1.a) Paramétert nem tartalmazó eset

ELEMI BÁZISTRANSZFORMÁCIÓ LÉPÉSEI 1.EGYSZERŰSÍTETT VÁLTOZAT. 1.a) Paramétert nem tartalmazó eset ELEMI BÁZISTRANSZFORMÁCIÓ LÉPÉSEI 1.EGYSZERŰSÍTETT VÁLTOZAT 1.a) Paramétert nem tartalmazó eset A bázistranszformáció egyszerűsített változatában a bázison kívül elhelyezkedő vektorokból amennyit csak

Részletesebben

Gráfelméleti feladatok. c f

Gráfelméleti feladatok. c f Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,

Részletesebben