Döntéselőkészítés. I. előadás. Döntéselőkészítés. Előadó: Dr. Égertné dr. Molnár Éva. Informatika Tanszék A 602 szoba

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Döntéselőkészítés. I. előadás. Döntéselőkészítés. Előadó: Dr. Égertné dr. Molnár Éva. Informatika Tanszék A 602 szoba"

Átírás

1 I. előadás Előadó: Dr. Égertné dr. Molnár Éva Informatika Tanszék A 602 szoba Tárggyal kapcsolatos anyagok megtalálhatók: Konzultációs idő: (páros tan. hét) csütörtök

2 A döntés fogalma Döntés: mindennapi élet állandó velejárója jó döntés hozatala feltételek, lehetőségek ismerete. Döntés: választás a lehetőségek közül valamilyen célnak megfelelően (pl. vizsgára készülés) Klasszikus döntéselmélet: a döntéshozó teljesen informált és csak egy cél elérése a célja. Valóság: teljes informáltság adathalmazok nagysága miatt nem lehetséges általában célok kombinációját akarjuk megvalósítani döntést befolyásolják szokások, viselkedési formák A döntés definíciója Döntés: A döntés célirányos választás adott környezetben cselekvési változatok között, ahol a cselekvési változatok a döntési folyamatok döntést megelőző szakaszában cselekvési lehetőségekként vannak feltárva. (Kindler József) Döntés: A döntés a döntéshozó szervezet közlésoutputjának egy speciális funkciója, más egységek folyamatainak szabályozása. (Kornai János) A döntés egyszerre egy cselekvés (választás) és egy folyamat része. 2

3 A döntési folyamat szakaszai 1. A döntési helyzet felismerése 2. Helyzetfelmérés 3. Helyzetelemzés 4. Célkitűzések, kritériumok meghatározása 5. Alternatívák kidolgozása és értékelése 6. Döntés 7. Végrehajtás ellenőrzés Döntési helyzet azonosítás: : A döntési folyamat szakaszai 1. A döntési helyzet felismerése A döntéshozó azon megállapítása, hogy az általa irányított (befolyásolt ) rendszer működése, a folyamatok alakulása nem az ő céljának (céljainak) megfelelően történik. Döntési helyzet felismerésének esetei: -döntési kényszer ( nem célszerű megvárni), -figyelmeztető rendszerek használata, -külső problémajelző rendszerek használata, -probléma kutatási tevékenység. 3

4 A döntési folyamat szakaszai 2. Helyzetfelmérés Ebben a szakaszban az információk összegyűjtése és elsődleges csoportosítása folyik. Fontos az információk teljeskörűségének biztosítása. Ki kell derülnie, hogy melyik információ hasznos, melyik nem. 3. Helyzetelemzés Át kell látni az adatok, tények közötti összefüggéseket a döntési probléma szempontjából. A döntési folyamat szakaszai 4. Célkitűzések, kritériumok meghatározása Az adott döntési szituációban konkretizálni kell a célt, hogy döntési kritériumokat lehessen adni. Ha lehet, a problémát részproblémákra kell bontani - vigyázat rossz felbontás esetén a részproblémák megoldása nem alkalmazható az eredeti feladatra. Általában a rendszerek bonyolultabbak annál, hogy tevékenységük egyetlen céllal lenne kapcsolatba hozható célstruktúra, célok hierarchiája létezik. 4

5 A döntési folyamat szakaszai A döntési problémák osztályozása a strukturáltságuk szerint: A jól strukturált probléma programozható rendszeresen ismétlődő, kidolgozott metodika van a megoldására. (pl. munkatevékenység ütemezése, számlázás) A rosszul strukturált probléma nem programozható ritkán és váratlanul jelentkező, ismeretlen vagy túl komplex megoldású feladat. (pl. vállalat átszervezése, egy kutatás elvégzése) A döntési folyamat szakaszai 5. Alternatívák kidolgozása és értékelése Meg kell találni, kifejleszteni és értékelni a lehetséges cselekvési alternatívákat. Kockázatvállalás ill. nem vállalás bizonyos lehetőségeket eleve bevehet ill. kizárhat a lehetőségek közül. Értékelésnél fontos a kimenetek számszerűsíthetősége : könnyebb a lehetőségek rendezése, sorrendbe állítása. Döntéshozónak általában világos preferencia-sorrendje van, ami lehetővé teszi számára a kívánatos kimenetek rangsorolását. 5

6 A döntési folyamat szakaszai Döntő szerep jut a modellezésnek ebben a fázisban. (Az alkalmazott modellek gyakran jobban meghatározzák a kapott eredményeket, mint a számszerüsítéshez használt adatok.) Modell típusok: Normatív: optimális megoldás keresése a cél. Leíró: az alternatívák egy részhalmazát tekintjük. Ezek közül a legjobbat tekintjük, elégséges egy elfogadható megoldás megtalálása is. Kielégítő:időhiány, erőforráshiány, az optimalizáció nehézségei miatt gyakran szükségszerű, nem opt. modell. A döntési folyamat szakaszai 6. Döntés Megadni, melyek a választási kritériumnak leginkább megfelelő cselekvés(ek). 7. Végrehajtás, ellenőrzés A kiválasztott megoldást át kell ültetni a valóságba. Tudni kell: kinek, mikor, mi kell csinálnia, hogy a döntés megvalósuljon. 6

7 A döntéselőlészítés fogalma A zömmel gazdasági, általában nagy feladatok megoldása. Hatékony eszköz: Operációkutatás Olyan tudományos módszer, amely a döntések előkészítéséhez, a gazdasági optimum meghatározásához valamilyen szélsőérték feladatot alkalmaz. Elnevezés: II. világháború idején szakemberekből csoportot hoztak létre, hogy katonai hadmüveleti (operation) döntésekhez tudományos eszközök segítségével dolgozzanak ki javaslatokat. Az operációkutatás alkalmazása Matematikai modell megadása: ismeretlenek meghatározása, korlátozó feltételek megadása, célfüggvény megadása. Modellek csoportosítása: determinisztikus vagy sztochasztikus (ismeretlenek), lineáris vagy nem lineáris (feltételek, célfüggvény), folytonos vagy nem folytonos (ismeretlenek). 7

8 Lineáris programozás ( LP ) LP feladat: korlátozó feltételek és az elérendő célt megfogalmazó célfüggvény is lineáris. A továbbiakban olyan feladatokkal foglalkozunk, a- melyek lineárisak és a megoldási algoritmusuk olyan, hogy véges sok lépés után eljutunk az optimális megoldáshoz. Primál-duál feladatpár: modellek döntő részénél a feladathoz hozzárendelünk egy ún. duál feladatot. Történeti áttekintés: L.V. KANTOROVICS (1939) az LP feladat első megfogalmazója és elemzője. G.B. DANTZIG (1947) az LP megoldására szolgáló hatékony módszer, az ún. szimplex módszer felfedezője. T.C. KOOPMANS (1951) a róla elnevezett ún. Koopmans-féle termelési modell megalkotója (1975-ben Kantorovics-csal NOBEL-díjat kapott) 8

9 Lineáris programozási (LP) feladat TERMÉKVÁLASZTÉK MODELL Ismert: T 1,T 2,...,T j,..., T n egy üzem n féle terméket állít elő E 1,E 2,..., E i,..., E m a gyártáshoz az üzemben m féle erőforrás áll rendelkezésre. a ij egységnyi T j termék előállításához az E i erőforrás esetén szükséges normaóra b i E i erőforrásból rendelkezésre álló felhasználható kapacitás egységnyi T j értékesítési ára (egység ár) c j Feladat (primál) : Határozzuk meg azt a termékválasztékot ( melyik termékből mennyit kell gyártani ), amelynél az erőforrás felhasználás nem haladja meg a rendelkezésre álló kapacitást és a maximális árbevételt biztosítja az üzemnek. Matematikai modell: ismeretlen választás : x 1, x 2,..., x j,..., x n x j legyen a T j termékből gyártott mennyiség Táblázatosan adjuk meg az ismert mennyiségeket! 9

10 x 1 x 2... x n x T 1 T 2... T n b E 1 a 11 a a 1n b 1 E 2 a 21 a a 2n b E m a m1 a m2... a mn b m A c 1 c 2... c n c Korlátozó feltételek, célfüggvény: E 1 : a 11 x 1 + a 12 x a 1j x j a 1n x n b 1 E 2 : a 21 x 1 + a 22 x a 2j x j a 2n x n b 2 E m : a m1 x 1 + a m2 x a mj x j a mn x n x 1, x 2..., x j,..., x n 0 b m c 1 x 1 + c 2 x c j x j c n x n max! 10

11 Duál feladat : Jelentkezik egy vállalkozó, aki bérbe szeretné venni az erőforrásokat. Feladat: Határozzuk meg, mekkora bérleti díjat ajánljon a vállalkozó, hogy az üzemnek megérje bérbe adni az erőforrásokat és a vállalkozó kiadása a legkevesebb legyen. Matematikai modell: ismeretlen választás :y 1, y 2,..., y i,..., y m y i legyen a E i erőforrás 1 normaórájának a bérleti díja Táblázatosan adjuk meg az ismert mennyiségeket! x 1 x 2... x n x T 1 T 2... T n b y 1 E 1 a 11 a a 1n b 1 y 2 E 2 a 21 a a 2n b y m E m a m1 a m2... a mn b m y A c 1 c 2... c n c 11

12 Korlátozó feltételek, célfüggvény: Bérbeadás megéri:egységnyi termék előállításához szükséges erőforrás bérleti díja nem kevesebb, mint az elérhető árbevétel. T 1 : y 1 a 11 + y 2 a y i a i y m a m1 c 1 T 2 : y 1 a 12 + y 2 a y i a i y m a m2 c 2 T n : y 1 a 1n + y 2 a 2n y i a in y m a mn y 1, y 2..., y i,..., y m 0 b 1 y 1 + b 2 y b i y i b m y m min! c n Primál, duál feladatok mátrixos megadása Primál feladat: A x b x 0 c x max! Duál feladat: y A c y 0 y b min! Primál feltételek Primál célfüggvény Duál feltételek Duál célfüggvény 12

13 13

Bevezetés az operációkutatásba A lineáris programozás alapjai

Bevezetés az operációkutatásba A lineáris programozás alapjai Bevezetés az operációkutatásba A lineáris programozás alapjai Alkalmazott operációkutatás 1. elıadás 2008/2009. tanév 2008. szeptember 12. Mi az operációkutatás (operations research)? Kialakulása: II.

Részletesebben

Termelés- és szolgáltatásmenedzsment Részidős üzleti mesterszakok

Termelés- és szolgáltatásmenedzsment Részidős üzleti mesterszakok egyetemi docens Menedzsment és Vállalatgazdaságtan Tanszék kallo@mvt.bme.hu Tudnivalók Segédanyagok Jegyzet, előadásvázlatok, munkafüzet Példatár, konzultáció, képletgyűjtemény Elméleti kérdések kidolgozása

Részletesebben

Fogalmak Navigare necesse est

Fogalmak Navigare necesse est Döntéselmélet Fogalmak Navigare necesse est - dönteni mindenkinek kell A döntés nem vezetői privilégium: de! vezetői kompetencia, a vezetői döntések hatása Fogalmak II. A döntés célirányos választás adott

Részletesebben

Matematikai modellezés

Matematikai modellezés Matematikai modellezés Bevezető A diasorozat a Döntési modellek című könyvhöz készült. Készítette: Dr. Ábrahám István Döntési folyamatok matematikai modellezése Az emberi tevékenységben meghatározó szerepe

Részletesebben

G Y A K O R L Ó F E L A D A T O K

G Y A K O R L Ó F E L A D A T O K Döntéselmélet G Y A K O R L Ó F E L A D A T O K Lineáris programozás I Egy vállalat kétféle terméket gyárt, az A és B termékeket. A következő adatok ismertek: A vállalat éves munkaóra-kapacitása 1440 óra,

Részletesebben

Egyes logisztikai feladatok megoldása lineáris programozás segítségével. - bútorgyári termelési probléma - szállítási probléma

Egyes logisztikai feladatok megoldása lineáris programozás segítségével. - bútorgyári termelési probléma - szállítási probléma Egyes logisztikai feladatok megoldása lineáris programozás segítségével - bútorgyári termelési probléma - szállítási probléma Egy bútorgyár polcot, asztalt és szekrényt gyárt faforgácslapból. A kereskedelemben

Részletesebben

Dr. Kalló Noémi. Termelésszervezés, Termelési és szolgáltatási döntések elemzése. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék

Dr. Kalló Noémi. Termelésszervezés, Termelési és szolgáltatási döntések elemzése. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelésszervezés, Termelési és szolgáltatási döntések elemzése egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelésszervezés 17.Ismertesse az anyagszükséglet-tervezés input információit,

Részletesebben

b) Írja fel a feladat duálisát és adja meg ennek optimális megoldását!

b) Írja fel a feladat duálisát és adja meg ennek optimális megoldását! 1. Három nemnegatív számot kell meghatározni úgy, hogy az elsőt héttel, a másodikat tizennéggyel, a harmadikat hattal szorozva és ezeket a szorzatokat összeadva az így keletkezett szám minél nagyobb legyen.

Részletesebben

Érzékenységvizsgálat

Érzékenységvizsgálat Érzékenységvizsgálat Alkalmazott operációkutatás 5. elıadás 008/009. tanév 008. október 0. Érzékenységvizsgálat x 0 A x b z= c T x max Kapacitások, együtthatók, célfüggvény együtthatók változnak => optimális

Részletesebben

Tóth Georgina Nóra 1-2. gyakorlat OPERÁCIÓKUTATÁS

Tóth Georgina Nóra 1-2. gyakorlat OPERÁCIÓKUTATÁS Tóth Georgina Nóra toth.georgina@bgk.uni-obuda.hu -2. gyakorlat OPERÁCIÓKUTATÁS TÖRTÉNETI ÁTTEKINTÉS Ipari forradalom hatása a vállalatokra II. világháború Katonai hadműveletek (operációk) Kutatók alkalmazása

Részletesebben

Operációkutatás II. Tantárgyi útmutató

Operációkutatás II. Tantárgyi útmutató Módszertani Intézeti Tanszék Gazdinfo Nappali Operációkutatás II. Tantárgyi útmutató 2015/16 tanév II. félév 1/4 Tantárgy megnevezése: Operációkutatás II. Tantárgy kódja: OPKT2KOMEMM Tanterv szerinti óraszám:

Részletesebben

Döntési módszerek Tantárgyi útmutató

Döntési módszerek Tantárgyi útmutató Gazdálkodási és menedzsment alapszak Nappali tagozat Döntési módszerek Tantárgyi útmutató 2015/16 tanév II. félév 1 Tantárgy megnevezése Tantárgy jellege/típusa: Döntési módszerek. D Kontaktórák száma/hét:

Részletesebben

Növényvédő szerek A B C D

Növényvédő szerek A B C D A feladat megoldása során az Excel 2010 használata a javasolt. A feladat elvégzése során a következőket fogjuk gyakorolni: Termelési és optimalizálási feladatok megoldása. Mátrixműveletek alkalmazása.

Részletesebben

1/ gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI

1/ gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI / Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI /. Legyen adott az alábbi LP-feladat: x + 4x + x 9 x + x x + x + x 6 x, x, x x + x +

Részletesebben

Számítógépes döntéstámogatás. Döntések fuzzy környezetben Közelítő következtetések

Számítógépes döntéstámogatás. Döntések fuzzy környezetben Közelítő következtetések BLSZM-09 p. 1/17 Számítógépes döntéstámogatás Döntések fuzzy környezetben Közelítő következtetések Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu

Részletesebben

TANTÁRGYI ÚTMUTATÓ. Operációkutatás. tanulmányokhoz

TANTÁRGYI ÚTMUTATÓ. Operációkutatás. tanulmányokhoz II. évfolyam szakirány BA TANTÁRGYI ÚTMUTATÓ Operációkutatás tanulmányokhoz TÁVOKTATÁS Tanév (2014/2015) I. félév A KURZUS ALAPADATAI Tárgy megnevezése: Operációkutatás Tanszék: BGF Módszertani Intézeti

Részletesebben

3. előadás. Termelési és optimalizálási feladatok. Dr. Szörényi Miklós, Dr. Kallós Gábor

3. előadás. Termelési és optimalizálási feladatok. Dr. Szörényi Miklós, Dr. Kallós Gábor 3. előadás Termelési és optimalizálási feladatok Dr. Szörényi Miklós, Dr. Kallós Gábor 2014 2015 1 Tartalom Matematikai alapok Matematikai modell Fontosabb feladattípusok Érzékenységvizsgálat Fontos fogalmak

Részletesebben

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje

Operációkutatás. 4. konzultáció: Szállítási feladat. A feladat LP modellje Operációkutatás 1 NYME KTK, gazdálkodás szak, levelező alapképzés 2002/2003. tanév, II. évf. 2.félév Előadó: Dr. Takách Géza NyME FMK Információ Technológia Tanszék 9400 Sopron, Bajcsy Zs. u. 9. GT fszt.

Részletesebben

VÁLLALATGAZDASÁGTAN II. Döntési Alapfogalmak

VÁLLALATGAZDASÁGTAN II. Döntési Alapfogalmak Vállalkozási VÁLLALATGAZDASÁGTAN II. Tantárgyfelelős: Prof. Dr. Illés B. Csaba Előadó: Dr. Gyenge Balázs Az ökonómiai döntés fogalma Vállalat Környezet Döntések sorozata Jövő jövőre vonatkozik törekszik

Részletesebben

Ütemezési modellek. Az ütemezési problémák osztályozása

Ütemezési modellek. Az ütemezési problémák osztályozása Ütemezési modellek Az ütemezési problémák osztályozása Az ütemezési problémákban adott m darab gép és n számú munka, amelyeket az 1,..., n számokkal fogunk sorszámozni. A feladat az, hogy ütemezzük az

Részletesebben

1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI

1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI / Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI Normál feladatok megoldása szimplex módszerrel / / Normál feladatok megoldása szimplex

Részletesebben

Nemkonvex kvadratikus egyenlőtlenségrendszerek pontos dualitással

Nemkonvex kvadratikus egyenlőtlenségrendszerek pontos dualitással pontos dualitással Imre McMaster University Advanced Optimization Lab ELTE TTK Operációkutatási Tanszék Folytonos optimalizálás szeminárium 2004. július 6. 1 2 3 Kvadratikus egyenlőtlenségrendszerek Primál

Részletesebben

Vállalati modellek. Előadásvázlat. dr. Kovács László

Vállalati modellek. Előadásvázlat. dr. Kovács László Vállalati modellek Előadásvázlat dr. Kovács László Vállalati modell fogalom értelmezés Strukturált szervezet gazdasági tevékenység elvégzésére, nyereség optimalizálási céllal Jellemzői: gazdasági egység

Részletesebben

Programozási módszertan. Mohó algoritmusok

Programozási módszertan. Mohó algoritmusok PM-08 p. 1/17 Programozási módszertan Mohó algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu PM-08 p. 2/17 Bevezetés Dinamikus programozás

Részletesebben

1. Előadás Lineáris programozás

1. Előadás Lineáris programozás 1. Előadás Lineáris programozás Salamon Júlia Előadás II. éves gazdaság informatikus hallgatók számára Operációkutatás Az operációkutatás az alkalmazott matematika az az ága, ami bizonyos folyamatok és

Részletesebben

Lehetőségek felmérése

Lehetőségek felmérése Kell-e projekt? Vannak e üzleti és/vagy informatikai problémáink a vállalati működés során? Ha igen, melyek ezek? (Lista jellegű összegzés) Miből adódnak ezen problémák: Tisztán ügyviteli problémák. A

Részletesebben

OPERÁCIÓKUTATÁS, AZ ELFELEDETT TUDOMÁNY A LOGISZTIKÁBAN (A LOGISZTIKAI CÉL ELÉRÉSÉNEK ÉRDEKÉBEN)

OPERÁCIÓKUTATÁS, AZ ELFELEDETT TUDOMÁNY A LOGISZTIKÁBAN (A LOGISZTIKAI CÉL ELÉRÉSÉNEK ÉRDEKÉBEN) OPERÁCIÓKUTATÁS, AZ ELFELEDETT TUDOMÁNY A LOGISZTIKÁBAN (A LOGISZTIKAI CÉL ELÉRÉSÉNEK ÉRDEKÉBEN) Fábos Róbert 1 Alapvető elvárás a logisztika területeinek szereplői (termelő, szolgáltató, megrendelő, stb.)

Részletesebben

Növényvédő szerek A 500 0 0 0 0 65000 B 0 0 50 500 500 60000 C 50 25 0 50 50 12000 D 0 25 5 50 0 6000

Növényvédő szerek A 500 0 0 0 0 65000 B 0 0 50 500 500 60000 C 50 25 0 50 50 12000 D 0 25 5 50 0 6000 A feladat megoldása során az Excel 2010 használata a javasolt. A feladat elvégzése során a következőket fogjuk gyakorolni: Termelési és optimalizálási feladatok megoldása. Mátrixműveletek alkalmazása.

Részletesebben

Mátrixjátékok tiszta nyeregponttal

Mátrixjátékok tiszta nyeregponttal 1 Mátrixjátékok tiszta nyeregponttal 1. Példa. Két játékos Aladár és Bendegúz rendelkeznek egy-egy tetraéderrel, melyek lapjaira rendre az 1, 2, 3, 4 számokat írták. Egy megadott jelre egyszerre felmutatják

Részletesebben

Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 A NÖVÉNYTERMESZTÉSI ÁGAZATOK ÖKONÓMIÁJA

Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 A NÖVÉNYTERMESZTÉSI ÁGAZATOK ÖKONÓMIÁJA Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 A NÖVÉNYTERMESZTÉSI ÁGAZATOK ÖKONÓMIÁJA 11. Előadás Az üzleti terv tartalmi követelményei Az üzleti terv tartalmi követelményei

Részletesebben

Termeléstervezés és -irányítás Termelés és kapacitás tervezés Xpress-Mosel FICO Xpress Optimization Suite

Termeléstervezés és -irányítás Termelés és kapacitás tervezés Xpress-Mosel FICO Xpress Optimization Suite Termeléstervezés és -irányítás Termelés és kapacitás tervezés Xpress-Mosel FICO Xpress Optimization Suite Alkalmazásával 214 Monostori László egyetemi tanár Váncza József egyetemi docens 1 Probléma Igények

Részletesebben

Operációkutatási modellek

Operációkutatási modellek Operációkutatási modellek Alkalmazott matematika A sorozat kötetei: Kóczy T. László Tikk Domonkos: Fuzzy rendszerek (2000) Elliott, J. R. Kopp, P. E.: Pénzpiacok matematikája (2000) Michelberger Szeidl

Részletesebben

Operációkutatás vizsga

Operációkutatás vizsga Operációkutatás vizsga A csoport Budapesti Corvinus Egyetem 2007. január 9. Egyéb gyakorló és vizsgaanyagok találhatók a honlapon a Letölthető vizsgasorok, segédanyagok menüpont alatt. OPERÁCIÓKUTATÁS

Részletesebben

A szimplex tábla. p. 1

A szimplex tábla. p. 1 A szimplex tábla Végződtetés: optimalitás és nem korlátos megoldások A szimplex algoritmus lépései A degeneráció fogalma Komplexitás (elméleti és gyakorlati) A szimplex tábla Példák megoldása a szimplex

Részletesebben

Általános algoritmustervezési módszerek

Általános algoritmustervezési módszerek Általános algoritmustervezési módszerek Ebben a részben arra mutatunk példát, hogy miként használhatóak olyan általános algoritmustervezési módszerek mint a dinamikus programozás és a korlátozás és szétválasztás

Részletesebben

A hálózattervezés alapvető ismeretei

A hálózattervezés alapvető ismeretei A hálózattervezés alapvető ismeretei Infokommunikációs hálózatok tervezése és üzemeltetése 2011 2011 Sipos Attila ügyvivő szakértő BME Híradástechnikai Tanszék siposa@hit.bme.hu A terv általános meghatározásai

Részletesebben

5. A vezetıi dönt. ntéshozatal. A döntéselmélet tárgya. A racionális viselkedés feltételei megszervezésének, megnyilvánulásának, vizsgálata.

5. A vezetıi dönt. ntéshozatal. A döntéselmélet tárgya. A racionális viselkedés feltételei megszervezésének, megnyilvánulásának, vizsgálata. 5. A vezetıi dönt ntéshozatal A döntéselmélet tárgya A racionális viselkedés feltételei megszervezésének, megnyilvánulásának, logikai, matematikai és, empirikus vizsgálata. 1 A döntéselmélet rendeltetése

Részletesebben

Minőségmenedzsment: azért felel, hogy a projekt teljesítse az elvárt feladatát és a követelményeket.

Minőségmenedzsment: azért felel, hogy a projekt teljesítse az elvárt feladatát és a követelményeket. Jelölje be a helyes választ: ely projektszereplőhöz tartoznak az következő feladatok: sikeresnek vagy sikertelennek nyilvánítja a projektet a megvalósítás során a változtatások engedélyezése a megvalósítás

Részletesebben

Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás

Algoritmusok Tervezése. 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Algoritmusok Tervezése 6. Előadás Algoritmusok 101 Dr. Bécsi Tamás Mi az algoritmus? Lépések sorozata egy feladat elvégzéséhez (legáltalánosabban) Informálisan algoritmusnak nevezünk bármilyen jól definiált

Részletesebben

Alternatívák rangsora Rangsor módszerek. Debreceni Egyetem

Alternatívák rangsora Rangsor módszerek. Debreceni Egyetem Döntéstámogató Rendszerek VII. előadás Bekéné Rácz Anett Debreceni Egyetem Definíciók Példa rangsorfordulásra Rangsorokkal kapcsolatos fogalmak Condorcet nyertes: Az az alternatíva, amely az összes többi

Részletesebben

Tartalom. Jó hogy jön Jucika, maga biztosan emlékszik még, hányadik oldalon van a Leszállás ködben.

Tartalom. Jó hogy jön Jucika, maga biztosan emlékszik még, hányadik oldalon van a Leszállás ködben. Tartalom Jó hogy jön Jucika, maga biztosan emlékszik még, hányadik oldalon van a Leszállás ködben. Előszó 1. Az adatbányászatról általában 19 1.1. Miért adatbányászat? 21 1.2. Technológia a rejtett információk

Részletesebben

Kvantitatív módszerek

Kvantitatív módszerek Kvantitatív módszerek szimuláció Kovács Zoltán Szervezési és Vezetési Tanszék E-mail: kovacsz@gtk.uni-pannon.hu URL: http://almos/~kovacsz Mennyiségi problémák megoldása analitikus numerikus szimuláció

Részletesebben

Matematikai modellek megoldása számítógéppel Solver Lingo

Matematikai modellek megoldása számítógéppel Solver Lingo Matematikai modellek megoldása számítógéppel Solver Lingo Készítette: Dr. Ábrahám István A matematikai modellek számítógépes megoldásait példákkal mutatjuk be. Példa: Négy erőforrás felhasználásával négyféle

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

EuroOffice Optimalizáló (Solver)

EuroOffice Optimalizáló (Solver) 1. oldal EuroOffice Optimalizáló (Solver) Az EuroOffice Optimalizáló egy OpenOffice.org bővítmény, ami gyors algoritmusokat kínál lineáris programozási és szállítási feladatok megoldására. Szimplex módszer

Részletesebben

Számítógép és programozás 2

Számítógép és programozás 2 Számítógép és programozás 2 6. Előadás Problémaosztályok http://digitus.itk.ppke.hu/~flugi/ Emlékeztető A specifikáció egy előfeltételből és utófeltételből álló leírása a feladatnak Léteznek olyan feladatok,

Részletesebben

Páros összehasonlítás mátrixok empirikus vizsgálata. Bozóki Sándor

Páros összehasonlítás mátrixok empirikus vizsgálata. Bozóki Sándor Páros összehasonlítás mátrixok empirikus vizsgálata Bozóki Sándor MTA SZTAKI Operációkutatás és Döntési Rendszerek Kutatócsoport Budapesti Corvinus Egyetem Operációkutatás és Aktuáriustudományok Tanszék

Részletesebben

Fejezet. Hogyan gondolkodnak a közgazdászok? Elmélet, modellalkotás, empirikus tesztelés, alkalmazások

Fejezet. Hogyan gondolkodnak a közgazdászok? Elmélet, modellalkotás, empirikus tesztelés, alkalmazások Fejezet 2 Hogyan gondolkodnak a közgazdászok? Elmélet, modellalkotás, empirikus tesztelés, alkalmazások Terminológia Átváltás, alternatív költség, határ-, racionalitás, ösztönző, jószág, infláció, költség,

Részletesebben

a = 2 + [ i] b = ahol 1 i 162 a hallgató sorszáma a csatolt névsorban, [x] az x szám

a = 2 + [ i] b = ahol 1 i 162 a hallgató sorszáma a csatolt névsorban, [x] az x szám Döntéselmélet házi feladat, 2011-12 tanév II. félév A házi feladat beadása az aláírás feltétele. A házi feladatra adott minősítés az (anyag első felére vonatkozó) jegyben 40% súllyal szerepel, ennek megfelelően

Részletesebben

Vállalkozási finanszírozás kollokvium

Vállalkozási finanszírozás kollokvium Harsányi János Főiskola Gazdaságtudományok tanszék Vállalkozási finanszírozás kollokvium F Név: soport: Tagozat: Elért pont: Érdemjegy: Javította: 43 50 pont jeles 35 42 pont jó 27 34 pont közepes 19 26

Részletesebben

Üzemszervezés. Projekt tervezés. Dr. Juhász János

Üzemszervezés. Projekt tervezés. Dr. Juhász János Üzemszervezés Projekt tervezés Dr. Juhász János Projekt tervezés - Definíció Egy komplex tevékenység feladatainak, meghatározott célok elérése érdekében, előre megtervezett módon, az erőforrások sajátosságainak

Részletesebben

GINOP

GINOP ÉLELMISZERIPARI KOMPLEX BERUHÁZÁSOK TÁMOGATÁSA KOMBINÁLT HITELTERMÉKKEL GINOP-1.2.6-8.3.4-16 A Felhívás és a Hitelprogram együttes célja, hogy komplex beruházások támogatásával, vissza nem térítendő támogatás

Részletesebben

Frederick Taylor (1900 körül) A Pennsylvania-i acélműben tanulmányozta a munkafolyamatokat. A munkafolyamatokat szakaszokra bontotta, és különböző méréseket végzett a szakaszokon belüli és a szakaszok

Részletesebben

Vállalkozói kompetenciák fejlesztése a középiskolában, vállalkozói játék segítségével.

Vállalkozói kompetenciák fejlesztése a középiskolában, vállalkozói játék segítségével. Vállalkozói kompetenciák fejlesztése a középiskolában, vállalkozói játék segítségével. Kolman Miklós 2013. április 25. 3300 Eger, Rákóczi út 48. tel.: (36) 536-070 fax: (36) 325-311 www.nejanet.hu Kitűzött

Részletesebben

Tartalom. Matematikai alapok. Termékgyártási példafeladat. Keverési példafeladat Szállítási példafeladat Hátizsák feladat, egészértékű feladat

Tartalom. Matematikai alapok. Termékgyártási példafeladat. Keverési példafeladat Szállítási példafeladat Hátizsák feladat, egészértékű feladat 6. előadás Termelési és optimalizálási feladatok Dr. Szörényi Miklós, Dr. Kallós Gábor 2013 2014 1 Tartalom Matematikai alapok Matematikai modell Fontosabb feladattípusok Érzékenységvizsgálat Termékgyártási

Részletesebben

Esettanulmányok és modellek 2

Esettanulmányok és modellek 2 Esettanulmányok és modellek Kereskedelem Mezőgazdaság Készítette: Dr. Ábrahám István Kereskedelem. Kocsis Péter: Opt. döntések lin.pr. (. oldal) nyomán: Kiskereskedelmi cég négyféle üdítőt rendel, melyek

Részletesebben

Gépi tanulás és Mintafelismerés

Gépi tanulás és Mintafelismerés Gépi tanulás és Mintafelismerés jegyzet Csató Lehel Matematika-Informatika Tanszék BabesBolyai Tudományegyetem, Kolozsvár 2007 Aug. 20 2 1. fejezet Bevezet A mesterséges intelligencia azon módszereit,

Részletesebben

Név KP Blokk neve KP. Logisztika I. 6 LOG 12 Dr. Kovács Zoltán Logisztika II. 6 Logisztika Dr. Kovács Zoltán

Név KP Blokk neve KP. Logisztika I. 6 LOG 12 Dr. Kovács Zoltán Logisztika II. 6 Logisztika Dr. Kovács Zoltán Név KP Blokk neve KP Felelıs vizsgáztató Kombinatorikus módszerek és algoritmusok 5 MAT 10 Dr. Tuza Zsolt Diszkrét és folytonos dinamikai rendszerek matematikai alapjai 5 Matematika Dr. Hartung Ferenc

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Magyar Projektmenedzsment Szövetség

Magyar Projektmenedzsment Szövetség Magyar Projektmenedzsment Szövetség A projektmenedzsment szerepe az irányításban Ulicsák Béla Műszaki igazgató BRIT TECH Üzleti Tanácsadó Kft. bela@brit-tech.hu Budapest, 2010. március 17. Tartalom Bevezető

Részletesebben

1/ gyakorlat. Hiperbolikus programozási feladat megoldása. Pécsi Tudományegyetem PTI

1/ gyakorlat. Hiperbolikus programozási feladat megoldása. Pécsi Tudományegyetem PTI 1/12 Operációkutatás 5. gyakorlat Hiperbolikus programozási feladat megoldása Pécsi Tudományegyetem PTI 2/12 Ha az Hiperbolikus programozási feladat feltételek teljesülése mellett a A x b x 0 z(x) = c

Részletesebben

DIFER Szolnok Városi Óvodák

DIFER Szolnok Városi Óvodák DIFER 2014-2015 Szolnok Városi Óvodák Fontos felismerések (Nagy József): Szélsőséges fejlettségbeli különbségek jellemzőek: hatéves korban ötévnyi! A személyiség alaprendszerét- az alapkészségeket- minden

Részletesebben

Bevezetés a kvantum informatikába és kommunikációba Féléves házi feladat (2013/2014. tavasz)

Bevezetés a kvantum informatikába és kommunikációba Féléves házi feladat (2013/2014. tavasz) Bevezetés a kvantum informatikába és kommunikációba Féléves házi feladat (2013/2014. tavasz) A házi feladatokkal kapcsolatos követelményekről Kapcsolódó határidők: választás: 6. oktatási hét csütörtöki

Részletesebben

Software project management Áttekintés

Software project management Áttekintés Software project management Áttekintés Miskolci Egyetem Általános Informatikai Tanszék PMAN / 1 Miért szükséges? A software fejlesztési tevékenység Csoportmunkát igényel Jelentős erőforrásokat használ

Részletesebben

Matematika és Számítástudomány Tanszék

Matematika és Számítástudomány Tanszék Matematika és Számítástudomány Tanszék Műszaki Tudományi Kar Matematika és Számítástudomány Tanszék Tanszékvezető: Dr. Horváth Zoltán Beosztás: Főiskolai tanár Elérhetőség: Telefon: (96)/503-647 E-mail:

Részletesebben

Visszalépéses keresés

Visszalépéses keresés Visszalépéses keresés Backtracking előadás http://nik.uni-obuda.hu/prog2 Szénási Sándor szenasi.sandor@nik.uni-obuda.hu Óbudai Egyetem,Neumann János Informatikai Kar Alapvető működése Továbbfejlesztési

Részletesebben

Történet John Little (1970) (Management Science cikk)

Történet John Little (1970) (Management Science cikk) Információ menedzsment Szendrői Etelka Rendszer- és Szoftvertechnológia Tanszék szendroi@witch.pmmf.hu Vezetői információs rendszerek Döntéstámogató rendszerek (Decision Support Systems) Döntések információn

Részletesebben

GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus

GRÁFELMÉLET. 7. előadás. Javító utak, javító utak keresése, Edmonds-algoritmus GRÁFELMÉLET 7. előadás Javító utak, javító utak keresése, Edmonds-algoritmus Definíció: egy P utat javító útnak nevezünk egy M párosításra nézve, ha az út páratlan hosszú, kezdő- és végpontjai nem párosítottak,

Részletesebben

Tantárgy adatlap Operációkutatás

Tantárgy adatlap Operációkutatás A tantárgy kódja: 4OP13NAK20B A tantárgy megnevezése (magyarul): A tantárgy neve (angolul): Operations Research A tanóra száma (Előadás + szeminárium + gyakorlat + egyéb): 2+1 (előadás+gyakorlat) Kreditérték:

Részletesebben

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31. Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert

Részletesebben

Terminológia. Átváltás, alternatív költség, határ-, racionalitás, ösztönző, jószág, infláció, költség, kereslet, kínálat, piac, munkanélküliség

Terminológia. Átváltás, alternatív költség, határ-, racionalitás, ösztönző, jószág, infláció, költség, kereslet, kínálat, piac, munkanélküliség Hogyan gondolkodnak a közgazdászok? Elmélet, modellalkotás, empirikus tesztelés, alkalmazások Fejezet Terminológia Átváltás, alternatív költség, határ-, racionalitás, ösztönző, jószág, infláció, költség,

Részletesebben

Minőségérték. A modellezés céljának meghat. Rendszer elemzés. Módszer kiválasztása. Modell megfelelőség elemzés. Működés szimuláció

Minőségérték. A modellezés céljának meghat. Rendszer elemzés. Módszer kiválasztása. Modell megfelelőség elemzés. Működés szimuláció Minőségérték. Műszaki minőségérték növelésére alkalmas módszerek: Cél: a termék teljes életciklusa során az előre látható, vagy feltételezett követelmények, teljes körű és kiegyensúlyozott kielégítése.

Részletesebben

Projekt Tervezés. 2006/5/17 Dr. Kulcsár László

Projekt Tervezés. 2006/5/17 Dr. Kulcsár László Projekt Tervezés 2006 1 A projekt koncepció A projekt fogalma: Szabványosított dokumentum, amely tartalmazza a fejlesztés modelljét, a modellt támogató elméleti feltételezéseket. Konkrét célok Időpont

Részletesebben

Számítógépes döntéstámogatás. Bevezetés és tematika

Számítógépes döntéstámogatás. Bevezetés és tematika SZDT-01 p. 1/18 Számítógépes döntéstámogatás Bevezetés és tematika Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás SZDT-01 p. 2/18 SZDT-01

Részletesebben

HORNUNG TAMÁS * Diszkrét egyenletes közelítés: a lineáris programozás egy alkalmazása

HORNUNG TAMÁS * Diszkrét egyenletes közelítés: a lineáris programozás egy alkalmazása Bevezetés HORNUNG TAMÁS * Diszkrét egyenletes közelítés: a lineáris programozás egy alkalmazása Discrete smooth approximation: an application of linear programming The best discrete approximation can be

Részletesebben

Operációkutatás vizsga

Operációkutatás vizsga Operációkutatás vizsga A csoport Budapesti Corvinus Egyetem 2007. január 16. Egyéb gyakorló és vizsgaanyagok találhatók a honlapon a Letölthető vizsgasorok, segédanyagok menüpont alatt. OPERÁCIÓKUTATÁS,

Részletesebben

A technológia és költség dualitása: termelési függvény és költségfüggvények. A vállalat optimális döntése

A technológia és költség dualitása: termelési függvény és költségfüggvények. A vállalat optimális döntése 1 /11 (C) http://kgt.bme.hu/ A technológia és költség dualitása: termelési függvény és költségfüggvények. A vállalat optimális döntése Varian 20.3-6. 21. fejezet Termelési és hasznossági függvény (ismétlés

Részletesebben

A beruházások döntés-előkészítésének folyamata a magyar feldolgozóipari vállalatoknál

A beruházások döntés-előkészítésének folyamata a magyar feldolgozóipari vállalatoknál A beruházások döntés-előkészítésének folyamata a magyar feldolgozóipari vállalatoknál Szűcsné Markovics Klára egyetemi tanársegéd Miskolci Egyetem, Gazdálkodástani Intézet vgtklara@uni-miskolc.hu Tudományos

Részletesebben

Mérés és modellezés Méréstechnika VM, GM, MM 1

Mérés és modellezés Méréstechnika VM, GM, MM 1 Mérés és modellezés 2008.02.04. 1 Mérés és modellezés A mérnöki tevékenység alapeleme a mérés. A mérés célja valamely jelenség megismerése, vizsgálata. A mérés tervszerűen végzett tevékenység: azaz rögzíteni

Részletesebben

ELITE YOUTH. fejlesztése az utánpótlás futballban. Készítette: Szalai László MLSZ Edzőképző Központ Igazgató

ELITE YOUTH. fejlesztése az utánpótlás futballban. Készítette: Szalai László MLSZ Edzőképző Központ Igazgató fejlesztése az utánpótlás futballban Készítette: Szalai László MLSZ Edzőképző Központ Igazgató az utánpótlás futballban a személyiségtulajdonságok, gondolati- és gyakorlati-cselekvéses képességek sajátos

Részletesebben

Pécsi Tudományegyetem Közgazdaságtudományi Kar

Pécsi Tudományegyetem Közgazdaságtudományi Kar Pécsi Tudományegyetem Közgazdaságtudományi Kar ÜZLETI TANÁCSADÓ szakirányú továbbképzési szak Az üzleti tanácsadás napjaink egyik kulcsfontosságú ágazata az üzleti szférában. A tercier szektor egyik elemeként

Részletesebben

A térségfejlesztés modellje

A térségfejlesztés modellje Szereplők beazonosítása a domináns szervezetek Közigazgatás, önkormányzatok Szakmai érdekképviseletek (területi szervezetei) Vállalkozók Civil szervezetek Szakértők, falugazdászok A térségfejlesztés modellje

Részletesebben

Számvitel I. ÁLTALÁNOS KÖVETELMÉNYEK

Számvitel I. ÁLTALÁNOS KÖVETELMÉNYEK Számvitel I. ÁLTALÁNOS KÖVETELMÉNYEK Téma Tananyagtartalom Számonkérés módja, követelmény Számviteli alapfogalmak Leltár és Mérleg A számvitel és a könyvvitel fogalma, feladatai és fajtái. Számviteli alapelvek

Részletesebben

A NÖVÉNYTERMESZTÉSI ÁGAZATOK ÖKONÓMIÁJA. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010

A NÖVÉNYTERMESZTÉSI ÁGAZATOK ÖKONÓMIÁJA. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 A NÖVÉNYTERMESZTÉSI ÁGAZATOK ÖKONÓMIÁJA Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 10. Előadás Üzleti terv készítés logikai felépítése Az üzleti terv megalapozó lépései A

Részletesebben

Üzemszervezés A BMEKOKUA180

Üzemszervezés A BMEKOKUA180 Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki és Járműmérnöki Kar Közlekedésmérnöki Szak Üzemszervezés A BMEKOKUA180 Projekt tervezés Dr. Juhász János egyetemi docens Projekt tervezés

Részletesebben

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása 1 Információk 2 A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin Elérhetőség mesko.katalin@tfk.kefo.hu Fogadóóra: szerda 9:50-10:35 Számonkérés időpontok Április 25. 9 00 Május 17. 9 00 Június

Részletesebben

Konszolidált éves beszámoló összeállítása és elemzése

Konszolidált éves beszámoló összeállítása és elemzése SZÁMVITEL INTÉZETI TANSZÉK Levelező tagozat SZÁMVITEL MESTERSZAK Konszolidált éves beszámoló összeállítása és elemzése Tantárgyi útmutató 2015/2016. tanév 2. félév Tantárgy megnevezése: Konszolidált beszámoló

Részletesebben

Ütemezés tervezése A leghátrányosabb helyzet kistérségek fejlesztési és együttm ködési kapacitásainak meger

Ütemezés tervezése A leghátrányosabb helyzet kistérségek fejlesztési és együttm ködési kapacitásainak meger Ütemezés tervezése A leghátrányosabb helyzetű kistérségek fejlesztési és együttműködési kapacitásainak megerősítése ÁROP-1.1.5/C A Tokajii Kistérség Fejlesztési és Együttműködési Kapacitásának Megerősítése

Részletesebben

S atisztika 2. előadás

S atisztika 2. előadás Statisztika 2. előadás 4. lépés Terepmunka vagy adatgyűjtés Kutatási módszerek osztályozása Kutatási módszer Feltáró kutatás Következtető kutatás Leíró kutatás Ok-okozati kutatás Keresztmetszeti kutatás

Részletesebben

TANTÁRGYI ÚTMUTATÓ. Döntési módszerek

TANTÁRGYI ÚTMUTATÓ. Döntési módszerek III. évfolyam szakirány BA TANTÁRGYI ÚTMUTATÓ Döntési módszerek TÁVOKTATÁS Tanév 2014/2015 II- félév A KURZUS ALAPADATAI Tárgy megnevezése: Döntési módszerek Tanszék: Matematika-Statisztika Tantárgyfelelős

Részletesebben

Társaságok pénzügyei kollokvium

Társaságok pénzügyei kollokvium udapesti Gazdasági Főiskola Pénzügyi és Számviteli Főiskolai Kar udapesti Intézet Továbbképzési Osztály Társaságok pénzügyei kollokvium F Név: soport: Tagozat: Elért pont: Érdemjegy: Javította: 55 60 pont

Részletesebben

Elegem van a munkahelyi változásokból! Mit tegyek? I.

Elegem van a munkahelyi változásokból! Mit tegyek? I. Elegem van a munkahelyi változásokból! Mit tegyek? I. I. Hogyan tekintsek a változásokra? Alkalmazkodás a változásokhoz Internetes tanfolyam Készítette: Szűcs Tamás manager coach, üzleti vezetők trénere

Részletesebben

Bánsághi Anna 2014 Bánsághi Anna 1 of 68

Bánsághi Anna 2014 Bánsághi Anna 1 of 68 IMPERATÍV PROGRAMOZÁS Bánsághi Anna anna.bansaghi@mamikon.net 3. ELŐADÁS - PROGRAMOZÁSI TÉTELEK 2014 Bánsághi Anna 1 of 68 TEMATIKA I. ALAPFOGALMAK, TUDOMÁNYTÖRTÉNET II. IMPERATÍV PROGRAMOZÁS Imperatív

Részletesebben

A neobehaviorizmus felismeri az embert körülvevő szociális mező jelentőségét.

A neobehaviorizmus felismeri az embert körülvevő szociális mező jelentőségét. 4_Teszt_próbavizsga Mely típusú tanulásnak felel meg az írástanulás? Perceptuális tanulás Motoros tanulás Verbális tanulás Nem szándékos tanulás Ki tekintette a tanulást feltételes reflexek sorozatának?

Részletesebben

Alkalmazott optimalizálás és játékelmélet Lineáris programozás Gyakorlófeladatok. Rétvári Gábor

Alkalmazott optimalizálás és játékelmélet Lineáris programozás Gyakorlófeladatok. Rétvári Gábor Alkalmazott optimalizálás és játékelmélet Lineáris programozás Gyakorlófeladatok Rétvári Gábor retvari@tmit.bme.hu Feladatok Szöveges feladatok. Egy acélgyárban négyfajta zártszelvényt gyártanak: kis,

Részletesebben

A pedagógia mint tudomány. Dr. Nyéki Lajos 2015

A pedagógia mint tudomány. Dr. Nyéki Lajos 2015 A pedagógia mint tudomány Dr. Nyéki Lajos 2015 A pedagógia tárgya, jellegzetes vonásai A neveléstudomány tárgya az ember céltudatos, tervszerű alakítása. A neveléstudomány jellegét tekintve társadalomtudomány.

Részletesebben

Lineáris programozás. Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer

Lineáris programozás. Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer Lineáris programozás Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer Feladat: Egy gyár kétféle terméket gyárt (A, B): /db Eladási ár 1000 800 Technológiai önköltség 400 300 Normaóraigény

Részletesebben

Az eredmény elemzés szakaszai. Eredményelemzés

Az eredmény elemzés szakaszai. Eredményelemzés MISKOLCI EGYETEM Gazdaságtudományi Kar Üzleti Információgazdálkodási és Módszertani Intézet Számvitel Tanszék Az eredmény elemzés szakaszai Eredményelemzés I szakasz /Tervezés/ II szakasz Végrehajtás Cél

Részletesebben

Gépi tanulás a gyakorlatban. Bevezetés

Gépi tanulás a gyakorlatban. Bevezetés Gépi tanulás a gyakorlatban Bevezetés Motiváció Nagyon gyakran találkozunk gépi tanuló alkalmazásokkal Spam detekció Karakter felismerés Fotó címkézés Szociális háló elemzés Piaci szegmentáció analízis

Részletesebben