értékel függvény: rátermettségi függvény (tness function)

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "értékel függvény: rátermettségi függvény (tness function)"

Átírás

1 Genetikus algoritmusok globális optimalizálás sok lehetséges megoldás közül keressük a legjobbat értékel függvény: rátermettségi függvény (tness function) populáció kiválasztjuk a legrátermettebb egyedeket keresztezési (rekombinációs) és mutációs m veletekkel aktualizáljuk keresztezés 1. szül szül utód utód mutáció eredeti mutált

2 A genetikus algoritmus f bb lépései: 1. (Kezdet) Véletlenszer en el állítunk egy N elem populációt (elemei egyedek v. kromoszómák). 2. (Rátermettség vizsgálata) Kiszámítjuk minden egyed rátermettségét. 3. (Új populáció el állítása) a. (Kiválasztás) Kiválasztunk két egyedet (bizonyos kritérium alapján). b. (Keresztezés) Keresztezzük a két kiválasztott egyedet. c. (Mutáció) A két utódegyeden mutációt hajtunk végre. 4. (Helyettesítés) Helyettesítjük a régi populációt az újjal. 5. (Ellen rzés) Ha a leállási feltétel igaz, akkor vége. Különben folytassuk a 2. lépéssel. 2

3 Kiválasztási kritériumok elitista kiválasztás: a legrátermettebb egyedek kiválasztása arányos kiválasztás: a legrátermettebbek a legvalószín bbek, de nem feltétlenül rulettkerék kiválasztás: a rátermettebbek nagyobb szeletet kapnak a rulettkeréken, amely véletlenszer en áll meg egy adott helyen skálázott kiválasztás: a rátermettségi függvény változik, ahogy az átlagos rátermettség n verseny típusú kiválasztás: az egyedek részcsoportjain belül mindenki mindenkivel versenyzik. Minden csoportból csak egy kerül tovább. rang szerinti kiválasztás: minden egyed kap egy rangot (a rátermettség alapján), és e szerint választódik ki, nem az abszolút különbség alapján generációs kiválasztás: csak új egyedek kerülnek az új generációba, a régiek kimaradnak stationárius állapotú kiválasztás: bizonyos kiválasztott egyedek visszakerülnek egy el z generációba, hogy a gyengébb egyedeket helyettesítsék hierarchikus kiválasztás: szinteken keresztül történik a kiválasztás 3

4 Hátizsákfeladat hátizsák kapacitása K s 1, s 2,..., s n tömeg tárgyak, az i-edikb l n i darab van (1 n i < ), e 1, e 2,..., e n érték ek, megoldás: x 1, x 2,..., x n feladat: { s1 x 1 + s 2 x s n x n K 0 x i n i, i = 1, 2,..., n max(e 1 x 1 + e 2 x e n x n ) Ha minden n i = 1, akkor 0-1 hátizsákfeladatról beszélünk. 0-1 hátizsákfeladat tömegek: (s 1, e 1 ) (s 2, e 2 ) (s n, e n ) megoldás: x 1 x 2 x n (kromoszóma) x i = 1, ha az i-edik tárgy bekerül a zsákba 4

5 Az algoritmus f lépései: 1. Inicializáljuk az els generációt (N kromoszóma) 2. repeat 3. minden kromoszómára számítsuk ki az össztömeget és rátermettséget (nyereséget) 4. if a kromoszómáknak kevesebb, mint 90%-a azonos nyereség 5. then válasszunk ki véletlenszer en két kromoszómát 6. keresztezzük ket, 7. majd hajtsunk végre mindkét utódon mutációt 8. until legalább 90% kromoszóma azonos nyereség vagy a lépésszám nagyobb a fels korlátnál A rátermettségi függvény Minden kromoszómára a populációból végezzük el: 1. while igaz 2. do számítsuk ki az össztömeget és nyereséget 3. if össztömeg K 4. then return össztömeg, nyereség 5. else véletlenszer en válasszunk ki egy 1-est 6. állítsuk 0-ra a megfelel értéket 5

6 Verseny típusú (csoportos) kiválasztás rátermettségi függvény f(i) az i-edik tárgy rátermettségi függvénye i f(i) Csökken sorrendben f értéke szerint a tárgyak indexe: csoportra osztjuk a tömböt (indexek alapján): Véletlenszer en választunk: 50%-os valószín séggel választunk az 1. csoportból, 30%-os valószín séggel választunk a 2. csoportból, 15%-os valószín séggel választunk a 3. csoportból, 5%-os valószín séggel választunk a 4. csoportból. 6

7 Véletlenszer en generálunk egy 0 99 közötti számot, ha 0 49 közötti, akkor az 1. csoportból választunk véletlenszer en egy elemet, ha közötti, akkor az 2. csoportból választunk véletlenszer en egy elemet, ha közötti, akkor az 3. csoportból választunk véletlenszer en egy elemet, ha közötti, akkor az 4. csoportból választunk véletlenszer en egy elemet. 7

8 Utazó ügynök problémája (Traveling Salesman Problem) n város: 1, 2, 3,..., n, közöttük adott távolsággal feladat: legrövidebb körút meghatározása Kromoszóma: az 1, 2, 3,..., n számok egy permutációja. Egyéb feladatok: függvények maximuma gráfszínezés Három példa (Javaban): 8

9 A genetikus algoritmus el nyei gyors kis er forrásigény egyszer és olcsó implementáció globális optimumot talál A genetikus algoritmus hátrányai matematikailag nem bizonyítható a megoldás helyessége nem mindig konvergál 9

angolul: greedy algorithms, románul: algoritmi greedy

angolul: greedy algorithms, románul: algoritmi greedy Mohó algoritmusok angolul: greedy algorithms, románul: algoritmi greedy 1. feladat. Gazdaságos telefonhálózat építése Bizonyos városok között lehet direkt telefonkapcsolatot kiépíteni, pl. x és y város

Részletesebben

Algoritmusok bonyolultsága

Algoritmusok bonyolultsága Algoritmusok bonyolultsága 9. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 18 Közelítő algoritmusok ládapakolás (bin packing) Adott n tárgy (s i tömeggel) és végtelen sok 1 kapacitású láda

Részletesebben

Amortizációs költségelemzés

Amortizációs költségelemzés Amortizációs költségelemzés Amennyiben műveleteknek egy M 1,...,M m sorozatának a futási idejét akarjuk meghatározni, akkor egy lehetőség, hogy külön-külön minden egyes művelet futási idejét kifejezzük

Részletesebben

Simon Károly Babes Bolyai Tudományegyetem ksimon@cs.ubbcluj.com

Simon Károly Babes Bolyai Tudományegyetem ksimon@cs.ubbcluj.com Evolúciósalgoritmusokalkalmazása azadatelemzésben SimonKároly Babes BolyaiTudományegyetem ksimon@cs.ubbcluj.com 1 Evolúciósszámítástechnikaimodellek Evolúciósszámítástechnika:biológiaiinspirációjúkeresésiés

Részletesebben

Kupac adatszerkezet. A[i] bal fia A[2i] A[i] jobb fia A[2i + 1]

Kupac adatszerkezet. A[i] bal fia A[2i] A[i] jobb fia A[2i + 1] Kupac adatszerkezet A bináris kupac egy majdnem teljes bináris fa, amely minden szintjén teljesen kitöltött kivéve a legalacsonyabb szintet, ahol balról jobbra haladva egy adott csúcsig vannak elemek.

Részletesebben

SZÁLLÍTÁSI FELADAT KÖRUTAZÁSI MODELL WINDOWS QUANTITATIVE SUPPORT BUSINESS PROGRAMMAL (QSB) JEGYZET Ábragyűjtemény Dr. Réger Béla LÉPÉSRŐL - LÉPÉSRE

SZÁLLÍTÁSI FELADAT KÖRUTAZÁSI MODELL WINDOWS QUANTITATIVE SUPPORT BUSINESS PROGRAMMAL (QSB) JEGYZET Ábragyűjtemény Dr. Réger Béla LÉPÉSRŐL - LÉPÉSRE SZÁLLÍTÁSI FELADAT KÖRUTAZÁSI MODELL WINDOWS QUANTITATIVE SUPPORT BUSINESS PROGRAMMAL (QSB) JEGYZET Ábragyűjtemény Dr. Réger Béla LÉPÉSRŐL - LÉPÉSRE KÖRUTAZÁSI MODELL AVAGY AZ UTAZÓÜGYNÖK PROBLÉMÁJA Induló

Részletesebben

Osztott jáva programok automatikus tesztelése. Matkó Imre BBTE, Kolozsvár Informatika szak, IV. Év 2007 január

Osztott jáva programok automatikus tesztelése. Matkó Imre BBTE, Kolozsvár Informatika szak, IV. Év 2007 január Osztott jáva programok automatikus tesztelése Matkó Imre BBTE, Kolozsvár Informatika szak, IV. Év 2007 január Osztott alkalmazások Automatikus tesztelés Tesztelés heurisztikus zaj keltés Tesztelés genetikus

Részletesebben

Intelligens Rendszerek Elmélete. Párhuzamos keresés genetikus algoritmusokkal. A genetikus algoritmus működése. Az élet információ tárolói

Intelligens Rendszerek Elmélete. Párhuzamos keresés genetikus algoritmusokkal. A genetikus algoritmus működése. Az élet információ tárolói Intelligens Rendszerek Elmélete dr. Kutor László Párhuzamos keresés genetikus algoritmusokkal http://mobil.nik.bmf.hu/tantargyak/ire.html login: ire jelszó: IRE07 IRE 5/ Természetes és mesterséges genetikus

Részletesebben

Programozási módszertan. Dinamikus programozás: Nyomtatási feladat A leghosszabb közös részsorozat

Programozási módszertan. Dinamikus programozás: Nyomtatási feladat A leghosszabb közös részsorozat PM-04 p. 1/18 Programozási módszertan Dinamikus programozás: Nyomtatási feladat A leghosszabb közös részsorozat Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu

Részletesebben

Intelligens technikák k a

Intelligens technikák k a Intelligens technikák k a döntéstámogatásban Genetikus algoritmusok Starkné Dr. Werner Ágnes Bevezetés A 60-as években merült fel először az a gondolat, hogy az evolúcióban megfigyelhető szelekciós folyamatok

Részletesebben

Mesterséges intelligencia 3. laborgyakorlat

Mesterséges intelligencia 3. laborgyakorlat Mesterséges intelligencia 3. laborgyakorlat Kétszemélyes játékok - Minimax A következő típusú játékok megoldásával foglalkozunk: (a) kétszemélyes, (b) determinisztikus, (c) zéróösszegű, (d) teljes információjú.

Részletesebben

Az Összetett hálózatok vizsgálata elektronikus tantárgy részletes követeleményrendszere

Az Összetett hálózatok vizsgálata elektronikus tantárgy részletes követeleményrendszere Az Összetett hálózatok vizsgálata elektronikus tantárgy részletes követeleményrendszere Horváth Árpád 2014. február 7. A tárgy célja: Az összetett hálózatok fogalomrendszerének használata a tudomány több

Részletesebben

HÁROM KÖR A HÁROMSZÖGBEN

HÁROM KÖR A HÁROMSZÖGBEN Debreceni Egyetem Informatikai Kar HÁROM KÖR A HÁROMSZÖGBEN Konzulens: dr. Aszalós László egyetemi adjunktus Készítette: Király Péter programtervező matematikus szakos hallgató DEBRECEN, 008 Tartalomjegyzék

Részletesebben

Gráfelméleti feladatok. c f

Gráfelméleti feladatok. c f Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,

Részletesebben

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám. 1 Az utazó ügynök problémája Utazó ügynök feladat Adott n számú város és a városokat összekötő utak, amelyeknek ismert a hossza. Adott továbbá egy ügynök, akinek adott városból kiindulva, minden várost

Részletesebben

Szerző. Varga Péter ETR azonosító: VAPQAAI.ELTE Email cím: Név: vp.05@hotmail.com Kurzuskód:

Szerző. Varga Péter ETR azonosító: VAPQAAI.ELTE Email cím: Név: vp.05@hotmail.com Kurzuskód: Szerző Név: Varga Péter ETR azonosító: VAPQAAI.ELTE Email cím: vp.05@hotmail.com Kurzuskód: IP-08PAEG/27 Gyakorlatvezető neve: Kőhegyi János Feladatsorszám: 20 1 Tartalom Szerző... 1 Felhasználói dokumentáció...

Részletesebben

Mesterséges Intelligencia I. (I602, IB602)

Mesterséges Intelligencia I. (I602, IB602) Dr. Jelasity Márk Mesterséges Intelligencia I. (I602, IB602) harmadik (2008. szeptember 15-i) előadásának jegyzete Készítette: Papp Tamás PATLACT.SZE KPM V. HEURISZTIKUS FÜGGVÉNYEK ELŐÁLLÍTÁSA Nagyon fontos

Részletesebben

Adatszerkezetek és algoritmusok

Adatszerkezetek és algoritmusok 2009. november 13. Ismétlés El z órai anyagok áttekintése Ismétlés Specikáció Típusok, kifejezések, m veletek, adatok ábrázolása, típusabsztakció Vezérlési szerkezetek Függvények, paraméterátadás, rekurziók

Részletesebben

Számítógépes geometria (mester kurzus)

Számítógépes geometria (mester kurzus) 2010 sz, Debreceni Egyetem Csuklós szerkezetek animációja (Kép 1985-b l: Tony de Peltrie) Csontváz-modellek Csuklós szerkezet (robotkar) A robotkar részei: csuklók (joints) rotációs prizmatikus (transzlációs)

Részletesebben

8. Mohó algoritmusok. 8.1. Egy esemény-kiválasztási probléma. Az esemény-kiválasztási probléma optimális részproblémák szerkezete

8. Mohó algoritmusok. 8.1. Egy esemény-kiválasztási probléma. Az esemény-kiválasztási probléma optimális részproblémák szerkezete 8. Mohó algoritmusok Optimalizálási probléma megoldására szolgáló algoritmus gyakran olyan lépések sorozatából áll, ahol minden lépésben adott halmazból választhatunk. Sok optimalizálási probléma esetén

Részletesebben

Programozási segédlet

Programozási segédlet Programozási segédlet Programozási tételek Az alábbiakban leírtam néhány alap algoritmust, amit ismernie kell annak, aki programozásra adja a fejét. A lista korántsem teljes, ám ennyi elég kell legyen

Részletesebben

HÁLÓZATSZERŰEN MŰKÖDŐ LOGISZTIKÁVAL INTEGRÁLT TERMELÉSÜTEMEZÉS MEGOLDÁSA GENETIKUS ALGORITMUS ALKALMAZÁSÁVAL. OLÁH Béla

HÁLÓZATSZERŰEN MŰKÖDŐ LOGISZTIKÁVAL INTEGRÁLT TERMELÉSÜTEMEZÉS MEGOLDÁSA GENETIKUS ALGORITMUS ALKALMAZÁSÁVAL. OLÁH Béla HÁLÓZATSZERŰEN MŰKÖDŐ LOGISZTIKÁVAL INTEGRÁLT TERMELÉSÜTEMEZÉS MEGOLDÁSA GENETIKUS ALGORITMUS ALKALMAZÁSÁVAL OLÁH Béla A TERMELÉSÜTEMEZÉS MEGFOGALMAZÁSA Flow shop: adott n számú termék, melyeken m számú

Részletesebben

Kriptográfiai algoritmus implementációk időalapú támadása Endrődi Csilla, Csorba Kristóf BME MIT

Kriptográfiai algoritmus implementációk időalapú támadása Endrődi Csilla, Csorba Kristóf BME MIT NetworkShop 2004 2004.. április 7. Kriptográfiai algoritmus implementációk időalapú támadása Endrődi Csilla, Csorba Kristóf BME MIT Bevezetés Ma használt algoritmusok matematikailag alaposan teszteltek

Részletesebben

Érdekes informatika feladatok

Érdekes informatika feladatok K. L. Érdekes informatika feladatok XXVIII. rész A konvex burkoló (burok) Legyen S a Z sík egy ponthalmaza. S konvex, ha tetszőleges A, B S-beli pont esetén az AB szakasz is S-be esik. Legyen S a Z sík

Részletesebben

Nincs öntermékenyítés, de a véges méret miatt a párosodó egyedek bizonyos valószínűséggel rokonok, ezért kerül egy

Nincs öntermékenyítés, de a véges méret miatt a párosodó egyedek bizonyos valószínűséggel rokonok, ezért kerül egy Véges populációméret okozta beltenyésztettség incs öntermékenyítés, de a véges méret miatt a párosodó egyedek bizonyos valószínűséggel rokonok, ezért kerül egy utódba 2 IBD allél Előadásról: -F t (-/2)

Részletesebben

Érdekes informatika feladatok

Érdekes informatika feladatok A keres,kkel és adatbázissal ellátott lengyel honlap számos díjat kapott: Spirit of Delphi '98, Delphi Community Award, Poland on the Internet, Golden Bagel Award stb. Az itt megtalálható komponenseket

Részletesebben

Pál László. Sapientia EMTE, Csíkszereda, 2014/2015

Pál László. Sapientia EMTE, Csíkszereda, 2014/2015 Objektumorientált programozás Pál László Sapientia EMTE, Csíkszereda, 2014/2015 2. ELİADÁS Visual Basic bevezetı Visual Basic.NET nyelvi elemek 2 Visual Basic.NET programozási nyelv Nyelvi elemek: Általában

Részletesebben

Heurisztikák algoritmusok ütemezési problémákra. 1. Állapottér és a megoldások kezelése

Heurisztikák algoritmusok ütemezési problémákra. 1. Állapottér és a megoldások kezelése Heurisztikák algoritmusok ütemezési problémákra 1. Állapottér és a megoldások kezelése Számos nehéz ütemezési probléma esetén az exponenciális idejű optimális megoldást adó algoritmusok rendkívül nagy

Részletesebben

A FLOW-SHOP ÜTEMEZÉSI PROBLÉMA MEGFOGALMAZÁSA

A FLOW-SHOP ÜTEMEZÉSI PROBLÉMA MEGFOGALMAZÁSA Szolnoki Tudományos Közlemények XV. Szolnok, 2011. Oláh Béla 1 GENETIKUS OPERÁTOROK ÉRZÉKENYSÉGVIZSGÁLATA Jelen tudományos munka célkitűzése egy általam már korábban elkészített és publikált permutáció

Részletesebben

Szkriptnyelvek. 1. UNIX shell

Szkriptnyelvek. 1. UNIX shell Szkriptnyelvek 1. UNIX shell Szkriptek futtatása Parancsértelmez ő shell script neve paraméterek shell script neve paraméterek Ebben az esetben a szkript tartalmazza a parancsértelmezőt: #!/bin/bash Szkriptek

Részletesebben

FLOW-SHOP ÜTEMEZÉSI FELADATOKAT MEGOLDÓ GENETIKUS ALGORITMUS MUTÁCIÓ OPERÁTORAINAK ÉRZÉKENYSÉGVIZSGÁLATA

FLOW-SHOP ÜTEMEZÉSI FELADATOKAT MEGOLDÓ GENETIKUS ALGORITMUS MUTÁCIÓ OPERÁTORAINAK ÉRZÉKENYSÉGVIZSGÁLATA Miskolci Egyetem, Multidiszciplináris tudományok, 1. kötet (2011) 1. szám, pp. 95-102. FLOW-SHOP ÜTEMEZÉSI FELADATOKAT MEGOLDÓ GENETIKUS ALGORITMUS MUTÁCIÓ OPERÁTORAINAK ÉRZÉKENYSÉGVIZSGÁLATA Oláh Béla

Részletesebben

Számláló rendezés. Példa

Számláló rendezés. Példa Alsó korlát rendezési algoritmusokra Minden olyan rendezési algoritmusnak a futását, amely elempárok egymással való összehasonlítása alapján működik leírja egy bináris döntési fa. Az algoritmus által a

Részletesebben

KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június

KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június KÖZGAZDASÁGTAN I. Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

Algoritmusok és adatszerkezetek II.

Algoritmusok és adatszerkezetek II. Algoritmusok és adatszerkezetek II. Horváth Gyula Szegedi Tudományegyetem Természettudományi és Informatikai Kar horvath@inf.u-szeged.hu 3. Kiegyensúlyozott keresőfák A T tulajdonság magasság-egyensúlyozó

Részletesebben

Gyakorlatok. P (n) = P (n 1) + 2P (n 2) + P (n 3) ha n 4, (utolsó lépésként l, hl, u, hu-t léphetünk).

Gyakorlatok. P (n) = P (n 1) + 2P (n 2) + P (n 3) ha n 4, (utolsó lépésként l, hl, u, hu-t léphetünk). Gyakorlatok Din 1 Jelölje P (n) azt a számot, ahányféleképpen mehetünk le egy n lépcsőfokból álló lépcsőn a következő mozgáselemek egy sorozatával (zárójelben, hogy mennyit mozgunk az adott elemmel): lépés

Részletesebben

Társadalmi és gazdasági hálózatok modellezése

Társadalmi és gazdasági hálózatok modellezése Társadalmi és gazdasági hálózatok modellezése 6. el adás Hálózatok növekedési modelljei: `uniform és preferential attachment' El adó: London András 2015. október 12. Hogyan n nek a hálózatok? Statikus

Részletesebben

Rendezési algoritmusok belső rendezés külső rendezés

Rendezési algoritmusok belső rendezés külső rendezés Rendezési algoritmusok belső rendezés külső rendezés belső rendezési algoritmusok buborékrendezés (Bubble sort) kiválasztó rendezés (Selection sort) számláló rendezés (Counting sort) beszúró rendezés (Insertion

Részletesebben

Bevezetés a programozásba I.

Bevezetés a programozásba I. Bevezetés a programozásba I. 5. gyakorlat Surányi Márton PPKE-ITK 2010.10.05. C++ A C++ egy magas szint programozási nyelv. A legels változatot Bjarne Stroutstrup dolgozta ki 1973 és 1985 között, a C nyelvb

Részletesebben

A Markowitz modell: kvadratikus programozás

A Markowitz modell: kvadratikus programozás A Markowitz modell: kvadratikus programozás Harry Markowitz 1990-ben kapott Közgazdasági Nobel díjat a portfolió optimalizálási modelljéért. Ld. http://en.wikipedia.org/wiki/harry_markowitz Ennek a legegyszer

Részletesebben

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját! Taylor-polinomok 205. április.. Alapfeladatok. Feladat: Írjuk fel az fx) = e 2x függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot kétféle úton is megoldjuk. Az els megoldásban induljunk el

Részletesebben

A genetikus algoritmus, mint a részletes modell többszempontú és többérdekű "optimálásának" általános és robosztus módszere

A genetikus algoritmus, mint a részletes modell többszempontú és többérdekű optimálásának általános és robosztus módszere A genetikus algoritmus, mint a részletes modell többszempontú és többérdekű "optimálásának" általános és robosztus módszere Kaposvári Egyetem, Informatika Tanszék I. Kaposvári Gazdaságtudományi Konferencia

Részletesebben

Villamosmérnök A4 4. gyakorlat (2012. 10. 01.-02.) Várható érték, szórás, módusz

Villamosmérnök A4 4. gyakorlat (2012. 10. 01.-02.) Várható érték, szórás, módusz Villamosmérnök A4 4. gyakorlat (0. 0. 0.-0.) Várható érték, szórás, módusz. A k 0, (k,,, 4) diszkrét eloszlásnak (itt P(X k)) mennyi a (a) várható értéke, (b) módusza, (c) második momentuma, (d) szórása?

Részletesebben

Java programozási nyelv

Java programozási nyelv Java programozási nyelv 2. rész Vezérlő szerkezetek Nyugat-Magyarországi Egyetem Faipari Mérnöki Kar Informatikai Intézet Soós Sándor 2005. szeptember A Java programozási nyelv Soós Sándor 1/23 Tartalomjegyzék

Részletesebben

Adatszerkezetek 7a. Dr. IványiPéter

Adatszerkezetek 7a. Dr. IványiPéter Adatszerkezetek 7a. Dr. IványiPéter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér () Nincsennek hurkok!!! 2 Bináris fák Azokat a

Részletesebben

Országzászlók (2015. május 27., Sz14)

Országzászlók (2015. május 27., Sz14) Országzászlók (2015. május 27., Sz14) Írjon programot, amely a standard bemenetről állományvégjelig soronként egy-egy ország zászlójára vonatkozó adatokat olvas be! Az egyes zászlóknál azt tartjuk nyilván,

Részletesebben

Mesterséges intelligencia 1 előadások

Mesterséges intelligencia 1 előadások VÁRTERÉSZ MAGDA Mesterséges intelligencia 1 előadások 2006/07-es tanév Tartalomjegyzék 1. A problémareprezentáció 4 1.1. Az állapottér-reprezentáció.................................................. 5

Részletesebben

Partíció probléma rekurzíómemorizálással

Partíció probléma rekurzíómemorizálással Partíció probléma rekurzíómemorizálással A partíciószám rekurzív algoritmusa Ω(2 n ) műveletet végez, pedig a megoldandó részfeladatatok száma sokkal kisebb O(n 2 ). A probléma, hogy bizonyos már megoldott

Részletesebben

33 582 04 1000 00 00 Festő, mázoló és tapétázó 4 Festő, mázoló és tapétázó 4 33 582 04 0100 31 02 Tapétázó Festő, mázoló és tapétázó 4 2/42

33 582 04 1000 00 00 Festő, mázoló és tapétázó 4 Festő, mázoló és tapétázó 4 33 582 04 0100 31 02 Tapétázó Festő, mázoló és tapétázó 4 2/42 A /200 (II. 2.) SzMM rendelettel módosított 1/200 (II. 1.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

P 2 P 1. 4.1 ábra Az f(x) függvény globális minimuma (P 1 ) és egy lokális minimuma (P 2 ).

P 2 P 1. 4.1 ábra Az f(x) függvény globális minimuma (P 1 ) és egy lokális minimuma (P 2 ). Paláncz Béla - Numerikus Módszerek - 211-4. Optimalizálás 4 Optimalizálás Bevezetés Az optimalizáció, egy függvény szélsőértéke helyének meghatározása, talán a legfontosabb numerikus eljárások közé tartozik.

Részletesebben

Gyors tippek linuxra

Gyors tippek linuxra Gyors tippek linuxra Linux az oktatásban rendezvénysorozat előadó: Rózsár Gábor http://lok.ini.hu 2004. április 23. Mit adhat ez az előadás? Mint a címe is jelzi gyors és talán hasznos tippeket adhat olyan

Részletesebben

Adatszerkezetek 2. Dr. Iványi Péter

Adatszerkezetek 2. Dr. Iványi Péter Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat

Részletesebben

Hálózatszámítási modellek

Hálózatszámítási modellek Hálózatszámítási modellek Dr. Rácz Ervin egyetemi docens Óbudai Egyetem, Kandó Kálmán Villamosmérnöki Kar Villamosenergetikai Intézet HÁLÓZATBELI FOLYAM VAGY ÁRAMLÁS ÁLTALÁNOS PROBLÉMÁJA Általános feladat

Részletesebben

54 523 04 1000 00 00 Automatikai technikus Automatikai technikus

54 523 04 1000 00 00 Automatikai technikus Automatikai technikus Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/10. (IV. 22.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

i=1 i+3n = n(2n+1). j=1 2 j < 4 2 i+2 16 k, azaz az algoritmus valóban konstans versenyképes.

i=1 i+3n = n(2n+1). j=1 2 j < 4 2 i+2 16 k, azaz az algoritmus valóban konstans versenyképes. 1. Feladat Adott egy parkoló, ahol egy professzor a kocsiját tartja. A parkolóhelyeket egy n és n közötti szám azonosítja, az azonosító szerint helyezkednek el balról jobbra. A professzor kijön az egyetemr

Részletesebben

DEBRECENI EGYETEM AGRÁRTUDOMÁNYI CENTRUM AGRÁRGAZDASÁGI ÉS VIDÉKFEJLESZTÉSI KAR

DEBRECENI EGYETEM AGRÁRTUDOMÁNYI CENTRUM AGRÁRGAZDASÁGI ÉS VIDÉKFEJLESZTÉSI KAR DEBRECENI EGYETEM AGRÁRTUDOMÁNYI CENTRUM AGRÁRGAZDASÁGI ÉS VIDÉKFEJLESZTÉSI KAR Gazdasági és Agrárinformatikai Tanszék Dr. Herdon Miklós Genetikus algoritmus alapú elosztott optimalizáló eljárások alkalmazása

Részletesebben

EuroOffice Optimalizáló (Solver)

EuroOffice Optimalizáló (Solver) 1. oldal EuroOffice Optimalizáló (Solver) Az EuroOffice Optimalizáló egy OpenOffice.org bővítmény, ami gyors algoritmusokat kínál lineáris programozási és szállítási feladatok megoldására. Szimplex módszer

Részletesebben

Internet programozása. 3. előadás

Internet programozása. 3. előadás Internet programozása 3. előadás Áttekintés Hogyan használjuk az if szerkezetet arra, hogy bizonyos sorok csak adott feltételek teljesülése mellett hajtódjanak végre? Hogyan adhatunk meg csak bizonyos

Részletesebben

Egy magyarországi élelmiszergyártó üzem termelésének és termelés-kiszolgálásának szimulációs vizsgálata, tapasztalatai

Egy magyarországi élelmiszergyártó üzem termelésének és termelés-kiszolgálásának szimulációs vizsgálata, tapasztalatai Egy magyarországi élelmiszergyártó üzem termelésének és termelés-kiszolgálásának szimulációs vizsgálata, tapasztalatai Simon László, logisztikai rendszertervező, ECO-LOG-ING Bt. A feladatok jelentős részénél

Részletesebben

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t Ellenőrző kérdések 2. Kis dolgozat kérdései 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t 37. Ha t szintű indexet használunk,

Részletesebben

Pásztor Attila. Algoritmizálás és programozás tankönyv az emeltszintű érettségihez

Pásztor Attila. Algoritmizálás és programozás tankönyv az emeltszintű érettségihez Pásztor Attila Algoritmizálás és programozás tankönyv az emeltszintű érettségihez 8. ELEMI ALGORITMUSOK II...88 8.1. MÁSOLÁS...88 8.2. KIVÁLOGATÁS...89 8.3. SZÉTVÁLOGATÁS...91 8.4. METSZET (KÖZÖS RÉSZ)...93

Részletesebben

Oláh Béla 1. A cikket lektorálta: Prof. Dr. Pokorádi László, Debreceni Egyetem egyetemi tanár, műszaki tudomány kandidátusa

Oláh Béla 1. A cikket lektorálta: Prof. Dr. Pokorádi László, Debreceni Egyetem egyetemi tanár, műszaki tudomány kandidátusa Szolnoki Tudományos Közlemények XIV. Szolnok, 2010. Oláh Béla 1 FLOW-SHOP TERMELÉSÜTEMEZÉSI FELADATOKAT MEGOLDÓ GENETIKUS ALGORITMUS ÉRZÉKENYSÉGVIZSGÁLATA Jelen tudományos munka célkitűzése a szerző által

Részletesebben

Szakdolgozat. Miskolci Egyetem. A genetikus algoritmus alkalmazási lehetőségei. Készítette: Biró Szilárd 5. Programtervező informatikus

Szakdolgozat. Miskolci Egyetem. A genetikus algoritmus alkalmazási lehetőségei. Készítette: Biró Szilárd 5. Programtervező informatikus Szakdolgozat Miskolci Egyetem A genetikus algoritmus alkalmazási lehetőségei Készítette: Biró Szilárd 5. Programtervező informatikus Témavezető: Dr. Körei Attila Miskolc, 2013 Miskolci Egyetem Gépészmérnöki

Részletesebben

I. ALAPALGORITMUSOK. I. Pszeudokódban beolvas n prim igaz minden i 2,gyök(n) végezd el ha n % i = 0 akkor prim hamis

I. ALAPALGORITMUSOK. I. Pszeudokódban beolvas n prim igaz minden i 2,gyök(n) végezd el ha n % i = 0 akkor prim hamis I. ALAPALGORITMUSOK 1. Prímszámvizsgálat Adott egy n természetes szám. Írjunk algoritmust, amely eldönti, hogy prímszám-e vagy sem! Egy számról úgy fogjuk eldönteni, hogy prímszám-e, hogy megvizsgáljuk,

Részletesebben

Az utazó ügynök probléma algoritmusai

Az utazó ügynök probléma algoritmusai Eötvös Loránd Tudományegyetem Természettudományi Kar Az utazó ügynök probléma algoritmusai Szakdolgozat Szabó Tamás Matematika BSc Matematikai elemz szakirány Témavezet : Lukács András Számítógéptudományi

Részletesebben

Zenegenerálás, majdnem természetes zene. Bernád Kinga és Roth Róbert

Zenegenerálás, majdnem természetes zene. Bernád Kinga és Roth Róbert Zenegenerálás, majdnem természetes zene Bernád Kinga és Roth Róbert Tartalom 1. Bevezető 2. Eddigi próbálkozások 3. Módszerek 4. Algoritmus bemutatása 5. Összefoglaló (C) Bernád Kinga, Roth Róbert 2 1.

Részletesebben

VÁLLALATGAZDASÁGTAN II. Döntési Alapfogalmak

VÁLLALATGAZDASÁGTAN II. Döntési Alapfogalmak Vállalkozási VÁLLALATGAZDASÁGTAN II. Tantárgyfelelős: Prof. Dr. Illés B. Csaba Előadó: Dr. Gyenge Balázs Az ökonómiai döntés fogalma Vállalat Környezet Döntések sorozata Jövő jövőre vonatkozik törekszik

Részletesebben

Algoritmusok pszeudókód... 1

Algoritmusok pszeudókód... 1 Tartalomjegyzék Algoritmusok pszeudókód... 1 Abszolút érték... 1 Hányados ismételt kivonással... 1 Legnagyobb közös osztó... 2 Páros számok szűrése... 2 Palindrom számok... 2 Orosz szorzás... 3 Minimum

Részletesebben

1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI

1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI / Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI Normál feladatok megoldása szimplex módszerrel / / Normál feladatok megoldása szimplex

Részletesebben

REGIONÁLIS GAZDASÁGTAN B

REGIONÁLIS GAZDASÁGTAN B REGIONÁLIS GAZDASÁGTAN B ELTE TáTK Közgazdaságtudományi Tanszék Regionális gazdaságtan B A MONOPOLISZTIKUS VERSENY ÉS A DIXITSTIGLITZ-MODELL Készítette: Békés Gábor és Rózsás Sarolta Szakmai felel s:

Részletesebben

Megoldott feladatok. Informatika

Megoldott feladatok. Informatika Megoldott feladatok Informatika I.81. Egy autóbuszjegyen az n*n-es négyzethálóban összesen k lyukasztás lehet. Ha a buszjegyet fordítva helyezzük a lyukasztóba, akkor a jegy tükörképét kapjuk. (Csak egyféleképpen

Részletesebben

Egyszerű programozási tételek

Egyszerű programozási tételek Egyszerű programozási tételek Sorozatszámítás tétele Például az X tömbben kövek súlyát tároljuk. Ha ki kellene számolni az összsúlyt, akkor az S = f(s, X(i)) helyére S = S + X(i) kell írni. Az f0 tartalmazza

Részletesebben

I. BEVEZETÉS II. AZ UTAZÓ ÜGYNÖK PROBLÉMA ÉS MEGOLDÁSI MÓDSZEREI

I. BEVEZETÉS II. AZ UTAZÓ ÜGYNÖK PROBLÉMA ÉS MEGOLDÁSI MÓDSZEREI Szolnoki Tudományos Közlemények XI. Szolnok, 2007. OLÁH BÉLA 1 A KÖRUTAZÁSI PROBLÉMÁK MEGOLDÁSÁRA SZOLGÁLÓ DACEY, ÉS DACEY-VOGEL MÓDSZEREK ÖSSZEHASONLÍTÁSA I. BEVEZETÉS Dolgozatom célja, a körutazási probléma

Részletesebben

Termeléstervezés és -irányítás Termelés és kapacitás tervezés Xpress-Mosel FICO Xpress Optimization Suite

Termeléstervezés és -irányítás Termelés és kapacitás tervezés Xpress-Mosel FICO Xpress Optimization Suite Termeléstervezés és -irányítás Termelés és kapacitás tervezés Xpress-Mosel FICO Xpress Optimization Suite Alkalmazásával 214 Monostori László egyetemi tanár Váncza József egyetemi docens 1 Probléma Igények

Részletesebben

Programozás I gyakorlat. 5. Struktúrák

Programozás I gyakorlat. 5. Struktúrák Programozás I gyakorlat 5. Struktúrák Bemelegítés Írj programot, amely beolvassa 5 autó adatait, majd kiírja az adatokat a képernyőre. Egy autóról a következőket tároljuk: maximális sebesség fogyasztás

Részletesebben

Gráfelméleti modell alkalmazása épít ipari kivitelezés ütemezésére

Gráfelméleti modell alkalmazása épít ipari kivitelezés ütemezésére Tamaga István Gráfelméleti modell alkalmazása épít ipari kivitelezés ütemezésére modell Készítsük el egy épít ipari kivitelezés gráfelméleti modelljét! Ekkor a kivitelezést megfeleltetjük egy gráfnak,

Részletesebben

Programozás I. házi feladat

Programozás I. házi feladat Programozás I. házi feladat 2013. 6. hét, 1. rész A feladatsor 4 feladatot tartalmaz, amelyeket egy közös forráskódban kell megvalósítani. Annak érdekében, hogy a tesztelő egymástól függetlenül tudja tesztelni

Részletesebben

Bevezetés a játékelméletbe Kétszemélyes zérusösszegű mátrixjáték, optimális stratégia

Bevezetés a játékelméletbe Kétszemélyes zérusösszegű mátrixjáték, optimális stratégia Bevezetés a játékelméletbe Kétszemélyes zérusösszegű mátrixjáték, optimális stratégia Készítette: Dr. Ábrahám István A játékelmélet a 2. század közepén alakult ki. (Neumann J., O. Morgenstern). Gyakran

Részletesebben

INFORMATIKAI ALAPISMERETEK

INFORMATIKAI ALAPISMERETEK Informatikai alapismeretek középszint 0812 ÉRETTSÉGI VIZSGA 2011. október 17. INFORMATIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM

Részletesebben

Szövegek C++ -ban, a string osztály

Szövegek C++ -ban, a string osztály Szövegek C++ -ban, a string osztály A string osztály a Szabványos C++ könyvtár (Standard Template Library) része és bár az objektum-orientált programozásról, az osztályokról, csak később esik szó, a string

Részletesebben

Gyakorló feladatok adatbányászati technikák tantárgyhoz

Gyakorló feladatok adatbányászati technikák tantárgyhoz Gyakorló feladatok adatbányászati technikák tantárgyhoz Buza Krisztián Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Klaszterezés kiértékelése Feladat:

Részletesebben

INFORMATIKA 1-4. évfolyam

INFORMATIKA 1-4. évfolyam INFORMATIKA 1-4. évfolyam Célok - A számítógépes munkaszabályainak és a legfontosabb balesetvédelmi előírások megismerése. - A számítógép és perifériáinak kezelési tudnivalóinak megismerése. - Az életkoruknak

Részletesebben

19. AZ ÖSSZEHASONLÍTÁSOS RENDEZÉSEK MŰVELETIGÉNYÉNEK ALSÓ KORLÁTJAI

19. AZ ÖSSZEHASONLÍTÁSOS RENDEZÉSEK MŰVELETIGÉNYÉNEK ALSÓ KORLÁTJAI 19. AZ ÖSSZEHASONLÍTÁSOS RENDEZÉSEK MŰVELETIGÉNYÉNEK ALSÓ KORLÁTJAI Ebben a fejezetben aszimptotikus (nagyságrendi) alsó korlátot adunk az összehasonlításokat használó rendező eljárások lépésszámára. Pontosabban,

Részletesebben

Párhuzamos programozási feladatok

Párhuzamos programozási feladatok Párhuzamos programozási feladatok BMF NIK 2008. tavasz B. Wilkinson és M. Allen oktatási anyaga alapján készült Gravitációs N-test probléma Fizikai törvények alapján testek helyzetének, mozgásjellemzőinek

Részletesebben

1. Feladat: beolvas két számot úgy, hogy a-ba kerüljön a nagyobb

1. Feladat: beolvas két számot úgy, hogy a-ba kerüljön a nagyobb 1. Feladat: beolvas két számot úgy, hogy a-ba kerüljön a nagyobb #include main() { int a, b; printf( "a=" ); scanf( "%d", &a ); printf( "b=" ); scanf( "%d", &b ); if( a< b ) { inttmp = a; a =

Részletesebben

Az első fájlos program

Az első fájlos program Az első fájlos program Tartalom Az első fájlos program... 1 1. Első lépés... 2 1.1. A feladat... 2 1.2. Specifikáció... 2 1.3. Algoritmus... 3 1.4. Kód... 4 2. Második lépés... 7 2.1. A feladat... 7 2.2.

Részletesebben

EÖTVÖS LORÁND TUDOMÁNYEGYETEM KLASSZIFIKÁCIÓ AZ ADATBÁNYÁSZATBAN

EÖTVÖS LORÁND TUDOMÁNYEGYETEM KLASSZIFIKÁCIÓ AZ ADATBÁNYÁSZATBAN EÖTVÖS LORÁND TUDOMÁNYEGYETEM KLASSZIFIKÁCIÓ AZ ADATBÁNYÁSZATBAN SZAKDOLGOZAT Készítette: Bényász Melinda Matematika Bsc Matematikai elemz szakirány Témavezet : Kósa Balázs Informatikai Kar Információs

Részletesebben

Programozási tételek. Dr. Iványi Péter

Programozási tételek. Dr. Iványi Péter Programozási tételek Dr. Iványi Péter 1 Programozási tételek A programozási tételek olyan általános algoritmusok, melyekkel programozás során gyakran találkozunk. Az algoritmusok általában számsorozatokkal,

Részletesebben

Operációs rendszerek. 3. előadás Ütemezés

Operációs rendszerek. 3. előadás Ütemezés Operációs rendszerek 3. előadás Ütemezés 1 Szemaforok Speciális változók, melyeket csak a két, hozzájuk tartozó oszthatatlan művelettel lehet kezelni Down: while s < 1 do üres_utasítás; s := s - 1; Up:

Részletesebben

BUSZI itemizált feladatok web felülete

BUSZI itemizált feladatok web felülete BUSZI itemizált feladatok web felülete Felhasználói dokumentáció az itemizált feladatok statisztikai elemzéséhez és a kapcsolódó felvételrészek meghallgatásához böngészőből elérhető felületen keresztül.

Részletesebben

Elıírt lépésszámú ciklusok

Elıírt lépésszámú ciklusok Programozás tankönyv VI. Fejezet Elıírt lépésszámú ciklusok Ismétlés a tudás anyja. Hernyák Zoltán 61/312 Az eddig megírt programok szekvenciális mőködésőek voltak. A program végrehajtása elkezdıdött a

Részletesebben

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten LINEÁRIS PROGRAMOZÁS Készítette: Gábor Szakmai felel s: Gábor Vázlat 1 2 3 4 A lineáris

Részletesebben

DÉL-DUNÁNTÚLI REGIONÁLIS MUNKAÜGYI TANÁCS 2008. DECEMBER 11-12. ÜLÉS

DÉL-DUNÁNTÚLI REGIONÁLIS MUNKAÜGYI TANÁCS 2008. DECEMBER 11-12. ÜLÉS DÉL-DUNÁNTÚLI REGIONÁLIS MUNKAÜGYI TANÁCS 2008. DECEMBER 11-12. ÜLÉS 4. sz. napirendi pont Tájékoztató a Dél-dunántúli Regionális Munkaügyi Központ Mi a pálya elnevezéső regionális pályaválasztási rendezvénysorozatáról

Részletesebben

DIGITÁLIS TECHNIKA I KARNAUGH TÁBLA, K-MAP KARNAUGH TÁBLA PROGRAMOK PÉLDA: ÖT-VÁLTOZÓS MINIMALIZÁLÁS PÉLDA: ÖT-VÁLTOZÓS MINIMALIZÁLÁS

DIGITÁLIS TECHNIKA I KARNAUGH TÁBLA, K-MAP KARNAUGH TÁBLA PROGRAMOK PÉLDA: ÖT-VÁLTOZÓS MINIMALIZÁLÁS PÉLDA: ÖT-VÁLTOZÓS MINIMALIZÁLÁS IGITÁLIS TEHNIK I r. Pıdör álint MF KVK Mikroelektronikai és Technológia Intézet 5. ELİÁS 5. ELİÁS. Karnaugh táblázat programok. Nem teljesen határozott logikai függvények. Karnaugh táblázat, logikai tervezési

Részletesebben

Minden az adatról. Csima Judit. 2015. február 11. BME, VIK, Csima Judit Minden az adatról 1 / 41

Minden az adatról. Csima Judit. 2015. február 11. BME, VIK, Csima Judit Minden az adatról 1 / 41 Minden az adatról Csima Judit BME, VIK, Számítástudományi és Információelméleti Tanszék 2015. február 11. Csima Judit Minden az adatról 1 / 41 Adat: alapfogalmak Adathalmaz elvileg bármi, ami információt

Részletesebben

Érettségi és felvételi tudnivalók a 2015/2016. tanévben

Érettségi és felvételi tudnivalók a 2015/2016. tanévben Érettségi és felvételi tudnivalók a 2015/2016. tanévben Érettségi vizsga 1. Jelentkezési határidő: 2016. február 15. Érettségi vizsgatárgyak: magyar nyelv és irodalom, történelem, matematika, idegen nyelv,

Részletesebben

Funkcionális Nyelvek 2 (MSc)

Funkcionális Nyelvek 2 (MSc) Funkcionális Nyelvek 2 (MSc) Páli Gábor János pgj@elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar Programozási Nyelvek és Fordítóprogramok Tanszék Tematika A (tervezett) tematika rövid összefoglalása

Részletesebben

Általános algoritmustervezési módszerek

Általános algoritmustervezési módszerek Általános algoritmustervezési módszerek Ebben a részben arra mutatunk példát, hogy miként használhatóak olyan általános algoritmustervezési módszerek mint a dinamikus programozás és a korlátozás és szétválasztás

Részletesebben