Átszámítások különböző alapfelületek koordinátái között

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Átszámítások különböző alapfelületek koordinátái között"

Átírás

1 Átszámítások különböző alapfelületek koordinátái között A különböző időpontokban, különböző körülmények között rögzített pontok földi koordinátái különböző alapfelületekre (ellipszoidokra geodéziai dátumokra) vonatkoznak. Ha ezeket a koordinátákat együttesen akarjuk felhasználni, akkor szükséges, hogy valamilyen közös vonatkoztatási rendszerbe legyenek összehozva. Ez általában a koordinátáknak az egyik ellipszoidról a másikra ill. az egyik geodéziai dátumról a másikra való átszámolását igényli. Más esetben az ellipszoidfelületet (vagy annak egy részét) gömbfelülettel közelítjük. Ilyenkor az ellipszoidfelületi pontok koordinátáit kell valamilyen gömbfelületi koordinátáka átszámítani, vagy megfordítva. Az ilyen átszámításokat gömbvetületeknek nevezik. Átszámítások különböző geodéziai dátumok koordinátái között A pontok földrajzi koordinátái közvetve vagy közvetlenül geodéziai mérésekből erednek. A mérési hibák miatt a különböző geodéziai dátumok között egzakt átszámítás általában nem lehetséges. A közelítő átszámításhoz többféle módszert fejlesztettek ki. Molodenski 3 paraméteres transzformációja A transzformáció párhuzamosnak tekinti a kiindulási és a céldátum forgástengelyét, és az origó eltolásával viszi át az egyik ellipszoidot a másikba. (Az eltolás paraméterei térbeli derékszögű koordinátákban: X, Y és Z.) Figyelembe veszi továbbá a két ellipszoid méretének eltérését: a nagytengelyek a különbségét, valamint a lapultságok f különbségét. Az egyszerűsített transzformáció képletei úgy vannak megadva, hogy az eltoláshoz ne kelljen a földrajzi koordináták (+ tszf. magasság) és a térbeli derékszögű koordináták között oda- és visszaalakítást végezni, tehát a képletek közvetlenül a földrajzi koordinátákra elvégezhetők legyenek. Egy adott területen elhelyezkedő pontok transzformálásához illesztőpontokra van szükség, melyeknek mindkét rendszerbeli koordinátáit ismerjük. Ezekből az illesztőpontokból számítható ki az adott területre közelítőleg jellemző X, Y és Z paraméter. Transzformáció térbeli derékszögű koordináták között 7 paraméterrel A térbeli pontok Helmert-transzformációja egy eltolás, egy hasonlósági transzformáció és három elforgatás együttes alkalmazását jelenti. A 7 paraméter: az eltolásvektor 3 komponense ( X, Y és Z), az x, y és z koordinátatengely körüli elforgatások ( x, y és z ), továbbá a hasonlósági transzformáció (1+ ) aránya. Feltételezve, hogy a koordinátatengely körüli elforgatások igen kis szöggel történnek, az (X, Y, Z) térbeli ponthoz a transzformált (X, Y, Z ) koordinátákat az alábbi képlettel rendeljük hozzá: Ha a kiindulási pontunk földrajzi koordinátáival (és magasságával) van megadva, akkor ezeket először át kell számítani térbeli derékszögű koordinátákká. Ezeken végrehajtva a transzformációt, az ebből kapott derékszögű

2 koordinátákat Bowring vagy Borkowski képletével visszaalakítjuk földrajzi koordinátákká (és magassággá). E transzformációt a térinformatikában Bursa-Wolff transzformációnak nevezik. Egy adott területen elhelyezkedő pontok transzformálása itt is (mindkét rendszerben ismert koordinátájú) illesztőpontokat igényel. Az eltolási, elforgatási és nagyítás-kicsinyítési paraméterek az illesztőpontok segítségével, közelítő számítással kaphatók meg, amelyek az illesztőpontok környezetében használhatók. Átszámítások az ellipszoidi és gömbi koordináták között a gömbvetületek Gömbvetületnek nevezzük azokat a speciális leképezéseket, amelyeknek alapfelülete forgási ellipszoid, képfelülete pedig gömb. A gömbvetületektől elvárjuk, hogy a parallelkörök képe parallelkör, a meridiánok képe meridiánok legyen, valamint a parallelkörök képei legyenek ekvidisztánsak: tehát = ( ) és =n (n=const). Írjuk fel a gömbvetületek fokhálózat menti hossztorzulásait. Jelöljük a megfelelő és hosszúságkülönbségekhez tartozó parallelkör menti ívhosszakat pvel és p -vel, a megfelelő és szélességkülönbségekhez tartozó meridián menti ívhosszakat m-mel és m -vel. Ekkor a parallelkör menti h hossztorzulás: a meridián menti k hossztorzulás: ; A fokhálózati vonalak mind a forgási ellipszoidon, mind a gömbön merőlegesen metszik egymást, ezért a többi torzulás visszavezethető a fokhálózat menti hossztorzulásokra. Amennyiben a gömbvetületeket a geokartográfiában használják, akkor általában megkövetelik, hogy a teljes forgási ellipszoid pontosan a teljes gömbre képeződjön le (ez az n=1 feltételt jelenti), továbbá hogy az ellipszoidi egyenlítő képe a gömbi egyenlítőre essen (vagyis =0 esetén =0 legyen). Területtartó gömbvetület: A területtartás alapegyenlete: h k=1 azaz Alakítsuk át a jobb oldalon álló integrandust: Ennek alapján elvégezve az integrálást: Fejezzük ki innen -t:

3 Ezt a vetületet többnyire geokartográfiai célokra használják, ezért a fentiek miatt n=1, továbbá a =0 esetén elvárt =0 egyenlőségből következik =0. Hátra van még R meghatározása. A területtartásnak a teljes gömbfelszínre is fent kell állnia, tehát ahonnan R kifejezhető: Meridiánban hossztartó gömbvetület A meridiánban hossztartás alapegyenlete: Elvégezve az integrálást: =0 esetén itt is elvárjuk, hogy legyen =0, innen következik =0. A hossztartásnak a teljes meridiánra is fenn kell állnia, ezért = /2 -hez = /2 tartozik. Átrendezve az egyenletet kapjuk R-et: Szögtartó gömbvetület: A szögtartás alapegyenlete: h=k, azaz Alakítsuk át az integrandust a jobboldalon: Ennek segítségével végezzük el az integrálást: Mindkét oldalt felemelve e alapra: Ebből a felírható explicit alakban: A azonban nem fejezhető ki. Ezért abban az esetben, ha adott -ből kell értékét kiszámítani, az alábbi közelítés ajánlható:

4 (A jobboldali kifejezésbe helyére egy közelítő értéket helyettesítve, a képlet a -nek egy jobb közelítését adja. Ezt addig folytatjuk, míg a két közelítés eltérése egy előre megadott pontossági korlátot, pl et meghaladja. Kezdőértéknek választható pl. =.) Ha a vetületet geokartográfiai célokra akarjuk használni, akkor itt is n=1, továbbá elvárjuk, hogy =0 esetén =0 legyen. Ezt a fenti képletbe helyettesítve kapjuk, hogy =1. Az R meghatározásához írjunk elő egy hossztartó parallelkört, melynek ellipszoidi szélessége n, gömbi szélessége n. (A két hossztartó szélesség általában nem egyezik meg!) A hossztartás képletben: és innen R kifejezhető., Ha a vetületet topokartográfiai célokra akarjuk használni, akkor további követelményeket kell szabni n és meghatározására: - legyen egy n ill. n szélességekkel adott hossztorzulásmentes (normál)parallelkör; - legyen az l hossztorzulási modulus logaritmusa (ln l) harmadrendű mennyiség (vagyis a n körüli sorfejtésében csak a harmad- és magasabbrendű tagok térhetnek el 0-tól). E követelményekből kiindulva Gauss az alábbi összefüggéseket vezette le: Adott forgási ellipszoid esetén ez az egyenletrendszer 4 ismeretlent (n, n, n és R) tartalmaz, amelyek közül bármelyiket megadva, a többi következik az egyenletrendszer megoldásából. A konstansok meghatározása a hossztartó parallelkör ellipszoidi vagy gömbi szélességének kijelölésével kezdődik. A második összefüggésből mind n et, mind n -et ki lehet fejezni. Ha az ellipszoidi szélesség adott, akkor a képletet, ha a gömbi szélességből indulunk ki, akkor a képletet használjuk. A következő lépésben az első képletből kifejezzük n-et: n ismeretében az utolsó egyenlet közvetlenül adja R-et, az ún. simulógömb sugarát: Végül a összefüggésbe behelyettesítve n, n és n értékeit, kiszámítható. Ez a leképezés a Gauss-féle kis hossztorzulású szögtartó gömbvetület, melyet a magyarországi felméréseknél 1857 óta alkalmaznak a Bessel ellipszoid alapfelületre,

5 n =46 30, illetve 1975 óta az IUGG 67 ellipszoidra a n =47 10 választással. Ennél a két leképezésnél a második irányredukció 50 km-es hossznál nem haladja meg a et, ezért a háromszögelésnél figyelmen kívül hagyható. A lineármodulus maximális eltérése az egységtől Magyarország területén kb. 1/ Átszámítások különböző alapfelületek koordinátái között A különböző időpontokban, különböző körülmények között rögzített pontok földi koordinátái különböző alapfelületekre (ellipszoidokra geodéziai dátumokra) vonatkoznak. Ha ezeket a koordinátákat együttesen akarjuk felhasználni, akkor szükséges, hogy valamilyen közös vonatkoztatási rendszerbe legyenek összehozva. Ez általában a koordinátáknak az egyik ellipszoidról a másikra ill. az egyik geodéziai dátumról a másikra való átszámolását igényli. Más esetben az ellipszoidfelületet (vagy annak egy részét) gömbfelülettel közelítjük. Ilyenkor az ellipszoidfelületi pontok koordinátáit kell valamilyen gömbfelületi koordinátáka átszámítani, vagy megfordítva. Az ilyen átszámításokat gömbvetületeknek nevezik. Átszámítások különböző geodéziai dátumok koordinátái között A pontok földrajzi koordinátái közvetve vagy közvetlenül geodéziai mérésekből erednek. A mérési hibák miatt a különböző geodéziai dátumok között egzakt átszámítás általában nem lehetséges. A közelítő átszámításhoz többféle módszert fejlesztettek ki. Molodenski 3 paraméteres transzformációja A transzformáció párhuzamosnak tekinti a kiindulási és a céldátum forgástengelyét, és az origó eltolásával viszi át az egyik ellipszoidot a másikba. (Az eltolás paraméterei térbeli derékszögű koordinátákban: X, Y és Z.) Figyelembe veszi továbbá a két ellipszoid méretének eltérését: a nagytengelyek a különbségét, valamint a lapultságok f különbségét. Az egyszerűsített transzformáció képletei úgy vannak megadva, hogy az eltoláshoz ne kelljen a földrajzi koordináták (+ tszf. magasság) és a térbeli derékszögű koordináták között oda- és visszaalakítást végezni, tehát a képletek közvetlenül a földrajzi koordinátákra elvégezhetők legyenek. Egy adott területen elhelyezkedő pontok transzformálásához illesztőpontokra van szükség, melyeknek mindkét rendszerbeli koordinátáit ismerjük. Ezekből az illesztőpontokból számítható ki az adott területre közelítőleg jellemző X, Y és Z paraméter. Transzformáció térbeli derékszögű koordináták között 7 paraméterrel A térbeli pontok Helmert-transzformációja egy eltolás, egy hasonlósági transzformáció és három elforgatás együttes alkalmazását jelenti. A 7 paraméter: az eltolásvektor 3 komponense ( X, Y és Z), az x, y és z koordinátatengely körüli elforgatások ( x, y és z ), továbbá a hasonlósági transzformáció (1+ ) aránya. Feltételezve, hogy a koordinátatengely körüli elforgatások igen kis szöggel történnek, az (X, Y, Z) térbeli ponthoz a transzformált (X, Y, Z ) koordinátákat az alábbi képlettel rendeljük hozzá:

6 Ha a kiindulási pontunk földrajzi koordinátáival (és magasságával) van megadva, akkor ezeket először át kell számítani térbeli derékszögű koordinátákká. Ezeken végrehajtva a transzformációt, az ebből kapott derékszögű koordinátákat Bowring vagy Borkowski képletével visszaalakítjuk földrajzi koordinátákká (és magassággá). E transzformációt a térinformatikában Bursa-Wolff transzformációnak nevezik. Egy adott területen elhelyezkedő pontok transzformálása itt is (mindkét rendszerben ismert koordinátájú) illesztőpontokat igényel. Az eltolási, elforgatási és nagyítás-kicsinyítési paraméterek az illesztőpontok segítségével, közelítő számítással kaphatók meg, amelyek az illesztőpontok környezetében használhatók. Átszámítások az ellipszoidi és gömbi koordináták között a gömbvetületek Gömbvetületnek nevezzük azokat a speciális leképezéseket, amelyeknek alapfelülete forgási ellipszoid, képfelülete pedig gömb. A gömbvetületektől elvárjuk, hogy a parallelkörök képe parallelkör, a meridiánok képe meridiánok legyen, valamint a parallelkörök képei legyenek ekvidisztánsak: tehát = ( ) és =n (n=const). Írjuk fel a gömbvetületek fokhálózat menti hossztorzulásait. Jelöljük a megfelelő és hosszúságkülönbségekhez tartozó parallelkör menti ívhosszakat pvel és p -vel, a megfelelő és szélességkülönbségekhez tartozó meridián menti ívhosszakat m-mel és m -vel. Ekkor a parallelkör menti h hossztorzulás: a meridián menti k hossztorzulás: ; A fokhálózati vonalak mind a forgási ellipszoidon, mind a gömbön merőlegesen metszik egymást, ezért a többi torzulás visszavezethető a fokhálózat menti hossztorzulásokra. Amennyiben a gömbvetületeket a geokartográfiában használják, akkor általában megkövetelik, hogy a teljes forgási ellipszoid pontosan a teljes gömbre képeződjön le (ez az n=1 feltételt jelenti), továbbá hogy az ellipszoidi egyenlítő képe a gömbi egyenlítőre essen (vagyis =0 esetén =0 legyen). Területtartó gömbvetület: A területtartás alapegyenlete: h k=1 azaz Alakítsuk át a jobb oldalon álló integrandust: Ennek alapján elvégezve az integrálást:

7 Fejezzük ki innen -t: Ezt a vetületet többnyire geokartográfiai célokra használják, ezért a fentiek miatt n=1, továbbá a =0 esetén elvárt =0 egyenlőségből következik =0. Hátra van még R meghatározása. A területtartásnak a teljes gömbfelszínre is fent kell állnia, tehát ahonnan R kifejezhető: Meridiánban hossztartó gömbvetület A meridiánban hossztartás alapegyenlete: Elvégezve az integrálást: =0 esetén itt is elvárjuk, hogy legyen =0, innen következik =0. A hossztartásnak a teljes meridiánra is fenn kell állnia, ezért = /2 -hez = /2 tartozik. Átrendezve az egyenletet kapjuk R-et: Szögtartó gömbvetület: A szögtartás alapegyenlete: h=k, azaz Alakítsuk át az integrandust a jobboldalon: Ennek segítségével végezzük el az integrálást: Mindkét oldalt felemelve e alapra: Ebből a felírható explicit alakban:

8 A azonban nem fejezhető ki. Ezért abban az esetben, ha adott -ből kell értékét kiszámítani, az alábbi közelítés ajánlható: (A jobboldali kifejezésbe helyére egy közelítő értéket helyettesítve, a képlet a -nek egy jobb közelítését adja. Ezt addig folytatjuk, míg a két közelítés eltérése egy előre megadott pontossági korlátot, pl et meghaladja. Kezdőértéknek választható pl. =.) Ha a vetületet geokartográfiai célokra akarjuk használni, akkor itt is n=1, továbbá elvárjuk, hogy =0 esetén =0 legyen. Ezt a fenti képletbe helyettesítve kapjuk, hogy =1. Az R meghatározásához írjunk elő egy hossztartó parallelkört, melynek ellipszoidi szélessége n, gömbi szélessége n. (A két hossztartó szélesség általában nem egyezik meg!) A hossztartás képletben: és innen R kifejezhető., Ha a vetületet topokartográfiai célokra akarjuk használni, akkor további követelményeket kell szabni n és meghatározására: - legyen egy n ill. n szélességekkel adott hossztorzulásmentes (normál)parallelkör; - legyen az l hossztorzulási modulus logaritmusa (ln l) harmadrendű mennyiség (vagyis a n körüli sorfejtésében csak a harmad- és magasabbrendű tagok térhetnek el 0-tól). E követelményekből kiindulva Gauss az alábbi összefüggéseket vezette le: Adott forgási ellipszoid esetén ez az egyenletrendszer 4 ismeretlent (n, n, n és R) tartalmaz, amelyek közül bármelyiket megadva, a többi következik az egyenletrendszer megoldásából. A konstansok meghatározása a hossztartó parallelkör ellipszoidi vagy gömbi szélességének kijelölésével kezdődik. A második összefüggésből mind n et, mind n -et ki lehet fejezni. Ha az ellipszoidi szélesség adott, akkor a képletet, ha a gömbi szélességből indulunk ki, akkor a képletet használjuk. A következő lépésben az első képletből kifejezzük n-et: n ismeretében az utolsó egyenlet közvetlenül adja R-et, az ún. simulógömb sugarát: Végül a

9 összefüggésbe behelyettesítve n, n és n értékeit, kiszámítható. Ez a leképezés a Gauss-féle kis hossztorzulású szögtartó gömbvetület, melyet a magyarországi felméréseknél 1857 óta alkalmaznak a Bessel ellipszoid alapfelületre, n =46 30, illetve 1975 óta az IUGG 67 ellipszoidra a n =47 10 választással. Ennél a két leképezésnél a második irányredukció 50 km-es hossznál nem haladja meg a et, ezért a háromszögelésnél figyelmen kívül hagyható. A lineármodulus maximális eltérése az egységtől Magyarország területén kb. 1/

A sztereografikus vetület és magyarországi alkalmazása

A sztereografikus vetület és magyarországi alkalmazása A sztereografikus vetület és magyarországi alkalmazása Perspektív síkvetületek A perspektív síkvetületek a gömb alapfelületet síkra képezik le középpontos geometriai vetítéssel. A vetítés Q középpontja

Részletesebben

II. A TÉRKÉPVETÜLETEK RENDSZERES LEÍRÁSA 83

II. A TÉRKÉPVETÜLETEK RENDSZERES LEÍRÁSA 83 T A R T A L O M J E G Y Z É K I. A TÉRKÉPVETÜLETEKRŐL ÁLTALÁBAN 13 VETÜLETTANI ALAPFOGALMAK 15 A térkép mint matematikai leképezés eredménye 15 Az alapfelület paraméterezése földrajzi koordinátákkal 18

Részletesebben

A Föld alakja TRANSZFORMÁCIÓ. Magyarországon még használatban lévő vetületi rendszerek. Miért kell transzformálni? Főbb transzformációs lehetőségek

A Föld alakja TRANSZFORMÁCIÓ. Magyarországon még használatban lévő vetületi rendszerek. Miért kell transzformálni? Főbb transzformációs lehetőségek TRANSZFORMÁCIÓ A Föld alakja -A föld alakja: geoid (az a felület, amelyen a nehézségi gyorsulás értéke állandó) szabálytalan alak, kezelése nehéz -A geoidot ellipszoiddal közelítjük -A földfelszíni pontokat

Részletesebben

Egy pont földfelszíni helyzetét meghatározzák: a pont alapfelületi földrajzi koordinátái a pont tengerszint feletti magassága

Egy pont földfelszíni helyzetét meghatározzák: a pont alapfelületi földrajzi koordinátái a pont tengerszint feletti magassága Földrajzi koordináták Egy pont földfelszíni helyzetét meghatározzák: a pont alapfelületi földrajzi koordinátái a pont tengerszint feletti magassága Topo-Karto-2 1 Földrajzi koordináták pólus egyenlítő

Részletesebben

A ferdetengelyű szögtartó hengervetület és magyarországi alkalmazásai

A ferdetengelyű szögtartó hengervetület és magyarországi alkalmazásai A ferdetengelyű szögtartó hengervetület magyarországi alkalmazásai Perspektív hengervetületek A perspektív hengervetületek a gömb alapfelületet egy forgáshenger palástjára képezik le középpontos geometriai

Részletesebben

3. Vetülettan (3/6., 8., 10.) Unger János. @geo.u-szeged.hu www.sci.u-szeged.hu/eghajlattan

3. Vetülettan (3/6., 8., 10.) Unger János. @geo.u-szeged.hu www.sci.u-szeged.hu/eghajlattan Kartográfia (GBN309E) Térképészet (GBN317E) előadás 3. Vetülettan (3/6., 8., 10.) Unger János unger@geo.u @geo.u-szeged.hu www.sci.u-szeged.hu/eghajlattan szeged.hu/eghajlattan SZTE Éghajlattani és Tájföldrajzi

Részletesebben

7. előadás: Lineármodulus a vetületi főirányokban és a területi modulus az azimutális vetületeken

7. előadás: Lineármodulus a vetületi főirányokban és a területi modulus az azimutális vetületeken 7 előadás: Lineármodulus a vetületi főirányokban és a területi modulus az azimutális vetületeken Mivel az azimutális vetületeken normális elhelyezésben a meridiánok és a paralelkörök, más elhelyezésben

Részletesebben

Matematikai geodéziai számítások 4.

Matematikai geodéziai számítások 4. Matematikai geodéziai számítások 4. Vetületi átszámítások Dr. Bácsatyai, László Matematikai geodéziai számítások 4.: Vetületi átszámítások Dr. Bácsatyai, László Lektor: Dr. Benedek, Judit Ez a modul a

Részletesebben

9. előadás: A gömb valós hengervetületei

9. előadás: A gömb valós hengervetületei A valós hengervetületek általános tulajdonságai A hengervetületek (cilindrikus vetületek) jellemzője hogy normális elhelyezésben az egyenlítő és a paralelkörök képei párhuzamos egyenesek. A valós hengervetületnek

Részletesebben

Matematikai geodéziai számítások 3.

Matematikai geodéziai számítások 3. Matematikai geodéziai számítások 3 Kettős vetítés és EOV szelvényszám keresése koordinátákból Dr Bácsatyai, László Matematikai geodéziai számítások 3: Kettős vetítés és EOV szelvényszám keresése koordinátákból

Részletesebben

Matematikai geodéziai számítások 3.

Matematikai geodéziai számítások 3. Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr Bácsatyai László Matematikai geodéziai számítások 3 MGS3 modul Kettős vetítés és EOV szelvényszám keresése koordinátákból SZÉKESFEHÉRVÁR 2010 Jelen

Részletesebben

3. Vetülettan (3/3-5.) Unger szeged.hu/eghajlattan SZTE Éghajlattani és Tájföldrajzi Tanszék

3. Vetülettan (3/3-5.) Unger  szeged.hu/eghajlattan SZTE Éghajlattani és Tájföldrajzi Tanszék Kartográfia (GBN309E) Térképészet (GBN317E) előadás 3. Vetülettan (3/3-5.) Unger János unger@geo.u @geo.u-szeged.hu www.sci.u-szeged.hu/eghajlattan szeged.hu/eghajlattan SZTE Éghajlattani és Tájföldrajzi

Részletesebben

Ferdetengelyű szögtartó hengervetületek a térképészetben

Ferdetengelyű szögtartó hengervetületek a térképészetben EÖTVÖS LORÁND TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR Ferdetengelyű szögtartó hengervetületek a térképészetben SZAKDOLGOZAT FÖLDTUDOMÁNYI ALAPSZAK Készítette: Fülöp Dávid térképész és geoinformatikus szakirányú

Részletesebben

A loxodrómáról. Előző írásunkban melynek címe: A Gudermann - függvényről szó esett a Mercator - vetületről,illetve az ezen alapuló térképről 1. ábra.

A loxodrómáról. Előző írásunkban melynek címe: A Gudermann - függvényről szó esett a Mercator - vetületről,illetve az ezen alapuló térképről 1. ábra. 1 A loxodrómáról Előző írásunkban melynek címe: A Gudermann - függvényről szó esett a Mercator - vetületről,illetve az ezen alapuló térképről 1. ábra. 1. ábra forrása: [ 1 ] Ezen a térképen a szélességi

Részletesebben

Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások

Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások ) Egyenletek, egyenletrendszerek, egyenlőtlenségek - megoldások Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások a) Oldja meg a valós számok halmazán az alábbi egyenletet! = 6 (5 pont) b) Oldja

Részletesebben

Koordináta-rendszerek

Koordináta-rendszerek Koordináta-rendszerek Térkép: a Föld felszín (részletének) ábrázolása síkban Hogyan határozható meg egy pont helyzete egy síkon? Derékszögű koordináta-rendszer: a síkban két, egymást merőlegesen metsző

Részletesebben

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program Regresszió számítás GeoEasy V2.05+ Geodéziai Kommunikációs Program DigiKom Kft. 2006-2010 Tartalomjegyzék: Egyenes x változik Egyenes y változik Egyenes y és x változik Kör Sík z változik Sík y, x és z

Részletesebben

Bevezetés a geodéziába

Bevezetés a geodéziába Bevezetés a geodéziába 1 Geodézia Definíció: a földmérés a Föld alakjának és méreteinek, a Föld fizikai felszínén, ill. a felszín alatt lévő természetes és mesterséges alakzatok geometriai méreteinek és

Részletesebben

Koordinátarendszerek, dátumok, GPS

Koordinátarendszerek, dátumok, GPS Koordinátarendszerek, dátumok, GPS KOORDINÁTARENDSZEREK A SPATIAL-BEN Koordinátarendszer típusok 1. Descartes-féle koordinátarendszer: egy adott pontból (origó) kiinduló, egymásra merőleges egyenesek alkotják,

Részletesebben

Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )

Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) Trigonometria Megoldások Trigonometria - megoldások ) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) akkor a háromszög egyenlő szárú vagy derékszögű!

Részletesebben

Matematikai geodéziai számítások 2.

Matematikai geodéziai számítások 2. Matematikai geodéziai számítások 2. Geodéziai vonal és ábrázolása gömbön és vetületben Dr. Bácsatyai, László Matematikai geodéziai számítások 2.: Geodéziai vonal és ábrázolása Dr. Bácsatyai, László Lektor:

Részletesebben

2014/2015. tavaszi félév

2014/2015. tavaszi félév Hajder L. és Valasek G. hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom Geometria modellezés 1 Geometria modellezés 2 Geometria modellezés

Részletesebben

2. fejezet. Vetületi alapfogalmak. Dr. Mélykúti Gábor

2. fejezet. Vetületi alapfogalmak. Dr. Mélykúti Gábor 2. fejezet Dr. Mélykúti Gábor Nyugat-magyarországi Egyetem Geoinformatikai Kar 2010 2.1 Bevezetés A modul a Térképtan és a Topográfia c. tantárgyak részét képezi. A modul a térképek készítése és használata

Részletesebben

Matematikai geodéziai számítások 1.

Matematikai geodéziai számítások 1. Matematikai geodéziai számítások 1 Ellipszoidi számítások, ellipszoid, geoid és terep metszete Dr Bácsatyai, László Created by XMLmind XSL-FO Converter Matematikai geodéziai számítások 1: Ellipszoidi számítások,

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Az alap- és a képfelület fogalma, megadási módjai és tulajdonságai

Az alap- és a képfelület fogalma, megadási módjai és tulajdonságai A VETÜLETEK ALAP- ÉS KÉPFELÜLETE Az alap- és a képfelület fogalma, megadási módjai és tulajdonságai A geodézia, a térinformatika és a térképészet a görbült földfelületen elhelyezkedő geometriai alakzatokat

Részletesebben

Űrfelvételek térinformatikai rendszerbe integrálása

Űrfelvételek térinformatikai rendszerbe integrálása Budapest, 2005. október 18. Űrfelvételek térinformatikai rendszerbe integrálása Molnár Gábor ELTE Geofizikai Tanszék Űrkutató Csoport Témavezető: Dr. Ferencz Csaba Eötvös Loránd Tudományegyetem Geofizikai

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 14 XIV NEVEZETES GÖRbÉk 1 AZ EGYEnES EGYEnLETE A és pontokon átmenő egyenes egyenlete: (1), Az hányados neve iránytényező (iránytangens, meredekség) A ponton átmenő, m iránytangensű

Részletesebben

Topográfia 2. Vetületi alapfogalmak Mélykúti, Gábor

Topográfia 2. Vetületi alapfogalmak Mélykúti, Gábor Topográfia 2. Vetületi alapfogalmak Mélykúti, Gábor Topográfia 2. : Vetületi alapfogalmak Mélykúti, Gábor Lektor : Alabér, László Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027 Tananyagfejlesztéssel a GEO-ért

Részletesebben

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2009. június 8.

MATEMATIKA HETI 5 ÓRA. IDŐPONT: 2009. június 8. EURÓPAI ÉRETTSÉGI 2009 MATEMATIKA HETI 5 ÓRA IDŐPONT: 2009. június 8. A VIZSGA IDŐTARTAMA: 4 óra (240 perc) ENGEDÉLYEZETT SEGÉDESZKÖZÖK : Európai képletgyűjtemény Nem programozható, nem grafikus kalkulátor

Részletesebben

Térbeli transzformációk, a tér leképezése síkra

Térbeli transzformációk, a tér leképezése síkra Térbeli transzformációk, a tér leképezése síkra Homogén koordináták bevezetése térben A tér minden P pontjához kölcsönösen egyértelműen egy valós (x, y, z) számhármast rendeltünk hozzá. (Descartes-féle

Részletesebben

Abszolútértékes és gyökös kifejezések Megoldások

Abszolútértékes és gyökös kifejezések Megoldások Abszolútértékes és gyökös kifejezések Megoldások ) Igazolja, hogy az alábbi négy egyenlet közül az a) és b) jelű egyenletnek pontosan egy megoldása van, a c) és d) jelű egyenletnek viszont nincs megoldása

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA MATEmATIkA II 6 VI TÉRGÖRbÉk 1 Alapvető ÖSSZEFÜGGÉSEk A térgörbe (1) alakú egyenletével írható le Ez a vektoregyenlet egyenértékű az (2) skaláris egyenletrendszerrel A térgörbe három nevezetes

Részletesebben

a) A logaritmus értelmezése alapján: x 8 0 ( x 2 2 vagy x 2 2) (1 pont) Egy szorzat értéke pontosan akkor 0, ha valamelyik szorzótényező 0.

a) A logaritmus értelmezése alapján: x 8 0 ( x 2 2 vagy x 2 2) (1 pont) Egy szorzat értéke pontosan akkor 0, ha valamelyik szorzótényező 0. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Vetülettan. 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14. előadás. 1. előadás

Vetülettan. 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14. előadás. 1. előadás Vetülettan 1.,., 3., 4., 5., 6., 7., 8., 9., 10., 11., 1., 13., 14. előadás Bevezetés A vetítés fogalma 1. előadás Geodéziai méréseinket általában a Föld felszínén (egyes esetekben, pl. földalatti létesítményekben

Részletesebben

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1.

Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai 1. Feladatok megoldásokkal a 9. gyakorlathoz (Newton-Leibniz formula, közelítő integrálás, az integrálszámítás alkalmazásai.). Feladat. Határozzuk meg az alábbi integrálokat: a) x x + dx d) xe x dx b) c)

Részletesebben

Hengervetületek alkalmazása a magyar topográfiában

Hengervetületek alkalmazása a magyar topográfiában EÖTVÖS LORÁND TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR Hengervetületek alkalmazása a magyar topográfiában SZAKDOLGOZAT FÖLDTUDOMÁNYI ALAPSZAK Készítette: Szántó Henriett térképész és geoinformatikus szakirányú

Részletesebben

Egy sík és a koordinátasíkok metszésvonalainak meghatározása

Egy sík és a koordinátasíkok metszésvonalainak meghatározása 1 Egy sík és a koordinátasíkok metszésvonalainak meghatározása Ehhez tekintsük az 1. ábrát! 1. ábra Itt az ( u, v, w ) tengelymetszeteivel adott S síkot látjuk, az Oxyz térbeli derékszögű koordináta -

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 8 VIII VEkTOROk 1 VEkTOR Vektoron irányított szakaszt értünk Jelölése: stb Vektorok hossza A vektor abszolút értéke az irányított szakasz hossza Ha a vektor hossza egységnyi akkor

Részletesebben

Matematikai geodéziai számítások 2.

Matematikai geodéziai számítások 2. Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Bácsatyai László Matematikai geodéziai számítások 2. MGS2 modul Geodéziai vonal és ábrázolása gömbön és vetületben SZÉKESFEHÉRVÁR 2010 Jelen szellemi

Részletesebben

Lengyelné Dr. Szilágyi Szilvia április 7.

Lengyelné Dr. Szilágyi Szilvia április 7. ME, Anaĺızis Tanszék 2010. április 7. , alapfogalmak 2.1. Definíció A H 1, H 2,..., H n R (ahol n 2 egész szám) nemüres valós számhalmazok H 1 H 2... H n Descartes-szorzatán a következő halmazt értjük:

Részletesebben

10. Koordinátageometria

10. Koordinátageometria I. Nulladik ZH-ban láttuk: 0. Koordinátageometria. Melyek azok a P x; y pontok, amelyek koordinátái kielégítik az Ábrázolja a megoldáshalmazt a koordináta-síkon! x y x 0 egyenlőtlenséget? ELTE 00. szeptember

Részletesebben

Magyarországi topográfiai térképek

Magyarországi topográfiai térképek Eötvös Loránd Tudományegyetem, Természettudományi Kar Juhász Péter MTA SZTAKI Magyarországi topográfiai térképek vetületének torzulási vizsgálata doktori értekezés tézisei Budapest, 2008. Témavezető: Györffy

Részletesebben

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx Integrálszámítás II. Parciális integrálás. g) i) l) o) e ( + )(e e ) cos h) e sin j) (sin 3 cos) m) arctg p) arcsin e (3 )e sin f) cos ( )(sin cos 3) e cos k) e sin cos ln n) ( + ) ln. e 3 e cos 3 3 cos

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 19 XIX A HATÁROZOTT INTEGRÁL ALkALmAZÁSAI 1 TERÜLET ÉS ÍVHOSSZ SZÁmÍTÁSA Területszámítás Ha f az [a,b] intervallumon nemnegatív, folytonos függvény, akkor az görbe, az x tengely,

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

A földi koordinátarendszer lehet helyi (lokális), regionális, vagy az egész Földre kiterjedő (globális).

A földi koordinátarendszer lehet helyi (lokális), regionális, vagy az egész Földre kiterjedő (globális). Vetülettan A felmérés a Föld felszínén koordinátákkal meghatározott alappontok hálózatára támaszkodik. A koordináták adják a térképezéshez szükséges egységes geometriai keretet, vázat, amelynek segítségével

Részletesebben

Térképészeti alapismeretek. Mit jelent egy térkép léptéke?

Térképészeti alapismeretek. Mit jelent egy térkép léptéke? Térképészeti alapismeretek Mi a térkép? A föld felszínén illetve azzal kapcsolatban álló anyagi vagy elvont dolgoknak általában kicsinyített, generalizált, síkbeli megjelenítése. Térképészeti absztrakció

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA MATEmATIkA II 9 IX Magasabbrendű DIFFERENCIÁLEGYENLETEk 1 Alapvető ÖSSZEFÜGGÉSEk n-ed rendű differenciálegyenletek Az alakú ahol n-edrendű differenciálegyenlet általános megoldása tetszőleges

Részletesebben

cos 2 (2x) 1 dx c) sin(2x)dx c) cos(3x)dx π 4 cos(2x) dx c) 5sin 2 (x)cos(x)dx x3 5 x 4 +11dx arctg 11 (2x) 4x 2 +1 π 4

cos 2 (2x) 1 dx c) sin(2x)dx c) cos(3x)dx π 4 cos(2x) dx c) 5sin 2 (x)cos(x)dx x3 5 x 4 +11dx arctg 11 (2x) 4x 2 +1 π 4 Integrálszámítás I. Végezze el a következő integrálásokat:. α, haα sin() cos() e f) a sin h) () cos ().. 5 4 ( ) e + 4 sin h) (+) sin() sin() cos() + f) 5 i) cos ( +) 7 4. 4 (+) 6 4 cos() 5 +7 5. ( ) sin()cos

Részletesebben

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont

Oktatási Hivatal. 1 pont. A feltételek alapján felírhatók az. összevonás után az. 1 pont Oktatási Hivatal Öt pozitív egész szám egy számtani sorozat első öt eleme A sorozatnak a különbsége prímszám Tudjuk hogy az első négy szám köbének összege megegyezik az ezen öt tag közül vett páros sorszámú

Részletesebben

Jelölések. GBN304G Alkalmazott kartográfia II. gyakorlat Térképi vetületekkel kapcsolatos feladatok. Unger János. x;y) )?

Jelölések. GBN304G Alkalmazott kartográfia II. gyakorlat Térképi vetületekkel kapcsolatos feladatok. Unger János. x;y) )? GBN304G Alkalmazott kartográfia II. gyakorlat Térképi vetületekkel kapcsolatos feladatok Unger János unger@geo.u @geo.u-szeged.hu www.sci.u-szeged.hu/eghajlattan szeged.hu/eghajlattan Jelölések R/m = alapfelületi

Részletesebben

Analitikus térgeometria

Analitikus térgeometria 5. fejezet Analitikus térgeometria Kezd és végpontjuk koordinátáival adott vektorok D 5.1 A koordináta-rendszer O kezd pontjából a P pontba mutató OP kötött vektort a P pont helyvektorának nevezzük. T

Részletesebben

Számítási feladatok a Számítógépi geometria órához

Számítási feladatok a Számítógépi geometria órához Számítási feladatok a Számítógépi geometria órához Kovács Zoltán Copyright c 2012 Last Revision Date: 2012. október 15. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

Analitikus térgeometria

Analitikus térgeometria Analitikus térgeometria Wettl Ferenc el adása alapján 2015.09.21. Wettl Ferenc el adása alapján Analitikus térgeometria 2015.09.21. 1 / 23 Tartalom 1 Egyenes és sík egyenlete Egyenes Sík 2 Alakzatok közös

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

A FÖLD OPTIMÁLIS TORZULÁSÚ ÁBRÁZOLÁSA PÓLUSPONTOS KÉPZETES HENGERVETÜLETBEN, EKVIDISZTÁNS PARALLELKÖRÖKKEL GYÖRFFY JÁNOS 28

A FÖLD OPTIMÁLIS TORZULÁSÚ ÁBRÁZOLÁSA PÓLUSPONTOS KÉPZETES HENGERVETÜLETBEN, EKVIDISZTÁNS PARALLELKÖRÖKKEL GYÖRFFY JÁNOS 28 A FÖLD OPTIMÁLIS TORZULÁSÚ ÁBRÁZOLÁSA PÓLUSPONTOS KÉPZETES HENGERVETÜLETBEN, EKVIDISZTÁNS PARALLELKÖRÖKKEL GYÖRFFY JÁNOS 8 REPRESENTING THE WHOLE EARTH IN A BEST PSEUDOCYLINDRICAL PROJECTION WITH POLE

Részletesebben

Az egyenes ellipszishenger ferde síkmetszeteiről

Az egyenes ellipszishenger ferde síkmetszeteiről 1 Az egyenes ellipszishenger ferde síkmetszeteiről Vegyünk egy a és b féltengelyekkel bíró ellipszist a vezérgörbét, majd az ellipszis O centrumában állítsunk merőlegest az ellipszis síkjára. Ez a merőleges

Részletesebben

2015. évi Bolyai János Megyei Matematikaverseny MEGOLDÁSI ÉS ÉRTÉKELÉSI ÚTMUTATÓ 12. évfolyam

2015. évi Bolyai János Megyei Matematikaverseny MEGOLDÁSI ÉS ÉRTÉKELÉSI ÚTMUTATÓ 12. évfolyam 01. évi Bolyai János Megyei Matematikaverseny MEGOLDÁSI ÉS ÉRTÉKELÉSI ÚTMUTATÓ 1. évfolyam A közölt megoldási utak a feladatoknak nem az egyetlen helyes megoldási módját adják meg, több eltérő megoldás

Részletesebben

Az R forgató mátrix [ 1 ] - beli képleteinek levezetése: I. rész

Az R forgató mátrix [ 1 ] - beli képleteinek levezetése: I. rész Az R forgató mátri [ ] - beli képleteinek levezetése: I rész Az [ ] forrás kötetében a ( 49 ), ( 50 ) képletek nyilván mint közismertek nem lettek levezetve Minthogy az ottani további számítások miatt

Részletesebben

Transzformációk síkon, térben

Transzformációk síkon, térben Transzformációk síkon, térben Leképezés, transzformáció Leképezés: Ha egy A ponttér pontjaihoz egy másik B ponttér pontjait kölcsönösen egyértelműen rendeljük hozzá, akkor ezt a hozzárendelést leképezésnek

Részletesebben

Függvények Megoldások

Függvények Megoldások Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény

Részletesebben

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA FÖLDMÉRÉS ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA FÖLDMÉRÉS ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ FÖLDMÉRÉS ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ Elméleti szöveges feladatok 1. Sorolja fel a geodéziai célra szolgáló vetítéskor használható alapfelületeket

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 3. FELADATLAP Síkbeli egyenesek 1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az origón

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4

Részletesebben

GEODÉZIA ÉS KARTOGRÁFIA

GEODÉZIA ÉS KARTOGRÁFIA GEODÉZIA ÉS KARTOGRÁFIA 55. ÉVFOLYAM 2003 10. SZÁM Az EOV-alapfelületek térbeli helyzetének vizsgálata Kratochvilla Krisztina doktorandusz BME Általános- és Felsõgeodézia Tanszék Bevezetés Az 1975-ben

Részletesebben

Juhász Péter. Magyarországi topográfiai térképek vetületének. torzulási vizsgálata

Juhász Péter. Magyarországi topográfiai térképek vetületének. torzulási vizsgálata Eötvös Loránd Tudományegyetem, Természettudományi Kar Juhász Péter MTA SZTAKI Magyarországi topográfiai térképek vetületének torzulási vizsgálata doktori értekezés Témavezető: Györffy János, kandidátus,

Részletesebben

Tárgy. Forgóasztal. Lézer. Kamera 3D REKONSTRUKCIÓ LÉZERES LETAPOGATÁSSAL

Tárgy. Forgóasztal. Lézer. Kamera 3D REKONSTRUKCIÓ LÉZERES LETAPOGATÁSSAL 3D REKONSTRUKCIÓ LÉZERES LETAPOGATÁSSAL. Bevezetés A lézeres letapogatás a ma elérhet legpontosabb 3D-s rekonstrukciót teszi lehet vé. Alapelve roppant egyszer : egy lézeres csíkkal megvilágítjuk a tárgyat.

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Írd fel a K (0; 2) középpontú 7 sugarú kör egyenletét! A keresett kör egyenletét felírhatjuk a képletbe való behelyettesítéssel: x 2 + (y + 2) 2 = 49. 2. Írd fel annak a körnek az egyenletét,

Részletesebben

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) 1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy

Részletesebben

Q 1 D Q 2 (D x) 2 (1.1)

Q 1 D Q 2 (D x) 2 (1.1) . Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol

Részletesebben

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások 1. Határozd meg az a és b vektor skaláris szorzatát, ha a = 5, b = 4 és a közbezárt szög φ = 55! Alkalmazzuk a megfelelő képletet: a b = a b cos φ = 5 4 cos 55 11,47. 2. Határozd meg a következő

Részletesebben

Matematikai geodéziai számítások 10.

Matematikai geodéziai számítások 10. Matematikai geodéziai számítások 10. Hibaellipszis, talpponti görbe és közepes ponthiba Dr. Bácsatyai, László Matematikai geodéziai számítások 10.: Hibaellipszis, talpponti görbe és Dr. Bácsatyai, László

Részletesebben

A Hamilton-Jacobi-egyenlet

A Hamilton-Jacobi-egyenlet A Hamilton-Jacobi-egyenlet Ha sikerül olyan kanonikus transzformációt találnunk, amely a Hamilton-függvényt zérusra transzformálja akkor valamennyi új koordináta és impulzus állandó lesz: H 0 Q k = H P

Részletesebben

A GEOMETRIAI ADATOK VONATKOZÁSI RENDSZEREI A TÉRINFORMATIKÁBAN

A GEOMETRIAI ADATOK VONATKOZÁSI RENDSZEREI A TÉRINFORMATIKÁBAN MIHALIK JÓZSEF A téma aktualitása A GEOMETRIAI ADATOK VONATKOZÁSI RENDSZEREI A TÉRINFORMATIKÁBAN A térinformatikai rendszerek alkalmazása ma már sok területen, így a honvédelem területén is nélkülözhetetlen

Részletesebben

Matematika 11 Koordináta geometria. matematika és fizika szakos középiskolai tanár. > o < szeptember 27.

Matematika 11 Koordináta geometria. matematika és fizika szakos középiskolai tanár. > o < szeptember 27. Matematika 11 Koordináta geometria Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A

Részletesebben

1. A Hilbert féle axiómarendszer

1. A Hilbert féle axiómarendszer {Euklideszi geometria} 1. A Hilbert féle axiómarendszer Az axiómarendszer alapfogalmai: pont, egyenes, sík, illeszkedés (pont egyenesre, pont síkra, egyenes síkra), közte van reláció, egybevágóság (szögeké,

Részletesebben

Ellipszis vezérgörbéjű ferde kúp felszínének meghatározásához

Ellipszis vezérgörbéjű ferde kúp felszínének meghatározásához 1 Ellipszis vezérgörbéjű ferde kúp felszínének meghatározásához Előző dolgozatunkkal melynek címe: A ferde körkúp palástfelszínének meghatározásához már mintegy megágyaztunk a jelen írásnak. Több mindent

Részletesebben

Numerikus integrálás

Numerikus integrálás Közelítő és szimbolikus számítások 11. gyakorlat Numerikus integrálás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján 1. Határozatlan integrál

Részletesebben

A méretaránytényező kérdése a földmérésben és néhány szakmai következménye

A méretaránytényező kérdése a földmérésben és néhány szakmai következménye A méretaránytényező kérdése a földmérésben és néhány szakmai következménye Dr. Busics György c. egyetemi tanár Óbudai Egyetem Alba Regia Műszaki Kar Székesfehérvár MFTTT Vándorgyűlés, Békéscsaba, 2019.

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 16 XVI A DIFFERENCIÁLSZÁmÍTÁS ALkALmAZÁSAI 1 Érintő ÉS NORmÁLIS EGYENES, L HOSPITAL-SZAbÁLY Az görbe abszcisszájú pontjához tartozó érintőjének egyenlete (1), normálisának egyenlete

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Oldd meg a következő exponenciális egyenletrendszereket! (Alaphalmaz: R) 5 3 x 2 2 y = 7 2 3 x + 2 y = 10 7 x+1 6 y+3 = 1 6 y+2 7 x = 5 (6 y + 1) c) 25 (5 x ) y = 1 3 y 27 x = 3 Megoldás:

Részletesebben

TÉRKÉPTAN óravázlat 2006/07. I.félév Dr. Mélykúti Gábor

TÉRKÉPTAN óravázlat 2006/07. I.félév Dr. Mélykúti Gábor TÉRKÉPTAN óravázlat 2006/07. I.félév Dr. Mélykúti Gábor TARTALOMJEGYZÉK I. A FÖLD ALAKJA 1. A föld főbb geometriai paraméterei 2. A föld fizikai és elméleti alakja 3. Alapszintfelületek 4. A föld elméleti

Részletesebben

Szegedi Tudományegyetem

Szegedi Tudományegyetem Szegedi Tudományegyetem Természettudományi és Informatikai Kar Bolyai Intézet Geometria Tanszék Szakdolgozat Felületek egymásra való leképezései és néhány alkalmazásuk a térképészetben Készítette: Czurkó

Részletesebben

Egyenes és sík. Wettl Ferenc szeptember 29. Wettl Ferenc () Egyenes és sík szeptember / 15

Egyenes és sík. Wettl Ferenc szeptember 29. Wettl Ferenc () Egyenes és sík szeptember / 15 Egyenes és sík Wettl Ferenc 2006. szeptember 29. Wettl Ferenc () Egyenes és sík 2006. szeptember 29. 1 / 15 Tartalom 1 Egyenes és szakasz Egyenes Szakasz Egyenesvonalú egyenletes mozgás Egyenes és pont

Részletesebben

Egy forgáskúp metszéséről. Egy forgáskúpot az 1. ábra szerint helyeztünk el egy ( OXYZ ) derékszögű koordináta - rendszerben.

Egy forgáskúp metszéséről. Egy forgáskúpot az 1. ábra szerint helyeztünk el egy ( OXYZ ) derékszögű koordináta - rendszerben. Egy forgáskúp metszéséről Egy forgáskúpot az 1. ábra szerint helyeztünk el egy ( OXYZ ) derékszögű koordináta - rendszerben. Az O csúcsú, O tengelyű, γ félnyílásszögű kúpot az ( XY ) sík itt két alkotóban

Részletesebben

Lineáris algebra mérnököknek

Lineáris algebra mérnököknek B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Lineáris algebra mérnököknek BMETE93BG20 Vektorok a 2- és 3-dimenziós tér Kf87 2017-09-05

Részletesebben

Egyenes és sík. Wettl Ferenc Wettl Ferenc () Egyenes és sík / 16

Egyenes és sík. Wettl Ferenc Wettl Ferenc () Egyenes és sík / 16 Egyenes és sík Wettl Ferenc 2012-09-20 Wettl Ferenc () Egyenes és sík 2012-09-20 1 / 16 Tartalom 1 Egyenes és szakasz Egyenes Szakasz Egyenesvonalú egyenletes mozgás Egyenes és pont távolsága 2 Sík Sík

Részletesebben

5. előadás: Földi vonatkoztatási rendszerek

5. előadás: Földi vonatkoztatási rendszerek 5. előadás: Földi vonatkoztatási rendszerek 5. előadás: Földi vonatkoztatási rendszerek A Nemzetközi Földi Vonatkoztatási Rendszer A csillagászati geodézia története során egészen a XX. század kezdetéig

Részletesebben

5. házi feladat. AB, CD kitér élpárra történ tükrözések: Az ered transzformáció: mivel az origó xpont, így nincs szükség homogénkoordinátás

5. házi feladat. AB, CD kitér élpárra történ tükrözések: Az ered transzformáció: mivel az origó xpont, így nincs szükség homogénkoordinátás 5. házi feladat 1.feladat A csúcsok: A = (0, 1, 1) T, B = (0, 1, 1) T, C = (1, 0, 0) T, D = ( 1, 0, 0) T AB, CD kitér élpárra történ tükrözések: 1 0 0 T AB = 0 1 0, elotlási rész:(i T AB )A = (0, 0, )

Részletesebben

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben?

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben? . Mi az (x, y) koordinátákkal megadott pont elforgatás uténi két koordinátája, ha α szöggel forgatunk az origó körül? x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs

Részletesebben

A főtengelyproblémához

A főtengelyproblémához 1 A főtengelyproblémához Korábbi, az ellipszis perspektivikus ábrázolásával foglalkozó dolgozatainkban előkerült a másodrendű görbék kanonikus alakra hozása, majd ebben a főtengelyrendszert előállító elforgatási

Részletesebben

Infobionika ROBOTIKA. X. Előadás. Robot manipulátorok II. Direkt és inverz kinematika. Készült a HEFOP P /1.0 projekt keretében

Infobionika ROBOTIKA. X. Előadás. Robot manipulátorok II. Direkt és inverz kinematika. Készült a HEFOP P /1.0 projekt keretében Infobionika ROBOTIKA X. Előadás Robot manipulátorok II. Direkt és inverz kinematika Készült a HEFOP-3.3.1-P.-2004-06-0018/1.0 projekt keretében Tartalom Direkt kinematikai probléma Denavit-Hartenberg konvenció

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II. Sorozatok II. DEFINÍCIÓ: (Mértani sorozat) Az (a n ) valós számsorozatot mértani sorozatnak nevezzük, ha van olyan valós szám, amellyel a sorozat bármely tagját megszorozva a következő tagot kapjuk. Jelöléssel:

Részletesebben

Vektorok és koordinátageometria

Vektorok és koordinátageometria Vektorok és koordinátageometria Vektorral kapcsolatos alapfogalmak http://zanza.tv/matematika/geometria/vektorok-bevezetese Definíció: Ha egy szakasz két végpontját megkülönböztetjük egymástól oly módon,

Részletesebben

Az elliptikus hengerre írt csavarvonalról

Az elliptikus hengerre írt csavarvonalról 1 Az elliptikus hengerre írt csavarvonalról Erről viszonylag ritkán olvashatunk, ezért most erről lesz szó. Az [ 1 ] munkában találtuk az alábbi részt 1. ábra. 1. ábra Itt a ( c ) feladat és annak megoldása

Részletesebben

Németh László Matematikaverseny április 16. A osztályosok feladatainak javítókulcsa

Németh László Matematikaverseny április 16. A osztályosok feladatainak javítókulcsa Németh László Matematikaverseny 007. április 16. A 9-10. osztályosok feladatainak javítókulcsa Feladatok csak 9. osztályosoknak 1. feladat a) Vegyük észre, hogy 7 + 5 felírható 1 + 3 + 6 + alakban, így

Részletesebben