Űrfelvételek térinformatikai rendszerbe integrálása
|
|
- Krisztina Hegedűs
- 8 évvel ezelőtt
- Látták:
Átírás
1 Budapest, október 18. Űrfelvételek térinformatikai rendszerbe integrálása Molnár Gábor ELTE Geofizikai Tanszék Űrkutató Csoport Témavezető: Dr. Ferencz Csaba Eötvös Loránd Tudományegyetem Geofizikai Tanszék, Űrkutató Csoport 1117 Budapest, Pázmány Péter sétány 1/A
2 Témakörök: Űrfelvételek geometria korrekció Térinformatikai rendszerek vetületek és alapfelületek definiálása Integráció különböző forrású, típusú, vetületű adatok együttes, térhelyes megjelenítése és kezelése
3 Geodéziai alapfelületek, dátumok
4 Vetületek (Stegena, 1988)
5 Transzformáció különböző vetületek között
6 Az EOV-vetület (Varga, 2002)
7 Az EOV közelítése Hotine-vetülettel 1. tézis: A EOV közelíthető a térinformatikai szoftverekben használatos Hotine-vetület alábbi paraméterezésével: Vetületi kezdőpont az alapfelületen (HD-72): Φ=47º 08 39,8174 ; Λ=19º 02 54,8584 Skálatényező: k 0 = 0,99993 A vetületi középvonal azimutja a kezdőpontban: α c =90º A vetületi kezdőpont vetületi koordinátái: FE= ,28432 m; FN= ,00114 m A közelítés maximális hibája: 0,2 milliméter!
8 A hazai zonális hengervetületek (HKR, HÉR, HDR) 2. tézis: Az EOV-hez hasonlóan, a magyarországi zonális hengervetületek Hotine-féle paraméterezését is megadtam a térinformatikai integráció céljára. A közelítő Hotine-paramétersorokkal elérhető hiba maximum 2 centiméter. (Varga, 2002)
9 A paraméterbecslés folyamata 3. tézis: Az áthidaló Molodensky-transzformáció paramétereinek meghatározása a legjobb vízszintes illeszkedés elérésére.
10 Űrfelvételek geometriája A centrális leképezés
11 A sávos letapogatás elvi vázlata
12 Kisfelbontású műholdfelvételek ortorektifikációja 4. tézis A leképezési geometria és megfelelő felbontású domborzati modell ismeretében meghatározható a nyers felvétel tetszőleges képpontjához tartózó földrajzi koordináta. Az eljárás alkalmazása során a nyers felvétel számos képpontjához a szóba jöhető tengerszint feletti magasságokat feltételezve kiszámítjuk a földrajzi koordinátákat, így előáll számos képi koordinátapár, a hozzájuk tartozó földrajzi koordinátapár és a magasság. Ezek között polinomiális kapcsolatot feltételezve meghatározhatók a polinomkapcsolat együtthatói.
13 Kisfelbontású műholdfelvételek ortorektifikációja
14 Kisfelbontású műholdfelvételek ortorektifikációja
15 Közepes felbontású műholdképek Közepes felbontású (Landsat TM) felvételek leképezési geometriája a tükör lengési síkjában
16 Közepes felbontású műholdfelvételek ortorektifikációja 5. tézis Az általam kidolgozott eljárás a raszteres térinformatika alapműveleteinek (raszteres állomány elforgatása, szűrők alkalmazása) sorozatából áll. Az eljárás lépéseit alkalmazva, általános raszteres térinformatikai szoftverrel, speciális felhasználói ismeretek nélkül elvégezhető a szokásos módon geometriailag korrigált (de a magassági hatásból eredő hibákat tartalmazó) műholdfelvételek utólagos korrekciója.
17 Közepes felbontású műholdfelvételek ortorektifikációja
18 Közepes felbontású műholdfelvételek ortorektifikációja Számított vízszintes korrekciós eltolás (pixel; lent) Korzika domborzati modellje (fent)
19 Közepes felbontású műholdfelvételek ortorektifikációja Korrigálatlan TM-felvétel
20 Közepes felbontású műholdfelvételek ortorektifikációja Korrigált TM-felvétel
21 Nagy és szupernagy felbontású műholdképek ortorektifikációja Direkt feladat Inverz feladat Műszerpozíció 6. tézis: Polinomiális ortorektifikáció általános alakja Polinomiális ortorektifikáció másodfokú alakja
22 Polinomiális rektifikáció
23 Polinomiális ortorektifikáció
24 Polinomiális ortorektifikáció
25 Takart képrészletek felismerése 7.tézis: A takart képrészleteket felismerő eljárás kifejlesztése
26 Takart képrészletek felismerése
27 Takart képrészletek felismerése
28 Takart képrészletek felismerése
Magyarországi topográfiai térképek
Eötvös Loránd Tudományegyetem, Természettudományi Kar Juhász Péter MTA SZTAKI Magyarországi topográfiai térképek vetületének torzulási vizsgálata doktori értekezés tézisei Budapest, 2008. Témavezető: Györffy
A budapesti sztereografikus, illetve a régi magyarországi hengervetületek és geodéziai dátumaik paraméterezése a térinformatikai gyakorlat számára
A budapesti sztereografikus, illetve a régi magyarországi hengervetületek és geodéziai dátumaik paraméterezése a térinformatikai gyakorlat számára Timár Gábor 1, Molnár Gábor 1, Márta Gergely 2 1ELTE Geofizikai
A Föld alakja TRANSZFORMÁCIÓ. Magyarországon még használatban lévő vetületi rendszerek. Miért kell transzformálni? Főbb transzformációs lehetőségek
TRANSZFORMÁCIÓ A Föld alakja -A föld alakja: geoid (az a felület, amelyen a nehézségi gyorsulás értéke állandó) szabálytalan alak, kezelése nehéz -A geoidot ellipszoiddal közelítjük -A földfelszíni pontokat
Digitális képek feldolgozása Előfeldolgozás Radiometriai korrekció Geometriai korrekció Képjavítás Szűrők Sávok közötti műveletek Képosztályozás Utófe
Távérzékelés Digitális felvételek előfeldolgozása (EENAFOTOTV, ETNATAVERV) Erdőmérnöki szak, Környezettudós szak Király Géza NyME, Erdőmérnöki Kar Geomatikai, Erdőfeltárási és Vízgazdálkodási Intézet Földmérési
Matematikai geodéziai számítások 4.
Matematikai geodéziai számítások 4. Vetületi átszámítások Dr. Bácsatyai, László Matematikai geodéziai számítások 4.: Vetületi átszámítások Dr. Bácsatyai, László Lektor: Dr. Benedek, Judit Ez a modul a
A ferdetengelyű szögtartó hengervetület és magyarországi alkalmazásai
A ferdetengelyű szögtartó hengervetület magyarországi alkalmazásai Perspektív hengervetületek A perspektív hengervetületek a gömb alapfelületet egy forgáshenger palástjára képezik le középpontos geometriai
Átszámítások különböző alapfelületek koordinátái között
Átszámítások különböző alapfelületek koordinátái között A különböző időpontokban, különböző körülmények között rögzített pontok földi koordinátái különböző alapfelületekre (ellipszoidokra geodéziai dátumokra)
INFORMATIKA ÁGAZATI ALKALMAZÁSAI. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010
INFORMATIKA ÁGAZATI ALKALMAZÁSAI Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 7. Digitális térképezés, georeferálás, vektorizálás Digitális térkép Fogalma Jellemzői Georeferálás
Környezeti informatika
Környezeti informatika Alkalmazható természettudományok oktatása a tudásalapú társadalomban TÁMOP-4.1.2.A/1-11/1-2011-0038 Eger, 2012. november 22. Utasi Zoltán Eszterházy Károly Főiskola, Földrajz Tanszék
FÖLDMÉRÉS ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Földmérés ismeretek középszint 1711 ÉRETTSÉGI VIZSGA 2017. május 17. FÖLDMÉRÉS ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Útmutató a vizsgázók teljesítményének
ÉRETTSÉGI VIZSGA május 17. FÖLDMÉRÉS ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA május 17. 8:00. Időtartam: 180 perc
ÉRETTSÉGI VIZSGA 2017. május 17. FÖLDMÉRÉS ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2017. május 17. 8:00 Időtartam: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Földmérés
Vetületi számítások a HungaPro v5.12 programmal
Vetület számítások a HungaPro v5.12 programmal Bácsatya László Nyugat-magyarország Egyetem, Geonormatka Kar Geomatka Intézet, Geodéza Tanszék OpenGIS, Székesehérvár, 2012. márcus 12-14. Cél Az összes,
Geoshop fejlesztése a FÖMI-nél
Geoshop fejlesztése a FÖMI-nél Szolgáltató Igazgatóság Földmérési és Távérzékelési Intézet www.fomi.hu www.geoshop.hu takacs.krisztian@fomi.hu Budapest, 2014. június 12. Mi az a Geoshop? INSPIRE = térinformatikai
Kép mozaik és piramis készítése LANDSAT űrfelvételből dr. Siki Zoltán 2011
Kép mozaik és piramis készítése LANDSAT űrfelvételből dr. Siki Zoltán 2011 Az internetről szabadon letölthetők korábbi 15 méter felbontású LANDSAT űrfelvételek Magyarországról (ftp://ftp.glcf.umd.edu/landsat).
Nyílt forrású, webes WGS84-EOV transzformáció
Nyílt forrású, webes WGS84-EOV transzformáció Faludi Zoltán UniGIS 2007 Faludi Zoltán UniGIS 2007 http://wgseov.sf.net 1/17 Nyílt forrású rendszerek a térinformatikában Szerver oldali szoftverek Kliens
A legjobb vízszintes illeszkedést. azonos pontok adatai alapján
legjobb vízszintes illeszkedést biztosító Molodenskyparaméterek meghatározása azonos pontok adatai alapján Molnár Gábor dr. Timár Gábor ELTE Geofizikai Tanszék, Ûrkutató Csoport. Bevezetés térinformatika
MIKOVINY SÁMUEL TÉRINFORMATIKAI EMLÉKVERSENY
FVM VIDÉKFEJLESZTÉSI, KÉPZÉSI ÉS SZAKTANÁCSADÁSI INTÉZET NYUGAT MAGYARORSZÁGI EGYETEM GEOINFORMATIKAI KAR MIKOVINY SÁMUEL TÉRINFORMATIKAI EMLÉKVERSENY 2008/2009. TANÉV Az I. FORDULÓ FELADATAI NÉV:... Tudnivalók
Az ivanicsi (ivanići) rendszer paraméterezése a térinformatikai alkalmazásokban Dr. Timár Gábor 1, Markovinović Danko 2, Kovács Béla 3
Az ivanicsi (ivanići) rendszer paraméterezése a térinformatikai alkalmazásokban Dr. Timár Gábor 1, Markovinović Danko 2, Kovács Béla 3 1 ELTE Geofizikai Tanszék Űrkutató Csoport 2 Zágrábi Egyetem, Geodéziai
A DIGITÁLIS TÉRKÉP ADATAINAK ELŐÁLLÍTÁSA, ADATNYERÉSI ELJÁRÁSOK
A DIGITÁLIS TÉRKÉP ADATAINAK ELŐÁLLÍTÁSA, ADATNYERÉSI ELJÁRÁSOK - két féle adatra van szükségünk: térbeli és leíró adatra - a térbeli adat előállítása a bonyolultabb. - a költségek nagyjából 80%-a - munkaigényes,
3. Vetülettan (3/6., 8., 10.) Unger János. @geo.u-szeged.hu www.sci.u-szeged.hu/eghajlattan
Kartográfia (GBN309E) Térképészet (GBN317E) előadás 3. Vetülettan (3/6., 8., 10.) Unger János unger@geo.u @geo.u-szeged.hu www.sci.u-szeged.hu/eghajlattan szeged.hu/eghajlattan SZTE Éghajlattani és Tájföldrajzi
Számítási feladatok a Számítógépi geometria órához
Számítási feladatok a Számítógépi geometria órához Kovács Zoltán Copyright c 2012 Last Revision Date: 2012. október 15. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát
2. előadás: A mérnöki gyakorlatban használt térkép típusok és tartalmuk
2. előadás: A mérnöki gyakorlatban használt térkép típusok és tartalmuk Magyarországon számos olyan térkép létezik, melyek előállítását, karbantartását törvények, utasítások szabályozzák. Ezek tartalma
Térinformatika és Geoinformatika
Távérzékelés 1 Térinformatika és Geoinformatika 2 A térinformatika az informatika azon része, amely térbeli adatokat, térbeli információkat dolgoz fel A geoinformatika az informatika azon része, amely
2. fejezet. Vetületi alapfogalmak. Dr. Mélykúti Gábor
2. fejezet Dr. Mélykúti Gábor Nyugat-magyarországi Egyetem Geoinformatikai Kar 2010 2.1 Bevezetés A modul a Térképtan és a Topográfia c. tantárgyak részét képezi. A modul a térképek készítése és használata
Az EOV-koordináták nagypontosságú közelítése Hotine-féle ferdetengelyû Mercator-vetülettel
Az EOV-koordináták nagypontosságú közelítése Hotine-féle ferdetengelyû Mercator-vetülettel Molnár Gábor Timár Gábor ELTE Geofizikai Tanszék, Ûrkutató Csoport 1 Hotine (1947) vetületi leírása a Gauss-gömböt
A FÖLDMINŐSÍTÉS GEOMETRIAI ALAPJAI
A FÖLDMINŐSÍTÉS GEOMETRIAI ALAPJAI Detrekői Ákos Keszthely, 2003. 12. 11. TARTALOM 1 Bevezetés 2 Milyen geometriai adatok szükségesek? 3 Néhány szó a referencia rendszerekről 4 Geometriai adatok forrásai
Távérzékelt felvételek előfeldolgozása
Távérzékelt felvételek előfeldolgozása Csornai Gábor László István Budapest Főváros Kormányhivatala Mezőgazdasági Távérzékelési és Helyszíni Ellenőrzési Osztály Az előadás 2011-es átdolgozott változata
Vetületi rendszerek és átszámítások
Vetületi rendszerek és átszámítások PhD értekezés tézisei Dr. Varga József egyetemi adjunktus Budapesti Műszaki és Gazdaságtudományi Egyetem Építőmérnöki Kar Általános- és Felsőgeodézia Tanszék Budapest,
Topográfia 2. Vetületi alapfogalmak Mélykúti, Gábor
Topográfia 2. Vetületi alapfogalmak Mélykúti, Gábor Topográfia 2. : Vetületi alapfogalmak Mélykúti, Gábor Lektor : Alabér, László Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027 Tananyagfejlesztéssel a GEO-ért
RTCM alapú VITEL transzformáció felhasználó oldali beállítása Trimble Survey Controller szoftver használata esetén
RTCM alapú VITEL transzformáció felhasználó oldali beállítása Trimble Survey Controller szoftver használata esetén A http://www.gnssnet.hu/valos_trafo.php weboldalról letöltött RTCM VITEL.dc nevű Trimble
MIKOVINY SÁMUEL TÉRINFORMATIKAI EMLÉKVERSENY
FVM VIDÉKFEJLESZTÉSI, KÉPZÉSI ÉS SZAKTANÁCSADÁSI INTÉZET NYUGAT-MAGYARORSZÁGI EGYETEM GEOINFORMATIKAI KAR MIKOVINY SÁMUEL TÉRINFORMATIKAI EMLÉKVERSENY 2009/2010. TANÉV Az I. FORDULÓ FELADATAI 1. feladat:
Térképismeret 1 ELTE TTK Földtudományi és Földrajz BSc. 2007
Térképismeret 1 ELTE TTK Földtudományi és Földrajz BSc. 2007 Török Zsolt, Draskovits Zsuzsa ELTE IK Térképtudományi és Geoinformatikai Tanszék http://lazarus.elte.hu Ismerkedés a térképekkel 1. Miért van
Digitális fotogrammetria
Digitális fotogrammetria I. Áttekintés Digitális fotogrammetria (DFG): digitális felvételeket használ Elıállíthatók: fotogrammetriai szkennerekkel hagyományos légifényképekbıl, vagy közvetlenül digitális
Csoportosítás. Térinformatikai műveletek, elemzések. Csoportosítás. Csoportosítás
Csoportosítás Térinformatikai műveletek, elemzések Leíró (attribútum) adatokra vonatkozó kérdések, műveletek, elemzések, csoportosítások,... Térbeli (geometriai) adatokra vonatkozó kérdések, műveletek
A MePAR-hoz kapcsolódó DigiTerra térinformatikai szoftver fejlesztések
A MePAR-hoz kapcsolódó DigiTerra térinformatikai szoftver fejlesztések GIS OPEN 2004 Konferencia Székesfehérvár Előadó: Czimber Kornél DigiTerra Kft. DigiTerra - MePAR térinformatikai fejlesztések MePAR
A térinformatika lehetőségei a földrajzórán
A térinformatika lehetőségei a földrajzórán Geolokáció az oktatásban konferencia AKG, Budapest, 2013. november 30. Dr. Sik András adjunktus, ELTE Természetföldrajzi Tanszék sikandras@gmail.com Mit jelent?
Egy pont földfelszíni helyzetét meghatározzák: a pont alapfelületi földrajzi koordinátái a pont tengerszint feletti magassága
Földrajzi koordináták Egy pont földfelszíni helyzetét meghatározzák: a pont alapfelületi földrajzi koordinátái a pont tengerszint feletti magassága Topo-Karto-2 1 Földrajzi koordináták pólus egyenlítő
Folyószabályozási térképek geodéziai alapja
Eötvös Loránd Tudományegyetem Informatikai Kar Térképtudományi és Geoinformatikai Tanszék Mészáros János Folyószabályozási térképek geodéziai alapja Doktori értekezés tézisei Eötvös Loránd Tudományegyetem
ALKALMAZOTT TÉRINFORMATIKA 2.
ALKALMAZOTT TÉRINFORMATIKA 2. FÖLDRAJZ ALAPSZAK (NAPPALI MUNKAREND) TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI FÖLDTUDOMÁNYI KAR FÖLDRAJZ-GEOINFORMATIKA INTÉZET Miskolc, 2018 TARTALOMJEGYZÉK
TÉRINFORMATIKA I. Dr. Kulcsár Balázs egyetemi docens. Debreceni Egyetem Műszaki Kar Műszaki Alaptárgyi Tanszék
TÉRINFORMATIKA I. Dr. Kulcsár Balázs egyetemi docens Debreceni Egyetem Műszaki Kar Műszaki Alaptárgyi Tanszék TÁJÉKOZTATÁS TANTÁRGYI TEMATIKA 1 Előadás 1. Bevezetés a térinformatikába. Kartográfia történet.
Tesszeláció A vizsgált területet úgy osztjuk fel elemi egységekre, hogy azok hézag- és átfedésmentesek legyenek. Az elemi egységek alakja szerint megk
Monitoring távérzékeléssel Digitális felvételek előfeldolgozása (E130-501) Természetvédelmi MSc szak Király Géza NyME, Erdőmérnöki Kar Geomatikai, Erdőfeltárási és Vízgazdálkodási Intézet Földmérési és
Jelölések. GBN304G Alkalmazott kartográfia II. gyakorlat Térképi vetületekkel kapcsolatos feladatok. Unger János. x;y) )?
GBN304G Alkalmazott kartográfia II. gyakorlat Térképi vetületekkel kapcsolatos feladatok Unger János unger@geo.u @geo.u-szeged.hu www.sci.u-szeged.hu/eghajlattan szeged.hu/eghajlattan Jelölések R/m = alapfelületi
Városökológiai vizsgálatok Székesfehérváron TÁMOP B-09/1/KONV
Városökológiai vizsgálatok Székesfehérváron TÁMOP 4.2.1.B-09/1/KONV-2010-0006 Balázsik Valéria Fény-Tér-Kép konferencia Gyöngyös, 2012. szeptember 27-28. Projekt TÁMOP 4.2.1.B-09/1/KONV-2010-0006 A felsőoktatás
Raszter georeferálás QGIS-ben Összeállította: dr. Siki Zoltán verzióra aktualizálta: Jáky András
Raszter georeferálás QGIS-ben Összeállította: dr. Siki Zoltán 2.18.3. verzióra aktualizálta: Jáky András (jakyandras@gmail.com) Ez a leírás ahhoz nyújt segítséget, hogy szkennelt térképet vagy ortofotót
Hengervetületek alkalmazása a magyar topográfiában
EÖTVÖS LORÁND TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR Hengervetületek alkalmazása a magyar topográfiában SZAKDOLGOZAT FÖLDTUDOMÁNYI ALAPSZAK Készítette: Szántó Henriett térképész és geoinformatikus szakirányú
Magyarországi geodéziai vonatkozási rendszerek és vetületi síkkoordináta-rendszerek vizsgálata
Magyarországi geodéziai vonatkozási rendszerek és vetületi síkkoordináta-rendszerek vizsgálata Az elmúlt 150 év során Magyarországon a történelmi helyzet sajátos alakulása következtében több alkalommal
Térinformatika. Térinformatika. GIS alkalmazói szintek. Rendszer. GIS funkcionális vázlata. vezetői szintek
Térinformatika Térinformatika 1. A térinformatika szerepe 2. A valós világ modellezése 3. Térinformatikai rendszerek 4. Térbeli döntések 5. Térbeli műveletek 6. GIS alkalmazások Márkus Béla 1 2 Rendszer
FÖLDMÉRÉS ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Földmérés ismeretek emelt szint 1712 ÉRETTSÉGI VIZSGA 2019. május 15. FÖLDMÉRÉS ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Útmutató a vizsgázók
Bevezetés a geodéziába
Bevezetés a geodéziába 1 Geodézia Definíció: a földmérés a Föld alakjának és méreteinek, a Föld fizikai felszínén, ill. a felszín alatt lévő természetes és mesterséges alakzatok geometriai méreteinek és
TÉRINFORMATIKA II. Dr. Kulcsár Balázs főiskolai docens. Debreceni Egyetem Műszaki Kar Műszaki Alaptárgyi Tanszék
TÉRINFORMATIKA II. Dr. Kulcsár Balázs főiskolai docens Debreceni Egyetem Műszaki Kar Műszaki Alaptárgyi Tanszék TÉRINFORMATIKAI SZOFTVEREK ArcGIS Az ArcGIS Desktop az Egyesült Államokban, 1969-ben alapított
Robotika. Kinematika. Magyar Attila
Robotika Kinematika Magyar Attila amagyar@almos.vein.hu Miről lesz szó? Bevezetés Merev test pozíciója és orientációja Rotáció Euler szögek Homogén transzformációk Direkt kinematika Nyílt kinematikai lánc
A MATEMATIKAI SZOFTVEREK ALKALMAZÁSI KÉSZSÉGÉT, VALAMINT A TÉRSZEMLÉLETET FEJLESZTŐ TANANYAGOK KIDOLGOZÁSA A DEBRECENI EGYETEM MŰSZAKI KARÁN
A MATEMATIKAI SZOFTVEREK ALKALMAZÁSI KÉSZSÉGÉT, VALAMINT A TÉRSZEMLÉLETET FEJLESZTŐ TANANYAGOK KIDOLGOZÁSA A DEBRECENI EGYETEM MŰSZAKI KARÁN Dr. Kocsis Imre DE Műszaki Kar Dr. Papp Ildikó DE Informatikai
A méretaránytényező kérdése a földmérésben és néhány szakmai következménye
A méretaránytényező kérdése a földmérésben és néhány szakmai következménye Dr. Busics György c. egyetemi tanár Óbudai Egyetem Alba Regia Műszaki Kar Székesfehérvár MFTTT Vándorgyűlés, Békéscsaba, 2019.
A városi vegetáció felmérése távérzékelési módszerekkel Vécsei Erzsébet
A városi vegetáció felmérése távérzékelési módszerekkel Vécsei Erzsébet Előzmények A távérzékelés az elmúlt évtizedben rohamosan fejlődésnek indult. A felhasználók részéről megjelent az igény az egyre
KOORDINÁTA-GEOMETRIA
XIV. Témakör: feladatok 1 Huszk@ Jenő XIV.TÉMAKÖR Téma A pont koordinátageometriája A kör koordinátageometriája KOORDINÁTA-GEOMETRIA A projekt típus ú feladatok tartalmi szintézise A feladat sorszáma Oldal
MŰHOLDAS VÁROSI HŐSZIGET VIZSGÁLAT
Városi Hősziget Konferencia Országos Meteorológiai Szolgálat 2013. szeptember 24. MŰHOLDAS VÁROSI HŐSZIGET VIZSGÁLAT Dezső Zsuzsanna, Bartholy Judit, Pongrácz Rita Eötvös Loránd Tudományegyetem Meteorológiai
Az önkormányzati térinformatikai technológia fejlődési irányai
Az önkormányzati térinformatikai technológia fejlődési irányai Nemzeti Közszolgálati Egyetem Budapest, 2012. április 10-11. Kocsis Miklós vezető főtanácsos 1 Térinformatika Vagyoni érték Közmű Műszaki
II. A TÉRKÉPVETÜLETEK RENDSZERES LEÍRÁSA 83
T A R T A L O M J E G Y Z É K I. A TÉRKÉPVETÜLETEKRŐL ÁLTALÁBAN 13 VETÜLETTANI ALAPFOGALMAK 15 A térkép mint matematikai leképezés eredménye 15 Az alapfelület paraméterezése földrajzi koordinátákkal 18
A második katonai felmérés térképeinek közelítõ vetületi és alapfelületi leírása a térinformatikai alkalmazások számára
A második katonai felmérés térképeinek közelítõ vetületi és alapfelületi leírása a térinformatikai alkalmazások számára Timár Gábor Molnár Gábor ELTE Geofizikai Tanszék Ûrkutató Csoport 1. Bevezetés A
Matematikai geodéziai számítások 10.
Matematikai geodéziai számítások 10. Hibaellipszis, talpponti görbe és közepes ponthiba Dr. Bácsatyai, László Matematikai geodéziai számítások 10.: Hibaellipszis, talpponti görbe és Dr. Bácsatyai, László
FÖLDMÉRÉS ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Földmérés ismeretek középszint 1911 ÉRETTSÉGI VIZSGA 2019. május 15. FÖLDMÉRÉS ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Útmutató a vizsgázók teljesítményének
Képfeldolgozás. 1. el adás. A képfeldolgozás m veletei. Mechatronikai mérnök szak BME, 2008
Képfeldolgozás 1. el adás. A képfeldolgozás m veletei Mechatronikai mérnök szak BME, 2008 1 / 61 Alapfogalmak transzformációk Deníció Deníció Geometriai korrekciókra akkor van szükség, ha a képr l valódi
Térinformatika adatbázisból. GisOpen 2007 konferencia, 2007. március 12-14
Térinformatika adatbázisból Előzmények GVOP 4.2.2 pályázat Állami támogatás tartalomipari és közcélú tartalomszolgáltatás fejlesztésére UKIG pályázat Közcélú On-line Útinformációs Rendszer megvalósítására
Matematikai geodéziai számítások 3.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr Bácsatyai László Matematikai geodéziai számítások 3 MGS3 modul Kettős vetítés és EOV szelvényszám keresése koordinátákból SZÉKESFEHÉRVÁR 2010 Jelen
Matematikai geodéziai számítások 3.
Matematikai geodéziai számítások 3 Kettős vetítés és EOV szelvényszám keresése koordinátákból Dr Bácsatyai, László Matematikai geodéziai számítások 3: Kettős vetítés és EOV szelvényszám keresése koordinátákból
INFORMATIKA ÁGAZATI ALKALMAZÁSAI. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP /1/A
INFORMATIKA ÁGAZATI ALKALMAZÁSAI Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 14. GIS feldolgozás, méréselőkészítés Desktop méréselőkészítés Méréselőkészítés a kontrolleren
Hajder Levente 2017/2018. II. félév
Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2017/2018. II. félév Tartalom 1 2 3 Geometriai modellezés feladata A világunkat modellezni kell a térben. Valamilyen koordinátarendszer
5. 3D rekonstrukció. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)
5. 3D rekonstrukció Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2 PASSZÍV SZTEREÓ 3 Passzív sztereó 3D rekonstrukció egy sztereó kamera
2. Omnidirekcionális kamera
2. Omnidirekcionális kamera Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2 Omnidirekcionális kamerák típusai Omnidirekcionális, körbelátó,
Magasságos GPS. avagy továbbra is
Magasságos GPS avagy továbbra is Tisztázatlan kérdések az RTK-technológiával végzett magasságmeghatározás területén? http://www.sgo.fomi.hu/files/magassagi_problemak.pdf Takács Bence BME Általános- és
7. GRAVITÁCIÓS ALAPFOGALMAK
7. GRAVITÁCIÓS ALAPFOGALMAK A földi nehézségi erőtérnek alapvetően fontos szerepe van a geodéziában és a geofizikában. A geofizikában a Föld szerkezetének tanulmányozásában és különféle ásványi nyersanyagok
Geometria II gyakorlatok
Geometria II gyakorlatok Kovács Zoltán Copyright c 2011 Last Revision Date: 2011. november 29. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát technikával készült, a megjelenés
Ferdetengelyű szögtartó hengervetületek a térképészetben
EÖTVÖS LORÁND TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR Ferdetengelyű szögtartó hengervetületek a térképészetben SZAKDOLGOZAT FÖLDTUDOMÁNYI ALAPSZAK Készítette: Fülöp Dávid térképész és geoinformatikus szakirányú
PTE PMMF Közmű- Geodéziai Tanszék
digitális állományok átvétele, meglévő térképek digitalizálása, meglévő térképek, légifelvételek, illetve speciális műszaki rajzi dokumentációk szkennelése és transzformálása. A leggyorsabb, legolcsóbb
A második és harmadik katonai felmérés erdélyi szelvényeinek vetületiés dátumparaméterei
geos-majus.qxd 9/1/04 9:35 PM Page 1 A második és harmadik katonai felmérés erdélyi szelvényeinek vetületiés dátumparaméterei Timár Gábor 1 Molnár Gábor 1 Păunescu Cornel Pendea Florin 3 1 ELTE Geofizikai
3. Vetülettan (3/3-5.) Unger szeged.hu/eghajlattan SZTE Éghajlattani és Tájföldrajzi Tanszék
Kartográfia (GBN309E) Térképészet (GBN317E) előadás 3. Vetülettan (3/3-5.) Unger János unger@geo.u @geo.u-szeged.hu www.sci.u-szeged.hu/eghajlattan szeged.hu/eghajlattan SZTE Éghajlattani és Tájföldrajzi
Folyóvízminőség becslés térinformatikai módszerekkel. Nagy Zoltán Geográfus Msc. Szegedi Tudományegyetem
Folyóvízminőség becslés térinformatikai módszerekkel Nagy Zoltán Geográfus Msc. Szegedi Tudományegyetem Probléma felvetés - Mezőgazdasági termelés nagymértékű víz- és talajvíz szennyezése. - Külföldi példákban
(térképi ábrázolás) Az egész térképre érvényes meghatározása: Definíció
Az egész térképre érvényes meghatározása: A térkép hossztartó vonalain mért távolságnak és a valódi redukált vízszintes távolságnak a hányadosa. M = 1 / m, vagy M = 1 : m (m=méretarányszám) A méretarány
3D koordináta-rendszerek
3D koordináta-rendszerek z z y x y x y balkezes bal-sodrású x jobbkezes jobb-sodrású z 3D transzformációk - homogén koordináták (x, y, z) megadása homogén koordinátákkal: (x, y, z, 1) (x, y, z, w) = (x,
FÖLDMÉRÉSI ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNYEK A) KOMPETENCIÁK. 1. Szakmai nyelvhasználat
FÖLDMÉRÉSI ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNYEK A földmérési ismeretek ágazati szakmai érettségi vizsgatárgy részletes érettségi vizsgakövetelményei a XXXV.
Haladó lineáris algebra
B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Haladó lineáris algebra BMETE90MX54 Lineáris leképezések 2017-02-21 IB026 Wettl Ferenc
Példa: Csúsztatófeszültség-eloszlás számítása I-szelvényben
Példa: Csúsztatófeszültség-eloszlás számítása I-szelvényben Készítette: Kossa Attila (kossa@mm.bme.hu) BME, Műszaki Mechanikai Tanszék 2011. március 14. Határozzuk meg a nyírásból adódó csúsztatófeszültség
A fotogrammetria ismeretek és a szakmai tudás fontossága
Óbudai Egyetem Alba Regia Műszaki Kar Geoinformatikai Intézet A fotogrammetria ismeretek és a szakmai tudás fontossága 3. Légifotó Nap, Székesfehérvár, 2018. február 7. A fotogrammetria fogalma A fotogrammetria
Esri Arcpad 7.0.1. Utó- feldolgozás. Oktatási anyag - utókorrekció
Esri Arcpad 7.0.1 & MobileMapper CE Utó- feldolgozás Oktatási anyag - utókorrekció Tartalomjegyzék GPS- MÉRÉSEK UTÓ- FELDOLGOZÁSA... 3 1.1 MŰHOLD ADATOK GYŰJTÉSÉNEK ELINDÍTÁSA, A ESRI ArcPad PROGRAMMAL
TÉRINFORMATIKA II. Dr. Kulcsár Balázs főiskolai docens. Debreceni Egyetem Műszaki Kar Műszaki Alaptárgyi Tanszék
TÉRINFORMATIKA II. Dr. Kulcsár Balázs főiskolai docens Debreceni Egyetem Műszaki Kar Műszaki Alaptárgyi Tanszék TÁJÉKOZTATÁS TANTÁRGYI TEMATIKA 1 Előadás 1. GPS műszerek és kapcsolódó szoftvereik bemutatása
DOMBORZATMODELLEK ALKALMAZÁSA A TÉRKÉPKÉSZÍTÉSBEN. Ungvári Zsuzsanna tanársegéd
DOMBORZATMODELLEK ALKALMAZÁSA A TÉRKÉPKÉSZÍTÉSBEN Ungvári Zsuzsanna tanársegéd TARTALOM Domborzatmodellek ismertetése Térinformatikai műveletek lehetnek szükségesek a domborzatmodellek előkészítéséhez:
A kivitelezés geodéziai munkái II. Magasépítés
A kivitelezés geodéziai munkái II. Magasépítés Építésirányítási feladatok Kitűzési terv: a tervezési térkép másolatán Az elkészítése a tervező felelőssége Nehézségek: Gyakorlatban a geodéta bogarássza
Bevezetés. Transzformáció
Geoinformatika alapjai ea. VI. Bevezetés GIS mőveletek I. Tematika Számonkérés Irodalom Transzformáció 28.5.6. Transzformációk típusai formátum geometriai 28.5.6. 2 Geometriai transzformáció I. Célja:
Benapozás vizsgálat dr. Szalay Zsuzsa és a Naplopó anyagainak felhasználásával
Benapozás vizsgálat dr. Szalay Zsuzsa és a Naplopó anyagainak felhasználásával 1. A Föld pályája a Nap körül 2. A szoláris idő 3. Nappályadiagramok 4. Árnyékszögek élleképző görbék 5. Napóra vetületek
A VÁROSI HŐSZIGET VIZSGÁLATA MODIS ÉS ASTER MÉRÉSEK FELHASZNÁLÁSÁVAL
35. Meteorológiai Tudományos Napok, Magyar Tudományos Akadémia, 2009. november 20. A VÁROSI HŐSZIGET VIZSGÁLATA MODIS ÉS ASTER MÉRÉSEK FELHASZNÁLÁSÁVAL Dezső Zsuzsanna, Bartholy Judit, Pongrácz Rita Eötvös
Számítógépes Grafika mintafeladatok
Számítógépes Grafika mintafeladatok Feladat: Forgassunk a 3D-s pontokat 45 fokkal a X tengely körül, majd nyújtsuk az eredményt minden koordinátájában kétszeresére az origóhoz képest, utána forgassunk
LOKÁLIS IONOSZFÉRA MODELLEZÉS ÉS ALKALMAZÁSA A GNSS HELYMEGHATÁROZÁSBAN
LOKÁLIS IONOSZFÉRA MODELLEZÉS ÉS ALKALMAZÁSA A GNSS HELYMEGHATÁROZÁSBAN Juni Ildikó Budapesti Műszaki és Gazdaságtudományi Egyetem BSc IV. évfolyam Konzulens: Dr. Rózsa Szabolcs MFTT 29. Vándorgyűlés,
KÉP VAGY TÉRKÉP DR. PLIHÁL KATALIN ORSZÁGOS SZÉCHÉNYI KÖNYVTÁR
KÉP VAGY TÉRKÉP DR. PLIHÁL KATALIN ORSZÁGOS SZÉCHÉNYI KÖNYVTÁR A TÉRKÉP A HAGYOMÁNYOS VILÁG FELFOGÁSA SZERINT A TÉRKÉP ÉS EGYÉB TÉRKÉPÉSZETI ÁBRÁZOLÁSI FORMÁK (FÖLDGÖMB, DOMBORZATI MODELL, PERSPEKTIVIKUS
Alapmű veletek te rbeli adatokkal
Alapmű veletek te rbeli adatokkal Szilágyi Péter Kivonat A dolgozat a térinformatikában előforduló alapműveletekről szól. Eleinte röviden említést teszünk a két elterjedt képtárolási adatstruktúráról:
29/2014. (III. 31.) VM rendelet az állami digitális távérzékelési adatbázisról
29/2014. (III. 31.) VM rendelet az állami digitális távérzékelési adatbázisról A földmérési és térképészeti tevékenységről szóló 2012. évi XLVI. törvény 38. (3) bekezdés b) pontjában kapott felhatalmazás
INFORMATIKA ÁGAZATI ALKALMAZÁSAI. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010
INFORMATIKA ÁGAZATI ALKALMAZÁSAI Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 9. Távérzékelési adatok alkalmazása Érzékelők Hullámhossz tartományok Visszaverődés Infra felvételek,
Képrekonstrukció 3. előadás
Képrekonstrukció 3. előadás Balázs Péter Képfeldolgozás és Számítógépes Grafika Tanszék Szegedi Tudományegyetem Computed Tomography (CT) Elv: Röntgen-sugarak áthatolása 3D objektum 3D térfogati kép Mérések
Matematikai geodéziai számítások 8.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr Bácsatyai László Matematikai geodéziai számítások 8 MGS8 modul Szintezési hálózat kiegyenlítése SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői
A Föld alakjának ismerettörténete az archív térképek georeferálásának geofizikai alapja
A Föld alakjának ismerettörténete az archív térképek georeferálásának geofizikai alapja MTA doktori értekezés tézisei Timár Gábor Budapest 018 A feladat megfogalmazása A doktori dolgozatban szélesebb történeti