Alapmű veletek te rbeli adatokkal

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Alapmű veletek te rbeli adatokkal"

Átírás

1 Alapmű veletek te rbeli adatokkal Szilágyi Péter Kivonat A dolgozat a térinformatikában előforduló alapműveletekről szól. Eleinte röviden említést teszünk a két elterjedt képtárolási adatstruktúráról: raszter és vektor, majd hosszasan tárgyaljuk egyik formátumnak a másikba való átalakítását különös hangsúlyt fektetve a szükséges előfeltételekre valamint az algoritmikai részletekre. Végezetül pedig az alap affin transzformációkról lesz szó (transzláció, rotáció és skálázás) illetve más térinformatikában hasznos matematikai fogalmakról (különböző távolságok). Kolozsvár Április 28.

2 Raszter képek, vektorképek, konverziók Ebben a fejezetben a teljesség érdekében röviden megemlítjük a raszter- és vektorképek/grafika tulajdonságait, felépítését, majd rátérünk a két fajta formátum közötti átalakításokra, konverziókra. Raszter grafika A raszter kép, vagy más néven bittérkép (bitmap), az egy általában téglalap alakú négyzetrácsot ábrázoló adatstruktúra, melynek minden rácspotja egy sz ínpont (pixel). Az adatstruktúrának a fő célja a megjelenítés (képernyőn, papíron vagy más médiumon). A bittérkép egy-az-egyhez megfeleltetés egy megjelenített kép bitjeivel, általában a megjelenítő videómemóriájának megfelelő formátumban, vagy egy eszköz független formátumban. Technikailag három tulajdonsággal jellemezhető: szélesség és magasság (színpontok száma) valamint a színmélység (egy színpontot ábrázoló bitek száma). Mivel a raszter grafika felbontás függő, csak korlátozott mértékben lehet nagyítani szembetűnő minőség-vesztés nélkül. Vektor grafika A vektor grafika az matematikai egyenletekre alapuló geometriai primitívek (pontok, vonalak, görbék és formák/poligonok) felhasználása képeknek az ábrázolása érdekében. Ebből adódóan egy vektorképekkel dolgozó program a megjelenítésnek megfelelő lehető legalkalmasabb felbontású képet elő tudja állítani. Mivel a vektorkép matematikai egyenletekre alapozódik, a megjelenítés minőségét kizárólag a megjelenítő eszköz felbontása korlátozza, ugyanakkor viszont a vektoradatnak a mérete konstans marad. Vagyis bár a nyomtatáshoz egy sokkal több információval rendelkező kép szükséges mint képernyőn való megjelenítéshez, ugyanaz a vektorkép mindkét célt tökéletesen tudja szolgálni. Raszter skálázás Vektor skálázás

3 Raszter és vektor közötti konverziók Sokáig elegendő volt a raszter képekkel való dolgozás és csak nagyon speciális esetekben volt szükség a vektorképek használatára. Manapság viszont egyre gyakrabban van szükség mindkét formátumnak az egyidejű kezelése annak függvényében, hogy a kívánt művelet végrehajtása épp melyik rendszerben egyszerűbb (pl. forgatások és területszámítások vektorképekkel, metszési műveletek raszter képekkel valósíthatóak meg hatékonyabban). Azokat a programokat, amelyek egy időben mindkét adatformátummal dolgoznak hibrid adatmodellű szoftvereknek hívunk. Ezek a szoftverek viszont elképzelhetetlenek helyes, egyértelmű raszter-vektor átalakítások nélkül. Az alábbiakban ezekre a konverziókra térünk ki részletesebben. Raszter vektor átalakítás Az egyszerűség kedvéért a színes és tónusos raszter képek helyett ebben a részben kizárólag a bináris raszter képek vektorokká való alakításáról lesz szó. A korrekt mintavételezés feltételei Egyik alapfeltétele a számítógépes grafikának valamint a számítógépes alakfelismerésnek az analóg képek (nyomtatott kép) helyes diszkretizálása (pixelekre bontása). Ahhoz, hogy az analóg képet a diszkrét (pixeles) kép kielégítően ábrázolja szükséges, hogy a két kép topológiailag egyenértékű legyen. Ez egyszerűen fogalmazva azt jelenti, hogy a két alakzat nyújtással és zsugorítással, szakadás és vágás nélkül átvihető egymásba. A mellékelt ábrán látható egy példa bemeneti analóg kép illetve az abból előállított diszkrét kép. Bár a két kép topológiailag ekvivalens, mégis egyszerű szemlélet alapján megállapíthatjuk, hogy a diszkretizált kép hasonlósága az eredeti képhez a legtöbb gyakorlati feladat szempontjából nem kielégítő. Ahhoz, hogy a topológia mellett az eredeti kép alakját is megőrizzük, jelentős mértékben kisebb képpontokkal kell dolgoznunk a raszteres kép esetén (vagy más szóval a növelnünk kell a diszkterizálás felbontását). Összefoglalva megállapítható, hogy a kompatibilitás megléte biztosítja az analóg kép topológiájának megőrzését a diszkrét képben, és egyben biztosítja az alak megtartását is. Idomok határvonalának megkeresése Raszterből vektorba való konverzió során két fontos adattípust különböztetünk meg: vastag régiókat és vékony vonalakat. Bármelyik adattípust is kívánjuk azonban feldolgozni, mindenekelőtt meg kell határoznunk az objektum körvonalát (kontúrját). Egy összetett objektum több belső szigetet is tartalmazhat, viszont mielőtt rátérnénk e szigetek kontúrjainak meghatározására, foglalkozzunk az objektum egészét határoló körvonal megkeresésével.

4 A határoló körvonalat kereső algoritmus lényege az, hogy kezdetnek keresünk egy fekete pixelt melynek egyik (például keleti) szomszédja fehér, majd ebből a pontból kiindulva próbáljuk a körvonalat jobb fordulási irányba kiterjeszteni (a fordulást a fekete pixel melletti lyuktól (fehér pixeltől) kezdjük). A kiterjesztést folytatjuk mindegyik új képpontra mindaddig, amíg visszaérünk az indulási pontba. Megfigyelhető, hogy lesznek olyan képpontok melyeken többször is áthaladunk a kiterjesztés során (pl. két szigetet egy vonal köt össze). Ezek a többszörös pixelek fontos szerepet fognak játszani a vékony vonalak meghatározásában. Az algoritmus lépéseit az alábbi ábrán szemléltetjük.

5 Vékony objektumok tengelyvonalainak meghatározása A raszteres ábrázolás során erősen torzulnak az euklideszi geometria olyan hagyományos fogalmai, mint a távolság, egyenes, metszéspont, hisz két tetszőleges pixel közötti út nem azonos az analóg síkon két pixelnek megfelelő pontok között húzható legrövidebb távolsággal. Ezek a problémák világossá teszik, hogy ilyen jellegű feladatokat célszerűbb az analóg teret geometriailag leképező vektor modellben végrehajtani. A vektor modellt viszont csak akkor tudjuk létrehozni, ha meghatározzuk, hogy mikor tekinthetünk egy pixel formációt vonalszerűnek. Az egyik meghatározás szerint raszteres vonalábrázolásnak olyan pixel halmaz tekinthető, melynek valamennyi pixele egyben a halmaz körvonalának is része. A raszter képek létrehozásakor az analóg képen vonalként jelentkező objektumok azonban nem feltétlenül felelnek meg a fenti meghatározásnak, azaz a pixeles képen az eredeti vonalak teli objektumként is jelentkezhetnek az eredeti vonal vastagság illetve a pixelméret függvényében. Többszörös pixel: 1. A körvonalkereső algoritmus többször is kiválasztja 2. Nincs szomszédja a tartomány belsejében 3. Van legalább egy direkt szomszédja, mely része a határvonalnak, de a határvonalat leíró útban nincs közvetlenül a kérdéses pixel előtt vagy után A vékonyítási algoritmusok alapgondolata az, hogy a síkbeli objektumokat vázukkal (más szóval középtengelyükkel) helyettesítjük, és hogy ez a váz a pixeltérben lehetőleg egy pixel vastag legyen. Az alap algoritmus szavakban a következőképpen fogalmazható meg. Minden lépésben meghatározzuk az objektum összes pontjának halmazát, határvonalát valamint többszörös pixeleit (a fenti definíció szerint), majd az objektum pontjainak halmazából eltávolítjuk azokat a határpontokat, amelyek nem többszörös pontok. Ezt ismételjük mindaddig, amíg az objektum összes határpontja egyben többszörös pixel is lesz. A bináris váz vektorizálása Ahhoz, hogy a vektorizálás megtörténjen, még két lépés hátra van. Az első lépésben létre kell hoznunk a vékony bináris kép topológiáját. Majd ezek után a vektorizált pixeleket ritkítanunk kell. A topológia létrehozásánál abból indulunk ki, hogy a vektoros modellben azokat a pontokat nevezzük csomópontoknak, melyekben kettőtől eltérő számú vonal találkozik. A csomópontok megkeresésére egy egyszerű gráf bejáró algoritmust használunk, ami eredményképpen íveket alkotó ponthalmazokat határoz meg. Ez a struktúra elvileg már vektor struktúra gyakorlatilag azonban még szükség van ezeknek a pontoknak a ritkítására.

6 A vektorizált pixelpontok igen sűrűn vannak, különösen, ha az eredetijükül szolgáló analóg vonalak egyenesek vagy szabályos ívek voltak. Ezeknek a ritkítására interpolációs módszereket lehet alkalmazni, vagyis megpróbáljuk a pontokat egy görbére illeszteni. Ennél a műveletnél három szempontot kell figyelembe vennünk: a kihagyandó pontok eltérése a helyettesítő görbéjüktől nem haladhat meg egy megadott értéket, az eltérések előjele váltakozó kell legyen, valamint az eredeti pontsor hossza a helyettesítő görbe hosszánál nem lehet sokkal nagyobb. Vektor raszter átalakítás A térinformatika szempontjából a vektor-raszter átalakítás megoldandó kérdései kissé más aspektusból jelentkeznek, mint a klasszikus átalakítás során, mivel ebben az esetben az a lényeges, hogy a vektor darabok egyértelműen és lehetőleg visszaállíthatóan nyerjék el raszteres alakjukat. Egy vektor raszterizálása során a legelső dolog az a koordinátarendszer leszögezése, vagyis az origó pozíciója a raszter képen, valamint a diszkrét pixeleknek a rendszerben való mérete. Ezek után egy vektor komponens (egyenes, görbe) raszterizálása mindössze annyiból áll, hogy a görbét leképezzük a raszterkép pixeleire. Ha a vonal két szomszédos cellát is érint, csak azt feketítjük be, amelyiken a hosszabb utat teszi meg. A mellékelt ábrán látszik két raszterizálás, azonban ezek közül az a az helyes, míg a b az helytelen pixelkiválasztás. Vektoros poligonoknak a raszteres képpé való alakítása ugyancsak egy gyakori művelet, ezért a továbbiakban erről lesz egy pár szó. A félreértés elkerülése érdekében poligon alatt egy zárt formát értünk, melynek az oldalai nem metszik egymást. A raszterré alakítás a pásztázó (scan line) algoritmusra épül, melyben először rendezzük a poligon éleit y (csökkenő) majd x (növekvő) koordináta szerit. Ezek után kiszámítjuk a pásztázó egyenesnek a poligon éleivel való metszéspontjait (a pontos pixelt a imént említett módszerrel állapítjuk meg), majd az ezek közötti pixeleket az addigi metszéspontok számának függvényében festjük vagy sem (ha páratlan akkor belső pont, ha páros akkor külső).

7 Térbeli alapműveletek Ebben a részben szó lesz a raszter- illetve vektorképekkel végezhető műveletekről: transzformációk, távolságok, metszéspontok, stb. Síkbeli transzformációk A síkbeli transzformációk annyit jelentenek, hogy a sík egyik koordináta rendszeréből a vektorokat átvisszük egy másikba valamilyen művelet segítségével. Röviden affin transzformáció két vektortér között. A három legfontosabb síkbeli transzformáció a következő: transzláció (mozgatás), rotáció (forgatás) és skálázás (nagyítás/kicsinyítés). Transzláció Euklideszi geometriában a transzláció az minden pontnak egy konstans értékkel való elmozdítása egy adott irányba. Úgy is lehet értelmezni, mint egy vektor hozzáadása minden ponthoz, vagy a koordináta-rendszer origójának az elmozdítása. A transzlációt mátrixos művelet formájában is fel lehet írni, viszont mivel affin művelet, de nem lineáris, ezért homogén koordinátás segítségével lehet megadni (tehát (x, y) helyett (x, y, 1) lesz). Ha egy vektorral szeretnénk eltolni egy vektort, akkor lesz a transzlációs mátrix és az eredmény. [ ] [ ] [ ] [ ] Rotáció Euklideszi geometriában a rotáció az a tér minden pontjának az elforgatása az rögzített pont körül. A rotáció egy izomorfizmus, vagyis a transzformáció során nem változik a távolság a tér két pontja között. Két dimenzióban (síkban) egyetlen egy szög szükséges a forgatás meghatározására. A forgatás kiszámítására két módszer létezik: mátrix algebra valamint komplex számok. Egy pont elforgatása egy szöggel az alábbi transzformációval történik. [ ] [ ] [ ]

8 Skálázás Euklideszi geometriában az egyenletes skálázás egy lineáris transzformáció, aminek segítségével az objektum méretét növeljük vagy csökkentjük; a skálázási együttható ugyanakkora minden irányba. Ennek az általánosítása a skálázás, amely esetében a különbség annyi, hogy a különböző tengelyeken különböző skálázási együttható van. Egy objektum vektorral való skálázása az az objektum minden pontjának az mátrixxal való beszorzását jelenti. [ ] [ ] [ ] [ ] Távolságfogalmak A legkézenfekvőbb és megszokottabb távolság vektoros adatmodellek esetén az az euklideszi távolság, mely két, egy síkban fekvő pont távolságát a Pitagorasz tétel segítségével definiálja. Egy másik kevésbé ismert távolság, ami viszont ugyancsak fontos szerepet játszik a térinformatikában az a Manhattan távolság, amit talán inkább használnak a raszteres adatmodelleknél. Az alábbi képen látszik a különbség két pontnak az euklideszi (zöld) és a Manhattan (piros, kék, sárga) távolsága között.

9 Bibliográfia Dr. Sárközy Ferenc: Térinformatikai elméleti oktató anyag. Budapest, Április 26. < > Wikipedia: Affine transformation Április 26. < > Wikipedia: Manhattan distance Április 26. < > Wikipedia: Raster graphics Április 26. < > Wikipedia: Rotation (mathematics) Április 26. < > Wikipedia: Scaling (geometry) Április 26. < > Wikipedia: Translation (geometry) Április 26. < > Wikipedia: Vector graphics Április 26. < >

Csoportosítás. Térinformatikai műveletek, elemzések. Csoportosítás. Csoportosítás

Csoportosítás. Térinformatikai műveletek, elemzések. Csoportosítás. Csoportosítás Csoportosítás Térinformatikai műveletek, elemzések Leíró (attribútum) adatokra vonatkozó kérdések, műveletek, elemzések, csoportosítások,... Térbeli (geometriai) adatokra vonatkozó kérdések, műveletek

Részletesebben

Számítógépes Grafika SZIE YMÉK

Számítógépes Grafika SZIE YMÉK Számítógépes Grafika SZIE YMÉK Analóg - digitális Analóg: a jel értelmezési tartománya (idő), és az értékkészletes is folytonos (pl. hang, fény) Diszkrét idejű: az értelmezési tartomány diszkrét (pl. a

Részletesebben

Termék modell. Definíció:

Termék modell. Definíció: Definíció: Termék modell Összetett, többfunkciós, integrált modell (számítógépes reprezentáció) amely leír egy műszaki objektumot annak különböző életfázis szakaszaiban: tervezés, gyártás, szerelés, szervízelés,

Részletesebben

Infobionika ROBOTIKA. X. Előadás. Robot manipulátorok II. Direkt és inverz kinematika. Készült a HEFOP P /1.0 projekt keretében

Infobionika ROBOTIKA. X. Előadás. Robot manipulátorok II. Direkt és inverz kinematika. Készült a HEFOP P /1.0 projekt keretében Infobionika ROBOTIKA X. Előadás Robot manipulátorok II. Direkt és inverz kinematika Készült a HEFOP-3.3.1-P.-2004-06-0018/1.0 projekt keretében Tartalom Direkt kinematikai probléma Denavit-Hartenberg konvenció

Részletesebben

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben?

x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs mátrixa 3D-ben? . Mi az (x, y) koordinátákkal megadott pont elforgatás uténi két koordinátája, ha α szöggel forgatunk az origó körül? x = cos αx sin αy y = sin αx + cos αy 2. Mi a X/Y/Z tengely körüli forgatás transzformációs

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria III. Geometria III. DEFINÍCIÓ: (Vektor) Az egyenlő hosszúságú és egyirányú irányított szakaszoknak a halmazát vektornak nevezzük. Jele: v. DEFINÍCIÓ: (Geometriai transzformáció) Geometriai transzformációnak

Részletesebben

17. előadás: Vektorok a térben

17. előadás: Vektorok a térben 17. előadás: Vektorok a térben Szabó Szilárd A vektor fogalma A mai előadásban n 1 tetszőleges egész szám lehet, de az egyszerűség kedvéért a képletek az n = 2 esetben szerepelnek. Vektorok: rendezett

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

Cohen-Sutherland vágóalgoritmus

Cohen-Sutherland vágóalgoritmus Vágási algoritmusok Alapprobléma Van egy alakzatunk (szakaszokból felépítve) és van egy "ablakunk" (lehet a monitor, vagy egy téglalap alakú tartomány, vagy ennél szabálytalanabb poligon által határolt

Részletesebben

Matematika (mesterképzés)

Matematika (mesterképzés) Matematika (mesterképzés) Környezet- és Településmérnököknek Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Vinczéné Varga A. Környezet- és Településmérnököknek 2016/2017/I 1 / 29 Lineáris tér,

Részletesebben

2014/2015. tavaszi félév

2014/2015. tavaszi félév Hajder L. és Valasek G. hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom Geometria modellezés 1 Geometria modellezés 2 Geometria modellezés

Részletesebben

QGIS. Tematikus szemi-webinárium Térinformatika. Móricz Norbert. Nemzeti Agrárkutatási és Innovációs Központ Erdészeti Tudományos Intézet (NAIK ERTI)

QGIS. Tematikus szemi-webinárium Térinformatika. Móricz Norbert. Nemzeti Agrárkutatási és Innovációs Központ Erdészeti Tudományos Intézet (NAIK ERTI) Tematikus szemi-webinárium Térinformatika Móricz Norbert Nemzeti Agrárkutatási és Innovációs Központ Erdészeti Tudományos Intézet (NAIK ERTI) Tartalom QGIS ismertető Vektor/raszter adatok elemzési lehetőségei

Részletesebben

TÉRINFORMATIKA II. Dr. Kulcsár Balázs Ph.D. adjunktus. Debreceni Egyetem Műszaki Kar Műszaki Alaptárgyi Tanszék

TÉRINFORMATIKA II. Dr. Kulcsár Balázs Ph.D. adjunktus. Debreceni Egyetem Műszaki Kar Műszaki Alaptárgyi Tanszék TÉRINFORMATIKA II. Dr. Kulcsár Balázs Ph.D. adjunktus Debreceni Egyetem Műszaki Kar Műszaki Alaptárgyi Tanszék MÁSODLAGOS ADATNYERÉSI ELJÁRÁSOK Meglévő (analóg) térképek manuális digitalizálása 1 A meglévő

Részletesebben

(Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja.

(Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja. Testmodellezés Testmodellezés (Solid modeling, Geometric modeling) Testmodell: egy létező vagy elképzelt objektum digitális reprezentációja. A tervezés (modellezés) során megadjuk a objektum geometria

Részletesebben

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak

Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Matematika szóbeli érettségi témakörök 2016/2017-es tanév őszi vizsgaidőszak Halmazok Halmazok egyenlősége Részhalmaz, valódi részhalmaz Üres halmaz Véges és végtelen halmaz Halmazműveletek (unió, metszet,

Részletesebben

Matematika A1a Analízis

Matematika A1a Analízis B U D A P E S T I M Ű S Z A K I M A T E M A T I K A É S G A Z D A S Á G T U D O M Á N Y I I N T É Z E T E G Y E T E M Matematika A1a Analízis BMETE90AX00 Vektorok StKis, EIC 2019-02-12 Wettl Ferenc ALGEBRA

Részletesebben

Láthatósági kérdések

Láthatósági kérdések Láthatósági kérdések Láthatósági algoritmusok Adott térbeli objektum és adott nézőpont esetén el kell döntenünk, hogy mi látható az adott alakzatból a nézőpontból, vagy irányából nézve. Az algoritmusok

Részletesebben

Információ megjelenítés Számítógépes ábrázolás. Dr. Iványi Péter

Információ megjelenítés Számítógépes ábrázolás. Dr. Iványi Péter Információ megjelenítés Számítógépes ábrázolás Dr. Iványi Péter Raszterizáció OpenGL Mely pixelek vannak a primitíven belül fragment generálása minden ilyen pixelre Attribútumok (pl., szín) hozzárendelése

Részletesebben

2016/2017. Matematika 9.Kny

2016/2017. Matematika 9.Kny 2016/2017. Matematika 9.Kny Gondolkodási módszerek 1. Számhalmazok: N, Z, Q, Q*, R a számhalmazok kapcsolata, halmazábra 2. Ponthalmazok: o 5. oldal K I. fejezet: 172-178., 180-185., 191. feladat távolsággal

Részletesebben

Hajder Levente 2017/2018. II. félév

Hajder Levente 2017/2018. II. félév Hajder Levente hajder@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2017/2018. II. félév Tartalom 1 2 3 Geometriai modellezés feladata A világunkat modellezni kell a térben. Valamilyen koordinátarendszer

Részletesebben

Robotika. Kinematika. Magyar Attila

Robotika. Kinematika. Magyar Attila Robotika Kinematika Magyar Attila amagyar@almos.vein.hu Miről lesz szó? Bevezetés Merev test pozíciója és orientációja Rotáció Euler szögek Homogén transzformációk Direkt kinematika Nyílt kinematikai lánc

Részletesebben

10. Koordinátageometria

10. Koordinátageometria I. Nulladik ZH-ban láttuk: 0. Koordinátageometria. Melyek azok a P x; y pontok, amelyek koordinátái kielégítik az Ábrázolja a megoldáshalmazt a koordináta-síkon! x y x 0 egyenlőtlenséget? ELTE 00. szeptember

Részletesebben

2016/2017. Matematika 9.Kny

2016/2017. Matematika 9.Kny 2016/2017. Matematika 9.Kny Gondolkodási módszerek 1. Számhalmazok: N, Z, Q, Q*, R a számhalmazok kapcsolata, halmazábra 2. Ponthalmazok: o 4. oldal K I. fejezet: 172-178., 180-185., 191. feladat távolsággal

Részletesebben

Egyenes mert nincs se kezdő se végpontja

Egyenes mert nincs se kezdő se végpontja Szakasz mert van két végpontja Egyenes mert nincs se kezdő se végpontja Tört vonal Szög mert van két szára és csúcsa Félegyenes mert van egy kezdőpontja 5 1 1 Két egyenes egymásra merőleges ha egymással

Részletesebben

Képszerkesztés elméleti kérdések

Képszerkesztés elméleti kérdések Képszerkesztés elméleti kérdések 1. A... egyedi alkotó elemek, amelyek együttesen formálnak egy képet.(pixelek) a. Pixelek b. Paletták c. Grafikák d. Gammák 2. Az alábbiak közül melyik nem színmodell?

Részletesebben

TÉRINFORMATIKAI ALGORITMUSOK

TÉRINFORMATIKAI ALGORITMUSOK Topológiai algoritmusok és adatszerkezetek TÉRINFORMATIKAI ALGORITMUSOK Cserép Máté mcserep@inf.elte.hu 2017. november 22. EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR BEVEZETŐ Topológia: olyan matematikai

Részletesebben

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? 6. Függvények I. Nulladik ZH-ban láttuk: 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban? f x g x cos x h x x ( ) sin x (A) Az f és a h. (B) Mindhárom. (C) Csak az f.

Részletesebben

12. előadás. Egyenletrendszerek, mátrixok. Dr. Szörényi Miklós, Dr. Kallós Gábor

12. előadás. Egyenletrendszerek, mátrixok. Dr. Szörényi Miklós, Dr. Kallós Gábor 12. előadás Egyenletrendszerek, mátrixok Dr. Szörényi Miklós, Dr. Kallós Gábor 2015 2016 1 Tartalom Matematikai alapok Vektorok és mátrixok megadása Tömbkonstansok Lineáris műveletek Mátrixok szorzása

Részletesebben

Képfeldolgozás. 1. el adás. A képfeldolgozás m veletei. Mechatronikai mérnök szak BME, 2008

Képfeldolgozás. 1. el adás. A képfeldolgozás m veletei. Mechatronikai mérnök szak BME, 2008 Képfeldolgozás 1. el adás. A képfeldolgozás m veletei Mechatronikai mérnök szak BME, 2008 1 / 61 Alapfogalmak transzformációk Deníció Deníció Geometriai korrekciókra akkor van szükség, ha a képr l valódi

Részletesebben

Mezők/oszlopok: Az egyes leíró adat kategóriákat mutatják.

Mezők/oszlopok: Az egyes leíró adat kategóriákat mutatják. 54 581 01 0010 54 01 FÖLDMÉRŐ ÉS TÉRINFORMATIKAI TECHNIKUS 54 581 01 0010 54 02 TÉRKÉPÉSZ TECHNIKUS szakképesítések 2244-06 A térinformatika feladatai A térinformatika területei, eszközrendszere vizsgafeladat

Részletesebben

SZAKKÖZÉPISKOLA ÉRETTSÉGI VIZSGRA FELKÉSZÍTŐ KK/12. ÉVFOLYAM

SZAKKÖZÉPISKOLA ÉRETTSÉGI VIZSGRA FELKÉSZÍTŐ KK/12. ÉVFOLYAM SZAKKÖZÉPISKOLA ÉRETTSÉGI VIZSGRA FELKÉSZÍTŐ KK/12. ÉVFOLYAM A vizsga szerkezete: A vizsga írásbeli és szóbeli vizsgarészből áll. 1.) Írásbeli vizsga Időtartama: 45 perc Elérhető pontszám: 65 pont Feladattípusok:

Részletesebben

Transzformációk síkon, térben

Transzformációk síkon, térben Transzformációk síkon, térben Leképezés, transzformáció Leképezés: Ha egy A ponttér pontjaihoz egy másik B ponttér pontjait kölcsönösen egyértelműen rendeljük hozzá, akkor ezt a hozzárendelést leképezésnek

Részletesebben

Koordináta-geometria feladatok (emelt szint)

Koordináta-geometria feladatok (emelt szint) Koordináta-geometria feladatok (emelt szint) 1. (ESZÉV Minta (2) 2004.05/7) Egy ABC háromszögben CAB = 30, az ACB = 45. A háromszög két csúcsának koordinátái: A(2; 2) és C(4; 2). Határozza meg a harmadik

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé.

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. HA 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) HA 2 Halmazok HA 3 Megjegyzések A halmaz, az elem és az eleme fogalmakat nem definiáljuk, hanem alapfogalmaknak

Részletesebben

Összeállította: dr. Leitold Adrien egyetemi docens

Összeállította: dr. Leitold Adrien egyetemi docens Az R 3 tér geometriája Összeállította: dr. Leitold Adrien egyetemi docens 2008.09.08. 1 Vektorok Vektor: irányított szakasz Jel.: a, a, a, AB, Jellemzői: irány, hosszúság, (abszolút érték) jel.: a Speciális

Részletesebben

Transzformációk, amelyek n-dimenziós objektumokat kisebb dimenziós terekbe visznek át. Pl. 3D 2D

Transzformációk, amelyek n-dimenziós objektumokat kisebb dimenziós terekbe visznek át. Pl. 3D 2D Vetítések Transzformációk, amelyek n-dimenziós objektumokat kisebb dimenziós terekbe visznek át. Pl. 3D 2D Vetítések fajtái - 1 perspektívikus A párhuzamos A A' B A' B A vetítés középpontja B' Vetítési

Részletesebben

Tárgy. Forgóasztal. Lézer. Kamera 3D REKONSTRUKCIÓ LÉZERES LETAPOGATÁSSAL

Tárgy. Forgóasztal. Lézer. Kamera 3D REKONSTRUKCIÓ LÉZERES LETAPOGATÁSSAL 3D REKONSTRUKCIÓ LÉZERES LETAPOGATÁSSAL. Bevezetés A lézeres letapogatás a ma elérhet legpontosabb 3D-s rekonstrukciót teszi lehet vé. Alapelve roppant egyszer : egy lézeres csíkkal megvilágítjuk a tárgyat.

Részletesebben

Matematika osztályozó vizsga témakörei 9. évfolyam II. félév:

Matematika osztályozó vizsga témakörei 9. évfolyam II. félév: Matematika osztályozó vizsga témakörei 9. évfolyam II. félév: 7. Függvények: - függvények fogalma, megadása, ábrázolás koordináta- rendszerben - az elsőfokú függvény, lineáris függvény - a másodfokú függvény

Részletesebben

Koordinátageometria. , azaz ( ) a B halmazt pontosan azok a pontok alkotják, amelynek koordinátáira:

Koordinátageometria. , azaz ( ) a B halmazt pontosan azok a pontok alkotják, amelynek koordinátáira: 005-0XX Emelt szint Koordinátageometria 1) a) Egy derékszögű háromszög egyik oldalegyenese valamelyik koordinátatengely, egy másik oldalegyenesének egyenlete x + y = 10, egyik csúcsa az origó. Hány ilyen

Részletesebben

Transzformációk. Grafikus játékok fejlesztése Szécsi László 2013.02.26. t05-transform

Transzformációk. Grafikus játékok fejlesztése Szécsi László 2013.02.26. t05-transform Transzformációk Grafikus játékok fejlesztése Szécsi László 2013.02.26. t05-transform Koordinátarendszerek: modelltér Koordinátarendszerek: világtér Koordinátarendszerek: kameratér up right z eye ahead

Részletesebben

TÉRINFORMATIKAI ALGORITMUSOK

TÉRINFORMATIKAI ALGORITMUSOK Topológiai algoritmusok és adatszerkezetek TÉRINFORMATIKAI ALGORITMUSOK Cserép Máté mcserep@caesar.elte.hu 2015. november 18. EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR BEVEZETŐ Topológia: olyan matematikai

Részletesebben

1. GONDOLKODÁSI MÓDSZEREK, HALMAZOK, KOMBINATORIKA, GRÁFOK

1. GONDOLKODÁSI MÓDSZEREK, HALMAZOK, KOMBINATORIKA, GRÁFOK MATEMATIKA TÉMAKÖRÖK 11. évfolyam 1. GONDOLKODÁSI MÓDSZEREK, HALMAZOK, KOMBINATORIKA, GRÁFOK 1.1. HALMAZOK 1.1.1. Halmazok megadásának módjai 1.1.2. Halmazok egyenlősége, részhalmaz, üres halmaz, véges,

Részletesebben

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont) 1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)

Részletesebben

Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk

Fraktálok. Kontrakciók Affin leképezések. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék. TARTALOMJEGYZÉK Kontrakciók Affin transzformációk Fraktálok Kontrakciók Affin leképezések Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 71 A Lipschitz tulajdonság ÁTMÉRŐ, PONT ÉS HALMAZ TÁVOLSÁGA Definíció Az (S, ρ) metrikus tér

Részletesebben

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA A TÁMOP 3.1.4. EU-s pályázat megvalósításához a matematika (9. b/fizika) tárgy tanmenete a matematika kompetenciaterület A típusú

Részletesebben

16. tétel Egybevágósági transzformációk. Konvex sokszögek tulajdonságai, szimmetrikus sokszögek

16. tétel Egybevágósági transzformációk. Konvex sokszögek tulajdonságai, szimmetrikus sokszögek 16. tétel Egybevágósági transzformációk. Konvex sokszögek tulajdonságai, szimmetrikus sokszögek EGYBEVÁGÓSÁGI TRANSZFORMÁCIÓK Geometriai transzformáció Def:Olyan speciális függvény, melynek értelmezési

Részletesebben

Csoportmódszer Függvények I. (rövidített változat) Kiss Károly

Csoportmódszer Függvények I. (rövidített változat) Kiss Károly Ismétlés Adott szempontok szerint tárgyak, élőlények, számok vagy fizikai mennyiségek halmazokba rendezhetők. A halmazok kapcsolatát pedig hozzárendelésnek (relációnak, leképezésnek) nevezzük. A hozzárendelés

Részletesebben

Exponenciális, logaritmikus függvények

Exponenciális, logaritmikus függvények Exponenciális, logaritmikus függvények DEFINÍCIÓ: (Összetett függvény) Ha az értékkészlet elemeihez, mint értelmezési tartományhoz egy újabb egyértelmű hozzárendelést adunk meg, akkor összetett (közvetett)

Részletesebben

Számítógépes Grafika mintafeladatok

Számítógépes Grafika mintafeladatok Számítógépes Grafika mintafeladatok Feladat: Forgassunk a 3D-s pontokat 45 fokkal a X tengely körül, majd nyújtsuk az eredményt minden koordinátájában kétszeresére az origóhoz képest, utána forgassunk

Részletesebben

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1

Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 1 Halmazok 1 Mindent olyan egyszerűvé kell tenni, amennyire csak lehet, de nem egyszerűbbé. (Albert Einstein) Halmazok 2 A fejezet legfontosabb elemei Halmaz megadási módjai Halmazok közti műveletek (metszet,

Részletesebben

Képszerkesztés elméleti feladatainak kérdései és válaszai

Képszerkesztés elméleti feladatainak kérdései és válaszai Képszerkesztés elméleti feladatainak kérdései és válaszai 1. A... egyedi alkotóelemek, amelyek együttesen formálnak egy képet. Helyettesítse be a pixelek paletták grafikák gammák Helyes válasz: pixelek

Részletesebben

Térbeli transzformációk, a tér leképezése síkra

Térbeli transzformációk, a tér leképezése síkra Térbeli transzformációk, a tér leképezése síkra Homogén koordináták bevezetése térben A tér minden P pontjához kölcsönösen egyértelműen egy valós (x, y, z) számhármast rendeltünk hozzá. (Descartes-féle

Részletesebben

Mechatronika segédlet 3. gyakorlat

Mechatronika segédlet 3. gyakorlat Mechatronika segédlet 3. gyakorlat 2017. február 20. Tartalom Vadai Gergely, Faragó Dénes Feladatleírás... 2 Fogaskerék... 2 Nézetváltás 3D modellezéshez... 2 Könnyítés megvalósítása... 2 A fogaskerék

Részletesebben

PTE PMMF Közmű- Geodéziai Tanszék

PTE PMMF Közmű- Geodéziai Tanszék digitális állományok átvétele, meglévő térképek digitalizálása, meglévő térképek, légifelvételek, illetve speciális műszaki rajzi dokumentációk szkennelése és transzformálása. A leggyorsabb, legolcsóbb

Részletesebben

Adatszerkezetek 2. Dr. Iványi Péter

Adatszerkezetek 2. Dr. Iványi Péter Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat

Részletesebben

NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat

NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat Ezzel a segédanyaggal szeretnék segítséget nyújtani a középiskolák azon matematikatanárainak, akik a matematikai oktatáshoz és neveléshez Dr. Fried Katalin

Részletesebben

KÉPFELDOLGOZÁS. 10. gyakorlat: Morfológiai műveletek, alakjellemzők

KÉPFELDOLGOZÁS. 10. gyakorlat: Morfológiai műveletek, alakjellemzők KÉPFELDOLGOZÁS 10. gyakorlat: Morfológiai műveletek, alakjellemzők Min-max szűrők MATLAB-ban SE = strel(alak, paraméter(ek)); szerkesztőelem generálása strel( square, w): négyzet alakú, w méretű strel(

Részletesebben

EGY ABLAK - GEOMETRIAI PROBLÉMA

EGY ABLAK - GEOMETRIAI PROBLÉMA EGY ABLAK - GEOMETRIAI PROBLÉMA Írta: Hajdu Endre A számítógépemhez tartozó két hangfal egy-egy négyzet keresztmetszetű hasáb hely - szűke miatt az ablakpárkányon van elhelyezve (. ábra).. ábra Hogy az

Részletesebben

11. Alakzatjellemzők. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)

11. Alakzatjellemzők. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 11. Alakzatjellemzők Kató Zoltán Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 2 Alakzat = pontok összefüggő rendszere példák síkbeli alakzatokra 3 Az

Részletesebben

Klár Gergely 2010/2011. tavaszi félév

Klár Gergely 2010/2011. tavaszi félév Számítógépes Grafika Klár Gergely tremere@elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2010/2011. tavaszi félév Tartalom Pont 1 Pont 2 3 4 5 Tartalom Pont Descartes-koordináták Homogén koordináták

Részletesebben

A szabályos sokszögek közelítő szerkesztéséhez

A szabályos sokszögek közelítő szerkesztéséhez 1 A szabályos sokszögek közelítő szerkesztéséhez A síkmértani szerkesztések között van egy kedvencünk: a szabályos n - szög közelítő szerkesztése. Azért vívta ki nálunk ezt az előkelő helyet, mert nagyon

Részletesebben

Gekkó GIS: Raszteres kísérletek webes környezetben

Gekkó GIS: Raszteres kísérletek webes környezetben Gekkó GIS: Raszteres kísérletek webes környezetben https://gaborfarkas.github.io https://github.com/gaborfarkas gfarkas@gamma.ttk.pte.hu Farkas Gábor tanársegéd PTE TTK FFI Raszter vs. vektor Térinformatikában

Részletesebben

Függvény fogalma, jelölések 15

Függvény fogalma, jelölések 15 DOLGO[Z]ZATOK 9.. 1. Függvény fogalma, jelölések 1 1. Az alábbi hozzárendelések közül melyek függvények? a) A magyarországi megyékhez hozzárendeljük a székhelyüket. b) Az egész számokhoz hozzárendeljük

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

A tér lineáris leképezései síkra

A tér lineáris leképezései síkra A tér lineáris leképezései síkra Az ábrázoló geometria célja: A háromdimenziós térben elhelyezkedő alakzatok helyzeti és metrikus viszonyainak egyértelmű és egyértelműen rekonstruálható módon történő ábrázolása

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria 1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Osztályozó és Javító vizsga témakörei matematikából 9. osztály

Osztályozó és Javító vizsga témakörei matematikából 9. osztály Osztályozó és Javító vizsga témakörei matematikából 9. osztály 1. félév 1. Kombinatorika, halmazok Számoljuk össze! Összeszámlálási feladatok Matematikai logika Halmazok Halmazműveletek Halmazok elemszáma,

Részletesebben

TÉRINFORMATIKAI MODELLEZÉS TÉRINFORMATIKAI MODELLEZÉS ALAPFOGALMAI A VALÓSÁG MODELLEZÉSE

TÉRINFORMATIKAI MODELLEZÉS TÉRINFORMATIKAI MODELLEZÉS ALAPFOGALMAI A VALÓSÁG MODELLEZÉSE TÉRINFORMATIKAI MODELLEZÉS ALAPFOGALMAI TÉRINFORMATIKAI MODELLEZÉS A VALÓSÁG MODELLEZÉSE a valóság elemei entitásosztályok: települések utak, folyók domborzat, növényzet az entitás digitális megjelenítése

Részletesebben

11. modul: LINEÁRIS FÜGGVÉNYEK

11. modul: LINEÁRIS FÜGGVÉNYEK MATEMATIK A 9. évfolyam 11. modul: LINEÁRIS FÜGGVÉNYEK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 11. modul: LINEÁRIS FÜGGVÉNYEK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

Kép mátrix. Feladat: Pap Gáborné-Zsakó László: Algoritmizálás, adatmodellezés 2/35

Kép mátrix. Feladat: Pap Gáborné-Zsakó László: Algoritmizálás, adatmodellezés 2/35 Grafika I. Kép mátrix Feladat: Egy N*M-es raszterképet nagyítsunk a két-szeresére pontsokszorozással: minden régi pont helyébe 2*2 azonos színű pontot rajzolunk a nagyított képen. Pap Gáborné-Zsakó László:

Részletesebben

Grafikonok automatikus elemzése

Grafikonok automatikus elemzése Grafikonok automatikus elemzése MIT BSc önálló laboratórium konzulens: Orosz György 2016.05.18. A feladat elsődleges célkitűzései o eszközök adatlapján található grafikonok feldolgozása, digitalizálása

Részletesebben

Navigáci. stervezés. Algoritmusok és alkalmazásaik. Osváth Róbert Sorbán Sámuel

Navigáci. stervezés. Algoritmusok és alkalmazásaik. Osváth Róbert Sorbán Sámuel Navigáci ció és s mozgástervez stervezés Algoritmusok és alkalmazásaik Osváth Róbert Sorbán Sámuel Feladat Adottak: pálya (C), játékos, játékos ismerethalmaza, kezdőpont, célpont. Pálya szerkezete: akadályokkal

Részletesebben

Szendrői Balázs: Algebrai síkgörbék, szerkesztette: Ádám Liliána, Ódor Gergő, Lajos Mátyás

Szendrői Balázs: Algebrai síkgörbék, szerkesztette: Ádám Liliána, Ódor Gergő, Lajos Mátyás Algebrai síkgörbék Algebrai síkgörbéknek az olyan görbéket nevezzük, amelyek pontjai egy kétváltozós polinommal jellemezhetők. Ilyenek az egyenesek (ezek az elsőfokú síkgörbék). Másodfokú síkgörbék: pl.

Részletesebben

Követelmény a 7. évfolyamon félévkor matematikából

Követelmény a 7. évfolyamon félévkor matematikából Követelmény a 7. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Elemek halmazba rendezése több szempont alapján. Halmazok ábrázolása. A nyelv logikai elemeinek helyes használata.

Részletesebben

Máté: Számítógépes grafika alapjai

Máté: Számítógépes grafika alapjai Történeti áttekintés Interaktív grafikai rendszerek A számítógépes grafika osztályozása Valós és képzeletbeli objektumok (pl. tárgyak képei, függvények) szintézise számítógépes modelljeikből (pl. pontok,

Részletesebben

Koordináta geometria III.

Koordináta geometria III. Koordináta geometria III. TÉTEL: A P (x; y) pont akkor és csak akkor illeszkedik a K (u; v) középpontú r sugarú körre (körvonalra), ha (x u) 2 + (y v) 2 = r 2. Ez az összefüggés a K (u; v) középpontú r

Részletesebben

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel

Részletesebben

PTE PMMIK Infrastruktúra és Mérnöki Geoinformatika Tanszék

PTE PMMIK Infrastruktúra és Mérnöki Geoinformatika Tanszék Kérdés, amire választ ad: Bárhol mi van? Az objektumok geometriáját a terület egészét lefedő szabályos sokszögekkel, általában négyzettel írja le. Egysége a képelem pixel raszter cella. A pixelekhez kapcsolódnak

Részletesebben

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804)

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804) Matematika A definíciókat és tételeket (bizonyítás nélkül) ki kell mondani, a tananyagrészekhez tartozó alap- és közepes nehézségű feladatokat kell tudni megoldani A javítóvizsga 60 -es írásbeliből áll.

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások. alapfüggvény (ábrán: fekete)

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások. alapfüggvény (ábrán: fekete) Megoldások 1. Ábrázold és jellemezd a következő függvényeket! a) f (x) = sin (x π ) + 1 b) f (x) = 3 cos (x) c) f (x) = ctg ( 1 x) 1 a) A kérdéses függvényhez a következő lépésekben juthatunk el: g (x)

Részletesebben

3D számítógépes geometria és alakzatrekonstrukció

3D számítógépes geometria és alakzatrekonstrukció 3D számítógépes geometria és alakzatrekonstrukció 12. Tömör testek modellezése http://cg.iit.bme.hu/portal/node/312 https://www.vik.bme.hu/kepzes/targyak/viiima01 Dr. Várady Tamás, Dr. Salvi Péter BME,

Részletesebben

Geometriai Optika (sugároptika)

Geometriai Optika (sugároptika) Geometriai Optika (sugároptika) - Egyszerû optikai eszközök, ahogy már ismerjük õket - Mi van ha egymás után tesszük: leképezések egymásutánja (bonyolult) - Gyakorlatilag fontos eset: paraxiális közelítés

Részletesebben

Számítógépes geometria

Számítógépes geometria 2011 sz A grakus szállítószalag terv a geometriai (matematikai) modell megalkotása modelltranszformáció (3D 3D) vetítés (3D 2D) képtranszformáció (2D 2D)... raszterizáció A grakus szállítószalag: koncepció

Részletesebben

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40

LINEÁRIS ALGEBRA. matematika alapszak. Euklideszi terek. SZTE Bolyai Intézet, őszi félév. Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 LINEÁRIS ALGEBRA matematika alapszak SZTE Bolyai Intézet, 2016-17. őszi félév Euklideszi terek Euklideszi terek LINEÁRIS ALGEBRA 1 / 40 Euklideszi tér Emlékeztető: A standard belső szorzás és standard

Részletesebben

Felügyelt önálló tanulás - Analízis III.

Felügyelt önálló tanulás - Analízis III. Felügyelt önálló tanulás - Analízis III Kormos Máté Differenciálható sokaságok Sokaságok Röviden, sokaságoknak nevezzük azokat az objektumokat, amelyek egy n dimenziós térben lokálisan k dimenziósak Definíció:

Részletesebben

Számítási feladatok a Számítógépi geometria órához

Számítási feladatok a Számítógépi geometria órához Számítási feladatok a Számítógépi geometria órához Kovács Zoltán Copyright c 2012 Last Revision Date: 2012. október 15. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát

Részletesebben

INFORMATIKA ÁGAZATI ALKALMAZÁSAI. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010

INFORMATIKA ÁGAZATI ALKALMAZÁSAI. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 INFORMATIKA ÁGAZATI ALKALMAZÁSAI Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 7. Digitális térképezés, georeferálás, vektorizálás Digitális térkép Fogalma Jellemzői Georeferálás

Részletesebben

Osztályozó- és javítóvizsga. Matematika tantárgyból

Osztályozó- és javítóvizsga. Matematika tantárgyból Osztályozó- és javítóvizsga Matematika tantárgyból 2018-2019 A vizsga 60 perces írásbeli vizsga (feladatlap) a megadott témakörökből. A megjelölt százalék (50%) nem teljesítése esetén szóbeli vizsga is,

Részletesebben

TARTALOM. Előszó 9 HALMAZOK

TARTALOM. Előszó 9 HALMAZOK TARTALOM Előszó 9 HALMAZOK Halmazokkal kapcsolatos fogalmak, részhalmazok 10 Műveletek halmazokkal 11 Számhalmazok 12 Nevezetes ponthalmazok 13 Összeszámlálás, komplementer-szabály 14 Összeszámlálás, összeadási

Részletesebben

MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2005

MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2005 2005 1. * Halmazok, halmazműveletek, nevezetes ponthalmazok 2. Számhalmazok, halmazok számossága 3. Hatványozás, hatványfüggvény 4. Gyökvonás, gyökfüggvény 5. A logaritmus. Az exponenciális és a logaritmus

Részletesebben

Számítógépes grafika

Számítógépes grafika Számítógépes grafika HEFOP 3.5.1 Korszerű felnőttképzési módszerek kifejlesztése és alkalmazása EMIR azonosító: HEFOP-3.5.1-K-2004-10-0001/2.0 Tananyagfejlesztő: Máté István Lektorálta: Brückler Tamás

Részletesebben

Matematika tanmenet 10. évfolyam 2018/2019

Matematika tanmenet 10. évfolyam 2018/2019 Matematika tanmenet 10. évfolyam 2018/2019 Műveltségi terület: MATEMATIKA Iskola, osztályok: Vetési Albert Gimnázium, 10.A, 10.B, 10.C, 10.D Tantárgy: MATEMATIKA Heti óraszám: 3 óra Készítette: a matematika

Részletesebben

Térinformatika. j informáci. ciós s rendszerek funkciói. Kereső nyelvek (Query Languages) Az adatok feldolgozását (leválogat

Térinformatika. j informáci. ciós s rendszerek funkciói. Kereső nyelvek (Query Languages) Az adatok feldolgozását (leválogat Térinformatika Elemzék 2. Az informáci ciós s rendszerek funkciói adatnyerés s (input) adatkezelés s (management) adatelemzés s (analysis) adatmegjelenítés s (prentation) Összeállította: Dr. Szűcs LászlL

Részletesebben

Modellek dokumentálása

Modellek dokumentálása előadás CAD Rendszerek II AGC2 Piros Attila Budapesti Műszaki és Gazdaságtudományi Egyetem, Gép- és Terméktervezés Tanszék 1 / 18 DOKUMENTÁCIÓK FELOSZTÁSA I. Felosztás felhasználás szerint: gyártási dokumentáció

Részletesebben

Matematika szigorlat június 17. Neptun kód:

Matematika szigorlat június 17. Neptun kód: Név Matematika szigorlat 014. június 17. Neptun kód: 1.. 3. 4. 5. Elm. Fel. Össz. Oszt. Az eredményes szigorlat feltétele elméletből legalább 0 pont, feladatokból pedig legalább 30 pont elérése. A szigorlat

Részletesebben

Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag!

Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag! Részletes követelmények Matematika házivizsga Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag! A vizsga időpontja: 2015. április

Részletesebben

Az osztályozóvizsgák követelményrendszere 9. évfolyam

Az osztályozóvizsgák követelményrendszere 9. évfolyam Az osztályozóvizsgák követelményrendszere 9. évfolyam Kombinatorika, halmazok Összeszámlálási feladatok Halmazok, halmazműveletek, halmazok elemszáma Logikai szita Számegyenesek intervallumok Algebra és

Részletesebben

Hozzárendelés, lineáris függvény

Hozzárendelés, lineáris függvény Hozzárendelés, lineáris függvény Feladat 1 A ménesben a lovak száma és a lábaik száma közötti összefüggést vizsgáljuk. Hány lába van 0; 1; 2; 3; 5; 7... lónak? Készíts értéktáblázatot, és ábrázold derékszögű

Részletesebben

FÜGGVÉNYEK. A derékszögű koordináta-rendszer

FÜGGVÉNYEK. A derékszögű koordináta-rendszer FÜGGVÉNYEK A derékszögű koordináta-rendszer Az. jelzőszámot az x tengelyről, a 2. jelzőszámot az y tengelyről olvassuk le. Pl.: A(-3;-) B(3;2) O(0;0) II. síknegyed I. síknegyed A (0; 0) koordinátájú pontot

Részletesebben

A DIGITÁLIS TÉRKÉP ADATAINAK ELŐÁLLÍTÁSA, ADATNYERÉSI ELJÁRÁSOK

A DIGITÁLIS TÉRKÉP ADATAINAK ELŐÁLLÍTÁSA, ADATNYERÉSI ELJÁRÁSOK A DIGITÁLIS TÉRKÉP ADATAINAK ELŐÁLLÍTÁSA, ADATNYERÉSI ELJÁRÁSOK - két féle adatra van szükségünk: térbeli és leíró adatra - a térbeli adat előállítása a bonyolultabb. - a költségek nagyjából 80%-a - munkaigényes,

Részletesebben