27.B 27.B. Alapfogalmak, logikai függvények és leírásmódjaik

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "27.B 27.B. Alapfogalmak, logikai függvények és leírásmódjaik"

Átírás

1 7.B 7.B 7.B Digitális alapáramkörök Logikai alapfogalmak Mutassa be a logikai függvéyek leírási módjait: a szövegeset, az igazság táblázatosat, a logikai vázlatosat és az algebrai alakkal törtéı leírást! Értelmezze az egy-, a két- és a többváltozós logikai függvéyeket! Ismertesse a logikai (Boole) algebra alaptörvéyeit és alaptételeit! Hasolítsa össze a miterm- és a maxterm táblák felépítéséek elvét! Alapfogalmak, logikai függvéyek és leírásmódjaik A függvéykapcsolatok jelölése A függvéykapcsolatokat logikai szimbólumokkal jelöljük: A az ÉS kapcsolat jele a + a VAGY kapcsolat jele A függvéykapcsolatok száma Mivel a bemeeti és a kimeeti változók is kétértékőek, ezért a függetle változók számától () függ a képezhetı függvéykapcsolatok száma: K=. A logikai függvéyek csoportosítása A logikai függvéyeket csoportosíthatjuk: a logikai változók idıbei függése szerit, a logikai változók száma szerit. A változók idıbei változása szerit: Idıfüggetle logikai függvéyek: Az idıfüggetle logikai függvéyek közös jellemzıje, hogy a függı (kimeeti) változó értéke csak a függetle (bemeeti) változó értékétıl függ. Az ilye típusú függvéyeket valósítják meg a kombiációs logikai hálózatok. Jelölésük általáos alakba: F = f(x,x,x 3,...X ). Idıfüggı logikai függvéyek: Az idıfüggı logikai függvéyek jellemzıje, hogy a függı változó aktuális értékét emcsak a függetle változók adott idıpotba felvett értéke, haem más idıpillaatba felvett értékei is meghatározzák. Ez azt jeleti, hogy az eseméyek sorredje is befolyásolja a kimeet állapotát. Az ilye típusú függvéyeket megvalósító hálózatokat evezzük szekveciális hálózatokak. A függetle változók száma szerit: Egyváltozós logikai függvéyeka kimeeti eseméyük egyetle bemeeti változótól függ, a gyakorlatba ritká fordulak elı. Kétváltozós logikai függvéyeka kimeeti eseméyük két függetle bemeeti változó értékétıl függ. Többváltozós logikai függvéyek A kimeeti eseméyük számú függetle bemeeti változó értékétıl függ, a gyakorlatba ezekkel találkozuk a leggyakrabba. A logikai függvéyek grafikus megadása Veitch-tábla A függı változók értékeit egy cellákból álló diagramba ábrázoljuk: a függetle változókat a diagram kerete meté jelöljük. Azokba a sorokba és oszlopokba, ahol jelölés (súlyozás) va, a függetle változó igaz értékő. A változó igeleges vagy emleges értékét - mivel a bekövetkezés valószíősége 50% - egyelı területrésszel ábrázoljuk. Síkbeli Veitch-táblá 4, térbeli 6 változó ábrázolható szemléletese. Az ábrá egy kétváltozós tábla látható, melybe szemléltetésül a cellákak megfelelı változók állapotait is jelöltük. A Veitch-tábla a logikai kapcsolatok meghatározására is alkalmas.

2 7.B 7.B Karaugh-tábla A függı változók értékeit egy cellákból álló diagramba ábrázoljuk: a függetle változók értékvariációit a diagram kerete meté jelöljük. Az ábrá egy kétváltozós tábla látható, melybe szemléltetésül a cellákak megfelelı változók állapotait is jelöltük. Állapotdiagram Az idıfüggı logikai függvéyek leírására alkalmas. A változók aktuális értékeit körökbe jelezzük, a köröket összekötı iráyított voalak a változás iráyát jelölik. Veitch-tábla Karaugh-tábla Állapotdiagram A logikai függvéyek megadása Szöveges megadási mód A függetle változók összes kombiációját, a logikai kapcsolatot, valamit a függı változó értékét szavakkal fogalmazzuk meg. Táblázatos leírásmód A függetle változók összes értékvariációit és a függvéykapcsolat hatására létrejövı függı változók értékeit egy sorba írjuk egy függıleges voallal elválasztva. Olya értéktáblázat, amely tartalmazza a függvéy értékét mide lehetséges esetbe. Igazságtáblázatak evezzük, mert a feltételek és az eseméyek közötti logikai igazságokat rögzíti. Logikai vázlat A függvéykapcsolatot az ıt megvalósító szabváyos áramköri szimbólumokkal ábrázoljuk. Algebrai alak A függetle változókat a függvéykapcsolatra jellemzı mőveleti szimbólumokkal (ÉS, VAGY, ) kapcsoljuk össze. Például: F 3 = A B+C+A C+B Grafikus megadási mód A grafikus megadási módok: a változók megadása törtéhet grafikusa is. Táblázatos leírásmód Logikai vázlat Egy-, két- és többváltozós logikai függvéyek Az egyváltozós logikai függvéyek Akkor beszélük egyváltozós logikai függvéyrıl, ha a kimeeti eseméy egyetle bemeeti változótól függ. A következı táblázatba látható, hogy az A bemeeti (függetle) változó értékétıl függıe az F kimeeti (függı) változó milye értékeket vehet fel. Ezt a táblázatot evezzük igazságtáblázatak, mert a függetle változók összes lehetséges kombiációja eseté tartalmazza a függvéy által meghatározott kimeeti eseméyt. A logikai függvéyek jelölésébe a felsı idex a bemeeti változók számát, az alsó idex a függvéy sorszámát adja meg. Ezt a decimális sorszámot a függvéy értékeibıl alkotott biáris számból kapjuk meg. Egy függetle változó eseté a külöbözı logikai függvéyek száma: K = = = = 4 Az egyváltozós függvéyek közül a egációt és az ismétlı függvéyt alkalmazzuk a leggyakrabba. A logikai függvéyek bemutatására haszáljuk fel a Ve-diagramot és az idıdiagramot is. A Ve-diagramok a logikai változókhoz egy-egy síkba leképzett pothalmazt redelek, amely egy tetszıleges síkidommal határolt területet jelet. Az ábrázolás szabálya, hogy a függvéy logikai értékeiél a megfelelı területet jelöljük (pl. voalkázással). Hátráyuk, hogy legfeljebb három változóig haszálhatóak. A logikai eseméyek idıdiagramo is bemutathatók. Eél a módszerél a kétértékő eseméyeket (a bemeeteket és a

3 7.B 7.B kimeeteket is) az idı függvéyébe ábrázoljuk, így az eseméyek idıbeli lefolyása is követhetı. Elıye, hogy az idıdiagramo tetszıleges számú változót ábrázolhatuk. Egyváltozós soha függvéy 0 Egyváltozós logikai függvéyek igazságtáblázata F 0 =. F - Soha függvéy: a függı változó értéke a függetle változó mide értékéél 0. Jelölése: 0 Egyváltozós egáció (tagadás) függvéy F - Negáció (tagadás) függvéy: a függı változó értéke midig a függetle változó elletétes (egált) értékét veszi fel. A egációt a tagadáso kívül evezik még jelfordításak és iverzióak is. A egációt az algebrai alakba a betőjel fölé húzott vízszites voallal jelöljük: F = A. Egyváltozós ismétlı függvéy F - Ismétlı függvéy: a függı változó értéke midig a függetle változó értékét veszi fel. Jelölése: F=A. Egyváltozós midig függvéy F - Midig függvéy: a függı változó értéke a függetle változó mide értékétıl függetleül midig. Jelölése: F =. Egyváltozós logikai függvéyek Ve-diagramja Egyváltozós logikai függvéyek idıdiagramja A kétváltozós logikai függvéyek Akkor beszélük kétváltozós logikai függvéyrıl, ha a kimeeti eseméy két bemeeti változótól függ. A következı táblázatba látható, hogy az A és a B bemeeti (függetle) változók értékétıl függıe az F kimeeti (függı) változó milye értékeket vehet fel. Két függetle változó eseté a külöbözı logikai függvéyek száma: 4 K = = = = 6. Az alábbi ábráko a leggyakrabba alkalmazott kétváltozós függvéyek Ve-diagramját és idıdiagramját láthatjuk. Figyeljük meg a függvéyek vizsgálatakor, hogya lehet ezeket elkészítei! Kétváltozós logikai függvéyek idıdiagramja Kétváltozós logikai függvéyek igazságtáblázata Kétváltozós logikai függvéyek Ve-diagramja A kétváltozós logikai függvéyek igazságtáblázatáak vizsgálata Feladat Készítsük el az összes kétváltozós függvéy Ve-diagramját és idıdiagramját! 3

4 7.B 7.B A kétváltozós logikai függvéyek igazságtáblázatáak vizsgálata közbe két érdekes dolgot is észrevehetük: A táblázat tartalmazza az egyváltozós függvéyeket is F 0, F3, F5, F0, F, F5 Ha a VAGY függvéy F 7 és a VAGY NEM (NOR) függvéy F 8 közé egy képzeletbeli szimmetriavoalat húzuk, akkor a voaltól azoos távolságra levı függvéyek egymás egáltjai. A többváltozós logikai függvéyek A gyakorlati feladatok megoldása sorá a legtöbbször többváltozós logikai függvéyekkel találkozhatuk. A képezhetı kapcsolási függvéyek száma a függetle változók számával expoeciális aráyba, tehát rohamosa övekszik. Például: ha a függetle változók száma 3, akkor a külöbözı logikai függvéyek száma: 3 8 K = = = = 56 ha a függetle változók száma 4, akkor a külöbözı logikai függvéyek száma: 4 6 K = = = = Azért sem célszerő a kettıél több bemeeti változót tartalmazó függvéyeket egyekét tárgyali, mert mide többváltozós logikai függvéy kétváltozós függvéyekbıl felépíthetı. Ativalecia függvéy F 6 Ativalecia (KIZÁRÓ VAGY) függvéy: a függvéy értéke akkor, ha vagy csak A, vagy csak a B értéke, vagyis amikor a bemeeti változók elletétes értékőek. További elevezései: kizáró VAGY, exclusive OR. Jelölése: F6 = A B + A B. Duál tétel, duál függvéy Duál tétel: Ha a logikai ÉS mőveletet VAGY mővelettel, valamit a 0-t -gyel (vagy az -et 0-val) helyettesítjük, az eredeti függvéy duálfüggvéyét kapjuk meg. Ekvivalecia függvéy F 9 Ekvivalecia függvéy: a függı változó értéke akkor, ha a függetle változók logikai értéke megegyezik. További elevezései: koicidecia, exclusive NOR. Jelölése: F9 = A B + A B. ÉS függvéy F ÉS függvéy: a függı változó értéke akkor és csakis akkor, ha midkét függetle változó értéke egyidejőleg. További elevezései: AND mővelet, kojukció, logikai szorzás. Jelölése: F = A B. ÉS NEM függvéy F 4 ÉS NEM (NAND) függvéy: a függı változó értéke akkor és csakis akkor 0, ha midkét függetle változó értéke egyidejőleg. A NAND illetve az ÉS kapcsolat egymás egáltjai. Jelölése: F4 = A B. Implikáció függvéyek F Implikáció függvéy: az implikáció mőveletéél a változók sorredje em cserélhetı fel, mert a függvéy értéke csak akkor 0, ha az elıtag 0, és az utótag. Jelölése: F = A + B. F 3 Iverz implikáció függvéy: az iverz implikáció mőveletéél a változók sorredje em cserélhetı fel, mert a függvéy értéke csak akkor 0, ha az elıtag, és az utótag 0. Jelölése: F = A + B. Ihibitáló függvéyek F Ihibitáló függvéy: az ihibíció (tiltás) mőveletéél a változók sorredje em cserélhetı fel, mert a függvéy értéke akkor és csakis akkor, ha az elıtag logikai értéke egyedül, ömagába. Jelölése: F = A B. 4

5 7.B 7.B F 4 Iverz ihibitáló függvéy: az ivert ihibíció (tiltás) mőveletéél a változók sorredje em cserélhetı fel, mert a függvéy értéke akkor és csakis akkor, ha az utótag logikai értéke egyedül, ömagába. Jelölése: F4 = A B. Ismétlés függvéy F 5 Ismétlı függvéy: a függı változó értéke midig az adott függetle változó értékét veszi fel. Jelölése: F 5 = B. Kétváltozós ismétlı függvéy F 3 Kétváltozós ismétlı függvéy: a függı változó értéke midig az adott függetle változó értékét veszi fel. Jelölése: F = A 3. Kétváltozós midig függvéy F 5 Kétváltozós midig függvéy: a függı változó értéke a függetle változók mide értékétıl függetleül midig. Jelölése: F 5 =. Kétváltozós egáció függvéyek F 0 Kétváltozós egáció függvéy: a függı változó értéke midig az adott függetle változó elletétes értékét veszi fel. Jelölése: F = B 0. F Kétváltozós egáció függvéy: a függı változó értéke midig az adott függetle változó elletétes értékét veszi fel. Jelölése: F = A. Kétváltozós soha függvéy F0 Kétváltozós soha függvéy: a függı változó értéke a függetle változók mide értékéél 0. Jelölése: F 0 = 0. VAGY függvéy F 7 VAGY függvéy: a függvéy értéke egyetle esetbe 0, ha valameyi bemeeti változó értéke egyidejőleg 0. Úgy is fogalmazhatuk, hogy a függı változó akkor értékő, ha bármelyik függetle változó egyekét vagy együttese értékő. További elevezései: OR mővelet, diszjukció, logikai összeadás. Jelölése: F 7 = A + B. VAGY NEM függvéy F 8 VAGY NEM (NOR) függvéy: a függı változó értéke akkor és csakis akkor, ha midkét függetle változó értéke egyidejőleg 0. A NOR illetve a VAGY kapcsolat egymás egáltjai. Jelölése: F 8 = A + B. A logikai algebra szabályai Az egyszerőbb alakra hozás Egy logikai elve mőködı vezérlı beredezés ára a beépített elemek számával aráyosa övekszik, ezért törekedük kell a megvalósítadó logikai függvéy legegyszerőbb alakjáak létrehozására. Kommutatív szabály (felcserélhetıség) Az azoos logikai kapcsolatba levı változók sorredje tetszıleges. A+B = B+A A B = B A A szabály alól természetese az ihibíció és az implikáció mőveletei kivételek. Asszociatív szabály (társíthatóság) Az azoos logikai mőveletek eredméye em függ a mőveletvégzés sorredjétıl. A+B+C = C+B+A = B+C+A A B C = B C A = A C B 5

6 7.B 7.B Disztributív szabály (szétválaszthatóság) A+ B C = (A+ B) (A+ C) A (B+ C) = A B+ A C A redudacia Ugyais egy adott gyakorlati problémát, ha közvetleül algebrai alakba megadott logikai függvéy formájába íruk le, szite elkerülhetetle a redudacia (túlhatározottság). A logikai algebra (Boole-algebra) olya azoosságokat illetve szabályokat fogalmazott meg az algebrai formába megadott logikai függvéyek eseté, amelyekkel ezek a függvéyek egyszerőbb alakra hozhatók. A logikai algebra alaptételei A meyiségek kétértékőek A = 0, ha A em. A =, ha A em 0. Negáció = 0 Kettıs tagadás = Meyiséggel végzett mőveletek szabályai VAGY kapcsolat 0+0 = 0 0+ = +0 = + = ÉS kapcsolat 0 0 = 0 0 = 0 0 = 0 = Egy változóval végzett mőveletek szabályai A = A A 0 = 0 A+0 = A A 0 = A A+ = A A = A A+A = A A A = 0 A + A = Két változóval végzett mőveletek szabályai A (B+ A) = A Az alaptételek bizoyítása Az egy változóval végzett mőveletek szabályaiak bizoyítása az egy és kétváltozós logikai függvéyek igazságtáblázata alapjá öállóa elvégezhetı. Nézzük meg, hogya kell bebizoyítai a szabályok és a többi alaptétel segítségével az összefüggést! A B+ A = A A disztributív szabály alapjá A B+ A = A B+ A A. Felhaszálva, hogy A A = A A (B+ A)=A B+ A A = A B+ A Most a disztributív szabályt megfordítva alkalmazzuk, emellett tudjuk, hogy B+ = és A = A A B+ A = A (B+) = A = A Vagyis teljesül az összefüggés A (B+ A)= A. De Morga-téte A + B = A B A B = A + B A De Morga-tétel bizoyítása Készítsük olya igazságtáblázatot, amelybe jelöljük a függetle változókat, és ezek összes lehetséges kombiációjáál határozzuk meg a De Morga-tételbe szereplı összes függvéy értékét! 6

7 7.B 7.B A De Morga-tétel bizoyítása A táblázatból látható, hogy A B = A + B és A B = A + B, így bebizoyítottuk, a De Morga-tételt. Alapvetı fogalmak és jelölésük A logikai függvéyek szabályos alakjáak ismeretéhez a következı alapvetı fogalmakat és jelölésüket kell megismeri: Term Miterm Maxterm A miterm jelölése: m i, ahol m a mitermet jeleti, a függetle változók száma és i a miterm sorszáma, vagyis idexszáma. A maxterm jelölése: M i, ahol M a maxtermet jeleti, a függetle változók száma és i a maxterm sorszáma, vagyis idexszáma. Diszjuktív szabályos alak Diszjuktív szabályos alak olya logikai függvéy, amely mitermek VAGY kapcsolatából áll. Diszjuktív szabályos alak megadási módjai Például: F = A B C D + A B C D + A B C D + A B C D F = m m4 + m8 + m Kojuktív szabályos alak Kojuktív szabályos alak olya logikai függvéy, amely maxtermek ÉS kapcsolatából áll. Kojuktív szabályos alak megadási módjai Például: F = A + B + C + D A + B + C + D A + B + C + D F = M 4 5 M 6 M 3 ( ) ( ) ( ) Logikai függvéyek hátráya Az algebrai alakba megadott logikai függvéyek hátráya, egy függvéyt több egymással ekvivales módo is felírhatuk. Ezt a hátráyt azért kell kiküszöböli, hogy két egyforma feladatot midig felismerjük, e kellje többször is egyszerősítei és megoldai. Term: a függetle változók azo csoportja, amelyeket azoos logikai kapcsolatra jellemzı szimbólummal kapcsoluk. A Karaugh-táblák típusai Egyváltozós Karaugh-tábla: Egy függetle változóak (pl. A) két lehetséges állapota lehet ( ), tehát ebbe az esetbe a tábla két darab cellát tartalmaz. A cella kotúrjai mellett feltütetjük a függetle változó logikai értékét, a cella sarká pedig a változó betőjelét. Az ábrá a cellákba beírtuk az általuk képviselt termeket is. Kétváltozós Karaugh-tábla: Két függetle változóak (pl. A, B) égy lehetséges állapota lehet ( ), tehát ebbe az esetbe a tábla égy darab cellát tartalmaz. Az ábrá a cellákba beírtuk az általuk képviselt termeket is. Háromváltozós Karaugh-tábla: Három függetle változóak (pl. A, B, C) yolc lehetséges állapota lehet ( 3 ), tehát ebbe az esetbe a tábla yolc darab cellát tartalmaz. Négyváltozós Karaugh-tábla: Négy függetle változóak (pl. A, B, C, D) 6 lehetséges állapota lehet ( 4 ), tehát ebbe az esetbe a tábla 6 darab cellát tartalmaz. 7

8 7.B 7.B Egyváltozós tábla Egy függetle változóak (pl. A) két lehetséges állapota lehet ( ), tehát ebbe az esetbe a tábla két darab cellát tartalmaz. A cella kotúrjai mellett feltütetjük a függetle változó logikai értékét, a cella sarká pedig a változó betőjelét. Az ábrá a cellákba beírtuk az általuk képviselt termeket is. Kétváltozós tábla Két függetle változóak (pl. A, B) égy lehetséges állapota lehet ( ), tehát ebbe az esetbe a tábla égy darab cellát tartalmaz. Az ábrá a cellákba beírtuk az általuk képviselt termeket is. Egyváltozós Karaugh-tábla Kétváltozós Karaugh-tábla Háromváltozós Karaugh-tábla Négyváltozós Karaugh-tábla Háromváltozós tábla Három függetle változóak (pl. A, B, C) yolc lehetséges állapota lehet ( 3 ), tehát ebbe az esetbe a tábla yolc darab cellát tartalmaz. Négyváltozós tábla Négy függetle változóak (pl. A, B, C, D) 6 lehetséges állapota lehet ( 4 ), tehát ebbe az esetbe a tábla 6 darab cellát tartalmaz. Miterm táblák Bár a gyakorlatba em haszálják, de egyszerősége miatt elıször ismerkedjük meg az egyváltozós, ezért két darab cellát tartalmazó táblával. Az egyetle változó (jelöljük A-val) a két lehetséges állapot (0, ) valamelyikébe lehet. A cellákba található decimális szám a term sorszáma, a függıleges voal az A változó logikai (igaz) értékét jelzi, vagyis A =. A = 0 és Egyváltozós miterm-tábla Kétváltozós miterm-tábla Háromváltozós miterm-tábla Négyváltozós miterm-tábla Maxterm táblák A maxterm táblákat úgy tuduk felrajzoli, ha követjük a mitermbıl maxtermbe való átírás szabályait. Képezzük a változók egáltját, és a cellák miterm sorszámait kiegészítjük: átsorszámozzuk a cellákat az im = im összefüggés alapjá. Az ábrá az egy-, két-, három- és égyváltozós maxterm-tábla látható. Egyváltozós maxterm-tábla Kétváltozós maxterm-tábla Háromváltozós maxterm-tábla Négyváltozós maxterm-tábla Veitch-táblák A logikai függvéyek kétféle szabályos alakjáak megfelelıe Veitch kétféle táblát vezetett be. A miterm táblát a diszjuktív szabályos függvéyek számára és a maxterm táblát a kojuktív szabályos függvéyek számára. A függetle változók logikai értékeit a tábla kotúrja meté húzott voallal tütetjük fel, és a cellákba beírjuk az ábrázolt term sorszámát. 8

30.B 30.B. Szekvenciális hálózatok (aszinkron és szinkron hálózatok)

30.B 30.B. Szekvenciális hálózatok (aszinkron és szinkron hálózatok) 30.B Digitális alapáramkörök Logikai alapáramkörök Ismertesse a szekvenciális hálózatok jellemzıit! Mutassa be a két- és többszintő logikai hálózatok realizálásának módszerét! Mutassa be a tároló áramkörök

Részletesebben

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait.

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. 2. VEKTORTÉR A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. Legyen K egy test és V egy nem üres halmaz,

Részletesebben

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós Komplex számok el adásvázlat, 008. február 1. Maróti Miklós Eek az el adásak a megértéséhez a következ fogalmakat kell tudi: test, test additív és multiplikatív csoportja, valós számok és tulajdoságaik.

Részletesebben

A + B = B + A, A + ( B + C ) = ( A + B ) + C.

A + B = B + A, A + ( B + C ) = ( A + B ) + C. 6. LOGIKAI ÁRAMKÖRÖK Számítógépekben, műszerekben, vezérlő automatákban alapvető szerep jut az olyan áramköröknek, melyek valamilyen logikai összefüggést fejeznek ki. Ezeknek a logikai áramköröknek az

Részletesebben

194 Műveletek II. MŰVELETEK. 2.1. A művelet fogalma

194 Műveletek II. MŰVELETEK. 2.1. A művelet fogalma 94 Műveletek II MŰVELETEK A művelet fogalma Az elmúlt éveke már regeteg művelettel találkoztatok matematikai taulmáyaitok sorá Először a természetes számok összeadásával találkozhattatok, már I első osztálya,

Részletesebben

A figurális számokról (IV.)

A figurális számokról (IV.) A figurális számokról (IV.) Tuzso Zoltá, Székelyudvarhely A továbbiakba külöféle számkombiációk és összefüggések reprezetálásáról, és bizoyos összegek kiszámolásáról íruk. Sajátos összefüggések Az elekbe

Részletesebben

A Venn-Euler- diagram és a logikai szita

A Venn-Euler- diagram és a logikai szita A Ve-Euler- diagram és a logikai szita Ebbe a részbe a Ve-Euler diagramról, a logikai szitáról, és a két témakör kapcsolatáról íruk, számos jellemző, megoldott feladattal szemléltetve a leírtakat. Az ábrákak

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo SZÁMELMÉLET Vasile Beride, Filippo Spagolo A számelmélet a matematika egyik legrégibb ága, és az egyik legagyobb is egybe Eek a fejezetek az a célja, hogy egy elemi bevezetést yújtso az első szite lévő

Részletesebben

25. Matematikai logika, bizonyítási módszerek

25. Matematikai logika, bizonyítási módszerek 5. Matematikai logika, bizoyítási módszerek I. Elméleti összefoglaló Logikai műveletek A matematikai logika állításokkal foglalkozik. Az állítás (vagy kijeletés) olya kijelető modat, amelyről egyértelműe

Részletesebben

6. Elsőbbségi (prioritásos) sor

6. Elsőbbségi (prioritásos) sor 6. Elsőbbségi (prioritásos) sor Közapi fogalma, megjeleése: pl. sürgősségi osztályo a páciesek em a beérkezési időek megfelelőe, haem a sürgősség mértéke szerit kerülek ellátásra. Az operációs redszerekbe

Részletesebben

Anyagok a föld mélyérôl

Anyagok a föld mélyérôl Ayagok a föld mélyérôl 2. Földgázból műayag Középpotba az acetilé 2.1. Az acetilé (eti) molekulájába a széatomok között háromszoros kovales kötés va Molekula eve Molekula szerkezete 2.3. Az acetilé l-addíciója

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

1. Az adott kifejezést egyszerűsítse és rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben.

1. Az adott kifejezést egyszerűsítse és rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben. 1 1. z adott kifejezést egyszerűsítse és rajzolja le a lehető legkevesebb eleel, a legegyszerűbben. F függvény 4 változós. MEGOLÁS: legegyszerűbb alak egtalálása valailyen egyszerűsítéssel lehetséges algebrai,

Részletesebben

Minıségbiztosítás 4. gyakorlat

Minıségbiztosítás 4. gyakorlat Minıségbiztosítás 4. gyakorlat 7 új módszer Horváthné Drégelyi-Kiss Ágota dregelyi.agota@bgk.bmf.hu 1. módszer: Affinitás diagram (KJ-S diagram) Nagy létszámú vélemény, gondolat vagy kapcsolat rendezésére

Részletesebben

Édes Élet SORSJEGY RÉSZVÉTELI SZABÁLYZATA. Budapest, 2009.

Édes Élet SORSJEGY RÉSZVÉTELI SZABÁLYZATA. Budapest, 2009. Az Édes Élet SORSJEGY RÉSZVÉTELI SZABÁLYZATA Budapest, 2009. 1. A játékosnak a sorsolásos játékban való részvétellel összefüggı jogai és kötelezettségei (1) A sorsjátékban bárki részt vehet, aki a Részvételi

Részletesebben

1. DIGITÁLIS ADATFELDOLGOZÁS

1. DIGITÁLIS ADATFELDOLGOZÁS 1. DIGITÁLIS ADATFELDOLGOZÁS A médiumok szite midegyike előállítható már digitális formába. Ez az ú. digitális közös evező lehetővé teszi az ilye adatok egységes kezelését. Miél összetettebb egy médium,

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 01. 01. kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t Ellenőrző kérdések 2. Kis dolgozat kérdései 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t 37. Ha t szintű indexet használunk,

Részletesebben

MATEMATIKA I. FEKETE MÁRIA. PÉCSI TUDOMÁNYEGYETEM POLLACK MIHÁLY MŰSZAKI KAR MATEMATIKA TANSZÉK feketemt@witch.pmmf.hu

MATEMATIKA I. FEKETE MÁRIA. PÉCSI TUDOMÁNYEGYETEM POLLACK MIHÁLY MŰSZAKI KAR MATEMATIKA TANSZÉK feketemt@witch.pmmf.hu MATEMATIKA I. FEKETE MÁRIA PÉCSI TUDOMÁNYEGYETEM POLLACK MIHÁLY MŰSZAKI KAR MATEMATIKA TANSZÉK feketemt@witch.pmmf.hu 007 PMMANB3 Matematika I. RÉSZLETES TANTÁRGYPROGRAM Hét Ea/Gyak./Lab.. 3 óra előadás

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két

Részletesebben

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2013. október 14. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2013. október 14. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

Matematika tanmenet 12. osztály (heti 4 óra)

Matematika tanmenet 12. osztály (heti 4 óra) Matematika tanmenet 12. osztály (heti 4 óra) Tankönyv: Ábrahám Gábor Dr. Kosztolányiné Nagy Erzsébet Tóth Julianna: Matematika 12. középszint Példatárak: Fuksz Éva Riener Ferenc: Érettségi feladatgyűjtemény

Részletesebben

Knoch László: Információelmélet LOGIKA

Knoch László: Információelmélet LOGIKA Mi az ítélet? Az ítélet olyan mondat, amely vagy igaz, vagy hamis. Azt, hogy az adott ítélet igaz vagy hamis, az ítélet logikai értékének nevezzük. Jelölése: i igaz h hamis A 2 páros és prím. Logikai értéke

Részletesebben

Az MS Word szövegszerkesztés modul részletes tematika listája

Az MS Word szövegszerkesztés modul részletes tematika listája Az MS Word szövegszerkesztés modul részletes tematika listája A szövegszerkesztés alapjai Karakter- és bekezdésformázás Az oldalbeállítás és a nyomtatás Tabulátorok és hasábok A felsorolás és a sorszámozás

Részletesebben

INFORMATIKA INGYENES ELEKTRONIKUS TANANYAG ADATBÁZIS-KEZELÉS FELADATOK

INFORMATIKA INGYENES ELEKTRONIKUS TANANYAG ADATBÁZIS-KEZELÉS FELADATOK INFORMATIKA INGYENES ELEKTRONIKUS TANANYAG ADATBÁZIS-KEZELÉS FELADATOK ALAPFOGALMAK...2 ACCESS ALAPOK...2 ACCESS KÉPERNYİ RÉSZEI...3 ADATBÁZIS LÉTREHOZÁSA...3 ADATTÁBLÁK...4 ÚJ TÁBLA LÉTREHOZÁSA...4 MŐVELETEK

Részletesebben

MÉRÉSMETODIKAI ALAPISMERETEK FIZIKA. kétszintű érettségire felkészítő. tanfolyamhoz

MÉRÉSMETODIKAI ALAPISMERETEK FIZIKA. kétszintű érettségire felkészítő. tanfolyamhoz MÉRÉSMETODIKAI ALAPISMERETEK a FIZIKA kétszitű érettségire felkészítő tafolyamhoz A fizika mukaközösségi foglalkozásoko és a kétszitű érettségi való vizsgáztatásra felkészítő tafolyamoko 004-009-be elhagzottak

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI ÉRETTSÉGI VIZSGA VIZSGA 2006. október 2006. 24. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. október 24. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati

Részletesebben

Csernicskó István Hires Kornélia A kárpátaljai magyarok lokális, regionális és nemzeti identitásáról

Csernicskó István Hires Kornélia A kárpátaljai magyarok lokális, regionális és nemzeti identitásáról 8 Sztakó Péter 00 Eticitás Körösszakálo. Szakdolgozat. DENIA (Debrecei Néprajzi Itézet Adattára) Vermeule, Has Govers, Cora (ed.) 99 The Atropology of Ethicity. Beyod Ethic Groups ad Boudaries. Amsterdam:

Részletesebben

2010.12.14. Feladatok és kérdıívek szerkesztése, használata a könyvtári munkában. 1. A feladatok szerkesztése és használata

2010.12.14. Feladatok és kérdıívek szerkesztése, használata a könyvtári munkában. 1. A feladatok szerkesztése és használata Feladatok és kérdıívek jellemzıi Feladatok és kérdıívek szerkesztése, használata a könyvtári munkában Szakmai továbbképzés könyvtárosok részére 2010. december 9. Vígh Tibor SZTE BTK Neveléstudományi Intézet

Részletesebben

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8 Név, Neptu-kód:.................................................................... 1. Legyeek p, q Q tetszőlegesek. Mutassuk meg, hogy ekkor p q Q. Tegyük fel, hogy p, q Q. Ekkor létezek olya k 1, k 2,

Részletesebben

15 Számítógépes idıhatékonysági TIPP. Nyerjen idıt számítógépe segítségével!

15 Számítógépes idıhatékonysági TIPP. Nyerjen idıt számítógépe segítségével! 15 Számítógépes idıhatékonysági TIPP Nyerjen idıt számítógépe segítségével! 1 2 MS Excel 1. Gyors mozgás és kijelölés Sok idıt nyerhetünk a napi munka során, ha megtanulunk egér nélkül mozogni, illetve

Részletesebben

12.A 12.A. A belsı ellenállás, kapocsfeszültség, forrásfeszültség fogalmának értelmezése. Feszültséggenerátorok

12.A 12.A. A belsı ellenállás, kapocsfeszültség, forrásfeszültség fogalmának értelmezése. Feszültséggenerátorok 12.A Energiaforrások Generátorok jellemzıi Értelmezze a belsı ellenállás, a forrásfeszültség és a kapocsfeszültség fogalmát! Hasonlítsa össze az ideális és a valóságos generátorokat! Rajzolja fel a feszültség-

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

3. modul - Szövegszerkesztés

3. modul - Szövegszerkesztés 3. modul - Szövegszerkesztés - 1-3. modul - Szövegszerkesztés Az alábbiakban ismertetjük a 3. modul (Szövegszerkesztés) syllabusát, amely a modulvizsga követelményrendszere. A modul célja Ezen a vizsgán

Részletesebben

Kulcsár Attila: Térbeli adatbázisok gyakorlati szemmel GeoCalc GIS

Kulcsár Attila: Térbeli adatbázisok gyakorlati szemmel GeoCalc GIS Térbeli adatbázisok gyakorlati szemmel GeoCalc GIS Kulcsár Attila Nyugat-magyarországi Egyetem, Geoinformatikai Kar Informatikai Központ 8000 Székesfehérvár, Pirosalma u. 1-3 E-mail: a.kulcsar@geo.info.hu

Részletesebben

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható 8. Valószí ségszámítás. (Valószí ségeloszlások, függetleség. Valószí ségi változók várható értéke, magasabb mometumok. Kovergeciafajták, kapcsolataik. Borel-Catelli lemmák. Nagy számok gyege törvéyei.

Részletesebben

MARKETING ELEMZÉS TERVEZÉS PROGRAM ISMERTETİ

MARKETING ELEMZÉS TERVEZÉS PROGRAM ISMERTETİ MARKETING ELEMZÉS TERVEZÉS PROGRAM ISMERTETİ 1 Marketing elemzés tervezés program ismertetı A Marketing elemzés tervezés Microsoft Excel munkafüzet 27-27 egymásba ágyazott Excel táblázatot tartalmaz, amelyeket

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Azonosító jel NSZI 0 6 0 6 OKTATÁSI MINISZTÉRIUM Szakmai előkészítő érettségi tantárgyi verseny 2006. április 19. ELEKTRONIKAI ALAPISMERETEK DÖNTŐ ÍRÁSBELI FELADATOK Az írásbeli időtartama: 240 perc 2006

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre

Részletesebben

1. óra Tanévi feladatok balesetvédelem, baleset megelőzés 2. óra Ismétlés. 3. óra

1. óra Tanévi feladatok balesetvédelem, baleset megelőzés 2. óra Ismétlés. 3. óra 1. óra Tanévi feladatok balesetvédelem, baleset megelőzés 2. óra Ismétlés Informatikai alapismeretek (fogalmak): Információ (Új ismeretet jelent, amely a megszerzőjének szükséges és érthető) Informatika

Részletesebben

Ö Á Í Í ű ű ú ű ű ű ű ú ú ú ú ű ű ű ű ű ű ű ű ű ú ű ú ú ú ű ú Á ú ű ű Ó ú ű ű ű ú Ó ú ű ú É ú ú ú ű ű ú ű ú Ú Á ú É ú Ó ú ú ú ú ű ű ű ú É Á É É ű ű Í ú ú Ó Í ű Í ű ű ú ű ű ű É ű ú Á ű ű ú Í ű Á ű ú ú É

Részletesebben

Függvények II. Indítsuk el az Excel programot! A minta alapján vigyük be a Munka1 munkalapra a táblázat adatait! 1. ábra Minta az adatbevitelhez

Függvények II. Indítsuk el az Excel programot! A minta alapján vigyük be a Munka1 munkalapra a táblázat adatait! 1. ábra Minta az adatbevitelhez Bevezetés Ebben a fejezetben megismerkedünk a Logikai függvények típusaival és elsajátítjuk alkalmazásukat. Jártasságot szerzünk bonyolultabb feladatok megoldásában, valamint képesek leszünk a függvények

Részletesebben

Izolált rendszer falai: sem munkavégzés, sem a rendszer állapotának munkavégzés nélküli megváltoztatása nem lehetséges.

Izolált rendszer falai: sem munkavégzés, sem a rendszer állapotának munkavégzés nélküli megváltoztatása nem lehetséges. ERMODINMIK I. FÉELE els eergia: megmaraó meyiség egy izolált reszerbe (eergiamegmaraás törvéye) mikroszkóikus kifejezését láttuk Izolált reszer falai: sem mukavégzés sem a reszer állaotáak mukavégzés élküli

Részletesebben

Folyadékkal mûködõ áramlástechnikai gépek

Folyadékkal mûködõ áramlástechnikai gépek 3. ÖRVÉNYSZIVATTYÚK A folyadékkal működő gépeket több szempot szerit lehet csoportokba osztai. Az egyik fő csoportjuk a folyadékba rejlő mukavégző képességet haszálja fel, és alakítja át a folyadék eergiáját,

Részletesebben

3. Valószínűségszámítás

3. Valószínűségszámítás Biometria az orvosi gyaorlatba 3. Valószíűségszámítás 3. Valószíűségszámítás 3.. Bevezetés 3.. Kombiatoria 3... Permutáció 3... Variáció 3..3. Kombiáció 3 3.3. Biomiális együttható tulajdoságai 3 3.4.

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Sorozatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Sorozatok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Sorozatok A szürkített hátterű feladatrészek em tartozak az éritett témakörhöz, azoba szolgálhatak fotos iformációval az éritett feladatrészek

Részletesebben

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag VIK, Műszaki Iformatika ANALÍZIS Numerikus sorok Oktatási segédayag A Villamosméröki és Iformatikai Kar műszaki iformatikus hallgatóiak tartott előadásai alapjá összeállította: Fritz Józsefé dr. Kóya Iloa

Részletesebben

7400 Kaposvár, Pázmány P. u. 17. OM 034164 TANMENET. Modul: 0920-06. Osztály: Heti óraszám: Hetek száma: 32. P. h.

7400 Kaposvár, Pázmány P. u. 17. OM 034164 TANMENET. Modul: 0920-06. Osztály: Heti óraszám: Hetek száma: 32. P. h. EÖTVÖS LORÁND MŰSZAKI SZAKKÖZÉPISKOLA, SZAKISKOLA ÉS KOLLÉGIUM 7400 Kaposvár, Pázmány P. u. 17. OM 034164 TANMENET Tantárgy: Automatizálási gyakorlat Modul: 0920-06 Osztály: Heti óraszám: 14. B 4 óra Hetek

Részletesebben

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA 1 SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 x 3 = 111 A tanmenet 101 óra beosztását tartalmazza. A dolgozatok írása és javítása 10 órát foglal

Részletesebben

SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA

SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA 1 ELSŐ GYAKORLAT SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA A feladat elvégzése során a következőket fogjuk gyakorolni: Számrendszerek közti átváltás előjelesen és előjel nélkül. Bináris, decimális, hexadexcimális számrendszer.

Részletesebben

Sok sikert és jó tanulást kívánok! Előszó

Sok sikert és jó tanulást kívánok! Előszó Előszó A Pézügyi számítások I. a Miskolci Egyetem közgazdász appali, kiegészítő levelező és posztgraduális kurzusai oktatott pézügyi tárgyak feladatgyűjteméyéek az első darabja. Tematikája elsősorba a

Részletesebben

Tartalomjegyzék. 2. Probléma megfogalmazása...8. 3. Informatikai módszer...8 3.1. Alkalmazás bemutatása...8. 4. Eredmények...12. 5. További célok...

Tartalomjegyzék. 2. Probléma megfogalmazása...8. 3. Informatikai módszer...8 3.1. Alkalmazás bemutatása...8. 4. Eredmények...12. 5. További célok... Tartalomjegyzék 1. Bevezető... 1.1. A Fiboacci számok és az araymetszési álladó... 1.. Biet-formula...3 1.3. Az araymetszési álladó a geometriába...5. Probléma megfogalmazása...8 3. Iformatikai módszer...8

Részletesebben

Az Excel táblázatkezelő program használata a matematika és a statisztika tantárgyak oktatásában

Az Excel táblázatkezelő program használata a matematika és a statisztika tantárgyak oktatásában Az Excel táblázatkezelő program használata a matematika és a statisztika tantárgyak oktatásában Hódiné Szél Margit SZTE MGK 1 A XXI. században az informatika rohamos terjedése miatt elengedhetetlen, hogy

Részletesebben

Valós számok 5. I. Valós számok. I.1. Természetes, egész és racionális számok

Valós számok 5. I. Valós számok. I.1. Természetes, egész és racionális számok Valós számok 5 I Valós számok I Természetes, egész és racioális számok I Feladatok (8 oldal) Fogalmazz meg és bizoyíts be egy-egy oszthatósági kritériumot a -vel, -mal, 5-tel, 7-tel, 9-cel, -gyel való

Részletesebben

hogy alkalmas konstrukcióval megadható-e olyan sztochasztikus folyamat, melynek ezek

hogy alkalmas konstrukcióval megadható-e olyan sztochasztikus folyamat, melynek ezek Wieer folyamatok A következő két feladat azt mutatja, hogy az az eseméy, hogy egy sztochasztikus folyamat folytoos trajektóriájú-e vagy sem em határozható meg a folyamat véges dimeziós eloszlásai segítségével,

Részletesebben

Útmutató a MATARKA adatbázisból való adatátvételhez

Útmutató a MATARKA adatbázisból való adatátvételhez Útmutató a MATARKA adatbázisból való adatátvételhez A MATARKA - Magyar folyóiratok tartalomjegyzékeinek kereshetı adatbázisa a következı címrıl érhetı el: http://www.matarka.hu/ A publikációs lista kinyerése

Részletesebben

13.B 13.B. 13.B Tranzisztoros alapáramkörök Többfokozatú erısítık, csatolások

13.B 13.B. 13.B Tranzisztoros alapáramkörök Többfokozatú erısítık, csatolások 3.B Tranzisztoros alapáramkörök Többfokozatú erısítık, csatolások Ismertesse a többfokozatú erısítık csatolási lehetıségeit, a csatolások gyakorlati vonatkozásait és azok alkalmazási korlátait! Rajzolja

Részletesebben

Hogyan fogalmazzuk meg egyszerűen, egyértelműen a programozóknak, hogy milyen lekérdezésre, kimutatásra, jelentésre van szükségünk?

Hogyan fogalmazzuk meg egyszerűen, egyértelműen a programozóknak, hogy milyen lekérdezésre, kimutatásra, jelentésre van szükségünk? Hogyan fogalmazzuk meg egyszerűen, egyértelműen a programozóknak, hogy milyen lekérdezésre, kimutatásra, jelentésre van szükségünk? Nem szükséges informatikusnak lennünk, vagy mélységében átlátnunk az

Részletesebben

Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések

Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések 1 Halmazok; a matematikai logika elemei 1.1. A halmaz fogalma; jelölések A matematikában alapfogalmaknak tekintjük azokat a fogalmakat, amelyeket nem határozunk meg, nem definiálunk más fogalmak segítségével

Részletesebben

MATEMATIKA. 9-10. évfolyam. Célok és feladatok

MATEMATIKA. 9-10. évfolyam. Célok és feladatok MATEMATIKA 9-10. évfolyam Célok és feladatok A matematikatanítás célja és ennek kapcsán feladata, hogy megalapozza a tanulók korszerő, alkalmazásra képes matematikai mőveltségét, biztosítsa a többi tantárgy

Részletesebben

1.1.1 Dátum és idő függvények

1.1.1 Dátum és idő függvények 1.1.1 Dátum és idő függvények Azt már tudjuk, hogy két dátum különbsége az eltelt napok számát adja meg, köszönhetően a dátum tárolási módjának az Excel-ben. Azt is tudjuk a korábbiakból, hogy a MA() függvény

Részletesebben

Tanszéki Általános Formai Követelmények

Tanszéki Általános Formai Követelmények BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Közlekedésmérnöki és Járműmérnöki Kar Tanszéki Általános Formai Követelmények (Érvényes: 2014. szeptember 1-től) 1. A tervezési feladat rajzaira vonatkozó

Részletesebben

Mintafeladat megoldása MS Office Project 2007 szoftverrel

Mintafeladat megoldása MS Office Project 2007 szoftverrel Mintafeladat megoldása MS Office Project 2007 szoftverrel 1. A mintafeladat kiírása Készítsük el a következı weboldal fejlesztésének projekttervét! A projekt kezdési dátuma: 2009. szeptember 2-a. A projektben

Részletesebben

5.A 5.A. 5.A Egyenáramú hálózatok alaptörvényei Nevezetes hálózatok

5.A 5.A. 5.A Egyenáramú hálózatok alaptörvényei Nevezetes hálózatok 5. 5. 5. Egyenáramú hálózatok alaptörvényei Nevezetes hálózatok Vezesse le az ellenállások soros párhuzamos és vegyes kapcsolásainál az eredı ellenállás kiszámítására vonatkozó összefüggéseket! Definiálja

Részletesebben

KORSZERŐ GEOINFORMATIKAI MÓDSZEREK AZ ERDÉSZETBEN Egy geoinformációs rendszer fejlesztésének tudományos eredményei. DOKTORI (PhD) ÉRTEKEZÉS

KORSZERŐ GEOINFORMATIKAI MÓDSZEREK AZ ERDÉSZETBEN Egy geoinformációs rendszer fejlesztésének tudományos eredményei. DOKTORI (PhD) ÉRTEKEZÉS KORSZERŐ GEOINFORMATIKAI MÓDSZEREK AZ ERDÉSZETBEN Eg geoiformáiós redszer fejlesztéséek tudomáos eredméei DOKTORI (PhD) ÉRTEKEZÉS Czimber Korél Nugat-Magarországi Egetem Erdıméröki Kar, Sopro Erdészeti

Részletesebben

19.B 19.B. A veszteségek kompenzálása A veszteségek pótlására, ennek megfelelıen a csillapítatlan rezgések elıállítására két eljárás lehetséges:

19.B 19.B. A veszteségek kompenzálása A veszteségek pótlására, ennek megfelelıen a csillapítatlan rezgések elıállítására két eljárás lehetséges: 9.B Alapáramkörök alkalmazásai Oszcillátorok Ismertesse a szinuszos rezgések elıállítására szolgáló módszereket! Értelmezze az oszcillátoroknál alkalmazott pozitív visszacsatolást! Ismertesse a berezgés

Részletesebben

Statisztikai hipotézisvizsgálatok

Statisztikai hipotézisvizsgálatok Statisztikai hipotézisvizsgálatok. Milye problémákál haszálatos? A gyakorlatba agyo gyakra szükségük lehet arra, hogy mitákból származó iformációk alapjá hozzuk sokaságra voatkozó dötéseket. Például egy

Részletesebben

fogalmazva a nagy számok törvénye azt mondja ki, hogy ha vesszük n független és

fogalmazva a nagy számok törvénye azt mondja ki, hogy ha vesszük n független és A Valószíűségszámítás II. előadássorozat egyedik témája. A NAGY SZÁMOK TÖRVÉNYE Eze előadás témája a agy számok erős és gyege törvéye. Kissé leegyszerűsítve fogalmazva a agy számok törvéye azt modja ki,

Részletesebben

Molnár Éva SZTE Neveléstudományi Intézet

Molnár Éva SZTE Neveléstudományi Intézet (TÁMOP 3.1.9/08/01) A sajátos nevelési igényő tanulóknak megfelelı diagnosztikus mérıeszközök és feladatbank kifejlesztése Molnár Éva SZTE Neveléstudományi Intézet SNI fogalom értelmezése Sajátos nevelési

Részletesebben

Szigma Integrisk integrált kockázatmenedzsment rendszer

Szigma Integrisk integrált kockázatmenedzsment rendszer Szigma Integrisk integrált kockázatmenedzsment rendszer A rendszer kidolgozásának alapja, hogy a vonatkozó szakirodalomban nem volt található olyan eljárás, amely akkor is megbízható megoldást ad a kockázatok

Részletesebben

A pedagógus nevel a logikus gondolkodásra, amihez eszközként pl. táblajátékot használhat!

A pedagógus nevel a logikus gondolkodásra, amihez eszközként pl. táblajátékot használhat! Szülőktől még megértően elfogadom: a táblajátékok logikus gondolkodásra nevelnek, de mindig indulatosan reagálok, ha pedagógustól, újabban pedig, ha játékpedagógustól hallom az általános közhelyet. A pedagógus

Részletesebben

Átlag( ; ): a paraméterlistában megadott számok átlagát adja meg eredményül. Pl.: Átlag(a2:a8)

Átlag( ; ): a paraméterlistában megadott számok átlagát adja meg eredményül. Pl.: Átlag(a2:a8) Alap függvények Szum( ; ): a paraméterlistában megadott számokat összeadja. Pl.: Szum(a2:a8) Átlag( ; ): a paraméterlistában megadott számok átlagát adja meg eredményül. Pl.: Átlag(a2:a8) Max( ; ): a paraméterlistában

Részletesebben

Járatszerkesztési feladatok

Járatszerkesztési feladatok Járatszeresztési feladato 1 Járatszeresztési feladato DR. BENKŐJÁNOS Agrártudomáyi Egyetem GödöllőMezőgazdasági Géptai Itézet A járat alatt a logisztiába általába a járműve meghatározott több állomást

Részletesebben

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA A TÁMOP 3.1.4. EU-s pályázat megvalósításához a matematika (9. b/fizika) tárgy tanmenete a matematika kompetenciaterület A típusú

Részletesebben

Az MS Excel táblázatkezelés modul részletes tematika listája

Az MS Excel táblázatkezelés modul részletes tematika listája Az MS Excel táblázatkezelés modul részletes tematika listája A táblázatkezelés alapjai A táblázat szerkesztése A táblázat formázása A táblázat formázása Számítások a táblázatban Oldalbeállítás és nyomtatás

Részletesebben

Microsoft Excel 2010

Microsoft Excel 2010 Microsoft Excel 2010 Milyen feladatok végrehajtására használatosak a táblázatkezelők? Táblázatok létrehozására, és azok formai kialakítására A táblázat adatainak kiértékelésére Diagramok készítésére Adatbázisok,

Részletesebben

Póker SORSJEGY RÉSZVÉTELI SZABÁLYZATA. Budapest, 2008.

Póker SORSJEGY RÉSZVÉTELI SZABÁLYZATA. Budapest, 2008. A Póker SORSJEGY RÉSZVÉTELI SZABÁLYZATA Budapest, 2008. 1. A játékosnak a sorsolásos játékban való részvétellel összefüggı jogai és kötelezettségei (1) A sorsjátékban bárki részt vehet, aki a Részvételi

Részletesebben

INTERSTÚDIUM ALAPÍTVÁNY

INTERSTÚDIUM ALAPÍTVÁNY Adószám: 19660011-1-41 Bejegyzı szerv: Fıvárosi Bíróság Nyilvátartási szám: 1261 Közhaszú szervezet yilvátartásba vételi száma: 14.Pk65.072/12. Közhaszú tevékeységéek cél szeriti tevékeysége: evelés és

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

BIT-SOFT KFT. BITHEGYEZİ BITWIN ÜGYVITELI RENDSZER HÁZIPÉNZTÁR MODUL FUNKCIÓK. Verziószám: 1. 0. Bithegyezı Házipénztár modul. 2009. január 26.

BIT-SOFT KFT. BITHEGYEZİ BITWIN ÜGYVITELI RENDSZER HÁZIPÉNZTÁR MODUL FUNKCIÓK. Verziószám: 1. 0. Bithegyezı Házipénztár modul. 2009. január 26. BIT-SOFT KFT. BITHEGYEZİ BITWIN ÜGYVITELI RENDSZER HÁZIPÉNZTÁR MODUL FUNKCIÓK Verziószám: 1. 0 2009. január 26. Tel.:(68) 510-530, Fax.: (68) 414-174, E-mail / Web: bitsoft@bitsoft.hu / www.bitsoft.hu

Részletesebben

Általánosított mintavételi tétel és alkalmazása kváziperiodikus jelek leírására

Általánosított mintavételi tétel és alkalmazása kváziperiodikus jelek leírására Általáosított mitavételi tétel és alkalmazása kváziperiodikus jelek leírására Dr. Földvári Rudolf BME Híradástechikai Elektroika Itézet ÖSSZEFOGLALÁS Az általáosított mitavétel külöböző esteiek bemutatása

Részletesebben

VISEGRÁDI ORSZÁGOK ÉRETTSÉGI 2013 1 SZÖVEGSZERKESZTÉS FELADATOK. A következő országok alkotják a visegrádi országokat:

VISEGRÁDI ORSZÁGOK ÉRETTSÉGI 2013 1 SZÖVEGSZERKESZTÉS FELADATOK. A következő országok alkotják a visegrádi országokat: SZÖVEGSZERKESZTÉS VISEGRÁDI ORSZÁGOK A következő országok alkotják a visegrádi országokat: ÉRETTSÉGI 2013 1 Magyarország, Szlovákia, Csehország, és Lengyelország. 1. Az alábbi dokumentum a szövetség történetét,

Részletesebben

JUMO. Megjelenítõ a mérési adatok vizualizálásához, tárolásához és kiértékeléséhez. Rövid leírás. Sajátságok. Blokkvázlat

JUMO. Megjelenítõ a mérési adatok vizualizálásához, tárolásához és kiértékeléséhez. Rövid leírás. Sajátságok. Blokkvázlat JUMO Meß- ud Regelgeräte GmbH A-1232 Wie, Pfarrgasse 48 Magyarországi Kereskedelmi Képviselet Telefo: 00-43-1 / 61-061-0 H-1147 Budapest Öv u. 143. Fax: 00-43-1 / 61-061-59 Telefo/fax: 00-36-1 / 467-0835,

Részletesebben

A 10/2007 (II. 27.) 1/2006 (II. 17.) OM

A 10/2007 (II. 27.) 1/2006 (II. 17.) OM A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

2. Hogyan változik a töltött részecske mozgási energiája elektrosztatikus térben, ill. mágneses térben?

2. Hogyan változik a töltött részecske mozgási energiája elektrosztatikus térben, ill. mágneses térben? Vizsgakérdések Fizika II. I. Mi jellemzi az elektromágeses mezőbe mozgó töltött részecskék eergia- és pályaviszoyait?. Írja fel a töltött részecskékre ató Loretz-erőt kifejező összefüggést! F qe q( v B)

Részletesebben

Automaták és formális nyelvek

Automaták és formális nyelvek Automaták és formális nyelvek Bevezetés a számítástudomány alapjaiba 1. Formális nyelvek 2006.11.13. 1 Automaták és formális nyelvek - bevezetés Automaták elmélete: információs gépek általános absztrakt

Részletesebben

Sajószentpéter Környéki Önkormányzati Társulás Társulási Tanácsa 3770 Sajószentpéter, Kálvin tér 4. K i v o n a t

Sajószentpéter Környéki Önkormányzati Társulás Társulási Tanácsa 3770 Sajószentpéter, Kálvin tér 4. K i v o n a t Iktatószám: 2-14/2013. Sajószentpéter Környéki Önkormányzati Társulás Társulási Tanácsa 3770 Sajószentpéter, Kálvin tér 4. K i v o n a t Készült: Sajószentpéter Környéki Önkormányzati Társulás Társulási

Részletesebben

PRECÍZ Információs füzetek

PRECÍZ Információs füzetek PRECÍZ Információs füzetek Információk, Módszerek, Ötletek és Megoldások a Precíz Integrált Ügyviteli Információs rendszerhez 3. EXCEL adatkapcsolat (mod. 2009.07.) Ügyviteli nyilvántartások és EXCEL formátumú

Részletesebben

Táblázatok. Feladatok Szegélyek és cellák. 1. feladat. 2. feladat

Táblázatok. Feladatok Szegélyek és cellák. 1. feladat. 2. feladat Táblázatok A táblázatok cellákat tartalmazó sorokból és oszlopokból épülnek fel. A cellában szöveg, szövegközi grafikák és egyéb táblázatok is elhelyezhetők. A táblázat táblázatba történő beszúrásánál

Részletesebben

INNOVÁCIÓ. Eszközök, környezet, Fejlesztési ötletek, variációs paraméterek. Kísérletterv kidolgozás. Konstrukciós elvárások megoldási ötletek

INNOVÁCIÓ. Eszközök, környezet, Fejlesztési ötletek, variációs paraméterek. Kísérletterv kidolgozás. Konstrukciós elvárások megoldási ötletek Termékjellemzők optmalzálásáál haszálatos formácós módszerta 1 Bevezetés Koczor Zoltá, Némethé Erdőd Katal, Kertész Zoltá, Szecz Péter Óbuda Egyetem, RKK, Mőségráyítás és Techológa Szakcsoport Napjak aktuáls

Részletesebben

A természetes számok halmaza (N)

A természetes számok halmaza (N) A természetes számo halmaza (N) A természetes számoat étféleéppe vezethetjü be: ) A Peao-féle axiómaredszerrel ) Evivalecia osztályo segítségével ) A természetes számo axiomatius értelmezése. A Peao-axiómá

Részletesebben

Hogyan fizetünk? A készpénz és más eszközök használata

Hogyan fizetünk? A készpénz és más eszközök használata Hogyan fizetünk? A készpénz és más eszközök használata Feladat az osztálynak Párosítsátok az A oszlopban lévı szórészleteket a B oszlopban lévıkkel úgy, hogy értelmes szavakat kapjatok! A oszlop + B oszlop

Részletesebben

iíiíi Algoritmus poligonok lefedésére téglalapokkal ETO 514.174.3:681.3.06 (Számítógépes adatelőkészítés pattern generátor vezérléséhez)

iíiíi Algoritmus poligonok lefedésére téglalapokkal ETO 514.174.3:681.3.06 (Számítógépes adatelőkészítés pattern generátor vezérléséhez) iíiíi á HlftADÁSfCCHNIKAI TUOOHANfOS EGYíSBLIT (APJA KULCSÁR GÁBOR Híradástechikai Ipari Kutató Itézet Algoritmus poligook lefedésére téglalapokkal ETO 514.174.3:681.3.06 (Számítógép adatelőkészítés patter

Részletesebben

Közfoglalkoztatás támogatás megállapítását segítő segédtábla használati útmutatója

Közfoglalkoztatás támogatás megállapítását segítő segédtábla használati útmutatója Közfoglalkoztatás támogatás megállapítását segítő segédtábla használati útmutatója 1.) Általános tudnivalók: A segédtábla két méretben készül, 10, és 50 sort lehet kitölteni. A tábla megnevezéséből amit

Részletesebben

Alternatív kapcsolás. Feladat

Alternatív kapcsolás. Feladat Alternatív kapcsolás Az épületvilágítási áramkörök közül igen elterjedt az a megoldás, amikor egy világító készüléket két különböző helyről lehet működésbe hozni, illetve kikapcsolni. Ha a világítás működik,

Részletesebben

Országos Szakiskolai Közismereti Tanulmányi Verseny 2005/2006 SZÁMÍTÁSTECHNIKA

Országos Szakiskolai Közismereti Tanulmányi Verseny 2005/2006 SZÁMÍTÁSTECHNIKA Országos Szakiskolai Közismereti Tanulmányi Verseny 2005/2006 SZÁMÍTÁSTECHNIKA II. (regionális) forduló 2006. február 17... Helyszín fejbélyegzője Versenyző Pontszám Kódja Elérhető Elért Százalék. 100..

Részletesebben

IpP-CsP2. Baromfi jelölı berendezés általános leírás. Típuskód: IpP-CsP2. Copyright: P. S. S. Plussz Kft, 2009

IpP-CsP2. Baromfi jelölı berendezés általános leírás. Típuskód: IpP-CsP2. Copyright: P. S. S. Plussz Kft, 2009 IpP-CsP2 Baromfi jelölı berendezés általános leírás Típuskód: IpP-CsP2 Tartalomjegyzék 1. Készülék felhasználási területe 2. Mőszaki adatok 3. Mőszaki leírás 3.1 Állvány 3.2 Burkolat 3.3 Pneumatikus elemek

Részletesebben

ECDL Táblázatkezelés. www.nomina3p.hu 1. 4.1.1 A táblázatkezelés első lépései. 4.1.2 Beállítások elvégzése

ECDL Táblázatkezelés. www.nomina3p.hu 1. 4.1.1 A táblázatkezelés első lépései. 4.1.2 Beállítások elvégzése 4.1 Az alkalmazás 4.1.1 A táblázatkezelés első lépései 4.1.2 Beállítások elvégzése 4.1.1.1 A táblázatkezelő alkalmazás megnyitása és bezárása. 4.1.1.2 Egy és több munkafüzet (dokumentum) megnyitása. 4.1.1.3

Részletesebben