27.B 27.B. Alapfogalmak, logikai függvények és leírásmódjaik

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "27.B 27.B. Alapfogalmak, logikai függvények és leírásmódjaik"

Átírás

1 7.B 7.B 7.B Digitális alapáramkörök Logikai alapfogalmak Mutassa be a logikai függvéyek leírási módjait: a szövegeset, az igazság táblázatosat, a logikai vázlatosat és az algebrai alakkal törtéı leírást! Értelmezze az egy-, a két- és a többváltozós logikai függvéyeket! Ismertesse a logikai (Boole) algebra alaptörvéyeit és alaptételeit! Hasolítsa össze a miterm- és a maxterm táblák felépítéséek elvét! Alapfogalmak, logikai függvéyek és leírásmódjaik A függvéykapcsolatok jelölése A függvéykapcsolatokat logikai szimbólumokkal jelöljük: A az ÉS kapcsolat jele a + a VAGY kapcsolat jele A függvéykapcsolatok száma Mivel a bemeeti és a kimeeti változók is kétértékőek, ezért a függetle változók számától () függ a képezhetı függvéykapcsolatok száma: K=. A logikai függvéyek csoportosítása A logikai függvéyeket csoportosíthatjuk: a logikai változók idıbei függése szerit, a logikai változók száma szerit. A változók idıbei változása szerit: Idıfüggetle logikai függvéyek: Az idıfüggetle logikai függvéyek közös jellemzıje, hogy a függı (kimeeti) változó értéke csak a függetle (bemeeti) változó értékétıl függ. Az ilye típusú függvéyeket valósítják meg a kombiációs logikai hálózatok. Jelölésük általáos alakba: F = f(x,x,x 3,...X ). Idıfüggı logikai függvéyek: Az idıfüggı logikai függvéyek jellemzıje, hogy a függı változó aktuális értékét emcsak a függetle változók adott idıpotba felvett értéke, haem más idıpillaatba felvett értékei is meghatározzák. Ez azt jeleti, hogy az eseméyek sorredje is befolyásolja a kimeet állapotát. Az ilye típusú függvéyeket megvalósító hálózatokat evezzük szekveciális hálózatokak. A függetle változók száma szerit: Egyváltozós logikai függvéyeka kimeeti eseméyük egyetle bemeeti változótól függ, a gyakorlatba ritká fordulak elı. Kétváltozós logikai függvéyeka kimeeti eseméyük két függetle bemeeti változó értékétıl függ. Többváltozós logikai függvéyek A kimeeti eseméyük számú függetle bemeeti változó értékétıl függ, a gyakorlatba ezekkel találkozuk a leggyakrabba. A logikai függvéyek grafikus megadása Veitch-tábla A függı változók értékeit egy cellákból álló diagramba ábrázoljuk: a függetle változókat a diagram kerete meté jelöljük. Azokba a sorokba és oszlopokba, ahol jelölés (súlyozás) va, a függetle változó igaz értékő. A változó igeleges vagy emleges értékét - mivel a bekövetkezés valószíősége 50% - egyelı területrésszel ábrázoljuk. Síkbeli Veitch-táblá 4, térbeli 6 változó ábrázolható szemléletese. Az ábrá egy kétváltozós tábla látható, melybe szemléltetésül a cellákak megfelelı változók állapotait is jelöltük. A Veitch-tábla a logikai kapcsolatok meghatározására is alkalmas.

2 7.B 7.B Karaugh-tábla A függı változók értékeit egy cellákból álló diagramba ábrázoljuk: a függetle változók értékvariációit a diagram kerete meté jelöljük. Az ábrá egy kétváltozós tábla látható, melybe szemléltetésül a cellákak megfelelı változók állapotait is jelöltük. Állapotdiagram Az idıfüggı logikai függvéyek leírására alkalmas. A változók aktuális értékeit körökbe jelezzük, a köröket összekötı iráyított voalak a változás iráyát jelölik. Veitch-tábla Karaugh-tábla Állapotdiagram A logikai függvéyek megadása Szöveges megadási mód A függetle változók összes kombiációját, a logikai kapcsolatot, valamit a függı változó értékét szavakkal fogalmazzuk meg. Táblázatos leírásmód A függetle változók összes értékvariációit és a függvéykapcsolat hatására létrejövı függı változók értékeit egy sorba írjuk egy függıleges voallal elválasztva. Olya értéktáblázat, amely tartalmazza a függvéy értékét mide lehetséges esetbe. Igazságtáblázatak evezzük, mert a feltételek és az eseméyek közötti logikai igazságokat rögzíti. Logikai vázlat A függvéykapcsolatot az ıt megvalósító szabváyos áramköri szimbólumokkal ábrázoljuk. Algebrai alak A függetle változókat a függvéykapcsolatra jellemzı mőveleti szimbólumokkal (ÉS, VAGY, ) kapcsoljuk össze. Például: F 3 = A B+C+A C+B Grafikus megadási mód A grafikus megadási módok: a változók megadása törtéhet grafikusa is. Táblázatos leírásmód Logikai vázlat Egy-, két- és többváltozós logikai függvéyek Az egyváltozós logikai függvéyek Akkor beszélük egyváltozós logikai függvéyrıl, ha a kimeeti eseméy egyetle bemeeti változótól függ. A következı táblázatba látható, hogy az A bemeeti (függetle) változó értékétıl függıe az F kimeeti (függı) változó milye értékeket vehet fel. Ezt a táblázatot evezzük igazságtáblázatak, mert a függetle változók összes lehetséges kombiációja eseté tartalmazza a függvéy által meghatározott kimeeti eseméyt. A logikai függvéyek jelölésébe a felsı idex a bemeeti változók számát, az alsó idex a függvéy sorszámát adja meg. Ezt a decimális sorszámot a függvéy értékeibıl alkotott biáris számból kapjuk meg. Egy függetle változó eseté a külöbözı logikai függvéyek száma: K = = = = 4 Az egyváltozós függvéyek közül a egációt és az ismétlı függvéyt alkalmazzuk a leggyakrabba. A logikai függvéyek bemutatására haszáljuk fel a Ve-diagramot és az idıdiagramot is. A Ve-diagramok a logikai változókhoz egy-egy síkba leképzett pothalmazt redelek, amely egy tetszıleges síkidommal határolt területet jelet. Az ábrázolás szabálya, hogy a függvéy logikai értékeiél a megfelelı területet jelöljük (pl. voalkázással). Hátráyuk, hogy legfeljebb három változóig haszálhatóak. A logikai eseméyek idıdiagramo is bemutathatók. Eél a módszerél a kétértékő eseméyeket (a bemeeteket és a

3 7.B 7.B kimeeteket is) az idı függvéyébe ábrázoljuk, így az eseméyek idıbeli lefolyása is követhetı. Elıye, hogy az idıdiagramo tetszıleges számú változót ábrázolhatuk. Egyváltozós soha függvéy 0 Egyváltozós logikai függvéyek igazságtáblázata F 0 =. F - Soha függvéy: a függı változó értéke a függetle változó mide értékéél 0. Jelölése: 0 Egyváltozós egáció (tagadás) függvéy F - Negáció (tagadás) függvéy: a függı változó értéke midig a függetle változó elletétes (egált) értékét veszi fel. A egációt a tagadáso kívül evezik még jelfordításak és iverzióak is. A egációt az algebrai alakba a betőjel fölé húzott vízszites voallal jelöljük: F = A. Egyváltozós ismétlı függvéy F - Ismétlı függvéy: a függı változó értéke midig a függetle változó értékét veszi fel. Jelölése: F=A. Egyváltozós midig függvéy F - Midig függvéy: a függı változó értéke a függetle változó mide értékétıl függetleül midig. Jelölése: F =. Egyváltozós logikai függvéyek Ve-diagramja Egyváltozós logikai függvéyek idıdiagramja A kétváltozós logikai függvéyek Akkor beszélük kétváltozós logikai függvéyrıl, ha a kimeeti eseméy két bemeeti változótól függ. A következı táblázatba látható, hogy az A és a B bemeeti (függetle) változók értékétıl függıe az F kimeeti (függı) változó milye értékeket vehet fel. Két függetle változó eseté a külöbözı logikai függvéyek száma: 4 K = = = = 6. Az alábbi ábráko a leggyakrabba alkalmazott kétváltozós függvéyek Ve-diagramját és idıdiagramját láthatjuk. Figyeljük meg a függvéyek vizsgálatakor, hogya lehet ezeket elkészítei! Kétváltozós logikai függvéyek idıdiagramja Kétváltozós logikai függvéyek igazságtáblázata Kétváltozós logikai függvéyek Ve-diagramja A kétváltozós logikai függvéyek igazságtáblázatáak vizsgálata Feladat Készítsük el az összes kétváltozós függvéy Ve-diagramját és idıdiagramját! 3

4 7.B 7.B A kétváltozós logikai függvéyek igazságtáblázatáak vizsgálata közbe két érdekes dolgot is észrevehetük: A táblázat tartalmazza az egyváltozós függvéyeket is F 0, F3, F5, F0, F, F5 Ha a VAGY függvéy F 7 és a VAGY NEM (NOR) függvéy F 8 közé egy képzeletbeli szimmetriavoalat húzuk, akkor a voaltól azoos távolságra levı függvéyek egymás egáltjai. A többváltozós logikai függvéyek A gyakorlati feladatok megoldása sorá a legtöbbször többváltozós logikai függvéyekkel találkozhatuk. A képezhetı kapcsolási függvéyek száma a függetle változók számával expoeciális aráyba, tehát rohamosa övekszik. Például: ha a függetle változók száma 3, akkor a külöbözı logikai függvéyek száma: 3 8 K = = = = 56 ha a függetle változók száma 4, akkor a külöbözı logikai függvéyek száma: 4 6 K = = = = Azért sem célszerő a kettıél több bemeeti változót tartalmazó függvéyeket egyekét tárgyali, mert mide többváltozós logikai függvéy kétváltozós függvéyekbıl felépíthetı. Ativalecia függvéy F 6 Ativalecia (KIZÁRÓ VAGY) függvéy: a függvéy értéke akkor, ha vagy csak A, vagy csak a B értéke, vagyis amikor a bemeeti változók elletétes értékőek. További elevezései: kizáró VAGY, exclusive OR. Jelölése: F6 = A B + A B. Duál tétel, duál függvéy Duál tétel: Ha a logikai ÉS mőveletet VAGY mővelettel, valamit a 0-t -gyel (vagy az -et 0-val) helyettesítjük, az eredeti függvéy duálfüggvéyét kapjuk meg. Ekvivalecia függvéy F 9 Ekvivalecia függvéy: a függı változó értéke akkor, ha a függetle változók logikai értéke megegyezik. További elevezései: koicidecia, exclusive NOR. Jelölése: F9 = A B + A B. ÉS függvéy F ÉS függvéy: a függı változó értéke akkor és csakis akkor, ha midkét függetle változó értéke egyidejőleg. További elevezései: AND mővelet, kojukció, logikai szorzás. Jelölése: F = A B. ÉS NEM függvéy F 4 ÉS NEM (NAND) függvéy: a függı változó értéke akkor és csakis akkor 0, ha midkét függetle változó értéke egyidejőleg. A NAND illetve az ÉS kapcsolat egymás egáltjai. Jelölése: F4 = A B. Implikáció függvéyek F Implikáció függvéy: az implikáció mőveletéél a változók sorredje em cserélhetı fel, mert a függvéy értéke csak akkor 0, ha az elıtag 0, és az utótag. Jelölése: F = A + B. F 3 Iverz implikáció függvéy: az iverz implikáció mőveletéél a változók sorredje em cserélhetı fel, mert a függvéy értéke csak akkor 0, ha az elıtag, és az utótag 0. Jelölése: F = A + B. Ihibitáló függvéyek F Ihibitáló függvéy: az ihibíció (tiltás) mőveletéél a változók sorredje em cserélhetı fel, mert a függvéy értéke akkor és csakis akkor, ha az elıtag logikai értéke egyedül, ömagába. Jelölése: F = A B. 4

5 7.B 7.B F 4 Iverz ihibitáló függvéy: az ivert ihibíció (tiltás) mőveletéél a változók sorredje em cserélhetı fel, mert a függvéy értéke akkor és csakis akkor, ha az utótag logikai értéke egyedül, ömagába. Jelölése: F4 = A B. Ismétlés függvéy F 5 Ismétlı függvéy: a függı változó értéke midig az adott függetle változó értékét veszi fel. Jelölése: F 5 = B. Kétváltozós ismétlı függvéy F 3 Kétváltozós ismétlı függvéy: a függı változó értéke midig az adott függetle változó értékét veszi fel. Jelölése: F = A 3. Kétváltozós midig függvéy F 5 Kétváltozós midig függvéy: a függı változó értéke a függetle változók mide értékétıl függetleül midig. Jelölése: F 5 =. Kétváltozós egáció függvéyek F 0 Kétváltozós egáció függvéy: a függı változó értéke midig az adott függetle változó elletétes értékét veszi fel. Jelölése: F = B 0. F Kétváltozós egáció függvéy: a függı változó értéke midig az adott függetle változó elletétes értékét veszi fel. Jelölése: F = A. Kétváltozós soha függvéy F0 Kétváltozós soha függvéy: a függı változó értéke a függetle változók mide értékéél 0. Jelölése: F 0 = 0. VAGY függvéy F 7 VAGY függvéy: a függvéy értéke egyetle esetbe 0, ha valameyi bemeeti változó értéke egyidejőleg 0. Úgy is fogalmazhatuk, hogy a függı változó akkor értékő, ha bármelyik függetle változó egyekét vagy együttese értékő. További elevezései: OR mővelet, diszjukció, logikai összeadás. Jelölése: F 7 = A + B. VAGY NEM függvéy F 8 VAGY NEM (NOR) függvéy: a függı változó értéke akkor és csakis akkor, ha midkét függetle változó értéke egyidejőleg 0. A NOR illetve a VAGY kapcsolat egymás egáltjai. Jelölése: F 8 = A + B. A logikai algebra szabályai Az egyszerőbb alakra hozás Egy logikai elve mőködı vezérlı beredezés ára a beépített elemek számával aráyosa övekszik, ezért törekedük kell a megvalósítadó logikai függvéy legegyszerőbb alakjáak létrehozására. Kommutatív szabály (felcserélhetıség) Az azoos logikai kapcsolatba levı változók sorredje tetszıleges. A+B = B+A A B = B A A szabály alól természetese az ihibíció és az implikáció mőveletei kivételek. Asszociatív szabály (társíthatóság) Az azoos logikai mőveletek eredméye em függ a mőveletvégzés sorredjétıl. A+B+C = C+B+A = B+C+A A B C = B C A = A C B 5

6 7.B 7.B Disztributív szabály (szétválaszthatóság) A+ B C = (A+ B) (A+ C) A (B+ C) = A B+ A C A redudacia Ugyais egy adott gyakorlati problémát, ha közvetleül algebrai alakba megadott logikai függvéy formájába íruk le, szite elkerülhetetle a redudacia (túlhatározottság). A logikai algebra (Boole-algebra) olya azoosságokat illetve szabályokat fogalmazott meg az algebrai formába megadott logikai függvéyek eseté, amelyekkel ezek a függvéyek egyszerőbb alakra hozhatók. A logikai algebra alaptételei A meyiségek kétértékőek A = 0, ha A em. A =, ha A em 0. Negáció = 0 Kettıs tagadás = Meyiséggel végzett mőveletek szabályai VAGY kapcsolat 0+0 = 0 0+ = +0 = + = ÉS kapcsolat 0 0 = 0 0 = 0 0 = 0 = Egy változóval végzett mőveletek szabályai A = A A 0 = 0 A+0 = A A 0 = A A+ = A A = A A+A = A A A = 0 A + A = Két változóval végzett mőveletek szabályai A (B+ A) = A Az alaptételek bizoyítása Az egy változóval végzett mőveletek szabályaiak bizoyítása az egy és kétváltozós logikai függvéyek igazságtáblázata alapjá öállóa elvégezhetı. Nézzük meg, hogya kell bebizoyítai a szabályok és a többi alaptétel segítségével az összefüggést! A B+ A = A A disztributív szabály alapjá A B+ A = A B+ A A. Felhaszálva, hogy A A = A A (B+ A)=A B+ A A = A B+ A Most a disztributív szabályt megfordítva alkalmazzuk, emellett tudjuk, hogy B+ = és A = A A B+ A = A (B+) = A = A Vagyis teljesül az összefüggés A (B+ A)= A. De Morga-téte A + B = A B A B = A + B A De Morga-tétel bizoyítása Készítsük olya igazságtáblázatot, amelybe jelöljük a függetle változókat, és ezek összes lehetséges kombiációjáál határozzuk meg a De Morga-tételbe szereplı összes függvéy értékét! 6

7 7.B 7.B A De Morga-tétel bizoyítása A táblázatból látható, hogy A B = A + B és A B = A + B, így bebizoyítottuk, a De Morga-tételt. Alapvetı fogalmak és jelölésük A logikai függvéyek szabályos alakjáak ismeretéhez a következı alapvetı fogalmakat és jelölésüket kell megismeri: Term Miterm Maxterm A miterm jelölése: m i, ahol m a mitermet jeleti, a függetle változók száma és i a miterm sorszáma, vagyis idexszáma. A maxterm jelölése: M i, ahol M a maxtermet jeleti, a függetle változók száma és i a maxterm sorszáma, vagyis idexszáma. Diszjuktív szabályos alak Diszjuktív szabályos alak olya logikai függvéy, amely mitermek VAGY kapcsolatából áll. Diszjuktív szabályos alak megadási módjai Például: F = A B C D + A B C D + A B C D + A B C D F = m m4 + m8 + m Kojuktív szabályos alak Kojuktív szabályos alak olya logikai függvéy, amely maxtermek ÉS kapcsolatából áll. Kojuktív szabályos alak megadási módjai Például: F = A + B + C + D A + B + C + D A + B + C + D F = M 4 5 M 6 M 3 ( ) ( ) ( ) Logikai függvéyek hátráya Az algebrai alakba megadott logikai függvéyek hátráya, egy függvéyt több egymással ekvivales módo is felírhatuk. Ezt a hátráyt azért kell kiküszöböli, hogy két egyforma feladatot midig felismerjük, e kellje többször is egyszerősítei és megoldai. Term: a függetle változók azo csoportja, amelyeket azoos logikai kapcsolatra jellemzı szimbólummal kapcsoluk. A Karaugh-táblák típusai Egyváltozós Karaugh-tábla: Egy függetle változóak (pl. A) két lehetséges állapota lehet ( ), tehát ebbe az esetbe a tábla két darab cellát tartalmaz. A cella kotúrjai mellett feltütetjük a függetle változó logikai értékét, a cella sarká pedig a változó betőjelét. Az ábrá a cellákba beírtuk az általuk képviselt termeket is. Kétváltozós Karaugh-tábla: Két függetle változóak (pl. A, B) égy lehetséges állapota lehet ( ), tehát ebbe az esetbe a tábla égy darab cellát tartalmaz. Az ábrá a cellákba beírtuk az általuk képviselt termeket is. Háromváltozós Karaugh-tábla: Három függetle változóak (pl. A, B, C) yolc lehetséges állapota lehet ( 3 ), tehát ebbe az esetbe a tábla yolc darab cellát tartalmaz. Négyváltozós Karaugh-tábla: Négy függetle változóak (pl. A, B, C, D) 6 lehetséges állapota lehet ( 4 ), tehát ebbe az esetbe a tábla 6 darab cellát tartalmaz. 7

8 7.B 7.B Egyváltozós tábla Egy függetle változóak (pl. A) két lehetséges állapota lehet ( ), tehát ebbe az esetbe a tábla két darab cellát tartalmaz. A cella kotúrjai mellett feltütetjük a függetle változó logikai értékét, a cella sarká pedig a változó betőjelét. Az ábrá a cellákba beírtuk az általuk képviselt termeket is. Kétváltozós tábla Két függetle változóak (pl. A, B) égy lehetséges állapota lehet ( ), tehát ebbe az esetbe a tábla égy darab cellát tartalmaz. Az ábrá a cellákba beírtuk az általuk képviselt termeket is. Egyváltozós Karaugh-tábla Kétváltozós Karaugh-tábla Háromváltozós Karaugh-tábla Négyváltozós Karaugh-tábla Háromváltozós tábla Három függetle változóak (pl. A, B, C) yolc lehetséges állapota lehet ( 3 ), tehát ebbe az esetbe a tábla yolc darab cellát tartalmaz. Négyváltozós tábla Négy függetle változóak (pl. A, B, C, D) 6 lehetséges állapota lehet ( 4 ), tehát ebbe az esetbe a tábla 6 darab cellát tartalmaz. Miterm táblák Bár a gyakorlatba em haszálják, de egyszerősége miatt elıször ismerkedjük meg az egyváltozós, ezért két darab cellát tartalmazó táblával. Az egyetle változó (jelöljük A-val) a két lehetséges állapot (0, ) valamelyikébe lehet. A cellákba található decimális szám a term sorszáma, a függıleges voal az A változó logikai (igaz) értékét jelzi, vagyis A =. A = 0 és Egyváltozós miterm-tábla Kétváltozós miterm-tábla Háromváltozós miterm-tábla Négyváltozós miterm-tábla Maxterm táblák A maxterm táblákat úgy tuduk felrajzoli, ha követjük a mitermbıl maxtermbe való átírás szabályait. Képezzük a változók egáltját, és a cellák miterm sorszámait kiegészítjük: átsorszámozzuk a cellákat az im = im összefüggés alapjá. Az ábrá az egy-, két-, három- és égyváltozós maxterm-tábla látható. Egyváltozós maxterm-tábla Kétváltozós maxterm-tábla Háromváltozós maxterm-tábla Négyváltozós maxterm-tábla Veitch-táblák A logikai függvéyek kétféle szabályos alakjáak megfelelıe Veitch kétféle táblát vezetett be. A miterm táblát a diszjuktív szabályos függvéyek számára és a maxterm táblát a kojuktív szabályos függvéyek számára. A függetle változók logikai értékeit a tábla kotúrja meté húzott voallal tütetjük fel, és a cellákba beírjuk az ábrázolt term sorszámát. 8

Kutatói pályára felkészítı modul

Kutatói pályára felkészítı modul Kutatói pályára felkészítı modul Kutatói pályára felkészítı kutatási ismeretek modul Tudomáyos kutatási alapayag feldolgozása, elemzési ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI

Részletesebben

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait.

A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. 2. VEKTORTÉR A lineáris algebrában központi szerepet betöltı vektortér fogalmát értelmezzük most, s megvizsgáljuk e struktúra legfontosabb egyszerő tulajdonságait. Legyen K egy test és V egy nem üres halmaz,

Részletesebben

MUNKAANYAG. Mészáros Miklós. Logikai algebra alapjai, logikai függvények I. A követelménymodul megnevezése:

MUNKAANYAG. Mészáros Miklós. Logikai algebra alapjai, logikai függvények I. A követelménymodul megnevezése: Mészáros Miklós Logikai algebra alapjai, logikai függvények I. MUNKNYG követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása követelménymodul száma: 0917-06 tartalomelem azonosító

Részletesebben

Sorozatok A.: Sorozatok általában

Sorozatok A.: Sorozatok általában 200 /2002..o. Fakt. Bp. Sorozatok A.: Sorozatok általába tam_soroz_a_sorozatok_altalaba.doc Sorozatok A.: Sorozatok általába Ad I. 2) Z/IV//a-e, g-m (CD II/IV/ Próbálj meg róluk miél többet elmodai. 2/a,

Részletesebben

30.B 30.B. Szekvenciális hálózatok (aszinkron és szinkron hálózatok)

30.B 30.B. Szekvenciális hálózatok (aszinkron és szinkron hálózatok) 30.B Digitális alapáramkörök Logikai alapáramkörök Ismertesse a szekvenciális hálózatok jellemzıit! Mutassa be a két- és többszintő logikai hálózatok realizálásának módszerét! Mutassa be a tároló áramkörök

Részletesebben

Zalotay Péter Digitális technika I

Zalotay Péter Digitális technika I Zalotay Péter Digitális technika I Távoktatás előadási anyaga Kandó Kálmán Villamosmérnöki Kar Tartalomjegyzék Bevezetés...5 1. LOGIKAI ALAPISMERETEK...8 1.1. Halmazelméleti alapfogalmak...8 1.2. A logikai

Részletesebben

Ingatlanfinanszírozás és befektetés

Ingatlanfinanszírozás és befektetés Nyugat-Magyarországi Egyetem Geoiformatikai Kar Igatlameedzser 8000 Székesfehérvár, Pirosalma u. 1-3. Szakiráyú Továbbképzési Szak Igatlafiaszírozás és befektetés 2. Gazdasági matematikai alapok Szerzı:

Részletesebben

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós Komplex számok el adásvázlat, 008. február 1. Maróti Miklós Eek az el adásak a megértéséhez a következ fogalmakat kell tudi: test, test additív és multiplikatív csoportja, valós számok és tulajdoságaik.

Részletesebben

A + B = B + A, A + ( B + C ) = ( A + B ) + C.

A + B = B + A, A + ( B + C ) = ( A + B ) + C. 6. LOGIKAI ÁRAMKÖRÖK Számítógépekben, műszerekben, vezérlő automatákban alapvető szerep jut az olyan áramköröknek, melyek valamilyen logikai összefüggést fejeznek ki. Ezeknek a logikai áramköröknek az

Részletesebben

2) Tervezzen Stibitz kód szerint működő, aszinkron decimális előre számlálót! A megvalósításához

2) Tervezzen Stibitz kód szerint működő, aszinkron decimális előre számlálót! A megvalósításához XIII. szekvenciális hálózatok tervezése ) Tervezzen digitális órához, aszinkron bináris előre számláló ciklus rövidítésével, 6-os számlálót! megvalósításához negatív élvezérelt T típusú tárolót és NN kaput

Részletesebben

A figurális számokról (IV.)

A figurális számokról (IV.) A figurális számokról (IV.) Tuzso Zoltá, Székelyudvarhely A továbbiakba külöféle számkombiációk és összefüggések reprezetálásáról, és bizoyos összegek kiszámolásáról íruk. Sajátos összefüggések Az elekbe

Részletesebben

GAZDASÁGI MATEMATIKA 1. ANALÍZIS

GAZDASÁGI MATEMATIKA 1. ANALÍZIS SZENT ISTVÁN EGYETEM GAZDASÁGI, AGRÁR- ÉS EGÉSZSÉGTUDOMÁNYI KAR Dr. Szakács Attila GAZDASÁGI MATEMATIKA. ANALÍZIS Segédlet öálló mukához. átdolgozott, bővített kiadás Békéscsaba, Lektorálták: DR. PATAY

Részletesebben

Statisztikai függvények

Statisztikai függvények EXCEL FÜGGVÉNYEK 9/1 Statisztikai függvények ÁTLAG(tartomány) A tartomány terület numerikus értéket tartalmazó cellák értékének átlagát számítja ki. Ha a megadott tartományban nincs numerikus értéket tartalmazó

Részletesebben

194 Műveletek II. MŰVELETEK. 2.1. A művelet fogalma

194 Műveletek II. MŰVELETEK. 2.1. A művelet fogalma 94 Műveletek II MŰVELETEK A művelet fogalma Az elmúlt éveke már regeteg művelettel találkoztatok matematikai taulmáyaitok sorá Először a természetes számok összeadásával találkozhattatok, már I első osztálya,

Részletesebben

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0 Komplex számok 1 Adjuk meg az alábbi komplex számok valós, illetve képzetes részét: a + i b i c z d z i e z 5 i f z 1 A z a + bi komplex szám valós része: Rez a, képzetes része Imz b Ez alapjá a megoldások

Részletesebben

MUNKAANYAG. Bellák György László. Mechatronikai elemek. A követelménymodul megnevezése: Mechatronikai elemek gyártása, üzemeltetése, karbantartása

MUNKAANYAG. Bellák György László. Mechatronikai elemek. A követelménymodul megnevezése: Mechatronikai elemek gyártása, üzemeltetése, karbantartása Bellák György László Mechatronikai elemek A követelménymodul megnevezése: Mechatronikai elemek gyártása, üzemeltetése, karbantartása A követelménymodul száma: 0944-06 A tartalomelem azonosító száma és

Részletesebben

Microsoft Excel. Táblázatkezelés. Dr. Dienes Beatrix

Microsoft Excel. Táblázatkezelés. Dr. Dienes Beatrix Microsoft Excel Táblázatkezelés Dr. Dienes Beatrix A táblázatkezelı feladata: Táblázatosan elrendezett adatok hatékony és látványos kezelése. Nagy adathalmazok adatbázis-kezelı Legfontosabb szolgáltatások:

Részletesebben

1. Az adott kifejezést egyszerűsítse és rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben.

1. Az adott kifejezést egyszerűsítse és rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben. 1 1. z adott kifejezést egyszerűsítse és rajzolja le a lehető legkevesebb eleel, a legegyszerűbben. F függvény 4 változós. MEGOLÁS: legegyszerűbb alak egtalálása valailyen egyszerűsítéssel lehetséges algebrai,

Részletesebben

Zalotay Péter DIGITÁLIS TECHNIKA

Zalotay Péter DIGITÁLIS TECHNIKA Zalotay Péter DIGITÁLIS TECHNIKA 3oldal BEVEZETÉS 5 DIGITÁLISTECHNIKA ALAPJAI 7 LOGIKAI ALAPISMERETEK 7 2 A LOGIKAI ALGEBRA 8 2 Logikai változók, és értékük 8 22 A Boole algebra axiómái 9 23 Logikai műveletek

Részletesebben

A Venn-Euler- diagram és a logikai szita

A Venn-Euler- diagram és a logikai szita A Ve-Euler- diagram és a logikai szita Ebbe a részbe a Ve-Euler diagramról, a logikai szitáról, és a két témakör kapcsolatáról íruk, számos jellemző, megoldott feladattal szemléltetve a leírtakat. Az ábrákak

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

MUNKAANYAG. Tordai György. Kombinációs logikai hálózatok II. A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása

MUNKAANYAG. Tordai György. Kombinációs logikai hálózatok II. A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása Tordai György Kombinációs logikai hálózatok II. A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása A követelménymodul száma: 0917-06 A tartalomelem azonosító száma és célcsoportja:

Részletesebben

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo SZÁMELMÉLET Vasile Beride, Filippo Spagolo A számelmélet a matematika egyik legrégibb ága, és az egyik legagyobb is egybe Eek a fejezetek az a célja, hogy egy elemi bevezetést yújtso az első szite lévő

Részletesebben

25. Matematikai logika, bizonyítási módszerek

25. Matematikai logika, bizonyítási módszerek 5. Matematikai logika, bizoyítási módszerek I. Elméleti összefoglaló Logikai műveletek A matematikai logika állításokkal foglalkozik. Az állítás (vagy kijeletés) olya kijelető modat, amelyről egyértelműe

Részletesebben

Digitális Áramkörök. Pannon Egyetem Villamosmérnöki és Információs Tanszék. (Villamosmérnök BSc / Mechatronikai mérnök MSc)

Digitális Áramkörök. Pannon Egyetem Villamosmérnöki és Információs Tanszék. (Villamosmérnök BSc / Mechatronikai mérnök MSc) Pannon Egyetem Villamosmérnöki és Információs Tanszék Digitális Áramkörök (Villamosmérnök BSc / Mechatronikai mérnök MSc) 3. hét - Grafikus minimalizálás. Quine-McCluskey féle számjegyes minimalizálás

Részletesebben

DIGITÁLIS TECHNIKA I 1. ELİADÁS A DIGITÁLIS TECHNIKA TANTÁRGY CÉLKITŐZÉSEI ÁLTALÁNOS BEVEZETÉS AZ 1. FÉLÉV TEMATIKAI VÁZLATA ÉS ISMERETANYAGA (2)

DIGITÁLIS TECHNIKA I 1. ELİADÁS A DIGITÁLIS TECHNIKA TANTÁRGY CÉLKITŐZÉSEI ÁLTALÁNOS BEVEZETÉS AZ 1. FÉLÉV TEMATIKAI VÁZLATA ÉS ISMERETANYAGA (2) DIGITÁLIS TECHNIKA I Dr. Pıdör Bálint BMF KVK Mikroelektronikai és Technológia Intézet 1. ELİADÁS: BEVEZETÉS A DIGITÁLIS TECHNIKÁBA 1. ELİADÁS 1. Általános bevezetés az 1. félév anyagához. 2. Bevezetés

Részletesebben

Diszkrét matematika KOMBINATORIKA KOMBINATORIKA

Diszkrét matematika KOMBINATORIKA KOMBINATORIKA A ombiatoria véges elemszámú halmazoat vizsgál. A fő érdése: a halmaz elemeit háyféleéppe lehet sorbaredezi, iválasztai özülü éháyat vagy aár midet bizoyos feltétele mellett, stb. Ezért a ombiatoria alapját

Részletesebben

5. Kombinatorika. 8. Legfeljebb hány pozitív egész számot adhatunk meg úgy, hogy semelyik kettő összege és különbsége se legyen osztható 2015-tel?

5. Kombinatorika. 8. Legfeljebb hány pozitív egész számot adhatunk meg úgy, hogy semelyik kettő összege és különbsége se legyen osztható 2015-tel? 5. Kombiatorika I. Feladatok. Háyféleképpe olvashatók ki az alábbi ábrákról a PAPRIKAJANCSI, a FELADAT és a MATEMATIKASZAKKÖR szavak, ha midig a bal felső sarokból kell iduluk, és mide lépésük csak jobbra

Részletesebben

Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez

Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez Sándor Tamás, sandor.tamas@kvk.bmf.hu Takács Gergely, takacs.gergo@kvk.bmf.hu Lektorálta: dr. Schuster György PhD, hal@k2.jozsef.kando.hu

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2014. május 20. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. május 20. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

6. Elsőbbségi (prioritásos) sor

6. Elsőbbségi (prioritásos) sor 6. Elsőbbségi (prioritásos) sor Közapi fogalma, megjeleése: pl. sürgősségi osztályo a páciesek em a beérkezési időek megfelelőe, haem a sürgősség mértéke szerit kerülek ellátásra. Az operációs redszerekbe

Részletesebben

Gyakorló feladatok II.

Gyakorló feladatok II. Gyakorló feladatok II. Valós sorozatok és sorok Közgazdász szakos hallgatókak a Matematika B című tárgyhoz 2005. október Valós sorozatok elemi tulajdoságai F. Pozitív állítás formájába fogalmazza meg azt,

Részletesebben

Fıvárosi Önkormányzat Benedek Elek Óvoda, Általános Iskola, Speciális Szakiskola és Egységes Gyógypedagógiai és Módszertani Intézmény

Fıvárosi Önkormányzat Benedek Elek Óvoda, Általános Iskola, Speciális Szakiskola és Egységes Gyógypedagógiai és Módszertani Intézmény Fıvárosi Önkormányzat Benedek Elek Óvoda, Általános Iskola, Speciális Szakiskola és Egységes Gyógypedagógiai és Módszertani Intézmény Egységes szerkezetben foglalt módosított Pedagógiai program V. kötet

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2015. május 19. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2015. május 19. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

A matematika nyelvéről bevezetés

A matematika nyelvéről bevezetés A matematika nyelvéről bevezetés Wettl Ferenc 2006. szeptember 19. Wettl Ferenc () A matematika nyelvéről bevezetés 2006. szeptember 19. 1 / 17 Tartalom 1 Matematika Kijelentő mondatok Matematikai kijelentések

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2012. május 25. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2012. május 25. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS

Részletesebben

VI.Kombinatorika. Permutációk, variációk, kombinációk

VI.Kombinatorika. Permutációk, variációk, kombinációk VI.ombiatorika. ermutációk, variációk, kombiációk VI..ermutációk ismétlés élkül és ismétléssel (sorredi kérdések) l..) Az,, számjegyekből, ismétlés élkül, háy háromjegyű szám írható? F. 6 db. va. A feti

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elektronikai alapismeretek emelt szint 3 ÉETTSÉGI VIZSG 0. május 0. ELEKTONIKI LPISMEETEK EMELT SZINTŰ ÍÁSELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMTTÓ EMEI EŐOÁSOK MINISZTÉIM Egyszerű, rövid feladatok Maximális

Részletesebben

PELTON TURBINA MÉRÉSE

PELTON TURBINA MÉRÉSE idrodiamikai Redszerek Taszék PELTON TURBINA MÉRÉSE 1. A mérés célja A mérés célja egy, a gyógyszer- és vegyiparba eergia visszayerés céljára haszálatos saválló jelleggörbéiek felvétele. A turbia jellemzői:

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2013. október 14. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2013. október 14. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

Hanka László. Fejezetek a matematikából

Hanka László. Fejezetek a matematikából Haka László Egyetemi jegyzet Budapest, 03 ÓE - BGK - 304 Szerző: Dr. Haka László adjuktus (OE BGK) Lektor: Hosszú Ferec mestertaár (OE BGK) Fiamak Boldizsárak Előszó Ez az elektroikus egyetemi jegyzet

Részletesebben

Vízóra minıségellenırzés H4

Vízóra minıségellenırzés H4 Vízóra minıségellenırzés H4 1. A vízórák A háztartási vízfogyasztásmérık tulajdonképpen kis turbinák: a mérın átáramló víz egy lapátozással ellátott kereket forgat meg. A kerék által megtett fordulatok

Részletesebben

Anyagok a föld mélyérôl

Anyagok a föld mélyérôl Ayagok a föld mélyérôl 2. Földgázból műayag Középpotba az acetilé 2.1. Az acetilé (eti) molekulájába a széatomok között háromszoros kovales kötés va Molekula eve Molekula szerkezete 2.3. Az acetilé l-addíciója

Részletesebben

Felépítés Típus 955010/ Konfigurálás setup programmal. Mérési adatok kiolvasása

Felépítés Típus 955010/ Konfigurálás setup programmal. Mérési adatok kiolvasása JUMO Meß- ud Regelgeräte GmbH A-1232 Wie, Pfarrgasse 48 Magyarországi Kereskedelmi Képviselet Telefo: 00-43-1 / 61-061-0 H-1147 Budapest Öv u. 143. Fax: 00-43-1 / 61-061-59 Telefo/fax: 00-36-1 / 467-0835,

Részletesebben

KÖZGAZDASÁGI ALAPISMERETEK (ÜZLETI GAZDASÁGTAN, ELMÉLETI GAZDASÁGTAN) ÉRETTSÉGI VIZSGA ÜZLETI GAZDASÁGTAN I. RÉSZLETES KÖVETELMÉNYEK A) KOMPETENCIÁK

KÖZGAZDASÁGI ALAPISMERETEK (ÜZLETI GAZDASÁGTAN, ELMÉLETI GAZDASÁGTAN) ÉRETTSÉGI VIZSGA ÜZLETI GAZDASÁGTAN I. RÉSZLETES KÖVETELMÉNYEK A) KOMPETENCIÁK KÖZGAZDASÁGI ALAPISMERETEK (ÜZLETI GAZDASÁGTAN, ELMÉLETI GAZDASÁGTAN) ÉRETTSÉGI VIZSGA ÜZLETI GAZDASÁGTAN I. RÉSZLETES KÖVETELMÉNYEK A) KOMPETENCIÁK 1. Szaknyelv alkalmazása 1.1. Szakmai fogalmak azonosítása,

Részletesebben

n akkor az n elem összes ismétléses ... k l k 3 k 1! k 2!... k l!

n akkor az n elem összes ismétléses ... k l k 3 k 1! k 2!... k l! KOMBINATORIKAI ALAPFOGALMAK A ombiatoria általába a véges halmazora voatozó redezési és leszámlálási feladatoal foglalozi. Az elemi ombiatoria legtöbb esetbe a övetező ét érdés egyiére eresi a választ:

Részletesebben

Minıségbiztosítás 4. gyakorlat

Minıségbiztosítás 4. gyakorlat Minıségbiztosítás 4. gyakorlat 7 új módszer Horváthné Drégelyi-Kiss Ágota dregelyi.agota@bgk.bmf.hu 1. módszer: Affinitás diagram (KJ-S diagram) Nagy létszámú vélemény, gondolat vagy kapcsolat rendezésére

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI ÉRETTSÉGI VIZSGA VIZSGA 2006. október 2006. 24. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. október 24. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati

Részletesebben

Excel Hivatkozások, függvények használata

Excel Hivatkozások, függvények használata Excel Hivatkozások, függvények használata 1. Fejezet Adatok, képletek, függvények Adatok táblázat celláiba írjuk, egy cellába egy adat kerül lehet szám, vagy szöveg * szám esetén a tizedes jegyek elválasztásához

Részletesebben

12.A 12.A. A belsı ellenállás, kapocsfeszültség, forrásfeszültség fogalmának értelmezése. Feszültséggenerátorok

12.A 12.A. A belsı ellenállás, kapocsfeszültség, forrásfeszültség fogalmának értelmezése. Feszültséggenerátorok 12.A Energiaforrások Generátorok jellemzıi Értelmezze a belsı ellenállás, a forrásfeszültség és a kapocsfeszültség fogalmát! Hasonlítsa össze az ideális és a valóságos generátorokat! Rajzolja fel a feszültség-

Részletesebben

Pedagógiai program. VI. kötet

Pedagógiai program. VI. kötet Fıvárosi Önkormányzat Benedek Elek Óvoda, Általános Iskola, Speciális Szakiskola és Egységes Gyógypedagógiai Módszertani Intézmény Egységes szerkezetbe foglalt módosított Pedagógiai program VI. kötet Középsúlyos

Részletesebben

Kidolgozott feladatok a nemparaméteres statisztika témaköréből

Kidolgozott feladatok a nemparaméteres statisztika témaköréből Kidolgozott feladatok a emparaméteres statisztika témaköréből A tájékozódást mideféle szíkódok segítik. A feladatok eredeti szövege zöld, a megoldások fekete, a figyelmeztető, magyarázó elemek piros szíűek.

Részletesebben

Lineáris programozás

Lineáris programozás Lieáris progrmozás Lieáris progrmozás Lieáris progrmozás 2 Péld Egy üzembe 4 féle terméket állítk elő 3 féle erőforrás felhszálásávl. Ismert z erőforrásokból redelkezésre álló meyiség (kpcitás), termékek

Részletesebben

CAD-CAM-CAE Példatár

CAD-CAM-CAE Példatár CAD-CAM-CAE Példatár A példa megnevezése: A példa száma: A példa szintje: CAD rendszer: Kapcsolódó TÁMOP tananyag: A feladat rövid leírása: Szíjtárcsa mőhelyrajzának elkészítése ÓE-A14 alap közepes haladó

Részletesebben

ELEKTROTECHNIKA-ELEKTRONIKA SZAKMACSOPORTOS OKTATÁS. Elektrotechnika elektronika szakmacsoportos alapozó ismeretek

ELEKTROTECHNIKA-ELEKTRONIKA SZAKMACSOPORTOS OKTATÁS. Elektrotechnika elektronika szakmacsoportos alapozó ismeretek ELEKTROTECHNIKA-ELEKTRONIKA SZAKMACSOPORTOS OKTATÁS Tantárgyak és heti óraszámaik a 9. 12. évfolyamon TANTÁRGY 9. ÉVFOLYAM 10. ÉVFOLYAM 11. ÉVFOLYAM 12. ÉVFOLYAM Szakmacsoportos alapozó ismeret Mőszaki

Részletesebben

Knoch László: Információelmélet LOGIKA

Knoch László: Információelmélet LOGIKA Mi az ítélet? Az ítélet olyan mondat, amely vagy igaz, vagy hamis. Azt, hogy az adott ítélet igaz vagy hamis, az ítélet logikai értékének nevezzük. Jelölése: i igaz h hamis A 2 páros és prím. Logikai értéke

Részletesebben

kritikus érték(ek) (critical value).

kritikus érték(ek) (critical value). Hipotézisvizsgálatok (hypothesis testig) A statisztikáak egyik célja lehet a populáció tulajdoságaiak, ismeretle paramétereiek a becslése. A másik tipikus cél: valamely elmélet, hipotézis empirikus bizoyítása

Részletesebben

Orosz Gyula: Markov-láncok. 2. Sorsolások visszatevéssel

Orosz Gyula: Markov-láncok. 2. Sorsolások visszatevéssel Orosz Gyula: Marov-láco 2. orsoláso visszatevéssel Néháy orét feladat segítségével vezetjü be a Marov-láco fogalmát és a hozzáju acsolódó megoldási módszereet, tiius eljárásoat. Ahol lehet, több megoldást

Részletesebben

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t Ellenőrző kérdések 2. Kis dolgozat kérdései 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t 37. Ha t szintű indexet használunk,

Részletesebben

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,

Részletesebben

MODERN KÖNYVVITELTAN III.

MODERN KÖNYVVITELTAN III. Gulyás Istvá ODERN KÖNYVVITELTAN III. A moder speciális és az általáos -szeres ( 3) köyvvitelek, köztük az -szeres speciális vagyoköyvvitel elméletéek elemei és axiomatikus redszere (Az elméleti köyvvitel

Részletesebben

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása Rudas Tamás: A hibahatár a becsült meyiség függvéyébe a mért ártrefereciák téves értelmezéséek egyik forrása Megjelet: Agelusz Róbert és Tardos Róbert szerk.: Mérésről mérésre. A választáskutatás módszertai

Részletesebben

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova Első rész Matematikai tréfák Matematikai játékok Svetoslav Bilchev, Emiliya Velikova A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a

Részletesebben

Irányítástechnika 1. 9. Elıadás. PLC-k programozása

Irányítástechnika 1. 9. Elıadás. PLC-k programozása Irányítástechnika 1 9. Elıadás PLC-k programozása Irodalom - Helmich József: Irányítástechnika I, 2005 - Zalotay Péter: PLC tanfolyam - Jancskárné Anweiler Ildikó: PLC programozás az IEC 1131-3 szabvány

Részletesebben

A PÉNZ IDİÉRTÉKE. Egy jövıbeni pénzösszeg jelenértéke:

A PÉNZ IDİÉRTÉKE. Egy jövıbeni pénzösszeg jelenértéke: A PÉNZ IDİÉRTÉKE A péz értéke többek között az idı függvéye. Ha idıbe késıbb jutuk hozzá egy jövedelemhez, akkor elveszítjük aak lehetıségét, hogy az eltelt idıbe azt befektessük, azaz elesük aak hozamától,

Részletesebben

Valasek Gábor valasek@inf.elte.hu

Valasek Gábor valasek@inf.elte.hu Számítógépes Grafika Valasek Gábor valasek@inf.elte.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2013/2014. őszi félév ( Eötvös LorándSzámítógépes TudományegyetemInformatikai Grafika Kar) 2013/2014.

Részletesebben

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható

18. Valószín ségszámítás. (Valószín ségeloszlások, függetlenség. Valószín ségi változók várható 8. Valószí ségszámítás. (Valószí ségeloszlások, függetleség. Valószí ségi változók várható értéke, magasabb mometumok. Kovergeciafajták, kapcsolataik. Borel-Catelli lemmák. Nagy számok gyege törvéyei.

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Azonosító jel NSZI 0 6 0 6 OKTATÁSI MINISZTÉRIUM Szakmai előkészítő érettségi tantárgyi verseny 2006. április 19. ELEKTRONIKAI ALAPISMERETEK DÖNTŐ ÍRÁSBELI FELADATOK Az írásbeli időtartama: 240 perc 2006

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 3 III. MEGFELELTETÉSEk, RELÁCIÓk 1. BEVEZETÉS Emlékeztetünk arra, hogy az rendezett párok halmazát az és halmazok Descartes-féle szorzatának nevezzük. Más szóval az és halmazok

Részletesebben

VILLAMOS ENERGETIKA Vizsgakérdések (BSc. 2011. tavaszi félév)

VILLAMOS ENERGETIKA Vizsgakérdések (BSc. 2011. tavaszi félév) 1 VILLAMOS ENERGETIKA Vizsgaérdése (BSc. 2011. tavaszi félév) 1. Isertesse a villaoseergia-hálózat feladatr szeriti felosztását a jellegzetes feszültségsziteet és az azohoz tartozó átvihető teljesítéye

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre

Részletesebben

képzetes t. z = a + bj valós t. a = Rez 5.2. Műveletek algebrai alakban megadott komplex számokkal

képzetes t. z = a + bj valós t. a = Rez 5.2. Műveletek algebrai alakban megadott komplex számokkal 5. Komplex számok 5.1. Bevezetés Taulmáyaik sorá többször volt szükség az addig haszált számfogalom kiterjesztésére. Először csak természetes számokat ismertük, később haszáli kezdtük a törteket, illetve

Részletesebben

Tartalomjegyzék. Pemutáció 5 Ismétléses permutáció 8 Variáció 9 Ismétléses variáció 11 Kombináció 12 Ismétléses kombináció 13

Tartalomjegyzék. Pemutáció 5 Ismétléses permutáció 8 Variáció 9 Ismétléses variáció 11 Kombináció 12 Ismétléses kombináció 13 Tartalomjegyzék I Kombiatorika Pemutáció Ismétléses permutáció 8 Variáció 9 Ismétléses variáció Kombiáció Ismétléses kombiáció II Valószíségszámítás M/veletek eseméyek között 6 A valószí/ség fogalma 8

Részletesebben

(L) Lamellás szivattyú mérése

(L) Lamellás szivattyú mérése (L) Lamellás szivattyú mérése A mérésre való felkészülés sorá a Hidraulikus tápegység mérésleírás Hidrosztatikus hajtásokról c részét is kérjük elsajátítai 1 A mérés célja, a beredezés ismertetése 11 A

Részletesebben

Kis- és közepes mérető pilóta nélküli repülı eszközök autonóm feladat-végrehajtásának támogatása digitális domborzat modell alkalmazásával

Kis- és közepes mérető pilóta nélküli repülı eszközök autonóm feladat-végrehajtásának támogatása digitális domborzat modell alkalmazásával Horváth Zoltán Kis- és közepes mérető pilóta nélküli repülı eszközök autonóm feladat-végrehajtásának támogatása digitális domborzat modell alkalmazásával A kis- és közepes mérető pilóta nélküli repülı

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

KÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység

KÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység KÖZPONTI STATISZTIKAI HIVATAL A vizsgarészhez rendelt követelménymodul azonosító száma, megnevezése: 2143-06 Statisztikai feladatok A vizsgarészhez rendelt vizsgafeladat megnevezése: A statisztikai elemzés

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 01. 01. kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

Adatbáziskezelés alapjai. jegyzet

Adatbáziskezelés alapjai. jegyzet Juhász Adrienn Adatbáziskezelés alapja 1 Adatbáziskezelés alapjai jegyzet Készítette: Juhász Adrienn Juhász Adrienn Adatbáziskezelés alapja 2 Fogalmak: Adatbázis: logikailag összefüggı információ vagy

Részletesebben

Édes Élet SORSJEGY RÉSZVÉTELI SZABÁLYZATA. Budapest, 2009.

Édes Élet SORSJEGY RÉSZVÉTELI SZABÁLYZATA. Budapest, 2009. Az Édes Élet SORSJEGY RÉSZVÉTELI SZABÁLYZATA Budapest, 2009. 1. A játékosnak a sorsolásos játékban való részvétellel összefüggı jogai és kötelezettségei (1) A sorsjátékban bárki részt vehet, aki a Részvételi

Részletesebben

Komputer statisztika

Komputer statisztika Eszterházy Károly Főiskola Matematikai és Iformatikai Itézet Tómács Tibor Komputer statisztika Eger, 010. október 6. Tartalomjegyzék Előszó 4 Jelölések 5 1. Valószíűségszámítás 7 1.1. Valószíűségi mező............................

Részletesebben

6 A teljesítményelektronikai kapcsolások modellezése

6 A teljesítményelektronikai kapcsolások modellezése 6 A teljesítméyelektroikai kapcsolások modellezése A teljesítméyelektroikai beredezések vagy már ömagukba egy bizoyos szabályzott redszert alkotak, vagy egy agyobb szabályozott redszer részét képezik.

Részletesebben

Koós Dorián 9.B INFORMATIKA

Koós Dorián 9.B INFORMATIKA 9.B INFORMATIKA Számítástechnika rövid története. Az elektronikus számítógép kifejlesztése. A Neumann-elv. Információ és adat. A jel. A jelek fajtái (analóg- és digitális jel). Jelhalmazok adatmennyisége.

Részletesebben

Független komponens analízis

Független komponens analízis Elektroiku verzió. Az eredeti cikk az ElektroNET (ISSN: 9-705X) 00 évf. 3 zám, 0 oldalá jelet meg. Függetle kompoe aalízi A függetle kompoe aalízi (Idepedet Compoet Aalyi, ICA) egy vizoylag új jelfeldolgozái

Részletesebben

TERMOELEM-HİMÉRİK (Elméleti összefoglaló)

TERMOELEM-HİMÉRİK (Elméleti összefoglaló) Alapfogalmak, meghatározások TERMOELEM-HİMÉRİK (Elméleti összefoglaló) A termoelektromos átalakítók hımérsékletkülönbség hatására villamos feszültséget szolgáltatnak. Ezért a termoelektromos jelátalakítók

Részletesebben

Aszinkron sorrendi hálózatok

Aszinkron sorrendi hálózatok Aszinkron sorrendi hálózatok Benesóczky Zoltán 24 A jegyzetet a szerzıi jog védi. Azt a BME hallgatói használhatják, nyomtathatják tanulás céljából. Minden egyéb felhasználáshoz a szerzı belegyezése szükséges.

Részletesebben

Számrendszerek és az informatika

Számrendszerek és az informatika Informatika tehetséggondozás 2012-2013 3. levél Az első levélben megismertétek a számrendszereket. A másodikban ízelítőt kaptatok az algoritmusos feladatokból. A harmadik levélben először megnézünk néhány

Részletesebben

INFORMATIKA INGYENES ELEKTRONIKUS TANANYAG ADATBÁZIS-KEZELÉS FELADATOK

INFORMATIKA INGYENES ELEKTRONIKUS TANANYAG ADATBÁZIS-KEZELÉS FELADATOK INFORMATIKA INGYENES ELEKTRONIKUS TANANYAG ADATBÁZIS-KEZELÉS FELADATOK ALAPFOGALMAK...2 ACCESS ALAPOK...2 ACCESS KÉPERNYİ RÉSZEI...3 ADATBÁZIS LÉTREHOZÁSA...3 ADATTÁBLÁK...4 ÚJ TÁBLA LÉTREHOZÁSA...4 MŐVELETEK

Részletesebben

2.1. A sorozat fogalma, megadása és ábrázolása

2.1. A sorozat fogalma, megadása és ábrázolása 59. Számsorozatok.. A sorozat fogalma, megadása és ábrázolása.. Defiíció. Azokat az f : N R valós függvéyeket, melyek mide természetes számhoz egy a valós számot redelek hozzá, végtele számsorozatokak,

Részletesebben

SZÁMÍTÁSOK A TÁBLÁZATBAN

SZÁMÍTÁSOK A TÁBLÁZATBAN SZÁMÍTÁSOK A TÁBLÁZATBAN Az Excelben az egyszerű adatok bevitelén kívül számításokat is végezhetünk. Ezeket a cellákba beírt képletek segítségével oldjuk meg. A képlet: olyan egyenlet, amely a munkalapon

Részletesebben

MINTAVÉTEL A MARKETINGKUTATÁSBAN, KÜLÖNÖS TEKINTETTEL A DIVIZÍV ÉS AZ AGGLOMERATÍV RÉTEGZÉSRE

MINTAVÉTEL A MARKETINGKUTATÁSBAN, KÜLÖNÖS TEKINTETTEL A DIVIZÍV ÉS AZ AGGLOMERATÍV RÉTEGZÉSRE MINTAVÉTEL A MARKETINGKUTATÁSBAN, KÜLÖNÖS TEKINTETTEL A DIVIZÍV ÉS AZ AGGLOMERATÍV RÉTEGZÉSRE Molár László egyetem taársegéd 1. BEVEZETÉS A statsztkusok a mtaagyság meghatározására számos módszert dolgoztak

Részletesebben

Méréstechnika. 3. Mérőműszerek csoportosítása, Elektromechanikus műszerek általános felépítése, jellemzőik.

Méréstechnika. 3. Mérőműszerek csoportosítása, Elektromechanikus műszerek általános felépítése, jellemzőik. 2 Méréstechnika 1. A méréstechnika tárgya, mérés célja. Mértékegységrendszer kialakulása, SI mértékegységrendszer felépítése, alkalmazása. Villamos jelek felosztása, jelek jellemző mennyiségei, azok kiszámítása.

Részletesebben

rendszerszemlélető, adatközpontú funkcionális

rendszerszemlélető, adatközpontú funkcionális http://vigzoltan.hu rendszerszemlélető, adatközpontú funkcionális Integrált Vállalatirányítási Rendszerek Alkalmazói fejlesztések mindig valamilyen módszertan alapján történnek. A módszertan eljárások,

Részletesebben

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI 4. Fuzzy relációk Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Klasszikus relációk Halmazok Descartes-szorzata Relációk 2 Fuzzy relációk Fuzzy relációk véges alaphalmazok

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két

Részletesebben

Villamos gépek tantárgy tételei

Villamos gépek tantárgy tételei Villamos gépek tatárgy tételei 7. tétel Mi a szerepe az áram- és feszültségváltókak? Hogya kapcsolódak a hálózathoz, milye előírások voatkozak a biztoságos üzemeltetésükre, kiválasztásukál milye adatot

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségszámítási alapok

Matematikai alapok és valószínőségszámítás. Valószínőségszámítási alapok Matematikai alapok és valószínőségszámítás Valószínőségszámítási alapok Bevezetés A tudományos életben vizsgálódunk pontosabb megfigyelés, elırejelzés, megértés reményében. Ha egy kísérletet végzünk, annak

Részletesebben

1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény

1. Adatok közelítése. Bevezetés. 1-1 A közelítő függvény Palácz Béla - Soft Computig - 11-1. Adatok közelítése 1. Adatok közelítése Bevezetés A természettudomáyos feladatok megoldásához, a vizsgált jeleségek, folyamatok főbb jellemzői közötti összefüggések ismeretére,

Részletesebben