2018, Diszkrét matematika

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "2018, Diszkrét matematika"

Átírás

1 Diszkrét matematika 5. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2018, őszi félév

2 Miről volt szó az elmúlt előadáson? Python alapfogalmak: függvények, paraméterátadás, a decimal modul számtartományok: irracionális számok, valós számok híresebb irracionális számok ( 2, π, e, φ) értéke a sin értéke az log értéke a k-ik gyök értéke: Newton módszerrel

3 Miről lesz szó? számtartományok: komplex számok másodfokú egyenlet komplex gyökei műveletek komplex számokkal: szorzat, hatványozás, stb fraktálok: Mandelbrot, Julia számrendszerek

4 Komplex számok A komplex számok a valós számhalmaz egy olyan bővítése, melyben negatív számok esetén is értelmezett a gyökvonás, halmazjelölés: C. három modell alapján is értelmezhető: halmazelméleti, geometriai, algebrai modell alapján halmazelméleti modell: C = {(a, b) a R, b R}, azaz a számhalmazt rendezett számpárok alkotják, ahol az elemek valós számok, imaginárius rész: az a komplex szám amelynek négyzete -1, jele az i a komplex számok a + bi alakban írhatóak fel, ahol a valós rész, b az imarinárius rész ha b = 0, akkor valós számot kapunk a valós számok körében megismert műveleti tulajdonságok megmaradnak additív semleges elem: z = 0 + 0i multiplikatív semleges elem: z = 1 + 0i additív inverz elem: z = a bi, multiplikatív inverz elem: 1/z = a/(a 2 + b 2 ) b/(a 2 + b 2 )i, z 0

5 Műveletek komplex számokkal Műveleti szabályok: a = a 1 + a 2i abs(a) = a1 2 + a2 2, a komplex szám nagysága b = b 1 + b 2i a + b = (a 1 + b 1) + (a 2 + b 2)i a b = (a 1 b 1) + (a 2 b 2)i a b = (a 1 b 1 a 2 b 2) + (a 2 b 1 + a 1 b 2)i 1 b 1 = b (b1 2 + b2 2 ) b 2 (b1 2 + b2 2 ) i a b = a 1 b (1)

6 Komplex számok Pythonban >>> a = complex(2, 4) >>> a.imag 4.0 >>> a.real 2.0 >>> abs(a) >>> b = complex(1,10) >>> a + b (3 + 14j) >>> a - b (1-6j) >>> a * b ( j) >>> a / b ( j)

7 Algoritmusok Pythonban 1. feladat Határozzuk meg egy másodfokú egyenlet gyökeit. import math def megyenlet2 (a, b, c): if a == 0: return egyenlet(b, c) delta = b*b - 4*a*c if delta < 0: valosr = -b / (2*a) imagr = math.sqrt( abs (delta)) / (2 * a) gy1 = complex(valosr, imagr) gy2 = complex(valosr, -imagr) return (gy1, gy2) if delta == 0: gy = -b/(2*a) return (gy, gy) if delta > 0: gy1 = (-b + math.sqrt(delta)) / (2*a) gy2 = (-b - math.sqrt(delta)) / (2*a) return ( gy1, gy2 )

8 Két komplex szám szorzata 2. feladat Határozzuk meg az a = a1 + a2i és b = b1 + b2i komplex számok szorzatát, ahol alkalmazzuk, hogy a b = (a 1 b 1 a 2 b 2) + (a 2 b 1 + a 1 b 2)i def szorzatc(a, b): a1, a2 = a b1, b2 = b vresz = a1 * b1 - a2 * b2 iresz = a2 * b1 + a1 * b2 return (vresz, iresz) >>> szorzatc((2.5, 5.4), (3.34, 101.5)) ( , ) >>> a = complex(2.5, 5.4) >>> b = complex(3.34, 101.5) >>> a * b ( j)

9 Komplex számok hatványozása 3. feladat Határozzuk meg a n -t, ahol a = (a1, a2) egy komplex szám; alkalmazzuk a gyorshatványozás algoritmusát. def my_powc (a, n): res = (1, 0) while True: if n % 2 == 1: res = szorzatc(res, a) if n == 1: break a = szorzatc(a, a) n = n // 2 return res >>> my_powc((2.5, 5.4), 3) ( , ) >>> a = complex(2.5, 5.4) >>> pow(a, 3) ( j)

10 Mandelbrot fraktál Fraktálok: kiindulva egy komplex számból, egy iterációs folyamat eredményeként a képernyőre kirajzolt pontok fraktál alakzatokat hozhatnak létre minél nagyobb az iteráció szám, annál jobb a kirajzolt kép minősége a Mandelbrot halmaz iterációs képlete: z 0 = c z n+1 = (z n) 2 + c, ahol a c komplex szám értéket a programozó álĺıtja be a Mandelbrot halmaz azokat a c komplex számokat fogja tartalmazni, amelyekre a z n sorozat nem tart a végtelenbe, a z n sorozat a végtelenbe tart, ha az abszolútértéke nagyobb lesz mint 2.

11 Algoritmusok Pythonban 4. feladat Határozzuk meg a Mandelbrot halmaz elemeit. Egy halmazbeli elem esetén rajzoljunk #-t a képernyőre, másképp space-t. def fman(): L1 = [a*0.07 for a in range (-15, 16)] L2 = [a*0.04 for a in range (-50, 26)] for y in L1: L = "" for x in L2: c = complex(x, y) z = c for i in range (40): z = z ** 2 + c if abs(z) > 2: L += " " break if abs(z) <= 2: L += "#" print (L)

12 Julia fraktál 5. feladat Határozzuk meg a Julia halmaz elemeit. A Julia halmaz iterációs képlete ugyanaz, mint a Mandelbrot halmazé, azzal a különbséggel, hogy a c értéke itt konstans, legyen c = i. def fjulia(): L1 = [a*0.07 for a in range (-15, 16)] L2 = [a*0.04 for a in range (-40, 36)] c = complex (-1, -0.25) for y in L1: L = "" for x in L2: z = complex(x, y) for i in range (40): z = z ** 2 + c if abs(z) > 2: L += " " break if abs(z) <= 2: L += "#" print (L)

13 Megjegyzések az L1, L2 intervallumokat módosíthatjuk, a kirajzolt alakzat nagyobb lesz: L1 = [a*0.05 for a in range (-20, 21)] L2 = [a*0.02 for a in range (-80, 31)] a grafikus megjelenítéshez használjuk a pygmae csomagot (lehet mást is): a grafikus megjelenítés forrása:

14 Mandelbrot fraktál, grafikus megjelenítés from pygame.locals import * import pygame def mainma(): width, height = 600, 600 screen = pygame.display.set_mode((width,height),doublebuf) xaxis = width / 1.5 yaxis = height / 2 scale = 190 iterations = 40 for iy in range(height): for ix in range(width): c = complex((ix - xaxis)/scale, (iy - yaxis)/scale) z = c

15 Mandelbrot fraktál, grafikus megjelenítés for i in range(iterations): z = z**2 + c if abs(z) > 2: color = (255, 255, 255) break #end for if abs(z) <= 2: color = (0, 0, 0) screen.set_at((ix, iy), color) screen.set_at((ix, height - iy), color) #end for, for pygame.display.update() while True: event = pygame.event.poll() if (event.type == QUIT or (event.type == KEYDOWN and event.key == K_ESCAPE)): break #end def mainma() pygame.quit()

16 Mandelbrot fraktál

17 Julia fraktál, grafikus megjelenítés from pygame.locals import * import pygame def mainju(): width, height = 600, 600 screen = pygame.display.set_mode((width,height),doublebuf) xaxis = width / 2 yaxis = height / 2 scale = 170 iterations = 40 c = complex (0, -0.8) for iy in range(height): for ix in range(width): z = complex((ix - xaxis)/scale, (iy - yaxis)/scale) for i in range(iterations): z = z**2 + c if abs(z) > 2.0: color = (i%16, i%16*8, i%16*16) break #end for

18 Julia fraktál, grafikus megjelenítés if abs(z) <= 2: color = (0, 0, 0) screen.set_at((ix, iy), color) screen.set_at((width, height), color) #end for, for pygame.display.update() while True: event = pygame.event.poll() if (event.type == QUIT or (event.type == KEYDOWN and event.key == K_ESCAPE)): break #end def mainju() pygame.quit()

19 Julia fraktál c = complex (0, -0.8) if abs(z) > 2.0: color = (i%16, i%16*8, i%16*16) break if abs(z) <= 2: color = (0, 0, 0)

20 Julia fraktál c = complex (-0.824, ) if abs(z) > 2.0: v = 765*i /40 if v > 510: color = (255, 255, v%255) elif v > 255: color = (255, v%255, 0) else: color = (v%255, 0, 0) if abs(z) <= 2: color = (0, 0, 0)

21 Julia fraktál További c értékek a Julia fraktálhoz: c = complex (0.285, 0.013) c = complex (-0.295, -0.55) c = complex (-0.63, ) c = complex (-0.624, 0.435) c = complex (-1, -0.25) c = complex (-1, -0)

22 Számrendszerek egész számok: bármely 1-nél nagyobb számrendszerben ábrázolhatóak, a számítástechnikában gyakran használt számrendszerek: 10, 2, 8, 16, 256, 2-es számrendszer: bináris számrendszer, 8-as számrendszer: oktális számrendszer, 16-os számrendszer: hexadecimális számrendszer, legyen n az a szám, amit átszeretnénk írni b számrendszerbe, ekkor, Z -al jelölve a nem negatív egész számok halmazát: n = a k b k + a k 1 b k a 1b 1 + a 0b 0, ahol k Z, a i Z, és a i < b, minden i {0,..., k} értékre és a k 0, 2-es számrendszerben 2 szimbólum van: 0, 1, 16-os számrendszerben 16 szimbólum van: 0, 1, 2,..., 9, A, B, C, D, E, F, 256-os számrendszerben 256 szimbólum van.

23 Számrendszerek, példák 2-es számrendszerben 2 szimbólum van: 0, 1, Pl. Mennyi (215) 10, 2-es számrendszerbeli alakja? fennáll: 215 = = tehát: (215) 10 = ( ) 2. Pl. ( ) 2, melyik 10-es számrendszerbeli számnak felel meg? fennáll: = = 370. tehát: ( ) 2 = (370) 10.

24 Számrendszerek, példák 8-as számrendszerben 8 szimbólum van: 0, 1, 2, 3, 4, 5, 6, 7. Pl. Mi (215) 10, 8-as számrendszerbeli alakja? fennáll: 215 = tehát: (215) 10 = (327) 8. Pl. (6702) 8, melyik 10-es számrendszerbeli számnak felel meg? fennáll: 6702 = = = tehát: (6702) 8 = (3522) 10.

25 Számrendszerek, példák 16-as számrendszerben 16 szimbólum van: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. Pl. Mi (7432) 10, 16-os számrendszerbeli alakja? fennáll: 7432 = tehát: (7432) 10 = (1D08) 16. Pl. (E2D07) 16, melyik 10-es számrendszerbeli számnak felel meg? fennáll: E2D07 = = tehát: (E2D07) 16 = (929031) 10.

26 Algoritmus: 10-es számrendszerből b számrendszerbe n-et elosztjuk b-vel, legyen az osztási egész rész q 0, a maradék a 0, ekkor fennáll: n = b q 0 + a 0, ahol 0 a 0 < b. q 0-ot elosztjuk b-vel, legyen az osztási egész rész q 1, a maradék a 1, ekkor fennáll : q 0 = b q 1 + a 1, ahol 0 a 1 < b. addig folytatjuk az osztást, amíg 0 osztási egész részt kapunk, a osztási folyamat során előállt maradékok alkotják a b számrendszerbeli számjegyeket: a k, a k 1,... a a, a 0 Pl. Alakítsuk át 7432-t 16-os számrendszerbe: 7432 = = = =

27 Algoritmusok Pythonban 6. feladat Írjunk programot, amely átalakít egy számot 10-es számrendszerből b számrendszerbe. Az eredmény egy lista típusú adat lesz, amely tartalmazza a b számrendszerbeli számjegyeket. def conv_10b(nr, b): L = [] while nr > 0: L = [nr % b] + L nr = nr // b return L >>> conv_10b(14, 2) [1, 1, 1, 0] Ha az L = [nr % b] + L sor helyett az L = L + [nr % b] sort írjuk, akkor fordított sorrendet kapunk.

28 Algoritmusok Pythonban Ha az eredményt stringként akarom kezelni: def conv_10bstr(nr, b): L = while nr > 0: L = + str(nr % b) + L nr = nr // b return L >>> conv_10bstr(53428, 16) >>> conv_10bstr(53428, 2)

2016, Diszkrét matematika

2016, Diszkrét matematika Diszkrét matematika 3. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? A gyorshatványozás

Részletesebben

2018, Diszkrét matematika

2018, Diszkrét matematika Diszkrét matematika 4. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2018, őszi félév Miről volt szó az elmúlt előadáson? számtartományok: racionális

Részletesebben

2016, Diszkrét matematika

2016, Diszkrét matematika Diszkrét matematika 2. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? Követelmények,

Részletesebben

2015, Diszkrét matematika

2015, Diszkrét matematika Diszkrét matematika 4. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015, őszi félév Miről volt szó az elmúlt előadáson? Számtartományok:

Részletesebben

2018, Diszkrét matematika

2018, Diszkrét matematika Diszkrét matematika 3. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2018, őszi félév Miről volt szó az elmúlt előadáson? számtartományok: természetes

Részletesebben

2015, Diszkrét matematika

2015, Diszkrét matematika Diszkrét matematika 5. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015, őszi félév Miről volt szó az elmúlt előadáson? számtani, mértani,

Részletesebben

2016, Diszkrét matematika

2016, Diszkrét matematika Diszkrét matematika 8. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? a Fibonacci számsorozat

Részletesebben

2017, Diszkrét matematika

2017, Diszkrét matematika Diszkrét matematika 10. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2017, őszi félév Miről volt szó az elmúlt előadáson? a prímszámtétel prímszámok,

Részletesebben

2018, Diszkre t matematika. 10. elo ada s

2018, Diszkre t matematika. 10. elo ada s Diszkre t matematika 10. elo ada s MA RTON Gyo ngyve r mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tansze k Marosva sa rhely, Roma nia 2018, o szi fe le v MA RTON Gyo ngyve r 2018,

Részletesebben

2016, Diszkrét matematika

2016, Diszkrét matematika Diszkrét matematika 11. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? legnagyobb közös

Részletesebben

2016, Diszkrét matematika

2016, Diszkrét matematika Diszkrét matematika 7. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, őszi félév Miről volt szó az elmúlt előadáson? az ord, chr függvények

Részletesebben

1. Egészítsük ki az alábbi Python függvényt úgy, hogy a függvény meghatározza, egy listába, az első n szám faktoriális értékét:

1. Egészítsük ki az alábbi Python függvényt úgy, hogy a függvény meghatározza, egy listába, az első n szám faktoriális értékét: Az írásbeli vizsgán, az alábbiakhoz hasonló, 8 kérdésre kell választ adni. Hasonló kérdésekre lehet számítani (azaz mi a hiba, egészítsük ki, mi a függvény kimeneti értéke, adjuk meg a függvényhívást,

Részletesebben

2018, Diszkrét matematika

2018, Diszkrét matematika Diszkrét matematika 12. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, ománia 2018, őszi félév Miről volt szó az elmúlt előadáson? a diszkrét logaritmus,

Részletesebben

2018, Funkcionális programozás

2018, Funkcionális programozás Funkcionális programozás 6. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018, tavaszi félév Miről volt szó? Haskell modulok, kompilálás a

Részletesebben

Kalkulus. Komplex számok

Kalkulus. Komplex számok Komplex számok Komplex számsík A komplex számok a valós számok természetes kiterjesztése, annak érdekében, hogy a gyökvonás művelete elvégezhető legyen a negatív számok körében is. Vegyük tehát hozzá az

Részletesebben

2018, Diszkrét matematika

2018, Diszkrét matematika Diszkrét matematika 7. előadás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2018, őszi félév Miről volt szó az elmúlt előadáson? számrendszerek számrendszerek

Részletesebben

Matematika 11. osztály

Matematika 11. osztály ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Humán tagozat Matematika 11. osztály I. rész: Hatvány, gyök, logaritmus Készítette: Balázs Ádám Budapest, 018 . Tartalomjegyzék Tartalomjegyzék

Részletesebben

Imperatív programozás

Imperatív programozás Imperatív programozás 2. Előadás Python alapok Elérhetőség Tejfel Máté Déli épület, 2.616 matej@elte.hu http://matej.web.elte.hu Python Script nyelv Értelmezett (interpretált) Dinamikus típusrendszer Gyors

Részletesebben

2018, Diszkre t matematika. 8. elo ada s

2018, Diszkre t matematika. 8. elo ada s Diszkre t matematika 8. elo ada s MA RTON Gyo ngyve r mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tansze k Marosva sa rhely, Roma nia 2018, o szi fe le v MA RTON Gyo ngyve r 2018,

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Diszkrét matematika 1. estis képzés

Diszkrét matematika 1. estis képzés Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 5. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 016. ősz 1. Diszkrét matematika 1. középszint 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. estis képzés 2017. ősz 1. Diszkrét matematika 1. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

Adattípusok, vezérlési szerkezetek. Informatika Szabó Adrienn szeptember 14.

Adattípusok, vezérlési szerkezetek. Informatika Szabó Adrienn szeptember 14. Informatika 1 2011 Második előadás, vezérlési szerkezetek Szabó Adrienn 2011. szeptember 14. Tartalom Algoritmusok, vezérlési szerkezetek If - else: elágazás While ciklus For ciklus Egyszerű típusok Összetett

Részletesebben

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2 Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését

Részletesebben

Sapientia Egyetem, Matematika-Informatika Tanszék.

Sapientia Egyetem, Matematika-Informatika Tanszék. Kriptográfia és Információbiztonság 8. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018 Miről volt szó az elmúlt előadáson? az RSA titkosító

Részletesebben

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN

GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN GAZDASÁGMATEMATIKA KÖZÉPHALADÓ SZINTEN ELTE TáTK Közgazdaságtudományi Tanszék Gazdaságmatematika középhaladó szinten KOMPLEX SZÁMOK Készítette: Gábor Szakmai felel s: Gábor Vázlat 1 2 3 Történeti bevezetés

Részletesebben

Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18

Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18 Komplex számok Wettl Ferenc előadása alapján 2015.09.23. Wettl Ferenc előadása alapján Komplex számok 2015.09.23. 1 / 18 Tartalom 1 Számok A számfogalom bővülése 2 Algebrai alak Trigonometrikus alak Egységgyökök

Részletesebben

Assembly programozás: 2. gyakorlat

Assembly programozás: 2. gyakorlat Assembly programozás: 2. gyakorlat Számrendszerek: Kettes (bináris) számrendszer: {0, 1} Nyolcas (oktális) számrendszer: {0,..., 7} Tízes (decimális) számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális

Részletesebben

1. Komplex számok. x 2 = 1 és x 2 + x + 1 = 0. egyenletek megoldását számnak tekinthessük:

1. Komplex számok. x 2 = 1 és x 2 + x + 1 = 0. egyenletek megoldását számnak tekinthessük: . Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését

Részletesebben

Hatványozás. A hatványozás azonosságai

Hatványozás. A hatványozás azonosságai Hatványozás Definíció: a 0 = 1, ahol a R, azaz bármely szám nulladik hatványa mindig 1. a 1 = a, ahol a R, azaz bármely szám első hatványa önmaga a n = a a a, ahol a R, n N + n darab 3 4 = 3 3 3 3 = 84

Részletesebben

Halmazelméleti alapfogalmak

Halmazelméleti alapfogalmak Halmazelméleti alapfogalmak halmaz (sokaság) jól meghatározott, megkülönböztetett dolgok (tárgyak, fogalmak, stb.) összessége. - halmaz alapfogalom. z azt jelenti, hogy csak példákon keresztül magyarázzuk,

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 10. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Felhívás Diszkrét matematika I. középszint 2014.

Részletesebben

Diszkrét matematika 1.

Diszkrét matematika 1. Diszkrét matematika 1. Nagy Gábor nagy@compalg.inf.elte.hu nagygabr@gmail.com ELTE IK Komputeralgebra Tanszék 014. ősz 014-15 őszi félév Gyakorlat: 1. ZH tervezett időpontja: október 1.,. ZH tervezett

Részletesebben

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel

Részletesebben

2016/2017. Matematika 9.Kny

2016/2017. Matematika 9.Kny 2016/2017. Matematika 9.Kny Gondolkodási módszerek 1. Számhalmazok: N, Z, Q, Q*, R a számhalmazok kapcsolata, halmazábra 2. Ponthalmazok: o 4. oldal K I. fejezet: 172-178., 180-185., 191. feladat távolsággal

Részletesebben

2019, Funkcionális programozás. 2. el adás. MÁRTON Gyöngyvér

2019, Funkcionális programozás. 2. el adás. MÁRTON Gyöngyvér Funkcionális programozás 2. el adás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2019, tavaszi félév Mir l volt szó? Követelmények, osztályozás Programozási

Részletesebben

Halmazok Halmazok, részhalmaz, halmazműveletek, halmazok elemszáma

Halmazok Halmazok, részhalmaz, halmazműveletek, halmazok elemszáma Az osztályozóvizsgák követelményrendszere 9.Ny osztály Halmazok Halmazok, részhalmaz, halmazműveletek, halmazok elemszáma Algebra és számelmélet Alapműveletek az egész és törtszámok körében Műveleti sorrend,

Részletesebben

Typotex Kiadó. Bevezetés

Typotex Kiadó. Bevezetés Bevezetés A bennünket körülvevő világ leírásához ősidők óta számokat is alkalmazunk. Tekintsük át a számfogalom kiépülésének logikai-történeti folyamatát, amely minden valószínűség szerint a legkorábban

Részletesebben

SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA

SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA BINÁRIS (kettes) ÉS HEXADECIMÁLIS (tizenhatos) SZÁMRENDSZEREK (HELYIÉRTÉK, ÁTVÁLTÁSOK, MŰVELETEK) A KETTES SZÁMRENDSZER A computerek világában a

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

A SZÁMFOGALOM KIALAKÍTÁSA

A SZÁMFOGALOM KIALAKÍTÁSA A SZÁMFOGALOM KIALAKÍTÁSA TERMÉSZETES SZÁMOK ÉRTELMEZÉSE 1-5. OSZTÁLY Számok értelmezése 0-tól 10-ig: Véges halmazok számosságaként Mérőszámként Sorszámként Jelzőszámként A számok fogalmának kiterjesztése

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A-9.C-9.D OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A-9.C-9.D OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 01. 01. kezdete: Oldal/összes: 1/5 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 9. évfolyam I. Halmazok 1. Alapfogalmak, jelölések 2. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 3. Nevezetes számhalmazok (N,

Részletesebben

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro

Sapientia Egyetem, Műszaki és Humántudományok Tanszék. mgyongyi@ms.sapientia.ro Kriptográfia és Információbiztonság 4. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2015 Miről volt szó az elmúlt előadáson? blokk-titkosító

Részletesebben

2018, Funkcionális programozás

2018, Funkcionális programozás Funkcionális programozás 7. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018, tavaszi félév Miről volt szó? összefésüléses rendezés (merge

Részletesebben

OOP: Java 1.Gy: Java alapok

OOP: Java 1.Gy: Java alapok OOP: Java 1.Gy: Java alapok Eclipse alapok O O P Objektum Orientált Programozás 31/1 B ITv: MAN 2019.02.25 Feladat Írja meg a 4 alapműveletet megvalósító Kalkulátor programot Java nyelven. Az elvégzendő

Részletesebben

2016/2017. Matematika 9.Kny

2016/2017. Matematika 9.Kny 2016/2017. Matematika 9.Kny Gondolkodási módszerek 1. Számhalmazok: N, Z, Q, Q*, R a számhalmazok kapcsolata, halmazábra 2. Ponthalmazok: o 5. oldal K I. fejezet: 172-178., 180-185., 191. feladat távolsággal

Részletesebben

Számrendszerek. Bináris, hexadecimális

Számrendszerek. Bináris, hexadecimális Számrendszerek Bináris, hexadecimális Mindennapokban használt számrendszerek Decimális 60-as számrendszer az időmérésre DNS-ek vizsgálata négyes számrendszerben Tetszőleges természetes számot megadhatunk

Részletesebben

Intergrált Intenzív Matematika Érettségi

Intergrált Intenzív Matematika Érettségi . Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.

Részletesebben

Komplex számok. (a, b) + (c, d) := (a + c, b + d)

Komplex számok. (a, b) + (c, d) := (a + c, b + d) Komplex számok Definíció. Komplex számoknak nevezzük a valós számokból képzett rendezett (a, b) számpárok halmazát, ha közöttük az összeadást és a szorzást következőképpen értelmezzük: (a, b) + (c, d)

Részletesebben

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / tanév

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / tanév 9. évfolyam I. Halmazok Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / 2017. tanév 1. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 2. Intervallumok 3. Halmazműveletek

Részletesebben

TANMENET. Matematika

TANMENET. Matematika Bethlen Gábor Református Gimnázium és Szathmáry Kollégium 6800 Hódmezővásárhely, Szőnyi utca 2. Telefon: +36-62-241-703 www.bgrg.hu OM: 029736 TANMENET Matematika 2016/2017 9. B tagozat Összeállította:

Részletesebben

Komplex számok. Komplex számok és alakjaik, számolás komplex számokkal.

Komplex számok. Komplex számok és alakjaik, számolás komplex számokkal. Komplex számok Komplex számok és alakjaik, számolás komplex számokkal. 1. Komplex számok A komplex számokra a valós számok kiterjesztéseként van szükség. Ugyanis már középiskolában el kerülnek olyan másodfokú

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) 1. Számítsd ki a következő kifejezések pontos értékét!

Megoldások. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) 1. Számítsd ki a következő kifejezések pontos értékét! Megoldások. Számítsd ki a következő kifejezések pontos értékét! 8 8 ( ) ( ) ( ) Használjuk a gyökvonás azonosságait. 0 8 8 8 8 8 8 ( ) ( ) ( ) 0 8 . Határozd meg a következő kifejezések értelmezési tartományát!

Részletesebben

2018, Funkcionális programozás

2018, Funkcionális programozás Funkcionális programozás 3. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018, tavaszi félév Miről volt szó? A Haskell programozási nyelv főbb

Részletesebben

A Newton-Raphson iteráció kezdeti értéktől való érzékenysége

A Newton-Raphson iteráció kezdeti értéktől való érzékenysége Szénási Eszter SZTE TTIK Matematika BSc, Numerikus matematika projekt 2015. november 30. A Newton-Raphson iteráció kezdeti értéktől való érzékenysége Medencék (attraktorok) színezése 2 Newton_project-szenasi.nb

Részletesebben

dimenziója Szirmay-Kalos László N= 1/r D D= (logn) / (log 1/r) D= (log4) / (log 3) = 1.26 N = 4, r = 1/3 Vonalzó ( l ) db r =1/3 N = 4 r 2 N 2 N m r m

dimenziója Szirmay-Kalos László N= 1/r D D= (logn) / (log 1/r) D= (log4) / (log 3) = 1.26 N = 4, r = 1/3 Vonalzó ( l ) db r =1/3 N = 4 r 2 N 2 N m r m Fraktálok Hausdorff dimenzió Fraktálok N = N = 4 N = 8 Szirmay-Kalos László r = r = r = N= /r D D= (logn) / (log /r) Koch görbe D= (log4) / (log 3) =.6 N = 4, r = /3 Nem önhasonló objektumok dimenziója

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem)

Analízis elo adások. Vajda István. 2012. szeptember 10. Neumann János Informatika Kar Óbudai Egyetem. Vajda István (Óbudai Egyetem) Vajda István Neumann János Informatika Kar Óbudai Egyetem 1 / 36 Bevezetés A komplex számok értelmezése Definíció: Tekintsük a valós számpárok R2 halmazát és értelmezzük ezen a halmazon a következo két

Részletesebben

MATE-INFO UBB verseny, március 25. MATEMATIKA írásbeli vizsga

MATE-INFO UBB verseny, március 25. MATEMATIKA írásbeli vizsga BABEŞ-BOLYAI TUDOMÁNYEGYETEM, KOLOZSVÁR MATEMATIKA ÉS INFORMATIKA KAR MATE-INFO UBB verseny, 218. március 25. MATEMATIKA írásbeli vizsga FONTOS TUDNIVALÓK: 1 A feleletválasztós feladatok,,a rész esetén

Részletesebben

2019, Diszkrét matematika. 1. el adás

2019, Diszkrét matematika. 1. el adás Diszkrét matematika 1. el adás mgyongyi@ms.sapientia.ro Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia 2019, szi félév Követelmények, osztályozás Végs jegy: (írásbeli jegy +

Részletesebben

Matematika. Specializáció. 11 12. évfolyam

Matematika. Specializáció. 11 12. évfolyam Matematika Specializáció 11 12. évfolyam Ez a szakasz az eddigi matematikatanulás 12 évének szintézisét adja. Egyben kiteljesíti a kapcsolatokat a többi tantárggyal, a mindennapi élet matematikaigényes

Részletesebben

MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2012

MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2012 2012 2. Számhalmazok (a valós számok halmaza és részhalmazai), oszthatósággal kapcsolatos problémák, számrendszerek. 4. Hatványozás, hatványfogalom kiterjesztése, azonosságok. Gyökvonás és azonosságai,

Részletesebben

MATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, 2014. szeptember

MATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, 2014. szeptember MATEMATIKA TANMENET 9. osztály 4 óra/hét Budapest, 2014. szeptember 2 Évi óraszám: 144 óra Heti óraszám: 4 óra Ismerkedés, év elejei feladatok, szintfelmérő írása 2 óra I. Kombinatorika, halmazok 13 óra

Részletesebben

Exponenciális és logaritmikus kifejezések Megoldások

Exponenciális és logaritmikus kifejezések Megoldások Eponenciális és logaritmikus kifejezések - megoldások Eponenciális és logaritmikus kifejezések Megoldások ) Igazolja, hogy az alábbi négy egyenlet közül az a) és jelű egyenletnek pontosan egy megoldása

Részletesebben

Felvételi vizsga mintatételsor Informatika írásbeli vizsga

Felvételi vizsga mintatételsor Informatika írásbeli vizsga BABEȘ BOLYAI TUDOMÁNYEGYETEM MATEMATIKA ÉS INFORMATIKA KAR A. tételsor (30 pont) Felvételi vizsga mintatételsor Informatika írásbeli vizsga 1. (5p) Egy x biten tárolt egész adattípus (x szigorúan pozitív

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító ME-III.1./1 2 Azonosító: Változatszám : Érvényesség kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK-DC-2013 2013. 09. 01. MATEMATIKA

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. estis képzés 017. ősz 1. Diszkrét matematika 1. estis képzés 3. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján

Részletesebben

MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI

MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI A vizsga formája Középszinten: írásbeli. Emelt szinten: írásbeli és szóbeli. MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI A matematika érettségi vizsga célja A matematika érettségi vizsga célja

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2017. ősz 1. Diszkrét matematika 1. középszint 6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

2018, Funkcionális programozás

2018, Funkcionális programozás Funkcionális programozás 10. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018, tavaszi félév Miről volt szó? a foldl és foldr függvények lista

Részletesebben

Sapientia Egyetem, Matematika-Informatika Tanszék.

Sapientia Egyetem, Matematika-Informatika Tanszék. Kriptográfia és Információbiztonság 7. előadás Sapientia Egyetem, Matematika-Informatika Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2018 Miről volt szó az elmúlt előadáson? Kriptográfiai

Részletesebben

DIGITÁLIS TECHNIKA I BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr.

DIGITÁLIS TECHNIKA I BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr. 26..5. DIGITÁLIS TEHNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet INÁRIS SZÁMRENDSZER 5. ELŐDÁS 2 EVEZETŐ ÁTTEKINTÉS 6. előadás témája a digitális rendszerekben

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval

Részletesebben

Egyenletek, egyenlőtlenségek V.

Egyenletek, egyenlőtlenségek V. Egyenletek, egyenlőtlenségek V. DEFINÍCIÓ: (Másodfokú egyenlet) Az ax + bx + c = 0 alakban felírható egyenletet (a, b, c R; a 0), ahol x a változó, másodfokú egyenletnek nevezzük. TÉTEL: Az ax + bx + c

Részletesebben

Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )

Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) Trigonometria Megoldások Trigonometria - megoldások ) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) akkor a háromszög egyenlő szárú vagy derékszögű!

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Matematika I

First Prev Next Last Go Back Full Screen Close Quit. Matematika I Matematika I (Analízis) Készítette: Horváth Gábor Kötelező irodalom: Ács László, Gáspár Csaba: Analízis 1 Oktatási segédanyagok és a tantárgyi követelményrendszer megtalálható a http://rs1.szif.hu/ horvathg/horvathg.html

Részletesebben

Komplex számok. Wettl Ferenc szeptember 14. Wettl Ferenc Komplex számok szeptember / 23

Komplex számok. Wettl Ferenc szeptember 14. Wettl Ferenc Komplex számok szeptember / 23 Komplex számok Wettl Ferenc 2014. szeptember 14. Wettl Ferenc Komplex számok 2014. szeptember 14. 1 / 23 Tartalom 1 Számok A számfogalom b vülése Egy kis történelem 2 Miért számolunk velük? A megoldóképlet

Részletesebben

Az osztályozó, javító és különbözeti vizsgák (tanulmányok alatti vizsgák) témakörei matematika tantárgyból

Az osztályozó, javító és különbözeti vizsgák (tanulmányok alatti vizsgák) témakörei matematika tantárgyból Az osztályozó, javító és különbözeti vizsgák (tanulmányok alatti vizsgák) témakörei matematika tantárgyból A vizsga formája: Feladatlap az adott évfolyam anyagából, a megoldásra fordítható idő 60 perc.

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos

Részletesebben

Osztályozó- és javítóvizsga. Matematika tantárgyból

Osztályozó- és javítóvizsga. Matematika tantárgyból Osztályozó- és javítóvizsga Matematika tantárgyból 2018-2019 A vizsga 60 perces írásbeli vizsga (feladatlap) a megadott témakörökből. A megjelölt százalék (50%) nem teljesítése esetén szóbeli vizsga is,

Részletesebben

Fraktálok. Klasszikus fraktálpéldák I. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék

Fraktálok. Klasszikus fraktálpéldák I. Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék Fraktálok Klasszikus fraktálpéldák I Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék TARTALOMJEGYZÉK 1 of 86 Bevezetés. 2 of 86 TARTALOMJEGYZÉK Bevezetés. Az önhasonlóságról intuitív módon Klasszikus

Részletesebben

Imperatív programozás

Imperatív programozás Imperatív programozás 6. Előadás Python típusok (folytatás) Függvények Típusok + műveleteik Listák - mutable (változtatható) - heterogén lista >>> lista = ["szo", 12, 3.5] >>> lista[1] 12 >>> lista[1:3]

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy

Nagy Gábor  compalg.inf.elte.hu/ nagy Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Funkcionális és logikai programozás. { Márton Gyöngyvér, 2012} { Sapientia, Erdélyi Magyar Tudományegyetem }

Funkcionális és logikai programozás. { Márton Gyöngyvér, 2012} { Sapientia, Erdélyi Magyar Tudományegyetem } Funkcionális és logikai programozás { Márton Gyöngyvér, 2012} { Sapientia, Erdélyi Magyar Tudományegyetem } http://www.ms.sapientia.ro/~mgyongyi ` 1 Jelenlét: Követelmények, osztályozás Az első 4 előadáson

Részletesebben

Nagy Gábor compalg.inf.elte.hu/ nagy ősz

Nagy Gábor  compalg.inf.elte.hu/ nagy ősz Diszkrét matematika 1. középszint 2016. ősz 1. Diszkrét matematika 1. középszint 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján Komputeralgebra

Részletesebben

Komputeralgebra Rendszerek

Komputeralgebra Rendszerek Komputeralgebra Rendszerek Programozás Czirbusz Sándor ELTE IK, Komputeralgebra Tanszék 2014. február 23. TARTALOMJEGYZÉK 1 of 28 TARTALOMJEGYZÉK I 1 TARTALOMJEGYZÉK 2 Értékadás MAPLE -ben SAGE -ben 3

Részletesebben

Vezérlési szerkezetek Vezérlési szerkezetek: feltételes elágazás és ciklusok

Vezérlési szerkezetek Vezérlési szerkezetek: feltételes elágazás és ciklusok : feltételes elágazás és ciklusok töbszörös elágazás (if-elif-else) kilépés while ciklusból (break), ciklus folytatása (continue), és a while ciklus feltételéhez tartozó else ág a for ciklus és a range()

Részletesebben

Diszkrét matematika I.

Diszkrét matematika I. Diszkrét matematika I. középszint 2014. ősz 1. Diszkrét matematika I. középszint 8. előadás Mérai László diái alapján Komputeralgebra Tanszék 2014. ősz Elemi számelmélet Diszkrét matematika I. középszint

Részletesebben

Az osztályozóvizsgák követelményrendszere 9. évfolyam

Az osztályozóvizsgák követelményrendszere 9. évfolyam Az osztályozóvizsgák követelményrendszere 9. évfolyam Kombinatorika, halmazok Összeszámlálási feladatok Halmazok, halmazműveletek, halmazok elemszáma Logikai szita Számegyenesek intervallumok Algebra és

Részletesebben

OOP I. Egyszerő algoritmusok és leírásuk. Készítette: Dr. Kotsis Domokos

OOP I. Egyszerő algoritmusok és leírásuk. Készítette: Dr. Kotsis Domokos OOP I. Egyszerő algoritmusok és leírásuk Készítette: Dr. Kotsis Domokos Hallgatói tájékoztató A jelen bemutatóban található adatok, tudnivalók és információk a számonkérendı anyag vázlatát képezik. Ismeretük

Részletesebben

4. Fejezet : Az egész számok (integer) ábrázolása

4. Fejezet : Az egész számok (integer) ábrázolása 4. Fejezet : Az egész számok (integer) ábrázolása The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson

Részletesebben

Matematika 8. osztály

Matematika 8. osztály ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Hat évfolyamos Matematika 8. osztály I. rész: Algebra Készítette: Balázs Ádám Budapest, 2018 2. Tartalomjegyzék Tartalomjegyzék I. rész: Algebra................................

Részletesebben

Matematika emelt szint a 11-12.évfolyam számára

Matematika emelt szint a 11-12.évfolyam számára Német Nemzetiségi Gimnázium és Kollégium Budapest Helyi tanterv Matematika emelt szint a 11-12.évfolyam számára 1 Emelt szintű matematika 11 12. évfolyam Ez a szakasz az érettségire felkészítés időszaka

Részletesebben

2016, Funkcionális programozás

2016, Funkcionális programozás Funkcionális programozás 11. előadás Sapientia Egyetem, Műszaki és Humántudományok Tanszék Marosvásárhely, Románia mgyongyi@ms.sapientia.ro 2016, tavaszi félév Miről volt szó? Haskell I/O műveletek, feladatok:

Részletesebben

Az Összetett hálózatok vizsgálata elektronikus tantárgy részletes követeleményrendszere

Az Összetett hálózatok vizsgálata elektronikus tantárgy részletes követeleményrendszere Az Összetett hálózatok vizsgálata elektronikus tantárgy részletes követeleményrendszere Horváth Árpád 2014. február 7. A tárgy célja: Az összetett hálózatok fogalomrendszerének használata a tudomány több

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 4-6. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben