Számrendszerek. Bináris, hexadecimális

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Számrendszerek. Bináris, hexadecimális"

Átírás

1 Számrendszerek Bináris, hexadecimális

2 Mindennapokban használt számrendszerek Decimális 60-as számrendszer az időmérésre DNS-ek vizsgálata négyes számrendszerben

3 Tetszőleges természetes számot megadhatunk a következő formában: x n *a n + + x 2 *a 2 + x 1 *a 1 + x 0 *a 0 Pl.: 628 = 6* * *10 0 Ahol a a : számrendszer alapja, 1-nél > természetes szám x n x 0 : a számrendszer egyes számjegyei, mindegyik értéke kisebb, mint az alapszám a n : tehát a számrendszer egyes helyiértékeinek tekinthető

4 Kettes számrendszer Neumann-elv Alapszám: 2 Az egyes számjegyek a kettő hatványai.

5 Átváltás decimálisból binárisba Decimális szám elosztása 2-vel Mellé írni a maradékot (0 vagy 1), alá a hányadost, lefelé kerekítve Addig kell folytatni az eljárást, amíg a baloldalon 0 hányadoshoz jutunk Az eredmény kiolvasási iránya: alulról felfelé Informatikában byte-ban írják le (szám előtti nullákat is kiírva)

6 Hexadecimális számrendszer Alapszám: 16 Számjegyek: 0.. 9; A, B, C, D,E, F Az egyes számjegyek a 16 hatványai Találkozhatunk vele: honlapok forrásában; hálózati kártyák MAC címét is így adják meg

7

8

9 Átváltás a számrendszerek között 2, 10, 16

10 Átváltás 10-es számrendszerből 2-esbe = Készítsünk egy 2-oszlopos táblázatot 2. Írjuk fel a számot a bal felső sarokba 3. Osszuk el a számot 2-vel a) Az osztás eredményét írjuk a szám alá b) Az osztás maradékát írjuk a szám mellé 4. Az osztást ismételgessük, amíg a bal oldalon 0-t nem kapunk 5. A jobb oldali oszlop számjegyeit olvassuk össze lentről felfelé Átváltás 10-es számrendszerből 2-esbe

11 Átváltás 10-es számrendszerből 16-osba = Készítsünk egy 2-oszlopos táblázatot 2. Írjuk fel a számot a bal felső sarokba 3. Osszuk el a számot 16-tal a) Az osztás eredményét írjuk a szám alá b) Az osztás maradékát írjuk a szám mellé 4. Az osztást ismételgessük, amíg a bal oldalon 0-t nem kapunk 5. A jobb oldali oszlop számjegyeit olvassuk össze lentről felfelé Átváltás 10-es számrendszerből 16-osba

12 Átváltás 2-es számrendszerből 10-esbe = Írjuk fel az átváltandó számot 2. Írjuk a számjegyek fölé 2 hatványait 3. Szorozzuk össze a számjegyeket a fölöttük lévő hatványokkal 4. Adjuk össze a szorzatokat 5. Az összeg lesz a végeredmény Átváltás 2-es számrendszerből 10-esbe

13 Átváltás 16-os számrendszerből 10-esbe = 131? Írjuk fel az átváltandó számot 2. Írjuk a számjegyek fölé 16 hatványait 3. Szorozzuk össze a számjegyeket a fölöttük lévő hatványokkal 4. Adjuk össze a szorzatokat 5. Az összeg lesz a végeredmény Átváltás 16-os számrendszerből 10-esbe

14 Különbség az átváltásoknál 10-esből X-esbe X-esből 10-esbe 1. Készítsünk egy 2-oszlopos táblázatot 2. Írjuk fel a számot a bal felső sarokba 3. Osszuk el a számot X-szel a) Az osztás eredményét írjuk a szám alá b) Az osztás maradékát írjuk a szám mellé 4. Az osztást ismételgessük, amíg a bal oldalon 0-t nem kapunk 5. A jobb oldali oszlop számjegyeit olvassuk össze lentről felfelé 1. Írjuk fel az átváltandó számot 2. Írjuk a számjegyek fölé X hatványait 3. Szorozzuk össze a számjegyeket a fölöttük lévő hatványokkal 4. Adjuk össze a szorzatokat 5. Az összeg lesz a végeredmény

15 Átváltás 2-es számrendszerből 16-osba = Írjuk fel az átváltandó számot 2. Hátulról indulva osszuk fel a számot 4 bites csoportokra (digitekre), ha kell, írjunk 0-kat a szám elé 3. A 4 bites csoportokat egyenként alakítsuk át (segédtábla segítségével) 4. Az átváltások eredményét balról jobbra kell összeolvasni 5. A lesz a végeredmény Átváltás 2-es számrendszerből 16-osba

16 Átváltás 16-os számrendszerből 2-esbe = Írjuk fel az átváltandó számot 2. Minden számjegyet írjunk át 4 bites bináris számra (segédtáblával) 3. A 4 bites csoportokat balról jobbra olvassuk össze (elején lévő 0-kat nem) 4. A kapott szám lesz a végeredmény Átváltás 16-os számrendszerből 2-esbe

17 Különbség az átváltásoknál 2-esből 8-asba vagy 16-osba 8-asból vagy 16-osból 2-esbe 1. Írjuk fel az átváltandó számot 2. Hátulról indulva osszuk fel a számot 3 vagy 4 bites csoportokra, ha kell, írjunk 0-kat a szám elé 3. A 3-4 bites csoportokat egyenként alakítsuk át (segédtábla segítségével) 4. Az átváltások eredményét balról jobbra kell összeolvasni 5. A kapott szám lesz a végeredmény 1. Írjuk fel az átváltandó számot 2. Minden számjegyet írjunk át 3 vagy 4 bites bináris számra (segédtáblával) 3. A 3-4 bites csoportokat balról jobbra olvassuk össze (elején lévő 0-kat nem) 4. A kapott szám lesz a végeredmény

18 Feladatok Végezze el az alábbi átalakításokat! Végezze el az alábbi átalakításokat! =? =? =? =? =? =? =? =? =? =? =? =? E3A 16 =? E3A 16 =? 8 6. E3A 16 =? =? =? =? 2

19 Ellenőrzéshez: Számológép Nézet: Programozó

SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA

SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA 1 ELSŐ GYAKORLAT SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA A feladat elvégzése során a következőket fogjuk gyakorolni: Számrendszerek közti átváltás előjelesen és előjel nélkül. Bináris, decimális, hexadexcimális számrendszer.

Részletesebben

SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA

SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA BINÁRIS (kettes) ÉS HEXADECIMÁLIS (tizenhatos) SZÁMRENDSZEREK (HELYIÉRTÉK, ÁTVÁLTÁSOK, MŰVELETEK) A KETTES SZÁMRENDSZER A computerek világában a

Részletesebben

Harmadik gyakorlat. Számrendszerek

Harmadik gyakorlat. Számrendszerek Harmadik gyakorlat Számrendszerek Ismétlés Tízes (decimális) számrendszer: 2 372 =3 2 +7 +2 alakiérték valódi érték = aé hé helyiérték helyiértékek a tízes szám hatványai, a számjegyek így,,2,,8,9 Kettes

Részletesebben

Kedves Diákok! A feladatok legtöbbször egy pontot érnek. Ahol ettől eltérés van, azt külön jelöljük.

Kedves Diákok! A feladatok legtöbbször egy pontot érnek. Ahol ettől eltérés van, azt külön jelöljük. Kedves Diákok! Szeretettel köszöntünk Benneteket abból az alkalomból, hogy a Ceglédi Közgazdasági és Informatikai Szakközépiskola informatika tehetséggondozásának első levelét olvassátok! A tehetséggondozással

Részletesebben

Assembly programozás: 2. gyakorlat

Assembly programozás: 2. gyakorlat Assembly programozás: 2. gyakorlat Számrendszerek: Kettes (bináris) számrendszer: {0, 1} Nyolcas (oktális) számrendszer: {0,..., 7} Tízes (decimális) számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális

Részletesebben

ÁTVÁLTÁSOK SZÁMRENDSZEREK KÖZÖTT, SZÁMÁBRÁZOLÁS, BOOLE-ALGEBRA

ÁTVÁLTÁSOK SZÁMRENDSZEREK KÖZÖTT, SZÁMÁBRÁZOLÁS, BOOLE-ALGEBRA 1. Tízes (decimális) számrendszerből: a. Kettes (bináris) számrendszerbe: Vegyük a 2634 10 -es számot, és váltsuk át bináris (kettes) számrendszerbe! A legegyszerűbb módszer: írjuk fel a számot, és húzzunk

Részletesebben

A feladatok legtöbbször egy pontot érnek. Ahol ettől eltérés van, azt külön jelöljük.

A feladatok legtöbbször egy pontot érnek. Ahol ettől eltérés van, azt külön jelöljük. Szeretettel üdvözlünk Benneteket abból az alkalomból, hogy a Ceglédi Közgazdasági és Informatikai Szakközépiskola informatika tehetséggondozásának első levelét olvassátok! A tehetséggondozással az a célunk,

Részletesebben

5.1.4 Laborgyakorlat: A Windows számológép használata hálózati címeknél

5.1.4 Laborgyakorlat: A Windows számológép használata hálózati címeknél 5.1.4 Laborgyakorlat: A Windows számológép használata hálózati címeknél Célok Átkapcsolás a Windows Számológép két működési módja között. A Windows Számológép használata a decimális (tízes), a bináris

Részletesebben

Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez

Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez Sándor Tamás, sandor.tamas@kvk.bmf.hu Takács Gergely, takacs.gergo@kvk.bmf.hu Lektorálta: dr. Schuster György PhD, hal@k2.jozsef.kando.hu

Részletesebben

Dr. Oniga István DIGITÁLIS TECHNIKA 2

Dr. Oniga István DIGITÁLIS TECHNIKA 2 Dr. Oniga István DIGITÁLIS TECHNIKA 2 Számrendszerek A leggyakrabban használt számrendszerek: alapszám számjegyek Tízes (decimális) B = 10 0, 1, 8, 9 Kettes (bináris) B = 2 0, 1 Nyolcas (oktális) B = 8

Részletesebben

The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003

The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 . Fejezet : Számrendszerek The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach. kiadás, Irv Englander John Wiley and Sons Wilson Wong, Bentley College Linda Senne,

Részletesebben

Hardverközeli programozás 1 1. gyakorlat. Kocsis Gergely 2015.02.17.

Hardverközeli programozás 1 1. gyakorlat. Kocsis Gergely 2015.02.17. Hardverközeli programozás 1 1. gyakorlat Kocsis Gergely 2015.02.17. Információk Kocsis Gergely http://irh.inf.unideb.hu/user/kocsisg 2 zh + 1 javító (a gyengébbikre) A zh sikeres, ha az elért eredmény

Részletesebben

S z á m í t á s t e c h n i k a i a l a p i s m e r e t e k

S z á m í t á s t e c h n i k a i a l a p i s m e r e t e k S z á m í t á s t e c h n i k a i a l a p i s m e r e t e k T a r t a l o m Mintafeladatok... 4 Számrendszerek, logikai mőveletek... 4 Gyakorló feladatok... 19 Számrendszerek, logikai mőveletek... 19 Megoldások...

Részletesebben

Jelátalakítás és kódolás

Jelátalakítás és kódolás Jelátalakítás és kódolás Információ, adat, kódolás Az információ valamely jelenségre vonatkozó értelmes közlés, amely új ismereteket szolgáltat az információ felhasználójának. Valójában információnak tekinthető

Részletesebben

Számrendszerek. A római számok írására csak hét jelt használtak. Ezek segítségével, jól meghatározott szabályok szerint képezték a különböz számokat.

Számrendszerek. A római számok írására csak hét jelt használtak. Ezek segítségével, jól meghatározott szabályok szerint képezték a különböz számokat. Számrendszerek A római számok írására csak hét jelt használtak Ezek segítségével, jól meghatározott szabályok szerint képezték a különböz számokat Római számjegyek I V X L C D M E számok értéke 1 5 10

Részletesebben

Bevezetés az informatikába gyakorló feladatok Utoljára módosítva:

Bevezetés az informatikába gyakorló feladatok Utoljára módosítva: Tartalom 1. Számrendszerek közti átváltás... 2 1.1. Megoldások... 4 2. Műveletek (+, -, bitműveletek)... 7 2.1. Megoldások... 8 3. Számítógépes adatábrázolás... 12 3.1. Megoldások... 14 A gyakorlósor lektorálatlan,

Részletesebben

4. Fejezet : Az egész számok (integer) ábrázolása

4. Fejezet : Az egész számok (integer) ábrázolása 4. Fejezet : Az egész számok (integer) ábrázolása The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson

Részletesebben

3. óra Számrendszerek-Szg. történet

3. óra Számrendszerek-Szg. történet 3. óra Számrendszerek-Szg. történet 1byte=8 bit 2 8 =256 256-féle bináris szám állítható elő 1byte segítségével. 1 Kibibyte = 1024 byte mert 2 10 = 1024 1 Mebibyte = 1024 Kibibyte = 1024 * 1024 byte 1

Részletesebben

Informatikai Rendszerek Alapjai

Informatikai Rendszerek Alapjai Informatikai Rendszerek Alapjai Egész és törtszámok bináris ábrázolása http://uni-obuda.hu/users/kutor/ IRA 5/1 A mintavételezett (egész) számok bináris ábrázolása 2 n-1 2 0 1 1 0 1 0 n Most Significant

Részletesebben

DIGITÁLIS TECHNIKA I BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr.

DIGITÁLIS TECHNIKA I BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr. 26..5. DIGITÁLIS TEHNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet INÁRIS SZÁMRENDSZER 5. ELŐDÁS 2 EVEZETŐ ÁTTEKINTÉS 6. előadás témája a digitális rendszerekben

Részletesebben

Oszthatósági problémák

Oszthatósági problémák Oszthatósági problémák Érdekes kérdés, hogy egy adott számot el lehet-e osztani egy másik számmal (maradék nélkül). Ezek eldöntésére a matematika tanulmányok során néhány speciális esetre látunk is példát,

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

3. gyakorlat. Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F}

3. gyakorlat. Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F} 3. gyakorlat Számrendszerek: Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F} Alaki érték: 0, 1, 2,..., 9,... Helyi

Részletesebben

Fixpontos és lebegőpontos DSP Számrendszerek

Fixpontos és lebegőpontos DSP Számrendszerek Fixpontos és lebegőpontos DSP Számrendszerek Ha megnézünk egy DSP kinálatot, akkor észrevehetjük, hogy két nagy család van az ajánlatban, az ismert adattipus függvényében. Van fixpontos és lebegőpontos

Részletesebben

Programozott soros szinkron adatátvitel

Programozott soros szinkron adatátvitel Programozott soros szinkron adatátvitel 1. Feladat Név:... Irjon programot, mely a P1.0 kimenet egy lefutó élének időpontjában a P1.1 kimeneten egy adatbitet ad ki. A bájt legalacsonyabb helyiértéke 1.

Részletesebben

DIGITÁLIS TECHNIKA I SZÁMRENDSZEREK HELYÉRTÉK SZÁMRENDSZEREK RÓMAI SZÁMOK ÉS RENDSZERÜK. Dr. Lovassy Rita Dr.

DIGITÁLIS TECHNIKA I SZÁMRENDSZEREK HELYÉRTÉK SZÁMRENDSZEREK RÓMAI SZÁMOK ÉS RENDSZERÜK. Dr. Lovassy Rita Dr. 6..6. DIGITÁLIS TECHNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet SZÁMRENDSZEREK 8. ELŐDÁS 8. előadás témája a digitális rendszerekben központi szerepet

Részletesebben

2.3. Soros adatkommunikációs rendszerek CAN (Harmadik rész alapfogalmak II.)

2.3. Soros adatkommunikációs rendszerek CAN (Harmadik rész alapfogalmak II.) 2.3. Soros adatkommunikációs rendszerek CAN (Harmadik rész alapfogalmak II.) 2. Digitálistechnikai alapfogalmak II. Ahhoz, hogy valamilyen szinten követni tudjuk a CAN hálózatban létrejövő információ-átviteli

Részletesebben

Analóg és digitális jelek. Az adattárolás mértékegységei. Bit. Bájt. Nagy mennyiségû adatok mérése

Analóg és digitális jelek. Az adattárolás mértékegységei. Bit. Bájt. Nagy mennyiségû adatok mérése Analóg és digitális jelek Analóg mennyiség: Értéke tetszõleges lehet. Pl.:tömeg magasság,idõ Digitális mennyiség: Csak véges sok, elõre meghatározott értéket vehet fel. Pl.: gyerekek, feleségek száma Speciális

Részletesebben

1. forduló. 1.1. Az adat, az információ és a hír jelentése és tartalma. A kommunikáció

1. forduló. 1.1. Az adat, az információ és a hír jelentése és tartalma. A kommunikáció 1. Az információ 1.1. Az adat, az információ és a hír jelentése és tartalma. A kommunikáció A tárgyaknak mérhető és nem mérhető, számunkra fontos tulajdonságait adatnak nevezzük. Egy tárgynak sok tulajdonsága

Részletesebben

Tudnivalók az otthon kidolgozandó feladatokról

Tudnivalók az otthon kidolgozandó feladatokról Tudnivalók az otthon kidolgozandó feladatokról Otthon kidolgozandó feladat megoldásának beküldése csak azok számára kötelező, akik fölvették az Assembly programozás konzultáció kurzust. Minden hallgató,

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Fixpontos számok Pl.: előjeles kétjegyű decimális számok : Ábrázolási tartomány: [-99, +99]. Pontosság (két szomszédos szám különbsége): 1. Maximális hiba: (az ábrázolási tartományba eső) tetszőleges valós

Részletesebben

LEBEGŐPONTOS SZÁMÁBRÁZOLÁS

LEBEGŐPONTOS SZÁMÁBRÁZOLÁS LEBEGŐPONTOS SZÁMÁBRÁZOLÁS A fixpontos operandusoknak azt a hátrányát, hogy az ábrázolás adott hossza miatt csak korlátozott nagyságú és csak egész számok ábrázolhatók, a lebegőpontos számábrázolás küszöböli

Részletesebben

PC-Kismester verseny második forduló feladatai. Beküldési határidő: 2011. január 31.

PC-Kismester verseny második forduló feladatai. Beküldési határidő: 2011. január 31. PC-Kismester XIV. informatikai verseny feladatok 1. oldal, összesen: 6 5-8. osztály PC-Kismester verseny második forduló feladatai Beküldési határidő: 2011. január 31. Informatikai alapismeretek 1. Végezzétek

Részletesebben

Feladat: Indítsd el a Jegyzettömböt (vagy Word programot)! Alt + számok a numerikus billentyűzeten!

Feladat: Indítsd el a Jegyzettömböt (vagy Word programot)! Alt + számok a numerikus billentyűzeten! Jelek JEL: információs értékkel bír Csatorna: Az információ eljuttatásához szükséges közeg, ami a jeleket továbbítja a vevőhöz, Jelek típusai 1. érzékszervekkel felfogható o vizuális (látható) jelek 1D,

Részletesebben

C programozás. { Márton Gyöngyvér, 2009 } { Sapientia, Erdélyi Magyar Tudományegyetem } http://www.ms.sapientia.ro/~mgyongyi

C programozás. { Márton Gyöngyvér, 2009 } { Sapientia, Erdélyi Magyar Tudományegyetem } http://www.ms.sapientia.ro/~mgyongyi C programozás Márton Gyöngyvér, 2009 Sapientia, Erdélyi Magyar Tudományegyetem http://www.ms.sapientia.ro/~mgyongyi 1 Könyvészet Kátai Z.: Programozás C nyelven Brian W. Kernighan, D.M. Ritchie: A C programozási

Részletesebben

Aritmetikai utasítások I.

Aritmetikai utasítások I. Aritmetikai utasítások I. Az értékadó és aritmetikai utasítások során a címzési módok különböző típusaira látunk példákat. A 8086/8088-as mikroprocesszor memóriája és regiszterei a little endian tárolást

Részletesebben

A Gray-kód Bináris-kóddá alakításának leírása

A Gray-kód Bináris-kóddá alakításának leírása A Gray-kód Bináris-kóddá alakításának leírása /Mechatronikai Projekt II. házi feladat/ Bodogán János 2005. április 1. Néhány szó a kódoló átalakítókról Ezek az eszközök kiegészítő számlálók nélkül közvetlenül

Részletesebben

Számrendszerek és az informatika

Számrendszerek és az informatika Informatika tehetséggondozás 2012-2013 3. levél Az első levélben megismertétek a számrendszereket. A másodikban ízelítőt kaptatok az algoritmusos feladatokból. A harmadik levélben először megnézünk néhány

Részletesebben

Kombinációs hálózatok Számok és kódok

Kombinációs hálózatok Számok és kódok Számok és kódok A történelem folyamán kétféle számábrázolási mód alakult ki: helyiértékes számrendszerek nem helyiértékes számrendszerek n N = b i B i=0 i n b i B i B = (természetes) szám = számjegy az

Részletesebben

4. Számelmélet, számrendszerek

4. Számelmélet, számrendszerek I. Elméleti összefoglaló A maradékos osztás tétele: 4. Számelmélet, számrendszerek Legyen a tetszőleges, b pedig nullától különböző egész szám. Ekkor léteznek olyan, egyértelműen meghatározott q és r egész

Részletesebben

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros! Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása

Részletesebben

A racionális számok és a fixpontos processzorok numerikus felületének a kapcsolata

A racionális számok és a fixpontos processzorok numerikus felületének a kapcsolata 7.2.1. A racionális számok és a fixpontos processzorok numerikus felületének a kapcsolata A valósidejű jel- és képfeldolgozás területére eső alkalmazások esetében legtöbbször igény mutatkozik arra, hogy

Részletesebben

Alapismeretek. Tanmenet

Alapismeretek. Tanmenet Alapismeretek Tanmenet Alapismeretek TANMENET-Alapismeretek Témakörök Javasolt óraszám 1. Történeti áttekintés 2. Számítógépes alapfogalmak 3. A számítógép felépítése, hardver A központi egység 4. Hardver

Részletesebben

Írjon olyan programot a standard könyvtár alkalmazásával, amely konzolról megadott valós adatokból meghatározza és kiírja a minimális értékűt!

Írjon olyan programot a standard könyvtár alkalmazásával, amely konzolról megadott valós adatokból meghatározza és kiírja a minimális értékűt! Írjon olyan programot a standard könyvtár alkalmazásával, amely konzolról megadott valós adatokból meghatározza és kiírja a minimális értékűt! valós adatokat növekvő sorrendbe rendezi és egy sorba kiírja

Részletesebben

Számológép nélkül! százasokra:,,zsinór ; ezresekre:,,lótuszvirág ; tízezresekre:,,ujj ; százezresekre:

Számológép nélkül! százasokra:,,zsinór ; ezresekre:,,lótuszvirág ; tízezresekre:,,ujj ; százezresekre: Számológép nélkül! Manapság az iskolában a matematika órán szinte mindenhez megengedett a számológép használata. Persze mindezen a mai világban már meg se lepődünk, hiszen a mindennapi tevékenységeink

Részletesebben

Megoldások 4. osztály

Megoldások 4. osztály Brenyó Mihály Pontszerző Matematikaverseny Megyei döntő 2015. február 14. Megoldások 4. osztály 1. Számkeresztrejtvény: Az alábbi keresztrejtvény ábra abban különbözik a hagyományos keresztrejtvényektől,

Részletesebben

7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel?

7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? 7. Számelmélet I. Nulladik ZH-ban láttuk: 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? ELTE 2006. október 27. (matematika

Részletesebben

Digitális technika VIMIAA01

Digitális technika VIMIAA01 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Rendszerek Számítógépek

Részletesebben

DIGITÁLIS TECHNIKA BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr.

DIGITÁLIS TECHNIKA BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr. 7.4.. DIGITÁLIS TECHNIK Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet INÁRIS SZÁMRENDSZER 3. ELŐDÁS EVEZETŐ ÁTTEKINTÉS 6. előadás témája a digitális rendszerekben

Részletesebben

Digitális technika VIMIAA01

Digitális technika VIMIAA01 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK VIMIAA01 Fehér Béla BME MIT Digitális Rendszerek Számítógépek Számítógép

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

MATEMATIKAI FÜGGVÉNYEK

MATEMATIKAI FÜGGVÉNYEK MATEMATIKAI FÜGGVÉNYEK ABS Egy szám abszolút értékét adja eredményül. =ABS(32) eredménye 32, =ABS(-32) eredménye ugyancsak 32 DARABTELI Összeszámolja egy tartományban a megadott feltételeknek eleget tevő

Részletesebben

Számrendszerek. 1. ábra: C soportosítás 2-es számrendszerben. Helyiértékek: A szám leírva:

Számrendszerek. 1. ábra: C soportosítás 2-es számrendszerben. Helyiértékek: A szám leírva: . Elméleti alapok Számrendszerek.. A kettes számrendszerről Számlálás közben mi tízesével csoportosítunk (valószínűleg azért, mert ujjunk van). Ezt a számírásunk is követi. A helyiértékek: egy, tíz, száz

Részletesebben

10-es számrendszer, 2-es számrendszer, 8-as számrendszer, 16-os számr. Számjegyek, alapműveletek.

10-es számrendszer, 2-es számrendszer, 8-as számrendszer, 16-os számr. Számjegyek, alapműveletek. Számrendszerek: 10-es számrendszer, 2-es számrendszer, 8-as számrendszer, 16-os számr. Számjegyek, alapműveletek. ritmetikai műveletek egész számokkal 1. Összeadás, kivonás (egész számokkal) 2. Negatív

Részletesebben

IT - Alapismeretek. Feladatgyűjtemény

IT - Alapismeretek. Feladatgyűjtemény IT - Alapismeretek Feladatgyűjtemény Feladatok PowerPoint 2000 1. FELADAT TÖRTÉNETI ÁTTEKINTÉS Pótolja a hiányzó neveket, kifejezéseket! Az első négyműveletes számológépet... készítette. A tárolt program

Részletesebben

PC-Kismester verseny első forduló feladatai. Beküldési határidő: 2010. december 6.

PC-Kismester verseny első forduló feladatai. Beküldési határidő: 2010. december 6. PC-Kismester XIV. infrmatikai verseny feladatk 1. ldal, összesen: 6 5-8. sztály PC-Kismester verseny első frduló feladatai Beküldési határidő: 2010. december 6. Infrmatikai alapismeretek 1. Végezzétek

Részletesebben

Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged

Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged Magas szintű matematikai tehetséggondozás Elemi algebrai eszközökkel megoldható versenyfeladatok Ábrahám Gábor, Szeged Ahhoz, hogy egy diák kimagasló eredményeket érhessen el matematika versenyeken, elengedhetetlenül

Részletesebben

I. Specifikáció készítés. II. Algoritmus készítés

I. Specifikáció készítés. II. Algoritmus készítés Tartalomjegyzék I. Specifikáció készítés...2 II. Algoritmus készítés...2 Egyszerű programok...6 Beolvasásos feladatok...10 Elágazások...10 Ciklusok...1 Vegyes feladatok...1 1 I. Specifikáció készítés A

Részletesebben

26.B 26.B. Analóg és digitális mennyiségek jellemzıi

26.B 26.B. Analóg és digitális mennyiségek jellemzıi 6.B Digitális alapáramkörök Logikai alapfogalmak Definiálja a digitális és az analóg jelek fogalmát és jellemzıit! Ismertesse a kettes és a tizenhatos számrendszer jellemzıit és az átszámítási algoritmusokat!

Részletesebben

A 2013/2014 tanévi Országos Középiskolai Tanulmányi Verseny második forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória

A 2013/2014 tanévi Országos Középiskolai Tanulmányi Verseny második forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória Oktatási Hivatal A 2013/2014 tanévi Országos Középiskolai Tanulmányi Verseny második forduló javítási-értékelési útmutató INFORMATIKA II. (programozás) kategória Kérjük a tisztelt kollégákat, hogy az egységes

Részletesebben

Név Magasság Szintmagasság tető 2,700 koszorú 0,300 térdfal 1,000 födém 0,300 Fsz. alaprajz 2,700 Alap -0,800

Név Magasság Szintmagasság tető 2,700 koszorú 0,300 térdfal 1,000 födém 0,300 Fsz. alaprajz 2,700 Alap -0,800 Építész Informatika Batyu Előveszünk egy Új lapot 1. Szintek beállítása Lenullázzuk!!!!! A táblázat kitöltését az Alap szinten kezdjük az alap alsó síkjának megadásával. (-0,800) Beírni csak a táblázatba

Részletesebben

Dr. Wührl Tibor Ph.D. MsC 04 Ea. IP P címzés

Dr. Wührl Tibor Ph.D. MsC 04 Ea. IP P címzés Dr. Wührl Tibor Ph.D. MsC 04 Ea IP P címzés Csomagirányítás elve A csomagkapcsolt hálózatok esetén a kapcsolás a csomaghoz fűzött irányítási információk szerint megy végbe. Az Internet Protokoll (IP) alapú

Részletesebben

1. előadás. Adatok, számrendszerek, kódolás. Dr. Kallós Gábor

1. előadás. Adatok, számrendszerek, kódolás. Dr. Kallós Gábor 1. előadás Adatok, számrendszerek, kódolás Dr. Kallós Gábor 2014 2015 1 Tartalom Adat, információ, kód Az információ áramlásának klasszikus modellje Számrendszerek Út a 10-es számrendszerig 10-es és 2-es

Részletesebben

Á Á É ú Í Í í í ű ú í ú ú íí í ű Í Í Í í ü í í í í í Á í ü ü í í ü í í í ű í ú í ű í ű ú Í í ú ű ű í í í ű í í í í í Í ü ü í í í Á Á Á Á Á ú í í í ü ü í í í í í í í í ú Í Í í í ü í ü í í í ú í Á í ú í

Részletesebben

5. Fejezet : Lebegőpontos számok. Lebegőpontos számok

5. Fejezet : Lebegőpontos számok. Lebegőpontos számok 5. Fejezet : Lebegőpontos The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College Linda

Részletesebben

Mértékegységek a számítástechnikában

Mértékegységek a számítástechnikában Mértékegységek a számítástechnikában BIT legkisebb adattárolási egység Értékei lehetnek: 0,1. Bájt= 8 BIT a számítógép számára egységesen kezelhető legkisebb egység. (Bit,) Bájt, KiloBájt, MegaBájt, GigaBájt,

Részletesebben

I. el adás, A számítógép belseje

I. el adás, A számítógép belseje 2008. október 8. Követelmények Félévközi jegy feltétele két ZH teljesítése. Ha egy ZH nem sikerült, akkor lehetséges a pótlása. Mindkét ZH-hoz van pótlás. A pótzh körülbelül egy héttel az eredeti után

Részletesebben

(jegyzet) Bérci Norbert szeptember i óra anyaga A számrendszer alapja és a számjegyek Alaki- és helyiérték...

(jegyzet) Bérci Norbert szeptember i óra anyaga A számrendszer alapja és a számjegyek Alaki- és helyiérték... Számábrázolás és karakterkódolás (jegyzet) Bérci Norbert 2014. szeptember 15-16-i óra anyaga Tartalomjegyzék 1. Számrendszerek 1 1.1. A számrendszer alapja és a számjegyek........................ 2 1.2.

Részletesebben

Tartalom Tartalom I. rész Játékok és fejtörők: összeadás és kivonás II. rész Játékok és fejtörők: szorzás és osztás

Tartalom Tartalom I. rész Játékok és fejtörők: összeadás és kivonás II. rész Játékok és fejtörők: szorzás és osztás Tartalom Tartalom A szerzőről, a fordítóról és a lektorról.... 7 Bevezetés.................................................................... 9 Áttekintő táblázatok.... 11 I. rész Játékok és fejtörők:

Részletesebben

NUMERIKUS MÓDSZEREK PÉLDATÁR

NUMERIKUS MÓDSZEREK PÉLDATÁR EÖTVÖS LORÁND TUDOMÁNYEGYETEM INFORMATIKAI KAR NUMERIKUS MÓDSZEREK PÉLDATÁR Bozsik József, Krebsz Anna Budapest, Tartalomjegyzék Előszó............................................... 6. GÉPI SZÁMÁBRÁZOLÁS

Részletesebben

Szorzás, osztás 1000-ig. A műveletek tulajdonságai 1. Hány pötty van Erika rajzán? Írj róla összeadást és szorzást is!

Szorzás, osztás 1000-ig. A műveletek tulajdonságai 1. Hány pötty van Erika rajzán? Írj róla összeadást és szorzást is! Szorzás, osztás 1000-ig. A műveletek tulajdonságai 1. Hány pötty van Erika rajzán? Írj róla összeadást és szorzást is! Ha a zöld vonalak mentén lévő pöttyöket adod össze, akkor 5+5+5=, vagy 3 =. Ha a piros

Részletesebben

INFO1 Számok és karakterek

INFO1 Számok és karakterek INFO1 Számok és karakterek Wettl Ferenc 2015. szeptember 29. Wettl Ferenc INFO1 Számok és karakterek 2015. szeptember 29. 1 / 22 Tartalom 1 Bináris számok, kettes komplemens számábrázolás Kettes számrendszer

Részletesebben

HÁLÓZATI ISMERETEK GNS 3

HÁLÓZATI ISMERETEK GNS 3 HÁLÓZATI ISMERETEK GNS 3 Tartalomjegyzék Csatlakozás az internetre Hálózati eszközök Bináris számrendszer IP-cím Hálózati berendezések IP hierarchia Hálózati hierarchia Alhálózatok Topológiák Hálózatok

Részletesebben

Országos Középiskolai Tanulmányi Verseny, 2004/2005-ös tanév INFORMATIKA, II. (programozói) kategória második fordulójának javítási útmutatója

Országos Középiskolai Tanulmányi Verseny, 2004/2005-ös tanév INFORMATIKA, II. (programozói) kategória második fordulójának javítási útmutatója Országos Középiskolai Tanulmányi Verseny, 2004/2005-ös tanév INFORMATIKA, II. (programozói) kategória második fordulójának javítási útmutatója Kérjük a tisztelt kollégákat, hogy az egységes értékelés érdekében

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Negatív alapú számrendszerek

Negatív alapú számrendszerek 2015. március 4. Negatív számok Legyen b > 1 egy adott egész szám. Ekkor bármely N 0 egész szám egyértelműen felírható N = m a k b k k=1 alakban, ahol 0 a k < b egész szám. Negatív számok Legyen b > 1

Részletesebben

3. OSZTÁLY A TANANYAG ELRENDEZÉSE

3. OSZTÁLY A TANANYAG ELRENDEZÉSE Jelölések: 3. OSZTÁLY A TANANYAG ELRENDEZÉSE Piros főtéma Citromsárga segítő, eszköz Narancssárga előkészítő Kék önálló melléktéma Hét Gondolkodási és megismerési módszerek Problémamegoldások, modellek

Részletesebben

1. Alapfogalmak Információ o o

1. Alapfogalmak Információ o o http://fariblghu.wrdpress.cm/2011/12/31/final-exam-tpics-it/ 1. Alapfgalmak Infrmáció Adat http://fariblghu.wrdpress.cm az infrmatika nem definiált alapfgalma körülírással megfgalmazva: lyan tény, közlés,

Részletesebben

O k t a t á si Hivatal

O k t a t á si Hivatal O k t a t á si Hivatal A 2012/201 tanévi Országos Középiskolai Tanulmányi Verseny második fordulójának feladatlapja INFORMATIKÁBÓL II. (programozás) kategóriában Munkaidő: 300 perc Elérhető pontszám: 150

Részletesebben

ö Ő É ú Ú Í ü ÉÁ Í Í Í ú Ü ü ö ű ü Í Ü ű ü ű ö ű ü ö ű Í ö Í Í ű ú Í Í ű Ú ű ü ü Í ö Á ü ú Í Í Á ö Á ö Á Á ö Ü ö ű ö Ü Ú Í ü ű Ü ú ü ű ö Í Í ú ű ö Ú Á Á É Í ü ú ú É ü Íö ö ö ö ö ú ö ö ü Í ö ö ö ö Á ö ö

Részletesebben

PRÓBAÉRETTSÉGI VIZSGA

PRÓBAÉRETTSÉGI VIZSGA STUDIUM GENERALE MATEMATIKA SZEKCIÓ PRÓBAÉRETTSÉGI VIZSGA 2015. február 14. MATEMATIKA KÖZÉPSZINTŰ PRÓBAÉRETTSÉGI VIZSGA Név E-mail cím Tanárok neve Pontszám 2015. február 14. I. Időtartam: 45 perc STUDIUM

Részletesebben

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez TANMENETJAVASLAT Dr. Korányi Erzsébet MATEMATIKA tankönyv ötödikeseknek címû tankönyvéhez A heti 3 óra, évi 111 óra B heti 4 óra, évi 148 óra Javaslat témazáró dolgozatra: Dr. Korányi Erzsébet: Matematika

Részletesebben

Tömbök kezelése. Példa: Vonalkód ellenőrzőjegyének kiszámítása

Tömbök kezelése. Példa: Vonalkód ellenőrzőjegyének kiszámítása Tömbök kezelése Példa: Vonalkód ellenőrzőjegyének kiszámítása A számokkal jellemzett adatok, pl. személyi szám, adószám, taj-szám, vonalkód, bankszámlaszám esetében az elírásból származó hibát ún. ellenőrző

Részletesebben

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HATODIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HATODIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ 43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HATODIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ 1. Ismerkedj a 100 tulajdonságaival! I.) Állítsd elő a 100-at a,, b, 3, c, 4, d, 5 négyzetszám összegeként!

Részletesebben

0512. MODUL TERMÉSZETES SZÁMOK. Számrendszerek. Készítette: Pintér Klára

0512. MODUL TERMÉSZETES SZÁMOK. Számrendszerek. Készítette: Pintér Klára 0512. MODUL TERMÉSZETES SZÁMOK Számrendszerek Készítette: Pintér Klára 0512. Természetes számok Számrendszerek Tanári útmutató 2 MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási

Részletesebben

Számelmélet. 7 8. évfolyam. Szerkesztette: Blénessy Gabriella, Dobos Sándor, Fazakas Tünde, Hraskó András, Rubóczky György. 2015. október 19.

Számelmélet. 7 8. évfolyam. Szerkesztette: Blénessy Gabriella, Dobos Sándor, Fazakas Tünde, Hraskó András, Rubóczky György. 2015. október 19. Számelmélet 7 8. évfolyam Szerkesztette: Blénessy Gabriella, Dobos Sándor, Fazakas Tünde, Hraskó András, Rubóczky György 2015. október 19. Technikai munkák (MatKönyv project, TEX programozás, PHP programozás,

Részletesebben

Adattípusok. Dr. Seebauer Márta. Budapesti Műszaki Főiskola Regionális Oktatási és Innovációs Központ Székesfehérvár

Adattípusok. Dr. Seebauer Márta. Budapesti Műszaki Főiskola Regionális Oktatási és Innovációs Központ Székesfehérvár Budapesti Műszaki Főiskola Regionális Oktatási és Innovációs Központ Székesfehérvár Adattípusok Dr. Seebauer Márta főiskolai tanár seebauer.marta@roik.bmf.hu Az adatmanipulációs fa z adatmanipulációs fa

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Bit: egy bináris számjegy, vagy olyan áramkör, amely egy bináris számjegy ábrázolására alkalmas. Bájt (Byte): 8 bites egység, 8 bites szám. Előjeles fixpontok számok: 2 8 = 256 különböző 8 bites szám lehetséges.

Részletesebben

Számelmélet, 7 8. évfolyam

Számelmélet, 7 8. évfolyam Számelmélet, 7 8. évfolyam Blénessy Gabriella, Dobos Sándor, Fazakas Tünde, Hraskó András és Rubóczky György 2014. június 28. 4 TARTALOMJEGYZÉK Tartalomjegyzék Bevezetés 7 Feladatok 9 1. Bemelegítő feladatok..............................

Részletesebben

Informatika elméleti alapjai. January 17, 2014

Informatika elméleti alapjai. January 17, 2014 Szám- és kódrendszerek Informatika elméleti alapjai Horváth Árpád January 17, 2014 Contents 1 Számok és ábrázolásuk Számrendszerek Helyiérték nélküliek, pl római számok (MMVIIII) Helyiértékesek a nulla

Részletesebben

Permutációk véges halmazon (el adásvázlat, február 12.)

Permutációk véges halmazon (el adásvázlat, február 12.) Permutációk véges halmazon el adásvázlat 2008 február 12 Maróti Miklós Ennek az el adásnak a megértéséhez a következ fogalmakat kell tudni: ismétlés nélküli variáció leképezés indulási és érkezési halmaz

Részletesebben

Informatikai alkalmazások - levelező. 2013. ősz

Informatikai alkalmazások - levelező. 2013. ősz Informatikai alkalmazások - levelező 2013. ősz Követelmények 2 db a félév gyakorlati anyagához kötődő házi feladat elkészítése Egyenként 20 pont (min. 50%) Utosló alkalommal megírt dolgozat Max. 25 pont

Részletesebben

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK Telefon: 37-8900 Fax: 37-8901 43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK 1. 1. Egy osztási műveletben az osztandó és az osztó összege 89.

Részletesebben

Vetési Albert Gimnázium, Veszprém. Didaktikai feladatok. INFORMÁCIÓTECHNOLÓGIAI ALAPISMERETEK (10 óra)

Vetési Albert Gimnázium, Veszprém. Didaktikai feladatok. INFORMÁCIÓTECHNOLÓGIAI ALAPISMERETEK (10 óra) Tantárgy: INFORMATIKA Készítette: JUHÁSZ ORSOLYA Osztály: nyelvi előkészítő évfolyam Vetési Albert Gimnázium, Veszprém Heti óraszám: 3 óra Éves óraszám: 108 óra Tankönyv: dr. Dancsó Tünde Korom Pál: INFORMATIKA

Részletesebben

1 = 1x1 1+3 = 2x2 1+3+5 = 3x3 1+3+5+7 = 4x4

1 = 1x1 1+3 = 2x2 1+3+5 = 3x3 1+3+5+7 = 4x4 . Orchidea Iskola VI. Matematika verseny 0/0 II. forduló = x + = x ++ = x +++ = x Ennek ismeretében mennyivel egyenlő ++++...+9+99=? A ) 0. D ) 0 000 6 C ) 0 D ) A Földközi-tengerben a só-víz aránya :

Részletesebben

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki.

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. Számítás:. Olvassuk be két pont koordinátáit: (, y) és (2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. 2. Olvassuk be két darab két dimenziós vektor komponenseit: (a, ay) és (b, by). Határozzuk

Részletesebben

Számrendszerek, számábrázolás

Számrendszerek, számábrázolás Számrendszerek, számábrázolás Nagy Zsolt 1. Bevezetés Mindannyian, nap, mint nap használjuk a következ fogalmakat: adat, információ. Adatokkal találkozunk az utcán, a médiumokban, a boltban. Információt

Részletesebben

1. Digitális írástudás: a kőtáblától a számítógépig 2. Szedjük szét a számítógépet 1. örök 3. Szedjük szét a számítógépet 2.

1. Digitális írástudás: a kőtáblától a számítógépig 2. Szedjük szét a számítógépet 1. örök 3. Szedjük szét a számítógépet 2. Témakörök 1. Digitális írástudás: a kőtáblától a számítógépig ( a kommunikáció fejlődése napjainkig) 2. Szedjük szét a számítógépet 1. ( a hardver architektúra elemei) 3. Szedjük szét a számítógépet 2.

Részletesebben

BEVEZETÉS AZ INFORMATIKÁBA 1. rész TARTALOMJEGYZÉK

BEVEZETÉS AZ INFORMATIKÁBA 1. rész TARTALOMJEGYZÉK BEVEZETÉS AZ INFORMATIKÁBA 1. rész TARTALOMJEGYZÉK BEVEZETÉS AZ INFORMATIKÁBA 1. RÉSZ... 1 TARTALOMJEGYZÉK... 1 AZ INFORMÁCIÓ... 2 Az információ fogalma... 2 Közlemény, hír, adat, információ... 3 Az információ

Részletesebben