DIGITÁLIS TECHNIKA BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "DIGITÁLIS TECHNIKA BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr."

Átírás

1 7.4.. DIGITÁLIS TECHNIK Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet INÁRIS SZÁMRENDSZER 3. ELŐDÁS EVEZETŐ ÁTTEKINTÉS 6. előadás témája a digitális rendszerekben központi szerepet játszó számrendszerek és aritmetikák.. Számrendszerek. ináris számok 3. ritmetikai műveletek bináris számokkal jelen és a következő előadáshoz kapcsolódó jegyzetrészek: Áttekintjük a digitális technikában használatos számrendszereket, az aritmetikai műveletek elvégzésének szabályait és célszerű algoritmusait, valamint az egyes számrendszerek közti áttérések algoritmusait is. digitális rendszerekben, célszerűségi okokból a -es (bináris) számrendszer terjedt el. Mindezek sokféle digitális funkcionális egység működésének alapjait képezik. Rőmer jegyzet 46-6 old., 79-8 old. Zsom jegyzet I, 9-49 old., old. Gál könyv 3-45 old., 67- old. z előadások ezen könyvek megfelelő fejezetein alapulnak. 3 4 HELYÉRTÉK INÁRIS SZÁMRENDSZER 38 = = Szám helyértéke () = Szám alaki értéke Számjegyek:,,,3,4,5,6,7,8,9 Számjegyek:, 38 = Szám valódi értéke Számrendszer alapja: Decimális számrendszer 5 számítástechnika és a digitális technika a bináris számrendszerre épül 6

2 ES SZÁMRENDSZER kettes számrendszert Leibniz dolgozta ki, még 679-ben, majd 854-ben George oole alakította ki hozzá az algebrát. oole-féle algebrában nem csupán az összeadás és szorzás művelete lehetséges, hanem az ún. logikai műveletek is: és, vagy, negáció. -es számrendszer használatakor az adattárolás lényegesen egyszerűbben oldható meg, mint a - es számrendszerben. 936-ban R. Valtat szabadalmaztatta egy -es számrendszerben dolgozó számítógép elvét. Ebben az időben kezdett hozzá Konrad Zuse is egy -es számrendszert alkalmazó, mechanikus működésű, programvezérelt számítógép kifejlesztéséhez. Valtat és Zuse felismerte, hogy a -es számrendszer használata egyszerűsíti a HEXDECIMÁLIS SZÁMRENDSZER 3 4F = F 6 + Számjegyek:,,..., 9,,, C, D, E, F számítástechnikát = = 537 () Megkülönböztető jelölés $, pl. $4F -ES ÉS -ES SZÁMRENDSZER Pl. 9 tízes számrendszerbeli alakja azért ez, mert 9 = x 3 + x + x + 9x kettes számrendszerbeli alakja, mert 9 = x + x 9 + x 8 + x 7 + x 6 + x 5 + x 4 + x 3 + x + x + x Hexadecimális rendszerben pedig $7D9 SZÁMRENDSZEREK ÉS SZÁMJEGYEIK Megnevezés lap Számjegyek ináris (duális), Ternális 3,, Tetrális 4,,,3 Kvintális 5,,,3,4 Oktális 8,,,3,4,5,6,7 Decimális,,,3,4,5,6,7,8,9 Duodecimális,,,3,4,5,6,7,8,9,a,b Hexadecimális 6,,,3,4,5,6,7,8,9,,,C,D,E,F 9 ÁTSZÁMÍTÁS KÉT SZÁMRENDSZER KÖZÖTT Egy természetes szám átírása egyik számrendszerből a másikba: a számot elosztjuk az új rendszer alap-számával, és a maradékokat jobbról balra haladva leírjuk. Pl. 9 = x4 +, 4 = x5 +, 5 = x5 +, 5 = x5 +, 5 = x6 +, 6 = x3 +, 3 = x5 +, 5 = x7 +, 7 = x3 +, 3 = x +, = x +. Tehát -ESŐL -ESE VLÓ ÁTLKÍTÁS LGORITMUS -esből -esbe való átalakítás algoritmusa így is megfogalmazható (a kapott számjegyeket jobbról balra kell leírni): Ismételd Ha a szám páratlan, írj le -et, és vonj ki a számból -et, különben írj le -t oszd el a számot -vel amíg a szám nem

3 7.4.. POZITÍV ÉS NEGTÍV INÁRIS SZÁMOK bináris szám éppen úgy mint egy decimális szám, lehet pozitív vagy negatív. számítógépekben az előjel ábrázolása és szimbólumokkal valósul meg. plusznak, a mínusznak felel meg. Ez az ún, előjelbit, mely után következik a szám abszolút értéke. -ES KOMPLEMENS (-es kiegészítős számábrázolás) Ha egy n-bites pozitív szám (egész szám) szimbolikus jelölése N = a a... a a P n n 3 az azonos abszolút értékű negatív számé N = a a... a a Q n n 3 -ES KOMPLEMENS (-es kiegészítős számábrázolás) POZITÍV ÉS NEGTÍV NÉGYITES INÁRIS SZÁMOK ÁRÁZOLÁS pozitív számok ábrázolása azonos a két előbbi számábrázolással. Egy n-bites pozitív szám (egész szám) szimbolikus jelölése M = a a... a a P n n 3 az azonos abszolút értékű negatív számé pedig a következő összeg eredménye M = a a a a + Q n n ES SZÁMRENDSZER ELŐNYEI z áramköri megvalósítás szempontjából előnyös, hogy a leképezéséhez csak két stabil állapot szükséges, így kétállapotú elemekkel: relékkel, tranzisztorokkal, mágnesezhető elemekkel könnyen leképezhető. két egymástól távol eső stabil állapot következtében viszonylag érzéketlen a fellépő zavarokkal szemben, illetve azok könnyen elháríthatók. digitális technika természetes számrendszere a kétértékű megvalósításból adódóan is a kettes számrendszer. Ehhez jól illeszkedik a hexadecimális számrendszer. Ebben a technikában a tízes számrendszer használata, néhány kivételtől (pl. decimális számlálók) eltekintve nehézkes, és -ES SZÁMRENDSZER ELŐNYEI: MTEMTIKI SZEMPONTOK bináris számrendszer matematikai szempontból is előnyös. z aritmetikai műveletek igen egyszerűen hajthatók végre, és igen egyszerű a logikai ítéletalkotás is. Ugyanazok a számjegyek használhatók fel mind az aritmetikai, mind a logikai műveletekhez. sok helyen indokolatlan

4 S ÉS 6-OS SZÁMRENDSZER hexadecimális számrendszert kényelmi szempontból használják, pl. mert a kettes számrendszerrel nagy számokat hosszú leírni. hexadecimálisból könnyű a binárisra átváltani és viszont. hexadecimális rendszert a $ jellel is jelölik. in-hex átváltás: négy bináris számjegy egy hexa számjegyet ad ki, pl. = $F. Egy byte két hexa számjeggyel adható meg. INÁRIS ÖSSZEDÁS Két bináris számjegy + = C, S alakú bináris összeadása: S - eredeti helyértéken mutatkozó összeg (sum vagy magyarul summa), C - következő helyértékre való átvitel (carry). Igazságtábla és logikai függvények: S C S = + = C = Megvalósító elem: félösszeadó 9 FÉLÖSSZEDÓ (HLF-DDER) Feladata két bit összeadása S = + = INÁRIS ÖSSZEDÁS: FÉLÖSSZEDÓ S FÖ C S: összeg, sum C: maradék, átvitel, carry C = Félösszeadó: két bemenet és két kimenet. Két bináris számjegyet tud összeadni, előállítja az összeget és átvitelt. Nem veszi figyelembe a kisebb helyértékről jövő átvitelt. = & félösszeadó S C INÁRIS/HEXDECIMÁLIS ÖSSZEDÁS IN DEC z összeadás hasonló a -e számrendszerbelihez: két számjegyet és az előző helyértékről származó maradékot kell összeadni. z összeg egyes helyértékén lévő számot le kell írni, a kettes helyértéken lévőt tovább kell vinni. 3 TELJES ÖSSZEDÓ Funkciója két bit és az előző helyi értékből származó maradék (átvitel) összeadása C in TÖ S C out 4 4

5 7.4.. TELJES ÖSSZEDÓ (FULL DDER) Z ÖSSZEGFÜGGVÉNY (D i ) INDEX i FÜGGETLEN VÁLTOZÓKHOZ RENDELT "SÚLYOK" (4) () () i i C i- D i C i FÜGGŐ VÁLTOZÓK teljes összeadónak három bemenete, a két operandus, és az alacsonyabb hely-értékről érkező átvitel ( i, i és C i- ) és két kimenete, az összeg és az átvitel) (S i (a táblázatban D i jelöli) és C i ) van. D i = (,,4,7) C i = (3,5,6,7) 5 i (4) () () i i C i- D i sakktábla Szimmetrikus függvény D i i C i i 6 TELJES ÖSSZEDÓ EGY LEHETSÉGES MEGVLÓSÍTÁS KÉT 4-ITES SZÁM ÖSSZEDÁS Soros átvitel terjedés (ripple carry adder) i i i i Ci- 3 3 C in C in C in C in (i + i) Ci- TÖ TÖ TÖ FÖ C out S C out S C out S C out S i + i Q 3 Q Q Q ii ii + (i + i) Ci- 7 Carry flag 8 INÁRIS KIVONÁS Két bináris számjegy - = D, (K) alakú bináris kivonása: K - magasabb helyértékről vett kölcsön (borrow); D - eredeti helyértéken mutatkozó különbség (difference) K D _ D = K = 9 INÁRIS SZÁMOK KIVONÁS ináris számok kivonásának algoritmusa hasonló a decimális számokéhoz ( > ): = n n = n n-... K = K n K n-... K K D = D n D n-... (kölcsön) (különbség) a különbség i-edik bitje D i = D i ( i, i,k i+ ) az i-edik különbségnél szükséges kölcsön K i = K i ( i, i,k i+ ) és K = 3 5

6 7.4.. INÁRIS SZORZÁS z x = P bináris szorzás szorzótáblája (bináris egyszeregy ) igen egyszerű P Lényegében azonos a logikai ÉS kapcsolattal (logikai szorzás) INÁRIS SZÁMOK SZORZÁS bináris számok szorzása ugyanúgy történik, mint a decimális számoké: - ha a szorzó soronkövetkező számjegye -es, akkor összeadás következik, - ha -as, akkor nincs összeadás. Minden helyértéknél léptetjük a részletszorzatot a megfelelő irányba. 3 3 INÁRIS SZORZÁS ELVÉGZÉSE x 36 x. részletszorzat. részletszorzat összeg 3. részletszorzat összeg 4. részletszorzat végösszeg 396 Kódok, kódolás: alapfogalmak Code (m) Kód KÓD - francia szó, eredeti szűkebb értelme a rejtjellel kapcsolatos. - információ kifejezésének, közlésének, megjelenítésének egyik formája. KÓDOLÁS ÉS DEKÓDOLÁS C C C C Kódoló Dekódoló Kód Kód - információt hordozó szimbólumok, - szimbólumokból felépített szavak, - szimbólumok és szavak összekapcsolási szabályai. - előírás, mely egyazon információ két ábrázolási formája (két C) közötti kapcsolatot adja meg. hozzárendelésnek nem kell feltétlenül egyértelműen megfordíthatónak lennie. 35 ár a a kódolás és dekódolás egymással felcserélhető, a gyakorlatban kódolás ha a szokásosabb, vagy eleve adott C a kiindulási alap, és dekódolás a fordított eset. Pl. -es számrendszer -es rendszer - kódolás -es számrendszer -es rendszer - dekódolás 36 6

7 7.4.. SZIMÓLUMKÉSZLET zon elemi jelek összessége melyeket a kódolásra felhasználhatunk. Pl. tízes számrendszer (a mennyiségi információ egyik kódja): - tíz darab számjegy, - tizedesvessző, - előjel, - szóköz. Pl. bináris kód a digitális technikában: - csak két szimbólum, és. KÓDSZÓ, KÓDVEKTOR szimbólumkészletből alkotott sorozat. Definiálni kell az egyes jelek összekapcsolási, illetve az egyes szavak megkülönböztetésének szabályait. Kétértékű (bináris) kód: az alkotóelem a bit. kódszavak különböző hosszúságúak lehetnek. 8 bit byte, a kódszavak hosszát gyakran byte-ban adják meg KÓDSZÓ KÉSZLET INÁRIS ÉS NEM INÁRIS KÓDOK Egy rendszerben használt kódszavak összessége. Pl. egy beszélt nyelvben a használt összes szó. használt szavak a megengedett, az értelmetlen szavak a tiltott kódszavak. Pl. szokásos CD kód: megengedett, tiltott kódszó (tetrád, illetve pszeudotetrád). ináris kód két elemű szimbólumkészlet. Nem bináris kód többelemű szimbólumkészlet. Gyakorlati megvalósíthatóság: kétállapotú elemek előnyös tulajdonságai bináris kód KÓDOLT INFORMÁCIÓ TOVÁÍTÁS Soros átvitel Párhuzamos átvitel Vegyes üzemmód DTÁTVITEL Kódolt információ átvitele: többféle üzemmódban lehet - soros, - párhuzamos, - vegyes. Soros átvitel: csatornák száma kicsi, adatátvitel ideje nagy. Párhuzamos átvitel: egyidejűleg több csatornán. Vegyes üzemmód: a két átvitelfajta valamilyen kombinációja. z adó és vevőoldali berendezések bonyolultabbak, és költségesebbek

8 7.4.. Kódok hibavédelmi képessége datforrás Hiba felismerés feltétele: D Átvivő közeg Zaj, zavar Rendeltetési hely Hiba javítás feltétele: D 3 Általánosságban k m + k HIFELISMERŐ ÉS HIJVÍTÓ KÓDOK Legegyszerűbb hibafelismerési eljárás: paritásbit átvitele Két lehetőség Kód Paritásbit páros paritás páratlan paritás m információs bithez k ellenőrző bit szükséges HIJVÍTÁS DECIMÁLIS SZÁMJEGYEK INÁRIS KÓDOLÁS DÓ PRITÁS GEN. JEL ITEK PRITÁS IT PRITÁS VIZSG. VEVŐ PRITÁS HI JELZŐ hibajavítást blokkrendszerű adatátvitel esetén SOR és OSZLOP paritás ellenőrzésével is elvégezhetjük. Ily módon egyetlen hiba a hibás sor és oszlop Információ ábrázolás és feldolgozás: tiszta bináris (és -es, valamint -es komplemens) kód. dat be- és kivitel: tízes számrendszer. -es számrendszer egyes számjegyei (a szimbólum,,,... 9) kifejezése bináris kóddal: binárisan kódolt decimális kód inary Coded Decimal (CD) metszéspontjában van, így a hiba értékcserével javítható NORMÁL CD KÓD Természetes kód - Minden számjegyhez a 4-bites bináris kódját rendeli - Természetes helyérték: 8 4 Érvényes kódszavak PSZEUDOTETRÁDOK ZONOSÍTÁS KRNUGH TÁLÁN C Minimalizálás után P = + C d = 8a 4 + 4a 3 + a +a hat nem megengedett kombináció (,... ) neve pszeudotetrád. Nem használt, illetve érvénytelen kódszavak 47 D Hibajelző: & & C 48 8

9 7.4.. Példa: decimális CD (84) ÖSSZEDÁS CD Mivel egyetlen helyértéken sem volt az összeg 9-nél nagyobb, ezért korrekcióra nem volt szükség CD ÖSSZEDÁS: +6 KORREKCIÓ korrekció + +6 korrekció + +6 korrekció 49 5 CD (84) ÖSSZEDÁS LGORITMUS CD + CD CD = CD + bin CD Átvitel két dekád között CD KÓDÚ ÖSSZEDÁS + > 9. érvénytelen kódszó Decimális 6 (bináris ) korrekció C4 CD + CD CD = CD + bin CD + bin 6 CD ha CD + bin CD 9 ha CD + bin CD > ináris összeadó 3 C4 C S3 S S S & & 3 ináris összeadó 3 C S3 S S S S3 S S S 5 5 9

DIGITÁLIS TECHNIKA I BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr.

DIGITÁLIS TECHNIKA I BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr. 26..5. DIGITÁLIS TEHNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet INÁRIS SZÁMRENDSZER 5. ELŐDÁS 2 EVEZETŐ ÁTTEKINTÉS 6. előadás témája a digitális rendszerekben

Részletesebben

DIGITÁLIS TECHNIKA I SZÁMRENDSZEREK HELYÉRTÉK SZÁMRENDSZEREK RÓMAI SZÁMOK ÉS RENDSZERÜK. Dr. Lovassy Rita Dr.

DIGITÁLIS TECHNIKA I SZÁMRENDSZEREK HELYÉRTÉK SZÁMRENDSZEREK RÓMAI SZÁMOK ÉS RENDSZERÜK. Dr. Lovassy Rita Dr. 6..6. DIGITÁLIS TECHNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet SZÁMRENDSZEREK 8. ELŐDÁS 8. előadás témája a digitális rendszerekben központi szerepet

Részletesebben

DIGITÁLIS TECHNIKA I 6. ELİADÁS SZÁMRENDSZEREK BEVEZETİ ÁTTEKINTÉS. Római számok és rendszerük. Helyérték

DIGITÁLIS TECHNIKA I 6. ELİADÁS SZÁMRENDSZEREK BEVEZETİ ÁTTEKINTÉS. Római számok és rendszerük. Helyérték DIGITÁLIS TECHNIK I Dr. Pıdör Bálint BMF KVK Mikroelektronikai és Technológia Intézet. ELİDÁS: BINÁRIS SZÁMRENDSZER. ELİDÁS. elıadás témája a digitális rendszerekben központi szerepet játszó számrendszerek

Részletesebben

DIGITAL TECHNICS I. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute 12. LECTURE: FUNCTIONAL BUILDING BLOCKS III

DIGITAL TECHNICS I. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute 12. LECTURE: FUNCTIONAL BUILDING BLOCKS III 22.2.7. DIGITL TECHNICS I Dr. álint Pődör Óbuda University, Microelectronics and Technology Institute 2. LECTURE: FUNCTIONL UILDING LOCKS III st year Sc course st (utumn) term 22/23 (Temporary, not-edited

Részletesebben

DIGITÁLIS TECHNIKA I PÉLDA A LEGEGYSZERŰBB KONJUNKTÍV ALAK KÉPZÉSÉRE LEGEGYSZERŰBB KONJUNKTÍV ALGEBRAI ALAK. Kódok, kódolás: alapfogalmak

DIGITÁLIS TECHNIKA I PÉLDA A LEGEGYSZERŰBB KONJUNKTÍV ALAK KÉPZÉSÉRE LEGEGYSZERŰBB KONJUNKTÍV ALGEBRAI ALAK. Kódok, kódolás: alapfogalmak 206..28. DIGITÁLIS TEHNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 0. ELŐDÁS PÉLD LEGEGYSZERŰ KONJUNKTÍV LK KÉPZÉSÉRE D Három négyes és két kettes

Részletesebben

Dr. Oniga István DIGITÁLIS TECHNIKA 2

Dr. Oniga István DIGITÁLIS TECHNIKA 2 Dr. Oniga István DIGITÁLIS TECHNIKA 2 Számrendszerek A leggyakrabban használt számrendszerek: alapszám számjegyek Tízes (decimális) B = 10 0, 1, 8, 9 Kettes (bináris) B = 2 0, 1 Nyolcas (oktális) B = 8

Részletesebben

SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA

SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA BINÁRIS (kettes) ÉS HEXADECIMÁLIS (tizenhatos) SZÁMRENDSZEREK (HELYIÉRTÉK, ÁTVÁLTÁSOK, MŰVELETEK) A KETTES SZÁMRENDSZER A computerek világában a

Részletesebben

Harmadik gyakorlat. Számrendszerek

Harmadik gyakorlat. Számrendszerek Harmadik gyakorlat Számrendszerek Ismétlés Tízes (decimális) számrendszer: 2 372 =3 2 +7 +2 alakiérték valódi érték = aé hé helyiérték helyiértékek a tízes szám hatványai, a számjegyek így,,2,,8,9 Kettes

Részletesebben

Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez

Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez Sándor Tamás, sandor.tamas@kvk.bmf.hu Takács Gergely, takacs.gergo@kvk.bmf.hu Lektorálta: dr. Schuster György PhD, hal@k2.jozsef.kando.hu

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Bit: egy bináris számjegy, vagy olyan áramkör, amely egy bináris számjegy ábrázolására alkalmas. Bájt (Byte): 8 bites egység, 8 bites szám. Előjeles fixpontok számok: 2 8 = 256 különböző 8 bites szám lehetséges.

Részletesebben

Assembly programozás: 2. gyakorlat

Assembly programozás: 2. gyakorlat Assembly programozás: 2. gyakorlat Számrendszerek: Kettes (bináris) számrendszer: {0, 1} Nyolcas (oktális) számrendszer: {0,..., 7} Tízes (decimális) számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Fixpontos számok Pl.: előjeles kétjegyű decimális számok : Ábrázolási tartomány: [-99, +99]. Pontosság (két szomszédos szám különbsége): 1. Maximális hiba: (az ábrázolási tartományba eső) tetszőleges valós

Részletesebben

ÁTVÁLTÁSOK SZÁMRENDSZEREK KÖZÖTT, SZÁMÁBRÁZOLÁS, BOOLE-ALGEBRA

ÁTVÁLTÁSOK SZÁMRENDSZEREK KÖZÖTT, SZÁMÁBRÁZOLÁS, BOOLE-ALGEBRA 1. Tízes (decimális) számrendszerből: a. Kettes (bináris) számrendszerbe: Vegyük a 2634 10 -es számot, és váltsuk át bináris (kettes) számrendszerbe! A legegyszerűbb módszer: írjuk fel a számot, és húzzunk

Részletesebben

3. gyakorlat. Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F}

3. gyakorlat. Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F} 3. gyakorlat Számrendszerek: Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F} Alaki érték: 0, 1, 2,..., 9,... Helyi

Részletesebben

Összeadás BCD számokkal

Összeadás BCD számokkal Összeadás BCD számokkal Ugyanúgy adjuk össze a BCD számokat is, mint a binárisakat, csak - fel kell ismernünk az érvénytelen tetrádokat és - ezeknél korrekciót kell végrehajtani. A, Az érvénytelen tetrádok

Részletesebben

The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003

The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 . Fejezet : Számrendszerek The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach. kiadás, Irv Englander John Wiley and Sons Wilson Wong, Bentley College Linda Senne,

Részletesebben

Aritmetikai utasítások I.

Aritmetikai utasítások I. Aritmetikai utasítások I. Az értékadó és aritmetikai utasítások során a címzési módok különböző típusaira látunk példákat. A 8086/8088-as mikroprocesszor memóriája és regiszterei a little endian tárolást

Részletesebben

10-es számrendszer, 2-es számrendszer, 8-as számrendszer, 16-os számr. Számjegyek, alapműveletek.

10-es számrendszer, 2-es számrendszer, 8-as számrendszer, 16-os számr. Számjegyek, alapműveletek. Számrendszerek: 10-es számrendszer, 2-es számrendszer, 8-as számrendszer, 16-os számr. Számjegyek, alapműveletek. ritmetikai műveletek egész számokkal 1. Összeadás, kivonás (egész számokkal) 2. Negatív

Részletesebben

LOGIKAI TERVEZÉS HARDVERLEÍRÓ NYELVEN. Dr. Oniga István

LOGIKAI TERVEZÉS HARDVERLEÍRÓ NYELVEN. Dr. Oniga István LOGIKI TERVEZÉS HRDVERLEÍRÓ NYELVEN Dr. Oniga István Digitális komparátorok Két szám között relációt jelzi, (egyenlő, kisebb, nagyobb). három közül csak egy igaz Egy bites komparátor B Komb. hál. fi

Részletesebben

SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA

SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA 1 ELSŐ GYAKORLAT SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA A feladat elvégzése során a következőket fogjuk gyakorolni: Számrendszerek közti átváltás előjelesen és előjel nélkül. Bináris, decimális, hexadexcimális számrendszer.

Részletesebben

4. Fejezet : Az egész számok (integer) ábrázolása

4. Fejezet : Az egész számok (integer) ábrázolása 4. Fejezet : Az egész számok (integer) ábrázolása The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson

Részletesebben

A Gray-kód Bináris-kóddá alakításának leírása

A Gray-kód Bináris-kóddá alakításának leírása A Gray-kód Bináris-kóddá alakításának leírása /Mechatronikai Projekt II. házi feladat/ Bodogán János 2005. április 1. Néhány szó a kódoló átalakítókról Ezek az eszközök kiegészítő számlálók nélkül közvetlenül

Részletesebben

DIGITÁLIS TECHNIKA I ARITMETIKAI MŐVELETEK TETRÁD KÓDBAN ISMÉTLÉS ÉS KIEGÉSZÍTÉS ÖSSZEADÁS KÖZÖNSÉGES BCD (8421 SÚLYOZÁSÚ) KÓDBAN

DIGITÁLIS TECHNIKA I ARITMETIKAI MŐVELETEK TETRÁD KÓDBAN ISMÉTLÉS ÉS KIEGÉSZÍTÉS ÖSSZEADÁS KÖZÖNSÉGES BCD (8421 SÚLYOZÁSÚ) KÓDBAN IGITÁLIS TEHNIK I r. Pıdör álint MF KVK Mikroelektronikai és Technológia Intézet 8. ELİÁS 8. ELİÁS. Kódváltók, kódoló és dekódolók 2. Egyszerő kódátalakító (kombinációs) hálózatok 3. ináris/ és /bináris

Részletesebben

DIGITÁLIS TECHNIKA NORMÁL BCD KÓD PSZEUDOTETRÁDOK AZONOSÍTÁSA A KARNAUGH TÁBLÁN BCD (8421) ÖSSZEADÁS BCD ÖSSZEADÁS: +6 KORREKCIÓ

DIGITÁLIS TECHNIKA NORMÁL BCD KÓD PSZEUDOTETRÁDOK AZONOSÍTÁSA A KARNAUGH TÁBLÁN BCD (8421) ÖSSZEADÁS BCD ÖSSZEADÁS: +6 KORREKCIÓ DIGITÁLIS TECHNIKA Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 3. ELŐADÁS NORMÁL BCD KÓD Természetes kód - Minden számjegyhez a 4-bites bináris kódját

Részletesebben

Kombinációs hálózatok Számok és kódok

Kombinációs hálózatok Számok és kódok Számok és kódok A történelem folyamán kétféle számábrázolási mód alakult ki: helyiértékes számrendszerek nem helyiértékes számrendszerek n N = b i B i=0 i n b i B i B = (természetes) szám = számjegy az

Részletesebben

Fixpontos és lebegőpontos DSP Számrendszerek

Fixpontos és lebegőpontos DSP Számrendszerek Fixpontos és lebegőpontos DSP Számrendszerek Ha megnézünk egy DSP kinálatot, akkor észrevehetjük, hogy két nagy család van az ajánlatban, az ismert adattipus függvényében. Van fixpontos és lebegőpontos

Részletesebben

5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI

5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI 5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI 1 Kombinációs hálózatok leírását végezhetjük mind adatfolyam-, mind viselkedési szinten. Az adatfolyam szintű leírásokhoz az assign kulcsszót használjuk, a

Részletesebben

Programozott soros szinkron adatátvitel

Programozott soros szinkron adatátvitel Programozott soros szinkron adatátvitel 1. Feladat Név:... Irjon programot, mely a P1.0 kimenet egy lefutó élének időpontjában a P1.1 kimeneten egy adatbitet ad ki. A bájt legalacsonyabb helyiértéke 1.

Részletesebben

Bevezetés az informatikába gyakorló feladatok Utoljára módosítva:

Bevezetés az informatikába gyakorló feladatok Utoljára módosítva: Tartalom 1. Számrendszerek közti átváltás... 2 1.1. Megoldások... 4 2. Műveletek (+, -, bitműveletek)... 7 2.1. Megoldások... 8 3. Számítógépes adatábrázolás... 12 3.1. Megoldások... 14 A gyakorlósor lektorálatlan,

Részletesebben

Digitális technika VIMIAA01

Digitális technika VIMIAA01 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Rendszerek Számítógépek

Részletesebben

Bevezetés az informatikába

Bevezetés az informatikába Bevezetés az informatikába 4. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.

Részletesebben

Kedves Diákok! A feladatok legtöbbször egy pontot érnek. Ahol ettől eltérés van, azt külön jelöljük.

Kedves Diákok! A feladatok legtöbbször egy pontot érnek. Ahol ettől eltérés van, azt külön jelöljük. Kedves Diákok! Szeretettel köszöntünk Benneteket abból az alkalomból, hogy a Ceglédi Közgazdasági és Informatikai Szakközépiskola informatika tehetséggondozásának első levelét olvassátok! A tehetséggondozással

Részletesebben

3. óra Számrendszerek-Szg. történet

3. óra Számrendszerek-Szg. történet 3. óra Számrendszerek-Szg. történet 1byte=8 bit 2 8 =256 256-féle bináris szám állítható elő 1byte segítségével. 1 Kibibyte = 1024 byte mert 2 10 = 1024 1 Mebibyte = 1024 Kibibyte = 1024 * 1024 byte 1

Részletesebben

Alapismeretek. Tanmenet

Alapismeretek. Tanmenet Alapismeretek Tanmenet Alapismeretek TANMENET-Alapismeretek Témakörök Javasolt óraszám 1. Történeti áttekintés 2. Számítógépes alapfogalmak 3. A számítógép felépítése, hardver A központi egység 4. Hardver

Részletesebben

Számrendszerek. Bináris, hexadecimális

Számrendszerek. Bináris, hexadecimális Számrendszerek Bináris, hexadecimális Mindennapokban használt számrendszerek Decimális 60-as számrendszer az időmérésre DNS-ek vizsgálata négyes számrendszerben Tetszőleges természetes számot megadhatunk

Részletesebben

5.1.4 Laborgyakorlat: A Windows számológép használata hálózati címeknél

5.1.4 Laborgyakorlat: A Windows számológép használata hálózati címeknél 5.1.4 Laborgyakorlat: A Windows számológép használata hálózati címeknél Célok Átkapcsolás a Windows Számológép két működési módja között. A Windows Számológép használata a decimális (tízes), a bináris

Részletesebben

Negatív alapú számrendszerek

Negatív alapú számrendszerek 2015. március 4. Negatív számok Legyen b > 1 egy adott egész szám. Ekkor bármely N 0 egész szám egyértelműen felírható N = m a k b k k=1 alakban, ahol 0 a k < b egész szám. Negatív számok Legyen b > 1

Részletesebben

Digitális technika VIMIAA01

Digitális technika VIMIAA01 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK VIMIAA01 Fehér Béla BME MIT Digitális Rendszerek Számítógépek Számítógép

Részletesebben

2.3. Soros adatkommunikációs rendszerek CAN (Harmadik rész alapfogalmak II.)

2.3. Soros adatkommunikációs rendszerek CAN (Harmadik rész alapfogalmak II.) 2.3. Soros adatkommunikációs rendszerek CAN (Harmadik rész alapfogalmak II.) 2. Digitálistechnikai alapfogalmak II. Ahhoz, hogy valamilyen szinten követni tudjuk a CAN hálózatban létrejövő információ-átviteli

Részletesebben

DIGITÁLIS TECHNIKA A FÉLÉV TEMATIKAI VÁZLATA ÉS ISMERETANYAGA (1) ÁLTALÁNOS BEVEZETÉS A FÉLÉV TEMATIKAI VÁZLATA ÉS ISMERETANYAGA (3)

DIGITÁLIS TECHNIKA A FÉLÉV TEMATIKAI VÁZLATA ÉS ISMERETANYAGA (1) ÁLTALÁNOS BEVEZETÉS A FÉLÉV TEMATIKAI VÁZLATA ÉS ISMERETANYAGA (3) DIGITÁLIS TECHNIKA Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 1. ELŐADÁS: BEVEZETÉS A DIGITÁLIS TECHNIKÁBA 1. Általános bevezetés. 1. ELŐADÁS 2. Bevezetés

Részletesebben

LEBEGŐPONTOS SZÁMÁBRÁZOLÁS

LEBEGŐPONTOS SZÁMÁBRÁZOLÁS LEBEGŐPONTOS SZÁMÁBRÁZOLÁS A fixpontos operandusoknak azt a hátrányát, hogy az ábrázolás adott hossza miatt csak korlátozott nagyságú és csak egész számok ábrázolhatók, a lebegőpontos számábrázolás küszöböli

Részletesebben

26.B 26.B. Analóg és digitális mennyiségek jellemzıi

26.B 26.B. Analóg és digitális mennyiségek jellemzıi 6.B Digitális alapáramkörök Logikai alapfogalmak Definiálja a digitális és az analóg jelek fogalmát és jellemzıit! Ismertesse a kettes és a tizenhatos számrendszer jellemzıit és az átszámítási algoritmusokat!

Részletesebben

Hardverközeli programozás 1 1. gyakorlat. Kocsis Gergely 2015.02.17.

Hardverközeli programozás 1 1. gyakorlat. Kocsis Gergely 2015.02.17. Hardverközeli programozás 1 1. gyakorlat Kocsis Gergely 2015.02.17. Információk Kocsis Gergely http://irh.inf.unideb.hu/user/kocsisg 2 zh + 1 javító (a gyengébbikre) A zh sikeres, ha az elért eredmény

Részletesebben

TARTALOMJEGYZÉK. 1. BEVEZETÉS A logikai hálózatok csoportosítása Logikai rendszerek... 6

TARTALOMJEGYZÉK. 1. BEVEZETÉS A logikai hálózatok csoportosítása Logikai rendszerek... 6 TARTALOMJEGYZÉK ELŐSZÓ... 3 1. BEVEZETÉS... 4 1.1. A logikai hálózatok csoportosítása... 5 1.2. Logikai rendszerek... 6 2. SZÁMRENDSZEREK ÉS KÓDRENDSZEREK... 7 2.1. Számrendszerek... 7 2.1.1. Számok felírása

Részletesebben

(jegyzet) Bérci Norbert szeptember 10-i óra anyaga. 1. Számrendszerek A számrendszer alapja és a számjegyek

(jegyzet) Bérci Norbert szeptember 10-i óra anyaga. 1. Számrendszerek A számrendszer alapja és a számjegyek Egész számok ábrázolása (jegyzet) Bérci Norbert 2015. szeptember 10-i óra anyaga Tartalomjegyzék 1. Számrendszerek 1 1.1. A számrendszer alapja és a számjegyek........................ 1 1.2. Alaki- és

Részletesebben

Informatikai Rendszerek Alapjai

Informatikai Rendszerek Alapjai Informatikai Rendszerek Alapjai Egész és törtszámok bináris ábrázolása http://uni-obuda.hu/users/kutor/ IRA 5/1 A mintavételezett (egész) számok bináris ábrázolása 2 n-1 2 0 1 1 0 1 0 n Most Significant

Részletesebben

DIGITÁLIS TECHNIKA I PÉLDA: 3 A 8 KÖZÜL DEKÓDÓLÓ HOGYAN HASZNÁLHATÓ EGY 4/16-OS DEKÓDER 3/8-AS DEKÓDERKÉNT? D 2 3 DEKÓDER BŐVÍTÉS

DIGITÁLIS TECHNIKA I PÉLDA: 3 A 8 KÖZÜL DEKÓDÓLÓ HOGYAN HASZNÁLHATÓ EGY 4/16-OS DEKÓDER 3/8-AS DEKÓDERKÉNT? D 2 3 DEKÓDER BŐVÍTÉS DIGITÁLIS THNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai gyetem KVK Mikroelektronikai és Technológia Intézet. LŐDÁS PÉLD: KÖZÜL DKÓDÓLÓ / O O O Háromból nyolcvonalas dekódoló engedélyező bemenettel. kimeneti

Részletesebben

Az Informatika Elméleti Alapjai

Az Informatika Elméleti Alapjai Az Informatika Elméleti Alapjai dr. Kutor László Minimális redundanciájú kódok Statisztika alapú tömörítő algoritmusok http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 BMF

Részletesebben

5. Fejezet : Lebegőpontos számok. Lebegőpontos számok

5. Fejezet : Lebegőpontos számok. Lebegőpontos számok 5. Fejezet : Lebegőpontos The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College Linda

Részletesebben

1. forduló. 1.1. Az adat, az információ és a hír jelentése és tartalma. A kommunikáció

1. forduló. 1.1. Az adat, az információ és a hír jelentése és tartalma. A kommunikáció 1. Az információ 1.1. Az adat, az információ és a hír jelentése és tartalma. A kommunikáció A tárgyaknak mérhető és nem mérhető, számunkra fontos tulajdonságait adatnak nevezzük. Egy tárgynak sok tulajdonsága

Részletesebben

Matematikai alapok. Dr. Iványi Péter

Matematikai alapok. Dr. Iványi Péter Matematikai alapok Dr. Iványi Péter Számok A leggyakrabban használt adat típus Egész számok Valós számok Bináris számábrázolás Kettes számrendszer Bitek: és Byte: 8 bit 28 64 32 6 8 4 2 bináris decimális

Részletesebben

1. Kombinációs hálózatok mérési gyakorlatai

1. Kombinációs hálózatok mérési gyakorlatai 1. Kombinációs hálózatok mérési gyakorlatai 1.1 Logikai alapkapuk vizsgálata A XILINX ISE DESIGN SUITE 14.7 WebPack fejlesztőrendszer segítségével és töltse be a rendelkezésére álló SPARTAN 3E FPGA ba:

Részletesebben

5. KÓDOLÓ, KÓDÁTALAKÍTÓ, DEKÓDOLÓ ÁRAMKÖRÖK ÉS HAZÁRDOK

5. KÓDOLÓ, KÓDÁTALAKÍTÓ, DEKÓDOLÓ ÁRAMKÖRÖK ÉS HAZÁRDOK 5. KÓDOLÓ, KÓDÁTALAKÍTÓ, DEKÓDOLÓ ÁRAMKÖRÖK ÉS HAZÁRDOK A tananyag célja: a kódolással kapcsolatos alapfogalmak és a digitális technikában használt leggyakoribb típusok áttekintése ill. áramköri megoldások

Részletesebben

Békéscsabai Kemény Gábor Logisztikai és Közlekedési Szakközépiskola "Az új szakképzés bevezetése a Keményben" TÁMOP-2.2.5.

Békéscsabai Kemény Gábor Logisztikai és Közlekedési Szakközépiskola Az új szakképzés bevezetése a Keményben TÁMOP-2.2.5. Szakképesítés: Log Autószerelő - 54 525 02 iszti Tantárgy: Elektrotechnikaelektronika Modul: 10416-12 Közlekedéstechnikai alapok Osztály: 12.a Évfolyam: 12. 32 hét, heti 2 óra, évi 64 óra Ok Dátum: 2013.09.21

Részletesebben

DIGITÁLIS TECHNIKA I HÁZI FELADAT HÁZI FELADAT HÁZI FELADAT. Dr. Lovassy Rita Dr. Pődör Bálint

DIGITÁLIS TECHNIKA I HÁZI FELADAT HÁZI FELADAT HÁZI FELADAT. Dr. Lovassy Rita Dr. Pődör Bálint 6... IGITÁLIS TEHNIK I r. Lovassy Rita r. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 6. ELŐÁS rató Péter: Logikai rendszerek tervezése, Tankönyvkiadó, udapest, Műegyetemi Kiadó,

Részletesebben

Bevezetés a számítástechnikába

Bevezetés a számítástechnikába Bevezetés a számítástechnikába Beadandó feladat, kódrendszerek Fodor Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék foa@almos.vein.hu 2010 október 12.

Részletesebben

Feladat: Indítsd el a Jegyzettömböt (vagy Word programot)! Alt + számok a numerikus billentyűzeten!

Feladat: Indítsd el a Jegyzettömböt (vagy Word programot)! Alt + számok a numerikus billentyűzeten! Jelek JEL: információs értékkel bír Csatorna: Az információ eljuttatásához szükséges közeg, ami a jeleket továbbítja a vevőhöz, Jelek típusai 1. érzékszervekkel felfogható o vizuális (látható) jelek 1D,

Részletesebben

Véges állapotú gépek (FSM) tervezése

Véges állapotú gépek (FSM) tervezése Véges állapotú gépek (FSM) tervezése F1. A 2. gyakorlaton foglalkoztunk a 3-mal vagy 5-tel osztható 4 bites számok felismerésével. Abban a feladatban a bemenet bitpárhuzamosan, azaz egy időben minden adatbit

Részletesebben

Az adatkapcsolati réteg

Az adatkapcsolati réteg Az adatkapcsolati réteg Programtervező informatikus BSc Számítógép hálózatok és architektúrák előadás Az adatkapcsolati réteg A fizikai átviteli hibáinak elfedése a hálózati réteg elől Keretezés Adatfolyam

Részletesebben

Adattípusok. Dr. Seebauer Márta. Budapesti Műszaki Főiskola Regionális Oktatási és Innovációs Központ Székesfehérvár

Adattípusok. Dr. Seebauer Márta. Budapesti Műszaki Főiskola Regionális Oktatási és Innovációs Központ Székesfehérvár Budapesti Műszaki Főiskola Regionális Oktatási és Innovációs Központ Székesfehérvár Adattípusok Dr. Seebauer Márta főiskolai tanár seebauer.marta@roik.bmf.hu Az adatmanipulációs fa z adatmanipulációs fa

Részletesebben

DIGITÁLIS TECHNIKA I LOGIKAI FÜGGVÉNYEK KANONIKUS ALAKJA

DIGITÁLIS TECHNIKA I LOGIKAI FÜGGVÉNYEK KANONIKUS ALAKJA 206.0.08. IGITÁLIS TEHNIK I r. Lovassy Rita r. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 5. ELŐÁS 5. ELŐÁS. z előzőek összefoglalása: kanonikus alakok, mintermek, maxtermek,

Részletesebben

DIGITÁLIS TECHNIKA Dr. Lovassy Rita Dr. Pődör Bálint

DIGITÁLIS TECHNIKA Dr. Lovassy Rita Dr. Pődör Bálint DIGITÁLIS TECHNIKA Dr. Lovassy Rita Dr. Pődör Bálint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 6. ELŐADÁS ELŐÍRT TANKÖNYV-IRODALOM Sorrendi hálózatok, flip-flopok, regiszterek, számlálók,

Részletesebben

Jel, adat, információ

Jel, adat, információ Kommunikáció Jel, adat, információ Jel: érzékszerveinkkel, műszerekkel felfogható fizikai állapotváltozás (hang, fény, feszültség, stb.) Adat: jelekből (számítástechnikában: számokból) képzett sorozat.

Részletesebben

Híradástechikai jelfeldolgozás

Híradástechikai jelfeldolgozás Híradástechikai jelfeldolgozás 13. Előadás 015. 04. 4. Jeldigitalizálás és rekonstrukció 015. április 7. Budapest Dr. Gaál József docens BME Hálózati Rendszerek és SzolgáltatásokTanszék gaal@hit.bme.hu

Részletesebben

Hibadetektáló és javító kódolások

Hibadetektáló és javító kódolások Hibadetektáló és javító kódolások Számítógépes adatbiztonság Hibadetektálás és javítás Zajos csatornák ARQ adatblokk meghibásodási valószínségének csökkentése blokk bvítése redundáns információval Hálózati

Részletesebben

Gyakorló feladatok. /2 Maradék /16 Maradék /8 Maradék

Gyakorló feladatok. /2 Maradék /16 Maradék /8 Maradék Gyakorló feladatok Számrendszerek: Feladat: Ábrázold kettes számrendszerbe a 639 10, 16-os számrendszerbe a 311 10, 8-as számrendszerbe a 483 10 számot! /2 Maradék /16 Maradék /8 Maradék 639 1 311 7 483

Részletesebben

10. Digitális tároló áramkörök

10. Digitális tároló áramkörök 1 10. Digitális tároló áramkörök Azokat a digitális áramköröket, amelyek a bemeneteiken megjelenő változást azonnal érvényesítik a kimeneteiken, kombinációs áramköröknek nevezik. Ide tartoznak az inverterek

Részletesebben

A feladatok legtöbbször egy pontot érnek. Ahol ettől eltérés van, azt külön jelöljük.

A feladatok legtöbbször egy pontot érnek. Ahol ettől eltérés van, azt külön jelöljük. Szeretettel üdvözlünk Benneteket abból az alkalomból, hogy a Ceglédi Közgazdasági és Informatikai Szakközépiskola informatika tehetséggondozásának első levelét olvassátok! A tehetséggondozással az a célunk,

Részletesebben

AST_v3\ 3.1.3. 3.2.1.

AST_v3\ 3.1.3. 3.2.1. AST_v3\ 3.1.3. 3.2.1. Hibakezelés Az adatfolyam eddig megismert keretekre bontása hasznos és szükséges, de nem elégséges feltétele az adatok hibamentes és megfelelő sorrendű átvitelének. Az adatfolyam

Részletesebben

Informatikai Rendszerek Alapjai

Informatikai Rendszerek Alapjai Informatikai Rendszerek Alapjai Dr. Kutor László A redundancia fogalma és mérése Minimális redundanciájú kódok 1. http://uni-obuda.hu/users/kutor/ IRA 2014 könyvtár Óbudai Egyetem, NIK Dr. Kutor László

Részletesebben

DIGITÁLIS TECHNIKA 8 Dr Oniga. I stván István

DIGITÁLIS TECHNIKA 8 Dr Oniga. I stván István Dr. Oniga István DIGITÁLIS TECHNIA 8 Szekvenciális (sorrendi) hálózatok Szekvenciális hálózatok fogalma Tárolók RS tárolók tárolók T és D típusú tárolók Számlálók Szinkron számlálók Aszinkron számlálók

Részletesebben

DIGITÁLIS TECHNIKA I Dr. Lovassy Rita Dr. Pődör Bálint

DIGITÁLIS TECHNIKA I Dr. Lovassy Rita Dr. Pődör Bálint 25.5.5. DIGITÁLIS TECHNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 2. ELŐDÁS: LOGIKI (OOLE) LGER ÉS LKLMÁSI IRODLOM. ÉS 2. ELŐDÁSHO rató könyve2-8,

Részletesebben

1. INFORMATIKAI ALAPFOGALMAK HÍRKÖZLÉSI RENDSZER SZÁMRENDSZEREK... 6

1. INFORMATIKAI ALAPFOGALMAK HÍRKÖZLÉSI RENDSZER SZÁMRENDSZEREK... 6 1. INFORMATIKAI ALAPFOGALMAK... 2 1.1 AZ INFORMÁCIÓ... 2 1.2 MODELLEZÉS... 2 2. HÍRKÖZLÉSI RENDSZER... 3 2.1 REDUNDANCIA... 3 2.2 TÖMÖRÍTÉS... 3 2.3 HIBAFELISMERŐ ÉS JAVÍTÓ KÓDOK... 4 2.4 KRIPTOGRÁFIA...

Részletesebben

IT - Alapismeretek. Megoldások

IT - Alapismeretek. Megoldások IT - Alapismeretek Megoldások 1. Az első négyműveletes számológépet Leibniz és Schickard készítette. A tárolt program elve Neumann János nevéhez fűződik. Az első generációs számítógépek működése a/az

Részletesebben

DIGITÁLIS TECHNIKA I A JELTERJEDÉSI IDİK HATÁSA A KOMBINÁCIÓS HÁLÓZATOK MŐKÖDÉSÉRE A JELTERJEDÉS KÉSLELTETÉSE

DIGITÁLIS TECHNIKA I A JELTERJEDÉSI IDİK HATÁSA A KOMBINÁCIÓS HÁLÓZATOK MŐKÖDÉSÉRE A JELTERJEDÉS KÉSLELTETÉSE IGITÁLIS TEHNIK I r. Pıdör álint MF KVK Mikroelektronikai és Technológia Intézet 0. ELİÁS 0. ELİÁS. jelterjedési idık hatása a kombinációs hálózatok mőködésére 2. Kódok: hibajelzés és javítás 2008/2009

Részletesebben

IT - Alapismeretek. Feladatgyűjtemény

IT - Alapismeretek. Feladatgyűjtemény IT - Alapismeretek Feladatgyűjtemény Feladatok PowerPoint 2000 1. FELADAT TÖRTÉNETI ÁTTEKINTÉS Pótolja a hiányzó neveket, kifejezéseket! Az első négyműveletes számológépet... készítette. A tárolt program

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

Új műveletek egy háromértékű logikában

Új műveletek egy háromértékű logikában A Magyar Tudomány Napja 2012. Új műveletek egy háromértékű logikában Dr. Szász Gábor és Dr. Gubán Miklós Tartalom A probléma előzményei A hagyományos műveletek Az új műveletek koncepciója Alkalmazási példák

Részletesebben

Digitális technika VIMIAA01

Digitális technika VIMIAA01 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Technika Elméleti

Részletesebben

DIGITÁLIS TECHNIKA I. Kutatók éjszakája szeptember ÁLTALÁNOS BEVEZETÉS A TANTÁRGY IDŐRENDI BEOSZTÁSA DIGITÁLIS TECHNIKA ANGOLUL

DIGITÁLIS TECHNIKA I. Kutatók éjszakája szeptember ÁLTALÁNOS BEVEZETÉS A TANTÁRGY IDŐRENDI BEOSZTÁSA DIGITÁLIS TECHNIKA ANGOLUL DIGITÁLIS TECHNIKA I Dr. Lovassy Rita Dr. Pődör Bálint Kutatók éjszakája 2016. szeptember 30. Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet 1. ELŐADÁS: BEVEZETÉS A DIGITÁLIS TECHNIKÁBA 1

Részletesebben

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez TANMENETJAVASLAT Dr. Korányi Erzsébet MATEMATIKA tankönyv ötödikeseknek címû tankönyvéhez A heti 3 óra, évi 111 óra B heti 4 óra, évi 148 óra Javaslat témazáró dolgozatra: Dr. Korányi Erzsébet: Matematika

Részletesebben

Hobbi Elektronika. A digitális elektronika alapjai: Kombinációs logikai hálózatok 1. rész

Hobbi Elektronika. A digitális elektronika alapjai: Kombinációs logikai hálózatok 1. rész Hobbi Elektronika A digitális elektronika alapjai: Kombinációs logikai hálózatok 1. rész 1 Felhasznált anyagok M. Morris Mano and Michael D. Ciletti: Digital Design - With an Introduction to the Verilog

Részletesebben

Logikai áramkörök. Informatika alapjai-5 Logikai áramkörök 1/6

Logikai áramkörök. Informatika alapjai-5 Logikai áramkörök 1/6 Informatika alapjai-5 Logikai áramkörök 1/6 Logikai áramkörök Az analóg rendszerekben például hangerősítő, TV, rádió analóg áramkörök, a digitális rendszerekben digitális vagy logikai áramkörök működnek.

Részletesebben

2013.11.25. H=0 H=1. Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban,

2013.11.25. H=0 H=1. Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban, Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban, akkor a i (gyakorisága) = k i a i relatív gyakorisága: A jel információtartalma:

Részletesebben

A digitális analóg és az analóg digitális átalakító áramkör

A digitális analóg és az analóg digitális átalakító áramkör A digitális analóg és az analóg digitális átalakító áramkör I. rész Bevezetésként tisztázzuk a címben szereplő két fogalmat. A számítástechnikai kislexikon a következőképpen fogalmaz: digitális jel: olyan

Részletesebben

I. A Digitális Technika alapjai

I. A Digitális Technika alapjai z információ mennyisége evezetés I. Digitális Technika alapjai Pap Imre evezetés Ebben a könyvben az információfeldolgozás alapjaival ismerkedünk, elsősorban a digitális technikával, és ennek matematikai

Részletesebben

Verilog HDL ismertető 2. hét : 1. hét dia

Verilog HDL ismertető 2. hét : 1. hét dia BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Verilog HDL ismertető 2. hét : 1. hét + 15 25 dia Fehér Béla, Raikovich

Részletesebben

Számítógép architektúrák

Számítógép architektúrák Számítógép architektúrák Számítógépek felépítése Digitális adatábrázolás Digitális logikai szint Mikroarchitektúra szint Gépi utasítás szint Operációs rendszer szint Assembly nyelvi szint Probléma orientált

Részletesebben

Digitális technika VIMIAA01

Digitális technika VIMIAA01 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Rendszerek Számítógépek

Részletesebben

Számrendszerek. 1. ábra: C soportosítás 2-es számrendszerben. Helyiértékek: A szám leírva:

Számrendszerek. 1. ábra: C soportosítás 2-es számrendszerben. Helyiértékek: A szám leírva: . Elméleti alapok Számrendszerek.. A kettes számrendszerről Számlálás közben mi tízesével csoportosítunk (valószínűleg azért, mert ujjunk van). Ezt a számírásunk is követi. A helyiértékek: egy, tíz, száz

Részletesebben

2) Tervezzen Stibitz kód szerint működő, aszinkron decimális előre számlálót! A megvalósításához

2) Tervezzen Stibitz kód szerint működő, aszinkron decimális előre számlálót! A megvalósításához XIII. szekvenciális hálózatok tervezése ) Tervezzen digitális órához, aszinkron bináris előre számláló ciklus rövidítésével, 6-os számlálót! megvalósításához negatív élvezérelt T típusú tárolót és NN kaput

Részletesebben

A SZÁMÍTÓGÉP KIALAKULÁSA. Zámori Zoltán, KFKI

A SZÁMÍTÓGÉP KIALAKULÁSA. Zámori Zoltán, KFKI A SZÁMÍTÓGÉP KIALAKULÁSA Zámori Zoltán, KFKI ABACUS SZÁMLÁLÁS A MATEMATIKA ALAPJA Nézzük meg mi történik törzsvendégek esetén egy kocsmában. A pintek száma egy középkori kocsmában: Arató András Bornemissza

Részletesebben

Tudnivalók az otthon kidolgozandó feladatokról

Tudnivalók az otthon kidolgozandó feladatokról Tudnivalók az otthon kidolgozandó feladatokról Otthon kidolgozandó feladat megoldásának beküldése csak azok számára kötelező, akik fölvették az Assembly programozás konzultáció kurzust. Minden hallgató,

Részletesebben

Dr. Oniga István DIGITÁLIS TECHNIKA 4

Dr. Oniga István DIGITÁLIS TECHNIKA 4 Dr. Oniga István DIGITÁLIS TECHNIKA 4 Kombinációs logikai hálózatok Logikai hálózat = olyan hálózat, melynek bemenetei és kimenetei logikai állapotokkal jellemezhetők Kombinációs logikai hálózat: olyan

Részletesebben

Dinamikus modellek szerkezete, SDG modellek

Dinamikus modellek szerkezete, SDG modellek Diagnosztika - 3. p. 1/2 Modell Alapú Diagnosztika Diszkrét Módszerekkel Dinamikus modellek szerkezete, SDG modellek Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék Diagnosztika - 3.

Részletesebben

Megoldás Digitális technika I. (vimia102) 2. gyakorlat: Boole algebra, logikai függvények, kombinációs hálózatok alapjai

Megoldás Digitális technika I. (vimia102) 2. gyakorlat: Boole algebra, logikai függvények, kombinációs hálózatok alapjai Megoldás Digitális technika I. (vimia102) 2. gyakorlat: Boole algebra, logikai függvények, kombinációs hálózatok alapjai Elméleti anyag: Az általános digitális gép: memória + kombinációs hálózat A Boole

Részletesebben

A tervfeladat sorszáma: 1 A tervfeladat címe: ALU egység 8 regiszterrel és 8 utasítással

A tervfeladat sorszáma: 1 A tervfeladat címe: ALU egység 8 regiszterrel és 8 utasítással .. A tervfeladat sorszáma: 1 A ALU egység 8 regiszterrel és 8 utasítással Minimálisan az alábbi képességekkel rendelkezzen az ALU 8-bites operandusok Aritmetikai funkciók: összeadás, kivonás, shift, komparálás

Részletesebben

I. el adás, A számítógép belseje

I. el adás, A számítógép belseje 2008. október 8. Követelmények Félévközi jegy feltétele két ZH teljesítése. Ha egy ZH nem sikerült, akkor lehetséges a pótlása. Mindkét ZH-hoz van pótlás. A pótzh körülbelül egy héttel az eredeti után

Részletesebben

C programozás. { Márton Gyöngyvér, 2009 } { Sapientia, Erdélyi Magyar Tudományegyetem } http://www.ms.sapientia.ro/~mgyongyi

C programozás. { Márton Gyöngyvér, 2009 } { Sapientia, Erdélyi Magyar Tudományegyetem } http://www.ms.sapientia.ro/~mgyongyi C programozás Márton Gyöngyvér, 2009 Sapientia, Erdélyi Magyar Tudományegyetem http://www.ms.sapientia.ro/~mgyongyi 1 Könyvészet Kátai Z.: Programozás C nyelven Brian W. Kernighan, D.M. Ritchie: A C programozási

Részletesebben

INFO1 Számok és karakterek

INFO1 Számok és karakterek INFO1 Számok és karakterek Wettl Ferenc 2015. szeptember 29. Wettl Ferenc INFO1 Számok és karakterek 2015. szeptember 29. 1 / 22 Tartalom 1 Bináris számok, kettes komplemens számábrázolás Kettes számrendszer

Részletesebben