Kedves Diákok! A feladatok legtöbbször egy pontot érnek. Ahol ettől eltérés van, azt külön jelöljük.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Kedves Diákok! A feladatok legtöbbször egy pontot érnek. Ahol ettől eltérés van, azt külön jelöljük."

Átírás

1 Kedves Diákok! Szeretettel köszöntünk Benneteket abból az alkalomból, hogy a Ceglédi Közgazdasági és Informatikai Szakközépiskola informatika tehetséggondozásának első levelét olvassátok! A tehetséggondozással az a célunk, hogy egy kicsit megmutassuk, milyen gondolkodásmódot igényel az informatika. Ezért főleg olyan feladatokat fogtok kapni, amelyek megoldása elsősorban logikus gondolkodást igényel. A tehetséggondozás során négy feladatokat is tartalmazó levelet kaptok, az ötödik a negyedik levél megoldásait és a végeredményt ismerteti. Most pedig lássuk az első levél feladatait! A feladatok legtöbbször egy pontot érnek. Ahol ettől eltérés van, azt külön jelöljük. A ma használatos számítógépek az adatfeldolgozást teljesen elektronikusan végzik, és a kettes számrendszert használják. Mi az a kettes (bináris) számrendszer? A tízes (decimális) számrendszerben 10 db számjegy van 0-tól 9-ig, a nyolcas (oktális) számrendszerben 8 db (0-tól 7-ig), a tizenhatos (hexadecimális) számrendszerben 16 db (0-tól 15-ig), a kettes (bináris) számrendszerben 2 db (a 0 és az 1). Miért pont a bináris számrendszert használjuk? Ennek egyik oka a bináris, kétállapotú számjegyek egyszerű előállíthatósága: a számítógép elektromos alkatrészeiben pl. van feszültség(1)/nincs feszültség(0), CD vagy DVD felületének adott pontján van-e kis gödör, azaz pit. Másik oka az egyszerű műveletvégzési lehetőség. A számítógépek számára megoldandó matematikai problémákat a lehető legegyszerűbb lépésekre kell felbontani, ezért általában az elvégzendő műveleteket összeadások sorozatára vezetik vissza. 1

2 A következő táblázat az első 16 természetes szám alakját mutatja a különböző számrendszerekben: decimális bináris hexadecimális A B C D E F A tíz számot a hexadecimális számjegyek írásához az ábécé nagybetűivel pótoljuk ki. A különböző számrendszerekhez tartozó számokat úgy különböztetjük meg, hogy a decimálist nem jelöljük, a többi számrendszert pedig a szám mellett, alsó indexbe téve jelöljük. Pl.: 13 = = D 16 Számrendszerek közötti átváltások Mielőtt rátérnénk a számrendszerek közötti átváltásra, gondoljuk végig, hogyan lesz számjegyekből érték a tízes számrendszerben. A tízes számrendszer A számrendszer alapja a 10, minden számjegyet a helyi értékének megfelelő hatvánnyal szorzok meg, és ezeket az értékeket összeadom. Nézzünk egy példát erre: A 8592-es számot a 10 hatványaival így írhatjuk fel: Decimális számjegy Helyiértékek Felbontás 8*10 3 5*10 2 9*10 1 2*10 0 Decimális érték =8592 Ha az így kapott számokat összeadjuk, pontosan 8592-őt kapunk. Átváltás binárisból decimális számrendszerbe Kettes számrendszernél ugyanazt az elvet követjük, mint a tízes számrendszernél, de itt a számrendszer alapja a 2, tehát 2 hatványaival számolunk. 2

3 A számjegyek helyiértékeit a következő táblázatban láthatod: 2 n Pl.: mennyi az szám értéke tízes számrendszerben? Bináris számjegy Helyiértékek Felbontás 1*128 0*64 1*32 1*16 1*8 0*4 1*2 1*1 Decimális érték =187 Ha a számokat összeadjuk 187-et kapunk = 187 A szabály tehát a következő: egész számok esetén a legkisebb helyiértéken levő számtól kezdve jobbról balra haladunk, a legkisebb helyiértéken levő számot szorozzuk a számrendszer alapszámát jelentő szám (itt a 2) nulladik hatványával, a balra következő számot az alapszám első hatványával, a következőt a 2. hatványával és így tovább. A kapott számokat összeadjuk és megkapjuk a bináris szám decimális megfelelőjét. Átváltás decimális számrendszerből bináris számrendszerbe A tízes számrendszerbeli számokat kettővel való maradékos osztással alakíthatjuk át a legegyszerűbben bináris számrendszerbe. Az átalakítandó decimális számot elosztjuk kettővel, leírjuk az egészrészt, feljegyezzük a maradékot, és addig folytatjuk az egészrész kettővel való osztását, míg nullát nem kapunk. A maradékként kapott egyeseket és nullákat alulról felfelé sorrendben egymás mellé írva megkapjuk a bináris számot. Lássuk a példát erre! Alakítsuk át a 87-et bináris számrendszerbe! Művelet Egészrész Maradék 87 87: : : : : : :2 0 1 Ne feledd, az egészrész osztását addig folytatjuk, míg nullát nem kapunk! Tehát 87 = Feladat: Alakítsd át a következő bináris számokat decimális számrendszerbe! 5 pont 2. feladat = 3. feladat = 4. feladat = 5. feladat = 6. feladat = 3

4 Feladat: Alakítsd át a következő decimális számokat bináris számrendszerbe! 5 pont 7. feladat 6= 8. feladat 29= 9. feladat 93= 10. feladat 127= 11. feladat 245= Feladat: Figyelembe véve az átváltásról leírt szabályokat váltsd át a következő hexadecimális (tizenhatos számrendszerbeli) számokat decimálissá! (2 pontos feladatok!) 6 pont 12. feladat = 13. feladat C1 16 = 14. feladat 2AF 16 = Megkérdezhetnéd, mi köze van a számrendszereknek az informatikához? Meglehetősen sok köze van. Például, amikor számítógéppel dolgozunk, akkor kívánságainkat legtöbbször utasításokkal adjuk tudtára. Az utasítások szavakból, azok betűkből és más karakterekből állnak. Ezeket a karaktereket a számítógép számára is tárolható formára kell alakítani. A számítógép minden adatot egyesek és nullák sorozataként tárol. A kettes számrendszerhez kapcsolódik a következő fogalom: bit = az a legkisebb adategység, amelyen két állapot megkülönböztethető. A számítógép az adatokat bitekre, tehát a legkisebb adategységre lebontva tárolja. Az egy biten megkülönböztethető két állapot megfelel a bináris számrendszer két számjegyének: 0 és 1. Ha egy biten két állapot különböztethető meg, akkor hány lehetséges 2 biten, esetleg 3 biten? megkülönböztethető megkülönböztethető bitek száma jelek száma jelek = = = Az összefüggést láthatjuk a táblázat alapján: 4

5 A megkülönböztethető jelek száma kettőnek annyiadik hatványa, ahány bit áll rendelkezésünkre. Három biten még nem ábrázolható az összes karakter. 4 biten 2 4 =16, 5 biten 2 5 =32, 6 biten 2 6 =64, 7 biten 2 7 =128 és 8 biten 2 8 =256 jelsorozat különböztethető meg. 256 féle jel elegendőnek bizonyult a legtöbb karakter ábrázolásához, ezért a 8 bitből álló egységet elnevezték bájtnak (byte) és ma ez az adattárolás logikai alapegysége. Tehát minden karakter egy bájtot foglal el. Feladat: Jegyzettömbbe írd be a saját neved egy sorba és a sor végén nyomj ENTER-t. Mentsd el a szöveget és nézd meg, hogy hány bájtból áll. 3 pont 15. feladat Indokold meg, hogy miért pont annyiból. Amikor valamilyen mértékegységről beszélünk, akkor tapasztalhatjuk, hogy vannak alap mértékegységek és annak többszörösei. Pl. a gramm 10-szerese a dekagramm, 1000 szerese a kilogramm. A bájtnak is vannak többszörösei, ezek sorban a következők: kilobájt (KB), megabájt (MB), gigabájt (GB), terrabájt (TB). A váltószám közöttük az 1024 (2 10 =1024). Tehát összefoglalva: Mértékegység B (byte) kb (kilobyte) MB (megabyte) GB (gigabyte) TB (terabyte) PB (petabyte) EB (exabyte) Adatmennyiség 8 bit 1024 byte 1024 kb 1024 MB 1024 GB 1024 TB 1024 PB Feladat: Végezd el a következő átváltásokat! (2 pontos feladatok!) 10 pont 16. feladat 36 KB=... bájt 17. feladat 4 GB=... MB=...KB 18. feladat 23 MB=... KB=... bájt 19. feladat 5 TB=...MB=...KB 20. feladat 200 MB=... bájt Vajon mennyi adat fér el egy floppy lemezen, egy CD lemezen vagy egy 2 GB-os pendriveon? Hogy megtudjátok, oldjátok meg a következő feladatokat 5

6 Feladat: Egy floppy lemez kapacitása 1440 KB, egy CD lemezé 700 MB. Egy A4-es méretű géppapírra átlagosan 45 sort gépelünk. Egy sorba pedig 80 karaktert írunk. 6 pont 21. feladat Hány oldalnyi gépelt szöveg fér el a floppy lemezen, ha csak a karaktereket tároljuk? (2 pont) 22. feladat Hány oldalnyit tudunk tárolni egy CD lemezen? (2 pont) 23. feladat És hány oldalnyi fér egy 2 GB-os pendrive-ra? (2 pont) Elég sok, ugye? Az elérhető pontszám 35. A megoldásokat -ben kérem! Cím: Aki informatikából jelentkezik tehetséggondozásra, attól elvárható, hogy legyen címe. Ha esetleg valakinek nincs, akkor kérje meg a tanárát, hogy segítsen készíteni egyet. Fontos, hogy mindenkinek saját címe legyen. Az tárgya mindenkinél a következőképpen nézzen ki: tehetséggondozás saját név Ha pl. valakit Kovács Józsefnek hívnak, akkor: tehetséggondozás Kovács József Az elején mindenkitől kérek egy rövid bemutatkozást (legalább a nevét és az iskoláját írja be mindenki)! A feladatokra adott válaszokat úgy kérem, hogy: 1) válasz az első kérdésre 2) válasz a második kérdésre és így tovább. Beküldési határidő: június 10. A következő feladatot ben kapjátok meg szeptemberében, (fontos a jó cím). Jó munkát kívánok! Senkeiné Baranyai Judit 6

A feladatok legtöbbször egy pontot érnek. Ahol ettől eltérés van, azt külön jelöljük.

A feladatok legtöbbször egy pontot érnek. Ahol ettől eltérés van, azt külön jelöljük. Szeretettel üdvözlünk Benneteket abból az alkalomból, hogy a Ceglédi Közgazdasági és Informatikai Szakközépiskola informatika tehetséggondozásának első levelét olvassátok! A tehetséggondozással az a célunk,

Részletesebben

Számrendszerek és az informatika

Számrendszerek és az informatika Informatika tehetséggondozás 2012-2013 3. levél Az első levélben megismertétek a számrendszereket. A másodikban ízelítőt kaptatok az algoritmusos feladatokból. A harmadik levélben először megnézünk néhány

Részletesebben

ÁTVÁLTÁSOK SZÁMRENDSZEREK KÖZÖTT, SZÁMÁBRÁZOLÁS, BOOLE-ALGEBRA

ÁTVÁLTÁSOK SZÁMRENDSZEREK KÖZÖTT, SZÁMÁBRÁZOLÁS, BOOLE-ALGEBRA 1. Tízes (decimális) számrendszerből: a. Kettes (bináris) számrendszerbe: Vegyük a 2634 10 -es számot, és váltsuk át bináris (kettes) számrendszerbe! A legegyszerűbb módszer: írjuk fel a számot, és húzzunk

Részletesebben

Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez

Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez Sándor Tamás, sandor.tamas@kvk.bmf.hu Takács Gergely, takacs.gergo@kvk.bmf.hu Lektorálta: dr. Schuster György PhD, hal@k2.jozsef.kando.hu

Részletesebben

Assembly programozás: 2. gyakorlat

Assembly programozás: 2. gyakorlat Assembly programozás: 2. gyakorlat Számrendszerek: Kettes (bináris) számrendszer: {0, 1} Nyolcas (oktális) számrendszer: {0,..., 7} Tízes (decimális) számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális

Részletesebben

Harmadik gyakorlat. Számrendszerek

Harmadik gyakorlat. Számrendszerek Harmadik gyakorlat Számrendszerek Ismétlés Tízes (decimális) számrendszer: 2 372 =3 2 +7 +2 alakiérték valódi érték = aé hé helyiérték helyiértékek a tízes szám hatványai, a számjegyek így,,2,,8,9 Kettes

Részletesebben

SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA

SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA BINÁRIS (kettes) ÉS HEXADECIMÁLIS (tizenhatos) SZÁMRENDSZEREK (HELYIÉRTÉK, ÁTVÁLTÁSOK, MŰVELETEK) A KETTES SZÁMRENDSZER A computerek világában a

Részletesebben

Számrendszerek. Bináris, hexadecimális

Számrendszerek. Bináris, hexadecimális Számrendszerek Bináris, hexadecimális Mindennapokban használt számrendszerek Decimális 60-as számrendszer az időmérésre DNS-ek vizsgálata négyes számrendszerben Tetszőleges természetes számot megadhatunk

Részletesebben

SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA

SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA 1 ELSŐ GYAKORLAT SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA A feladat elvégzése során a következőket fogjuk gyakorolni: Számrendszerek közti átváltás előjelesen és előjel nélkül. Bináris, decimális, hexadexcimális számrendszer.

Részletesebben

5.1.4 Laborgyakorlat: A Windows számológép használata hálózati címeknél

5.1.4 Laborgyakorlat: A Windows számológép használata hálózati címeknél 5.1.4 Laborgyakorlat: A Windows számológép használata hálózati címeknél Célok Átkapcsolás a Windows Számológép két működési módja között. A Windows Számológép használata a decimális (tízes), a bináris

Részletesebben

(jegyzet) Bérci Norbert szeptember 10-i óra anyaga. 1. Számrendszerek A számrendszer alapja és a számjegyek

(jegyzet) Bérci Norbert szeptember 10-i óra anyaga. 1. Számrendszerek A számrendszer alapja és a számjegyek Egész számok ábrázolása (jegyzet) Bérci Norbert 2015. szeptember 10-i óra anyaga Tartalomjegyzék 1. Számrendszerek 1 1.1. A számrendszer alapja és a számjegyek........................ 1 1.2. Alaki- és

Részletesebben

Jelátalakítás és kódolás

Jelátalakítás és kódolás Jelátalakítás és kódolás Információ, adat, kódolás Az információ valamely jelenségre vonatkozó értelmes közlés, amely új ismereteket szolgáltat az információ felhasználójának. Valójában információnak tekinthető

Részletesebben

Dr. Oniga István DIGITÁLIS TECHNIKA 2

Dr. Oniga István DIGITÁLIS TECHNIKA 2 Dr. Oniga István DIGITÁLIS TECHNIKA 2 Számrendszerek A leggyakrabban használt számrendszerek: alapszám számjegyek Tízes (decimális) B = 10 0, 1, 8, 9 Kettes (bináris) B = 2 0, 1 Nyolcas (oktális) B = 8

Részletesebben

LEBEGŐPONTOS SZÁMÁBRÁZOLÁS

LEBEGŐPONTOS SZÁMÁBRÁZOLÁS LEBEGŐPONTOS SZÁMÁBRÁZOLÁS A fixpontos operandusoknak azt a hátrányát, hogy az ábrázolás adott hossza miatt csak korlátozott nagyságú és csak egész számok ábrázolhatók, a lebegőpontos számábrázolás küszöböli

Részletesebben

1. forduló. 1.1. Az adat, az információ és a hír jelentése és tartalma. A kommunikáció

1. forduló. 1.1. Az adat, az információ és a hír jelentése és tartalma. A kommunikáció 1. Az információ 1.1. Az adat, az információ és a hír jelentése és tartalma. A kommunikáció A tárgyaknak mérhető és nem mérhető, számunkra fontos tulajdonságait adatnak nevezzük. Egy tárgynak sok tulajdonsága

Részletesebben

3. gyakorlat. Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F}

3. gyakorlat. Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F} 3. gyakorlat Számrendszerek: Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F} Alaki érték: 0, 1, 2,..., 9,... Helyi

Részletesebben

Bevezetés az informatikába gyakorló feladatok Utoljára módosítva:

Bevezetés az informatikába gyakorló feladatok Utoljára módosítva: Tartalom 1. Számrendszerek közti átváltás... 2 1.1. Megoldások... 4 2. Műveletek (+, -, bitműveletek)... 7 2.1. Megoldások... 8 3. Számítógépes adatábrázolás... 12 3.1. Megoldások... 14 A gyakorlósor lektorálatlan,

Részletesebben

The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003

The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 . Fejezet : Számrendszerek The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach. kiadás, Irv Englander John Wiley and Sons Wilson Wong, Bentley College Linda Senne,

Részletesebben

Hardverközeli programozás 1 1. gyakorlat. Kocsis Gergely 2015.02.17.

Hardverközeli programozás 1 1. gyakorlat. Kocsis Gergely 2015.02.17. Hardverközeli programozás 1 1. gyakorlat Kocsis Gergely 2015.02.17. Információk Kocsis Gergely http://irh.inf.unideb.hu/user/kocsisg 2 zh + 1 javító (a gyengébbikre) A zh sikeres, ha az elért eredmény

Részletesebben

IT - Alapismeretek. Feladatgyűjtemény

IT - Alapismeretek. Feladatgyűjtemény IT - Alapismeretek Feladatgyűjtemény Feladatok PowerPoint 2000 1. FELADAT TÖRTÉNETI ÁTTEKINTÉS Pótolja a hiányzó neveket, kifejezéseket! Az első négyműveletes számológépet... készítette. A tárolt program

Részletesebben

I. el adás, A számítógép belseje

I. el adás, A számítógép belseje 2008. október 8. Követelmények Félévközi jegy feltétele két ZH teljesítése. Ha egy ZH nem sikerült, akkor lehetséges a pótlása. Mindkét ZH-hoz van pótlás. A pótzh körülbelül egy héttel az eredeti után

Részletesebben

Számrendszerek. 1. ábra: C soportosítás 2-es számrendszerben. Helyiértékek: A szám leírva:

Számrendszerek. 1. ábra: C soportosítás 2-es számrendszerben. Helyiértékek: A szám leírva: . Elméleti alapok Számrendszerek.. A kettes számrendszerről Számlálás közben mi tízesével csoportosítunk (valószínűleg azért, mert ujjunk van). Ezt a számírásunk is követi. A helyiértékek: egy, tíz, száz

Részletesebben

Informatikai Rendszerek Alapjai

Informatikai Rendszerek Alapjai Informatikai Rendszerek Alapjai Egész és törtszámok bináris ábrázolása http://uni-obuda.hu/users/kutor/ IRA 5/1 A mintavételezett (egész) számok bináris ábrázolása 2 n-1 2 0 1 1 0 1 0 n Most Significant

Részletesebben

Alapfogalmak. ember@vodafone.hu

Alapfogalmak. ember@vodafone.hu Alapfogalmak 1 Mértékegységek Bit kettes számrendszerbeli számjegy értéke 0 vagy 1 lehet Byte (bájt) 8 bitből álló bináris szám, a számítástechnika alapegységként kezeli Egy bájton ábrázolható legegyszerűbben

Részletesebben

IT - Alapismeretek. Megoldások

IT - Alapismeretek. Megoldások IT - Alapismeretek Megoldások 1. Az első négyműveletes számológépet Leibniz és Schickard készítette. A tárolt program elve Neumann János nevéhez fűződik. Az első generációs számítógépek működése a/az

Részletesebben

PC-Kismester verseny második forduló feladatai. Beküldési határidő: 2011. január 31.

PC-Kismester verseny második forduló feladatai. Beküldési határidő: 2011. január 31. PC-Kismester XIV. informatikai verseny feladatok 1. oldal, összesen: 6 5-8. osztály PC-Kismester verseny második forduló feladatai Beküldési határidő: 2011. január 31. Informatikai alapismeretek 1. Végezzétek

Részletesebben

Feladat: Indítsd el a Jegyzettömböt (vagy Word programot)! Alt + számok a numerikus billentyűzeten!

Feladat: Indítsd el a Jegyzettömböt (vagy Word programot)! Alt + számok a numerikus billentyűzeten! Jelek JEL: információs értékkel bír Csatorna: Az információ eljuttatásához szükséges közeg, ami a jeleket továbbítja a vevőhöz, Jelek típusai 1. érzékszervekkel felfogható o vizuális (látható) jelek 1D,

Részletesebben

4. Fejezet : Az egész számok (integer) ábrázolása

4. Fejezet : Az egész számok (integer) ábrázolása 4. Fejezet : Az egész számok (integer) ábrázolása The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson

Részletesebben

Számrendszerek. A római számok írására csak hét jelt használtak. Ezek segítségével, jól meghatározott szabályok szerint képezték a különböz számokat.

Számrendszerek. A római számok írására csak hét jelt használtak. Ezek segítségével, jól meghatározott szabályok szerint képezték a különböz számokat. Számrendszerek A római számok írására csak hét jelt használtak Ezek segítségével, jól meghatározott szabályok szerint képezték a különböz számokat Római számjegyek I V X L C D M E számok értéke 1 5 10

Részletesebben

S z á m í t á s t e c h n i k a i a l a p i s m e r e t e k

S z á m í t á s t e c h n i k a i a l a p i s m e r e t e k S z á m í t á s t e c h n i k a i a l a p i s m e r e t e k T a r t a l o m Mintafeladatok... 4 Számrendszerek, logikai mőveletek... 4 Gyakorló feladatok... 19 Számrendszerek, logikai mőveletek... 19 Megoldások...

Részletesebben

C programozás. { Márton Gyöngyvér, 2009 } { Sapientia, Erdélyi Magyar Tudományegyetem } http://www.ms.sapientia.ro/~mgyongyi

C programozás. { Márton Gyöngyvér, 2009 } { Sapientia, Erdélyi Magyar Tudományegyetem } http://www.ms.sapientia.ro/~mgyongyi C programozás Márton Gyöngyvér, 2009 Sapientia, Erdélyi Magyar Tudományegyetem http://www.ms.sapientia.ro/~mgyongyi 1 Könyvészet Kátai Z.: Programozás C nyelven Brian W. Kernighan, D.M. Ritchie: A C programozási

Részletesebben

Informatikai alkalmazások - levelező. 2013. ősz

Informatikai alkalmazások - levelező. 2013. ősz Informatikai alkalmazások - levelező 2013. ősz Követelmények 2 db a félév gyakorlati anyagához kötődő házi feladat elkészítése Egyenként 20 pont (min. 50%) Utosló alkalommal megírt dolgozat Max. 25 pont

Részletesebben

Jel, adat, információ

Jel, adat, információ Kommunikáció Jel, adat, információ Jel: érzékszerveinkkel, műszerekkel felfogható fizikai állapotváltozás (hang, fény, feszültség, stb.) Adat: jelekből (számítástechnikában: számokból) képzett sorozat.

Részletesebben

2.3. Soros adatkommunikációs rendszerek CAN (Harmadik rész alapfogalmak II.)

2.3. Soros adatkommunikációs rendszerek CAN (Harmadik rész alapfogalmak II.) 2.3. Soros adatkommunikációs rendszerek CAN (Harmadik rész alapfogalmak II.) 2. Digitálistechnikai alapfogalmak II. Ahhoz, hogy valamilyen szinten követni tudjuk a CAN hálózatban létrejövő információ-átviteli

Részletesebben

DIGITÁLIS TECHNIKA I BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr.

DIGITÁLIS TECHNIKA I BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr. 26..5. DIGITÁLIS TEHNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet INÁRIS SZÁMRENDSZER 5. ELŐDÁS 2 EVEZETŐ ÁTTEKINTÉS 6. előadás témája a digitális rendszerekben

Részletesebben

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros! Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Fixpontos számok Pl.: előjeles kétjegyű decimális számok : Ábrázolási tartomány: [-99, +99]. Pontosság (két szomszédos szám különbsége): 1. Maximális hiba: (az ábrázolási tartományba eső) tetszőleges valós

Részletesebben

3. óra Számrendszerek-Szg. történet

3. óra Számrendszerek-Szg. történet 3. óra Számrendszerek-Szg. történet 1byte=8 bit 2 8 =256 256-féle bináris szám állítható elő 1byte segítségével. 1 Kibibyte = 1024 byte mert 2 10 = 1024 1 Mebibyte = 1024 Kibibyte = 1024 * 1024 byte 1

Részletesebben

Név:... Kód:... 1. LEVÉL INFORMATIKA TEHETSÉGGONDOZÁS 2011

Név:... Kód:... 1. LEVÉL INFORMATIKA TEHETSÉGGONDOZÁS 2011 Név:... Kód:... Szeretettel üdvözlünk Benneteket abból az alkalomból, hogy az informatika tehetséggondozás első levelét olvassátok. A tehetséggondozással az a célunk, hogy egy kicsit megmutassuk, hogy

Részletesebben

1. Digitális írástudás: a kőtáblától a számítógépig 2. Szedjük szét a számítógépet 1. örök 3. Szedjük szét a számítógépet 2.

1. Digitális írástudás: a kőtáblától a számítógépig 2. Szedjük szét a számítógépet 1. örök 3. Szedjük szét a számítógépet 2. Témakörök 1. Digitális írástudás: a kőtáblától a számítógépig ( a kommunikáció fejlődése napjainkig) 2. Szedjük szét a számítógépet 1. ( a hardver architektúra elemei) 3. Szedjük szét a számítógépet 2.

Részletesebben

Fixpontos és lebegőpontos DSP Számrendszerek

Fixpontos és lebegőpontos DSP Számrendszerek Fixpontos és lebegőpontos DSP Számrendszerek Ha megnézünk egy DSP kinálatot, akkor észrevehetjük, hogy két nagy család van az ajánlatban, az ismert adattipus függvényében. Van fixpontos és lebegőpontos

Részletesebben

7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel?

7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? 7. Számelmélet I. Nulladik ZH-ban láttuk: 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? ELTE 2006. október 27. (matematika

Részletesebben

Alapismeretek. Tanmenet

Alapismeretek. Tanmenet Alapismeretek Tanmenet Alapismeretek TANMENET-Alapismeretek Témakörök Javasolt óraszám 1. Történeti áttekintés 2. Számítógépes alapfogalmak 3. A számítógép felépítése, hardver A központi egység 4. Hardver

Részletesebben

Aritmetikai utasítások I.

Aritmetikai utasítások I. Aritmetikai utasítások I. Az értékadó és aritmetikai utasítások során a címzési módok különböző típusaira látunk példákat. A 8086/8088-as mikroprocesszor memóriája és regiszterei a little endian tárolást

Részletesebben

PC-Kismester verseny első forduló feladatai. Beküldési határidő: 2010. december 6.

PC-Kismester verseny első forduló feladatai. Beküldési határidő: 2010. december 6. PC-Kismester XIV. infrmatikai verseny feladatk 1. ldal, összesen: 6 5-8. sztály PC-Kismester verseny első frduló feladatai Beküldési határidő: 2010. december 6. Infrmatikai alapismeretek 1. Végezzétek

Részletesebben

informatika: Az információ keletkezésével, továbbításával, tárolásával és feldolgozásával foglalkozó tudomány.

informatika: Az információ keletkezésével, továbbításával, tárolásával és feldolgozásával foglalkozó tudomány. INFORMATIKA KISOKOS informatika: Az információ keletkezésével, továbbításával, tárolásával és feldolgozásával foglalkozó tudomány. információ: Olyan új ismeret, ami a korábbi tudásunkra épül. információs

Részletesebben

1. Fejtsd meg a keresztrejtvényt! Írd le, mit tudsz a függőleges sorban olvasható

1. Fejtsd meg a keresztrejtvényt! Írd le, mit tudsz a függőleges sorban olvasható 20. Fővárosi Informatika lkalmazói Tanulmány Verseny 2010/11. Elméleti feladatlap Szövegszerkesztés kategória Név:. Kerület: 1. Fejtsd meg a keresztrejtvényt! Írd le, mit tudsz a függőleges sorban olvasható

Részletesebben

DIGITÁLIS TECHNIKA I SZÁMRENDSZEREK HELYÉRTÉK SZÁMRENDSZEREK RÓMAI SZÁMOK ÉS RENDSZERÜK. Dr. Lovassy Rita Dr.

DIGITÁLIS TECHNIKA I SZÁMRENDSZEREK HELYÉRTÉK SZÁMRENDSZEREK RÓMAI SZÁMOK ÉS RENDSZERÜK. Dr. Lovassy Rita Dr. 6..6. DIGITÁLIS TECHNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet SZÁMRENDSZEREK 8. ELŐDÁS 8. előadás témája a digitális rendszerekben központi szerepet

Részletesebben

Analóg és digitális jelek. Az adattárolás mértékegységei. Bit. Bájt. Nagy mennyiségû adatok mérése

Analóg és digitális jelek. Az adattárolás mértékegységei. Bit. Bájt. Nagy mennyiségû adatok mérése Analóg és digitális jelek Analóg mennyiség: Értéke tetszõleges lehet. Pl.:tömeg magasság,idõ Digitális mennyiség: Csak véges sok, elõre meghatározott értéket vehet fel. Pl.: gyerekek, feleségek száma Speciális

Részletesebben

A Gray-kód Bináris-kóddá alakításának leírása

A Gray-kód Bináris-kóddá alakításának leírása A Gray-kód Bináris-kóddá alakításának leírása /Mechatronikai Projekt II. házi feladat/ Bodogán János 2005. április 1. Néhány szó a kódoló átalakítókról Ezek az eszközök kiegészítő számlálók nélkül közvetlenül

Részletesebben

INFO1 Számok és karakterek

INFO1 Számok és karakterek INFO1 Számok és karakterek Wettl Ferenc 2014. szeptember 9. Wettl Ferenc INFO1 Számok és karakterek 2014. szeptember 9. 1 / 17 Tartalom 1 Bináris számok, kettes komplemens számábrázolás Kettes számrendszer

Részletesebben

ÖSSZEFOGLALÁS. FÜZET Tk. 7-52.o.; 77-81.o.; 87-91.o.

ÖSSZEFOGLALÁS. FÜZET Tk. 7-52.o.; 77-81.o.; 87-91.o. ÖSSZEFOGLALÁS FÜZET Tk. 7-52.o.; 77-81.o.; 87-91.o. HÁLÓZATOK Fejlődése Számítógép-hálózatok Hálózattípusok Szerver Átviteli sebesség Topológia és típusai Terminál Gépek összekapcsolási módja PAN (=Personal

Részletesebben

A racionális számok és a fixpontos processzorok numerikus felületének a kapcsolata

A racionális számok és a fixpontos processzorok numerikus felületének a kapcsolata 7.2.1. A racionális számok és a fixpontos processzorok numerikus felületének a kapcsolata A valósidejű jel- és képfeldolgozás területére eső alkalmazások esetében legtöbbször igény mutatkozik arra, hogy

Részletesebben

(jegyzet) Bérci Norbert szeptember i óra anyaga A számrendszer alapja és a számjegyek Alaki- és helyiérték...

(jegyzet) Bérci Norbert szeptember i óra anyaga A számrendszer alapja és a számjegyek Alaki- és helyiérték... Számábrázolás és karakterkódolás (jegyzet) Bérci Norbert 2014. szeptember 15-16-i óra anyaga Tartalomjegyzék 1. Számrendszerek 1 1.1. A számrendszer alapja és a számjegyek........................ 2 1.2.

Részletesebben

DIGITÁLIS TECHNIKA I 6. ELİADÁS SZÁMRENDSZEREK BEVEZETİ ÁTTEKINTÉS. Római számok és rendszerük. Helyérték

DIGITÁLIS TECHNIKA I 6. ELİADÁS SZÁMRENDSZEREK BEVEZETİ ÁTTEKINTÉS. Római számok és rendszerük. Helyérték DIGITÁLIS TECHNIK I Dr. Pıdör Bálint BMF KVK Mikroelektronikai és Technológia Intézet. ELİDÁS: BINÁRIS SZÁMRENDSZER. ELİDÁS. elıadás témája a digitális rendszerekben központi szerepet játszó számrendszerek

Részletesebben

1. tétel. A kommunikáció információelméleti modellje. Analóg és digitális mennyiségek. Az információ fogalma, egységei. Informatika érettségi (diák)

1. tétel. A kommunikáció információelméleti modellje. Analóg és digitális mennyiségek. Az információ fogalma, egységei. Informatika érettségi (diák) 1. tétel A kommunikáció információelméleti modellje. Analóg és digitális mennyiségek. Az információ fogalma, egységei Ismertesse a kommunikáció általános modelljét! Mutassa be egy példán a kommunikációs

Részletesebben

Negatív alapú számrendszerek

Negatív alapú számrendszerek 2015. március 4. Negatív számok Legyen b > 1 egy adott egész szám. Ekkor bármely N 0 egész szám egyértelműen felírható N = m a k b k k=1 alakban, ahol 0 a k < b egész szám. Negatív számok Legyen b > 1

Részletesebben

Számrendszerek, számábrázolás

Számrendszerek, számábrázolás Számrendszerek, számábrázolás Nagy Zsolt 1. Bevezetés Mindannyian, nap, mint nap használjuk a következ fogalmakat: adat, információ. Adatokkal találkozunk az utcán, a médiumokban, a boltban. Információt

Részletesebben

BEVEZETÉS AZ INFORMATIKÁBA 1. rész TARTALOMJEGYZÉK

BEVEZETÉS AZ INFORMATIKÁBA 1. rész TARTALOMJEGYZÉK BEVEZETÉS AZ INFORMATIKÁBA 1. rész TARTALOMJEGYZÉK BEVEZETÉS AZ INFORMATIKÁBA 1. RÉSZ... 1 TARTALOMJEGYZÉK... 1 AZ INFORMÁCIÓ... 2 Az információ fogalma... 2 Közlemény, hír, adat, információ... 3 Az információ

Részletesebben

Gyakorló feladatok. /2 Maradék /16 Maradék /8 Maradék

Gyakorló feladatok. /2 Maradék /16 Maradék /8 Maradék Gyakorló feladatok Számrendszerek: Feladat: Ábrázold kettes számrendszerbe a 639 10, 16-os számrendszerbe a 311 10, 8-as számrendszerbe a 483 10 számot! /2 Maradék /16 Maradék /8 Maradék 639 1 311 7 483

Részletesebben

Informatikai alapismeretek

Informatikai alapismeretek PC-Kismester XIII. informatikai verseny feladatok 1. oldal, összesen: 5 5-8. osztály Országos Pc-Kismester Verseny első forduló feladatai! Beküldési határidő: 2009.12. 04. A válaszokat CD lemezen kérjük

Részletesebben

Számold meg a pontokat A bináris számok

Számold meg a pontokat A bináris számok 1. Foglalkozás Számold meg a pontokat A bináris számok Tartalom A számítógépekben az adatokat nullák és egyesek sorozataként tároljuk és továbbítjuk. Hogyan tudjuk ábrázolni a szavakat és a számokat pusztán

Részletesebben

Adattípusok. Dr. Seebauer Márta. Budapesti Műszaki Főiskola Regionális Oktatási és Innovációs Központ Székesfehérvár

Adattípusok. Dr. Seebauer Márta. Budapesti Műszaki Főiskola Regionális Oktatási és Innovációs Központ Székesfehérvár Budapesti Műszaki Főiskola Regionális Oktatási és Innovációs Központ Székesfehérvár Adattípusok Dr. Seebauer Márta főiskolai tanár seebauer.marta@roik.bmf.hu Az adatmanipulációs fa z adatmanipulációs fa

Részletesebben

M/74. közismereti informatika írásbeli (teszt) érettségi vizsgához

M/74. közismereti informatika írásbeli (teszt) érettségi vizsgához OKTATÁSI MINISZTÉRIUM Világbanki Középiskolák 2003. M/74 Elbírálási útmutató közismereti informatika írásbeli (teszt) érettségi vizsgához Tételszám Megoldás Pontszám Tételszám Megoldás Pontszám 1. B 2

Részletesebben

26.B 26.B. Analóg és digitális mennyiségek jellemzıi

26.B 26.B. Analóg és digitális mennyiségek jellemzıi 6.B Digitális alapáramkörök Logikai alapfogalmak Definiálja a digitális és az analóg jelek fogalmát és jellemzıit! Ismertesse a kettes és a tizenhatos számrendszer jellemzıit és az átszámítási algoritmusokat!

Részletesebben

4. évfolyam A feladatsor

4. évfolyam A feladatsor Név: 4. évfolyam A feladatsor Osztály: Kedves Vizsgázó! Olvasd el figyelmesen a feladatokat, gondold át a megoldások menetét! Eredményes, sikeres munkát kívánunk!. a) Írd le számjegyekkel! Rendezd a számokat

Részletesebben

Mértékegységek a számítástechnikában

Mértékegységek a számítástechnikában Mértékegységek a számítástechnikában BIT legkisebb adattárolási egység Értékei lehetnek: 0,1. Bájt= 8 BIT a számítógép számára egységesen kezelhető legkisebb egység. (Bit,) Bájt, KiloBájt, MegaBájt, GigaBájt,

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

1. INFORMATIKAI ALAPFOGALMAK HÍRKÖZLÉSI RENDSZER SZÁMRENDSZEREK... 6

1. INFORMATIKAI ALAPFOGALMAK HÍRKÖZLÉSI RENDSZER SZÁMRENDSZEREK... 6 1. INFORMATIKAI ALAPFOGALMAK... 2 1.1 AZ INFORMÁCIÓ... 2 1.2 MODELLEZÉS... 2 2. HÍRKÖZLÉSI RENDSZER... 3 2.1 REDUNDANCIA... 3 2.2 TÖMÖRÍTÉS... 3 2.3 HIBAFELISMERŐ ÉS JAVÍTÓ KÓDOK... 4 2.4 KRIPTOGRÁFIA...

Részletesebben

4. Számelmélet, számrendszerek

4. Számelmélet, számrendszerek I. Elméleti összefoglaló A maradékos osztás tétele: 4. Számelmélet, számrendszerek Legyen a tetszőleges, b pedig nullától különböző egész szám. Ekkor léteznek olyan, egyértelműen meghatározott q és r egész

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

Bevezetés az informatikába

Bevezetés az informatikába Bevezetés az informatikába 2. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.

Részletesebben

Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó. Második félév. Tizenegyedik, javított kiadás Mozaik Kiadó Szeged, 2013

Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó. Második félév. Tizenegyedik, javított kiadás Mozaik Kiadó Szeged, 2013 Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó Második félév Tizenegyedik, javított kiadás Mozaik Kiadó Szeged, 0 SZORZÁS ÉS OSZTÁS -VEL Mesélj a képrõl! Hány kerékpár és kerék van a képen?

Részletesebben

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk.

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk. Osztók és többszörösök 1783. A megadott számok elsõ tíz többszöröse: 3: 3 6 9 12 15 18 21 24 27 30 4: 4 8 12 16 20 24 28 32 36 40 5: 5 10 15 20 25 30 35 40 45 50 6: 6 12 18 24 30 36 42 48 54 60 1784. :

Részletesebben

A háttértárak a program- és adattárolás eszközei.

A háttértárak a program- és adattárolás eszközei. A háttértárak a program- és adattárolás eszközei. Míg az operatív memória (RAM) csak ideiglenesen, legfeljebb a gép kikapcsolásáig őrzi meg tartalmát, a háttértárolókon nagy mennyiségű adat akár évtizedekig

Részletesebben

1. előadás. Adatok, számrendszerek, kódolás. Dr. Kallós Gábor

1. előadás. Adatok, számrendszerek, kódolás. Dr. Kallós Gábor 1. előadás Adatok, számrendszerek, kódolás Dr. Kallós Gábor 2014 2015 1 Tartalom Adat, információ, kód Az információ áramlásának klasszikus modellje Számrendszerek Út a 10-es számrendszerig 10-es és 2-es

Részletesebben

10-es számrendszer, 2-es számrendszer, 8-as számrendszer, 16-os számr. Számjegyek, alapműveletek.

10-es számrendszer, 2-es számrendszer, 8-as számrendszer, 16-os számr. Számjegyek, alapműveletek. Számrendszerek: 10-es számrendszer, 2-es számrendszer, 8-as számrendszer, 16-os számr. Számjegyek, alapműveletek. ritmetikai műveletek egész számokkal 1. Összeadás, kivonás (egész számokkal) 2. Negatív

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

SZAKKÖZÉPISKOLAI VERSENYEK SZAKMAI ALAPISMERETEK TÉTEL

SZAKKÖZÉPISKOLAI VERSENYEK SZAKMAI ALAPISMERETEK TÉTEL FŐVÁROSI SZAKMAI TANULMÁNYI VERSENY SZAKKÖZÉPISKOLAI VERSENYEK INFORMATIKAI SZAKMACSOPORT SZAKMAI ALAPISMERETEK TÉTEL Rendelkezésre álló idő: 90 perc Elérhető pontszám: 60 pont 2007-2008. FŐVÁROSI PEDAGÓGIAI

Részletesebben

INFORMATIKA MATEMATIKAI ALAPJAI

INFORMATIKA MATEMATIKAI ALAPJAI INFORMATIKA MATEMATIKAI ALAPJAI Készítette: Kiss Szilvia ZKISZ informatikai szakcsoport Az információ 1. Az információ fogalma Az érzékszerveinken keresztül megszerzett új ismereteket információnak nevezzük.

Részletesebben

Számítógép felépítése

Számítógép felépítése Alaplap, processzor Számítógép felépítése Az alaplap A számítógép teljesítményét alapvetően a CPU és belső busz sebessége (a belső kommunikáció sebessége), a memória mérete és típusa, a merevlemez sebessége

Részletesebben

Programozott soros szinkron adatátvitel

Programozott soros szinkron adatátvitel Programozott soros szinkron adatátvitel 1. Feladat Név:... Irjon programot, mely a P1.0 kimenet egy lefutó élének időpontjában a P1.1 kimeneten egy adatbitet ad ki. A bájt legalacsonyabb helyiértéke 1.

Részletesebben

Dr. Wührl Tibor Ph.D. MsC 04 Ea. IP P címzés

Dr. Wührl Tibor Ph.D. MsC 04 Ea. IP P címzés Dr. Wührl Tibor Ph.D. MsC 04 Ea IP P címzés Csomagirányítás elve A csomagkapcsolt hálózatok esetén a kapcsolás a csomaghoz fűzött irányítási információk szerint megy végbe. Az Internet Protokoll (IP) alapú

Részletesebben

IBAN: INTERNATIONAL BANK ACCOUNT NUMBER. I. Az IBAN formái

IBAN: INTERNATIONAL BANK ACCOUNT NUMBER. I. Az IBAN formái IBAN: INTERNATIONAL BANK ACCOUNT NUMBER A EUROPEAN COMMITTEE FOR BANKING STANDARDS (ECBS) által 2001. februárban kiadott, EBS204 V3 jelű szabvány rögzíti a nemzetközi számlaszám formáját, valamint eljárást

Részletesebben

2. Számítógépek működési elve. Bevezetés az informatikába. Vezérlés elve. Külső programvezérlés... Memória. Belső programvezérlés

2. Számítógépek működési elve. Bevezetés az informatikába. Vezérlés elve. Külső programvezérlés... Memória. Belső programvezérlés . Számítógépek működési elve Bevezetés az informatikába. előadás Dudásné Nagy Marianna Az általánosan használt számítógépek a belső programvezérlés elvén működnek Külső programvezérlés... Vezérlés elve

Részletesebben

2. témakör: Számhalmazok

2. témakör: Számhalmazok 2. témakör: Számhalmazok Olvassa el figyelmesen az elméleti áttekintést, és értelmezze megoldási lépéseket, a definíciókat, tételeket. Próbálja meg a minta feladatokat megoldani! Feldolgozáshoz szükségesidö:

Részletesebben

Informatika Elméleti. Adatok tárolása a számítógépen INFORMATIKA KASSITZKY TAMÁS 1

Informatika Elméleti. Adatok tárolása a számítógépen INFORMATIKA KASSITZKY TAMÁS 1 Informatika Elméleti Tananyagok Adatok tárolása a számítógépen INFORMATIKA KASSITZKY TAMÁS 1 Adatok tárolása A számítógépes munkáink során sűrűn találkozunk azzal a jelenséggel, hogy az elkészült munkát

Részletesebben

Számítógép architektúrák

Számítógép architektúrák Számítógép architektúrák Számítógépek felépítése Digitális adatábrázolás Digitális logikai szint Mikroarchitektúra szint Gépi utasítás szint Operációs rendszer szint Assembly nyelvi szint Probléma orientált

Részletesebben

A számítógépek felépítése. A számítógép felépítése

A számítógépek felépítése. A számítógép felépítése A számítógépek felépítése A számítógépek felépítése A számítógépek felépítése a mai napig is megfelel a Neumann elvnek, vagyis rendelkezik számoló egységgel, tárolóval, perifériákkal. Tápegység 1. Tápegység:

Részletesebben

Informatika elméleti alapjai. January 17, 2014

Informatika elméleti alapjai. January 17, 2014 Szám- és kódrendszerek Informatika elméleti alapjai Horváth Árpád January 17, 2014 Contents 1 Számok és ábrázolásuk Számrendszerek Helyiérték nélküliek, pl római számok (MMVIIII) Helyiértékesek a nulla

Részletesebben

3. Az országos mérés-értékelés eredményei, évenként feltüntetve

3. Az országos mérés-értékelés eredményei, évenként feltüntetve 3. Az országos mérés-értékelés eredményei, évenként feltüntetve 4. évfolyam-okév 2005/2006. tanév: Ebben a tanévben első alkalommal mértek a 4. évfolyamon különböző készségeket és ezek gyakorlottságát.

Részletesebben

DIGITÁLIS TECHNIKA BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr.

DIGITÁLIS TECHNIKA BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr. 7.4.. DIGITÁLIS TECHNIK Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet INÁRIS SZÁMRENDSZER 3. ELŐDÁS EVEZETŐ ÁTTEKINTÉS 6. előadás témája a digitális rendszerekben

Részletesebben

Vektorok. Octave: alapok. A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István

Vektorok. Octave: alapok. A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Vektorok A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Octave: alapok Az octave mint számológép: octave:##> 2+2 ans = 4 Válasz elrejtése octave:##> 2+2; octave:##> + - / * () Hatványozás:

Részletesebben

Mechatronika Modul 1: Alapismeretek

Mechatronika Modul 1: Alapismeretek Mechatronika Modul : Alapismeretek Oktatói segédlet (Elképzelés) Készítették: Matthias Römer Chemnitz-i Műszaki Egyetem, Szerszámgépek és Gyártási Folyamatok Intézete, Németország Cser Adrienn Corvinus

Részletesebben

elektronikus adattárolást memóriacím

elektronikus adattárolást memóriacím MEMÓRIA Feladata A memória elektronikus adattárolást valósít meg. A számítógép csak olyan műveletek elvégzésére és csak olyan adatok feldolgozására képes, melyek a memóriájában vannak. Az információ tárolása

Részletesebben

Egész számok. pozitív egész számok: 1; 2; 3; 4;... negatív egész számok: 1; 2; 3; 4;...

Egész számok. pozitív egész számok: 1; 2; 3; 4;... negatív egész számok: 1; 2; 3; 4;... Egész számok természetes számok ( ) pozitív egész számok: 1; 2; 3; 4;... 0 negatív egész számok: 1; 2; 3; 4;... egész számok ( ) 1. Írd a következõ számokat a halmazábra megfelelõ helyére! 3; 7; +6 ; (

Részletesebben

Informatika 11. el adás: Hardver

Informatika 11. el adás: Hardver Informatika 1 1. el adás: Hardver Kovács Kristóf prezentációjának felhasználásával Budapesti M szaki és Gazdaságtudományi Egyetem 2015-09-08 Követelmények 3 ZH 5. 9. 14. héten egyenként 20 pontot érnek

Részletesebben

BÖLCS BAGOLY LEVELEZŐS MATEMATIKAVERSENY IV. forduló MEGOLDÁSOK

BÖLCS BAGOLY LEVELEZŐS MATEMATIKAVERSENY IV. forduló MEGOLDÁSOK IV. forduló 1. Hány olyan legfeljebb 5 jegyű, 5-tel nem osztható természetes szám van, amelynek minden jegye prím? Mivel a feladatban számjegyekről van szó, akkor az egyjegyű prímszámokról lehet szó: 2;

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Bit: egy bináris számjegy, vagy olyan áramkör, amely egy bináris számjegy ábrázolására alkalmas. Bájt (Byte): 8 bites egység, 8 bites szám. Előjeles fixpontok számok: 2 8 = 256 különböző 8 bites szám lehetséges.

Részletesebben

Szám- és kódrendszerek

Szám- és kódrendszerek Informatikai rendszerek alapjai Óbudai Egyetem Alba Regia M szaki Kar (AMK) Székesfehérvár 2015. november 27. 1 Számok és ábrázolásuk 2 3 Vektorgrakus ábrák Rasztergrakus ábrák Színek, felbontások Vázlat

Részletesebben