Adattípusok. Dr. Seebauer Márta. Budapesti Műszaki Főiskola Regionális Oktatási és Innovációs Központ Székesfehérvár

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Adattípusok. Dr. Seebauer Márta. Budapesti Műszaki Főiskola Regionális Oktatási és Innovációs Központ Székesfehérvár"

Átírás

1 Budapesti Műszaki Főiskola Regionális Oktatási és Innovációs Központ Székesfehérvár Adattípusok Dr. Seebauer Márta főiskolai tanár

2 Az adatmanipulációs fa z adatmanipulációs fa két szempontból hasznos: egyrészt tartalmazza a potenciális formákat és lehetőségeket másrészt ennek bizonyos részfái megmutatják pl. az adott konkrét implementációs modell (az adott processzor) lehetőségeit. z architektúrának az egyik központi kérdése, ogy mely adattípusok kezelését támogatja. Az dattípusok fontosságát jelzi az is, hogy az datmanipulációs fa legfelsőbb szintjét éppen az dattípusok foglalják el. támogatott adattípusok halmazát az architektúra élzott alkalmazási területe határozza meg. inden architektúra támogatja a fixpontos és a ogikai adattípusokat, az üzleti alkalmazások a angsúlyt a BCD-kódra és a karakter sztringre elyezik, a tudományos alkalmazások és a realime alkalmazások többsége a lebegőpontos brázolást is magukban foglalják. másik oldalról a választást behatárolja: az alkalmazott technológia és a költségek figyelembe vétele. Data types (T) Adattípusok Operations (O) Mûveletek Operand-types (R) Utasítás-típusok Addressing modes(a) Címzési módok Codes (C) Kódok DMT FP * /.. rrr rmr mmm.. ((R)+D) ((PC)+D) ((RI)+D) ((PC)+D).. IOOIIOO......

3 Adattípusok adattípusok elemi adattípusok adatszerkezetek (adatstruktúrák) Az adatszerkezetek elemi adatokból épülnek fel. Az elemi adatnak nincs szerkezete, egyes részeit nem tudjuk külön kezelni. Adatszerkezetekről általában a memóriával kapcsolatban beszélhetünk: az adatszerkezet állhat azonos típusú elemekből (tömb, vektor, szöveg, verem, sor, lista, fa, amelyeknek a leggyakrabban alkalmazott fajtája a bináris fa, és a halmaz) állhat különböző típusú részekből, a részeket egyenként kell megadni (rekord) állhat többféle típusú részekből, de a részekre osztás is többféleképpen történhet (alternatív szerkezet).

4 Elemi adattípusok Elemi adattípusok Numerikus Nem numerikus Előjeles Nem előjeles Alfanumerikus Logikai Öndefiniáló Fixpontos Karakter Jelölt Lebegőpontos Sztring Deszkriptoros Binárisan kódolt decimális Összetett

5 Fixpontos adattípusok Fixpontos 1 byte 8 bit Félszó 16 bit Szó 32 bit Dupla szó 64 bit Quadszó 128 bit Előjeles Előjel nélküli Abszolút értékes Egyes komplemens Kettes komplemens Többletes

6 Előjel nélküli fixpontos tárolási formák MSB LSB fixpontos egész n 0 A 2 1 n bináris pont MSB LSB fixpontos tört 0 A 1 2 n bináris pont n

7 Negatív bináris számok Abszolút értékes kód Az előjelbit 0 pozitív szám 1 negatív szám a soron következõ bitek jelzik a szám abszolút értékét. Érték kód Előjelbit: 0: + 1: - Decimális érték Bináris kód

8 Negatív bináris számok Inverz vagy egyes komplemens egy egyszerű inverz-képzés Érték +127 kód Előjelbit: 0: + 1: Decimális érték Bináris kód

9 Negatív bináris számok Kettes komplemens inverzképzés és hozzáadunk 1-et az LSB-hez (8 biten 256 db értéket lehet ábrázolni) Érték +127 kód Előjelbit: 0: + 1: Decimális érték Bináris kód

10 Negatív bináris számok Érték m-1 többletes vagy Additív kód (eltolt nullájú kód) Például a 128-többletes kód kód -128 Decimális érték Bináris kód

11 Lebegőpontos adattípusok Lebegőpontos adatok Normalizált Nem normalizált Hexadecimális radix Bináris radix Egyszeres Dupla Kiterjesztett Négyszeres

12 Előjel nélküli lebegőpontos tárolás MSB LSB MSB LSB karakterisztika bináris pont mantissza (m) előjel nélküli lebegőpontos szám 1 m A < 1 2

13 IEEE 754 szabvány a lebegőpontos számok ábrázolására A lebegőpontos számok normalizált formája s - a mantissza (fixpontos) előjele 0, ha a szám pozitív, 1, ha negatív a az egyesekre normalizált mantissza törtrésze p a karakterisztika eredeti értéke e az eltolás (többlet) értéke, melynek nagysága 2 m-1-1, ahol m=8, 11, 15 A különböző pontosságú számok ábrázolási formája A s ± p+ e = ( 1) (1. a) 2 Előjel Mantissza Karakterisztika Egyszeres pontosság 32 bit 1 bit 23 bit 8 bit Dupla pontosság 64 bit 1 bit 52 bit 11 bit Kiterjesztett pontosság 80 bit 1 bit 64 bit 15 bit Négyszeres pontosság 128 bit 1 bit 112 bit 15 bit

14 Előjeles lebegőpontos adatformátum szignifikandus előjele egyszeres és dupla pontosságú szignifikandus előjele karakterisztika bináris pont 1 szignifikandus kiterjesztett pontosságú karakterisztika bináris pont szignifikandus Szignifikandus előjele 0 vagy 1 Karakterisztika számábrázolási módja 2 m-1-1 többletes (m=8, 11, 15) Szignifikandus fixpontos, egyesekre normalizált törtszám, így a mantissza 1 és 2 közé eső törtszám, amelynek egész részét egyszeres és dupla pontosságú formátumban nem ábrázolnak (rejtett bit). Aritmetikai műveletek végrehajtásához a hardver vagy a szoftver a rejtett bitet valóságossá alakítja a karakterisztikát kettes komplemensű kódra alakítja előjelet megduplázza

15 Lebegőpontos számábrázolási tartományok Negatív úlcsordulás Kifejezhető negatív számok Negatív alulcsordulás Pozitív alulcsordulás Túlcsordulás kezelése ± a = a / = 0 a / 0 = / = NaN Kifejezhető pozitív számok Pozitív túlcsordulás Legnagyobb negatív normalizált szám Nulla Legkisebb negatív normalizált szám Legkisebb pozitív normalizált szám Legnagyobb pozitív normalizált szám Egyszeres pontosság: ±1, ±3, Dupla pontosság: ±2, ±1,

16 IEEE 754 szerinti adatformátumok szignifikandus előjele karakterisztika szignifikandus 0<Kitevő<Max tetszőleges számérték normalizált 0 nem nulla számérték denormalizált 0 0 +/- nulla /- végtelen nem nulla számérték nem szám (NaN)

17 LSB inkrementálása Kerekítés A LSB utáni érték elhagyása A A 2 A 1 0 A 1 A 2 Pontos érték Ha az elvégzett művelet eredménye nem ábrázolható (pl. szorzat), kerekítést kell alkalmazni a legközelebbi ábrázolható számértékre; ha a távolság egyforma, akkor páros értékű számra, LSB=0 0 érték felé + vagy - felé Ha a kerekítéskor előálló számérték nem ábrázolható, akkor a processzor kivételt kezdeményez ha A maximális érték A 2 túlcsordulást ha A minimális érték A 1 alulcsordulást eredményez.

18 Bináris kódolt decimális számrendszerek Decimális számjegy BCD kód Gray kód Aiken kód Stibitz kód 2 az 5-ből kód

19 Decimális számjegy BCD kód Gray kód Hamming távolság Hamming távolság 4 1 Decimális számjegy Gray kód

20 BCD kódok BCD Pakolt Zónázott EBCDIC ASCII Változó Fix hosszúságú

21 BCD kód Elsősorban az adminisztratív jellegű alkalmazásoknál használatos, mivel megfelel a felhasználó adatábrázolásának. A konvertálása a belső ábrázolási formából a külsőbe és vissza könnyű, ami ezeknél az alkalmazásoknál elnyomja a komplexebb és ezért lassúbb belső műveleteket (+-*/). Általában csupán néhány és egyszerűbb műveletet rendelnek a BCD számokhoz. a pakolt decimális formátum, amely minden bájtot két 4-bites mezőre (tetrád) bont, ezek mindegyike tartalmaz egy-egy BCD számjegyet. A belső műveletekhez - a hatékonysága miatt - ez az formátum használatos leginkább. BCD BCD BCD BCD BCD Előjel a zónázott formátumnál szintén minden bájtot felosztunk két 4-bites mezőre, a zóna (Z) és a szám (BCD) mezőre, és egy bájt egyetlen számjegyet specifikál. A zóna mezőt úgy választják meg, hogy a Z-BCD mező nyomtatható karakterkombinációt adjon. Egyébként a zóna mező számára ASCII kódban a 3 16 EBCDIC kódban az F 16 gyakran használatos. LSB Z BCD Z BCD Előjel BCD LSB

22 Az előjel kezelése BCD formátumban - az előjel állhat a legmagasabb helyiértéken, ami egyszerűsíti az outputot, pl. a nyomtatóra; - az előjel állhat a legalacsonyabb helyiértéken, ami egyszerűsíti az aritmetikai műveleteket, mivel az mindig a legalacsonyabb helyiértéken kezdődik, és fontos ismerni már a művelet elején mindkét operandus előjelét - pakolt formátumnál a legfelső bájt legfelső bitje vagy a legalacsonyabb helyiértékű bájt alacsonyabb tetrádja az előjel - zónázott formátumnál a legalacsonyabb helyiértékű bájt zónarészében helyezkedik el az előjel A pozitív és negatív előjelet lehet kódolva megadni, - felhasználva a számok által nem használt négy bit hat érvénytelen kombinációját (például az A, C, E, F = +, a B és D = -) - a + és - ASCII kódját felhasználva - külön előjelbájt, amelynek legfelső bitje az előjel, a többi bit kihasználatlan

23 Alfanumerikus adatok Alfanumerikus ábrázolásról akkor beszélünk, amikor számokat, betűket, különféle karaktereket önállóan, egymástól függetlenül, karakterenként akarunk ábrázolni. Az ábrázolás bájtonként egy-egy karakter formájában történik, akár EBCDIC, akár pedig ASCII kódot használunk. A char adattípus egyetlen bájton tárolja a karaktert. A sztring karakter típusú elemekből épül fel. A sztring adattípus szöveges információt tárol. A szöveg hossza 255 karakterig terjedhet.

24 ASCII kód Az ASCII (American Standard Code for Information Interchange) egy karakterkészlet és karakterkódolási szabvány, amely a latin ábécén alapul és az angol nyelvben és sok nyugat-európai nyelvben használatos betűket tartalmazza. Leggyakoribb felhasználása a számítógépeken, illetve szövegeket kezelő egyszerű eszközökön használt szövegek reprezentációja. A kódrendszer 127 karakterhelyet tartalmaz. Az első 32 karakter (0 31), valamint a 127 kódú karakter úgynevezett vezérlőkódokat tartalmaz. A 7 bites ASCII kódot a táblázatból az X1 oktális X2 hexadecimális értékeinek kiolvasásával lehet meghatározni. A bináris megfelelő az oktális és a hexadecimális értékek alapján előállítható. A táblázat megmutatja, hogy az ASCII kód tisztán 7 bites. A 8 bites ASCII a 7 bites kód kiegészített változata.

25 EBCDIC kód Az EBCDIC (Extended Binary Coded Decimal Interchange Code) a 80 oszlopos lyukkártyás adatfeldolgozó rendszerekben alakult ki. Ennek legnagyobb bázisa az IBM volt. A kód alapja a tízes számrendszer. A kezdeti időkben csak számokkal dolgoztak (BCD kódok), erre tökéletesen alkalmas volt a kártya lyukasztási rendszere. Az igények fejlődése következtében a meglévő hardver rendszereken kevés változtatással és a kód kibővítésével a szöveges információ is megfelelő szoftverrel feldolgozásra kerülhetett. A táblázatban a jel csoportok elhelyezkedése világosan mutatja, hogy a tízes számrendszer alapján hozták létre.

26 Logikai adatok Logikai adatnak a logikai műveletben szereplő változót értjük. Ennek ábrázolása elvileg egy bitet igényel. - a logikai adatot is a gép minimálisan egy bájton tárolja, mivel ez a legkisebb megcímezhető adategység. A logikai adat rögzítése a bájt legnagyobb helyiértékű bitjén történik, a többi bitpozícióban pedig bináris nulla van. Ez a fix vagy rögzített hosszúságú ábrázolás. - mivel bármilyen adaton végezhetünk logikai műveletet, így bármilyen adatot tekinthetünk logikai változónak is (karaktersorozatot, bitsorozatot, numerikus operandust, stb.). Ilyenkor a gép egymástól függetlennek tekinti az operandus egyes bitjeit, és mindegyikkel külön-külön végzi el a kijelölt műveletet. A logikai adat hossza ilyenkor a bitsorozattól függően változó, de mindig egész számú bájtot igényel. Amennyiben több logikai változót egyetlen gépi szóban tárolunk, szükség lehet egy mező kiemelésére, ami maszkolással oldható meg.

27 Egyéb adattárolási módok Öndefiniáló adatforma az adatot ábrázoló bitek mellett kiegészítő biteket alkalmaznak az adat típusának jelölésére Jelölt adattárolás (tagged storage) a tárolt adat kiegészül a felhasználás módját befolyásoló információval, pl. az adat típusa és paritásbit. Előnye hardver szintű adatkonverzió, hibaellenőrzés. Deszkriptoros tárolási forma (data descriptor) egyszerűbb adatstruktúrák kezelését biztosítja kiegészítő információval, pl. hozzáférési jogok, felhasználási cél, tárolási hely. Előnye hardver szintű írásvédelem, hibaellenőrzés. Összetett strukturális forma (object-oriented, capability addressing schemes) hardverszintű megoldás esetén segíti a szoftver működését. Jellemzői a kapcsolódó információkat egy egységben kezeli az objektum létrehozása/törlése nem külön adatműveletekkel végezhető az objektumhoz tartozó összes adat elérése egy ütemben lehetséges konverziója speciális utasítással oldható meg

3. gyakorlat. Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F}

3. gyakorlat. Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F} 3. gyakorlat Számrendszerek: Kettes számrendszer: {0, 1} Tízes számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális számrendszer): {0, 1, 2,..., 9, A, B, C, D, E, F} Alaki érték: 0, 1, 2,..., 9,... Helyi

Részletesebben

Informatikai Rendszerek Alapjai

Informatikai Rendszerek Alapjai Informatikai Rendszerek Alapjai Egész és törtszámok bináris ábrázolása http://uni-obuda.hu/users/kutor/ IRA 5/1 A mintavételezett (egész) számok bináris ábrázolása 2 n-1 2 0 1 1 0 1 0 n Most Significant

Részletesebben

Assembly programozás: 2. gyakorlat

Assembly programozás: 2. gyakorlat Assembly programozás: 2. gyakorlat Számrendszerek: Kettes (bináris) számrendszer: {0, 1} Nyolcas (oktális) számrendszer: {0,..., 7} Tízes (decimális) számrendszer: {0, 1, 2,..., 9} 16-os (hexadecimális

Részletesebben

Dr. Oniga István DIGITÁLIS TECHNIKA 2

Dr. Oniga István DIGITÁLIS TECHNIKA 2 Dr. Oniga István DIGITÁLIS TECHNIKA 2 Számrendszerek A leggyakrabban használt számrendszerek: alapszám számjegyek Tízes (decimális) B = 10 0, 1, 8, 9 Kettes (bináris) B = 2 0, 1 Nyolcas (oktális) B = 8

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Fixpontos számok Pl.: előjeles kétjegyű decimális számok : Ábrázolási tartomány: [-99, +99]. Pontosság (két szomszédos szám különbsége): 1. Maximális hiba: (az ábrázolási tartományba eső) tetszőleges valós

Részletesebben

Bevezetés az informatikába gyakorló feladatok Utoljára módosítva:

Bevezetés az informatikába gyakorló feladatok Utoljára módosítva: Tartalom 1. Számrendszerek közti átváltás... 2 1.1. Megoldások... 4 2. Műveletek (+, -, bitműveletek)... 7 2.1. Megoldások... 8 3. Számítógépes adatábrázolás... 12 3.1. Megoldások... 14 A gyakorlósor lektorálatlan,

Részletesebben

LEBEGŐPONTOS SZÁMÁBRÁZOLÁS

LEBEGŐPONTOS SZÁMÁBRÁZOLÁS LEBEGŐPONTOS SZÁMÁBRÁZOLÁS A fixpontos operandusoknak azt a hátrányát, hogy az ábrázolás adott hossza miatt csak korlátozott nagyságú és csak egész számok ábrázolhatók, a lebegőpontos számábrázolás küszöböli

Részletesebben

Digitális technika VIMIAA01

Digitális technika VIMIAA01 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Rendszerek Számítógépek

Részletesebben

Számítógép architektúrák

Számítógép architektúrák Számítógép architektúrák Számítógépek felépítése Digitális adatábrázolás Digitális logikai szint Mikroarchitektúra szint Gépi utasítás szint Operációs rendszer szint Assembly nyelvi szint Probléma orientált

Részletesebben

Máté: Számítógép architektúrák

Máté: Számítógép architektúrák Bit: egy bináris számjegy, vagy olyan áramkör, amely egy bináris számjegy ábrázolására alkalmas. Bájt (Byte): 8 bites egység, 8 bites szám. Előjeles fixpontok számok: 2 8 = 256 különböző 8 bites szám lehetséges.

Részletesebben

Bevezetés a számítástechnikába

Bevezetés a számítástechnikába Bevezetés a számítástechnikába Beadandó feladat, kódrendszerek Fodor Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék foa@almos.vein.hu 2010 október 12.

Részletesebben

Fixpontos és lebegőpontos DSP Számrendszerek

Fixpontos és lebegőpontos DSP Számrendszerek Fixpontos és lebegőpontos DSP Számrendszerek Ha megnézünk egy DSP kinálatot, akkor észrevehetjük, hogy két nagy család van az ajánlatban, az ismert adattipus függvényében. Van fixpontos és lebegőpontos

Részletesebben

Digitális technika VIMIAA01

Digitális technika VIMIAA01 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Rendszerek Számítógépek

Részletesebben

Programozott soros szinkron adatátvitel

Programozott soros szinkron adatátvitel Programozott soros szinkron adatátvitel 1. Feladat Név:... Irjon programot, mely a P1.0 kimenet egy lefutó élének időpontjában a P1.1 kimeneten egy adatbitet ad ki. A bájt legalacsonyabb helyiértéke 1.

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

INFORMATIKA MATEMATIKAI ALAPJAI

INFORMATIKA MATEMATIKAI ALAPJAI INFORMATIKA MATEMATIKAI ALAPJAI Készítette: Kiss Szilvia ZKISZ informatikai szakcsoport Az információ 1. Az információ fogalma Az érzékszerveinken keresztül megszerzett új ismereteket információnak nevezzük.

Részletesebben

(jegyzet) Bérci Norbert szeptember 10-i óra anyaga. 1. Számrendszerek A számrendszer alapja és a számjegyek

(jegyzet) Bérci Norbert szeptember 10-i óra anyaga. 1. Számrendszerek A számrendszer alapja és a számjegyek Egész számok ábrázolása (jegyzet) Bérci Norbert 2015. szeptember 10-i óra anyaga Tartalomjegyzék 1. Számrendszerek 1 1.1. A számrendszer alapja és a számjegyek........................ 1 1.2. Alaki- és

Részletesebben

4. Fejezet : Az egész számok (integer) ábrázolása

4. Fejezet : Az egész számok (integer) ábrázolása 4. Fejezet : Az egész számok (integer) ábrázolása The Architecture of Computer Hardware and Systems Software: An Information Technology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson

Részletesebben

SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA

SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA SZÁMRENDSZEREK KÉSZÍTETTE: JURÁNYINÉ BESENYEI GABRIELLA BINÁRIS (kettes) ÉS HEXADECIMÁLIS (tizenhatos) SZÁMRENDSZEREK (HELYIÉRTÉK, ÁTVÁLTÁSOK, MŰVELETEK) A KETTES SZÁMRENDSZER A computerek világában a

Részletesebben

Összeadás BCD számokkal

Összeadás BCD számokkal Összeadás BCD számokkal Ugyanúgy adjuk össze a BCD számokat is, mint a binárisakat, csak - fel kell ismernünk az érvénytelen tetrádokat és - ezeknél korrekciót kell végrehajtani. A, Az érvénytelen tetrádok

Részletesebben

Digitális technika VIMIAA01

Digitális technika VIMIAA01 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK VIMIAA01 Fehér Béla BME MIT Digitális Rendszerek Számítógépek Számítógép

Részletesebben

Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez

Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez Sándor Tamás, sandor.tamas@kvk.bmf.hu Takács Gergely, takacs.gergo@kvk.bmf.hu Lektorálta: dr. Schuster György PhD, hal@k2.jozsef.kando.hu

Részletesebben

Bevezetés az informatikába

Bevezetés az informatikába Bevezetés az informatikába 2. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Matematikus BSc - I. félév / 2008 / Budapest Dr.

Részletesebben

SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA

SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA 1 ELSŐ GYAKORLAT SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA A feladat elvégzése során a következőket fogjuk gyakorolni: Számrendszerek közti átváltás előjelesen és előjel nélkül. Bináris, decimális, hexadexcimális számrendszer.

Részletesebben

Bevezetés az Informatikába

Bevezetés az Informatikába Bevezetés az Informatikába Karakterek bináris ábrázolása Készítette: Perjési András andris@aries.ektf.hu Alap probléma A számítógép egy bináris rendszerben működő gép Mindent numerikus formátumban ábrázolunk

Részletesebben

Informatika elméleti alapjai. January 17, 2014

Informatika elméleti alapjai. January 17, 2014 Szám- és kódrendszerek Informatika elméleti alapjai Horváth Árpád January 17, 2014 Contents 1 Számok és ábrázolásuk Számrendszerek Helyiérték nélküliek, pl római számok (MMVIIII) Helyiértékesek a nulla

Részletesebben

Az Informatika Elméleti Alapjai

Az Informatika Elméleti Alapjai Az Informatika Elméleti Alapjai dr. Kutor László Törtszámok bináris ábrázolása, Az információ értelmezése és mérése http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 BMF NIK

Részletesebben

5. Fejezet : Lebegőpontos számok. Lebegőpontos számok

5. Fejezet : Lebegőpontos számok. Lebegőpontos számok 5. Fejezet : Lebegőpontos The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson Wong, Bentley College Linda

Részletesebben

1. forduló. 1.1. Az adat, az információ és a hír jelentése és tartalma. A kommunikáció

1. forduló. 1.1. Az adat, az információ és a hír jelentése és tartalma. A kommunikáció 1. Az információ 1.1. Az adat, az információ és a hír jelentése és tartalma. A kommunikáció A tárgyaknak mérhető és nem mérhető, számunkra fontos tulajdonságait adatnak nevezzük. Egy tárgynak sok tulajdonsága

Részletesebben

The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003

The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 . Fejezet : Számrendszerek The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach. kiadás, Irv Englander John Wiley and Sons Wilson Wong, Bentley College Linda Senne,

Részletesebben

Harmadik gyakorlat. Számrendszerek

Harmadik gyakorlat. Számrendszerek Harmadik gyakorlat Számrendszerek Ismétlés Tízes (decimális) számrendszer: 2 372 =3 2 +7 +2 alakiérték valódi érték = aé hé helyiérték helyiértékek a tízes szám hatványai, a számjegyek így,,2,,8,9 Kettes

Részletesebben

Számítógép Architektúrák (MIKNB113A)

Számítógép Architektúrák (MIKNB113A) PANNON EGYETEM, Veszprém Villamosmérnöki és Információs Rendszerek Tanszék Számítógép Architektúrák (MIKNB113A) 2. előadás: Számrendszerek, Nem-numerikus információ ábrázolása Előadó: Dr. Vörösházi Zsolt

Részletesebben

(jegyzet) Bérci Norbert szeptember i óra anyaga A számrendszer alapja és a számjegyek Alaki- és helyiérték...

(jegyzet) Bérci Norbert szeptember i óra anyaga A számrendszer alapja és a számjegyek Alaki- és helyiérték... Számábrázolás és karakterkódolás (jegyzet) Bérci Norbert 2014. szeptember 15-16-i óra anyaga Tartalomjegyzék 1. Számrendszerek 1 1.1. A számrendszer alapja és a számjegyek........................ 2 1.2.

Részletesebben

Aritmetikai utasítások I.

Aritmetikai utasítások I. Aritmetikai utasítások I. Az értékadó és aritmetikai utasítások során a címzési módok különböző típusaira látunk példákat. A 8086/8088-as mikroprocesszor memóriája és regiszterei a little endian tárolást

Részletesebben

Kombinációs hálózatok Számok és kódok

Kombinációs hálózatok Számok és kódok Számok és kódok A történelem folyamán kétféle számábrázolási mód alakult ki: helyiértékes számrendszerek nem helyiértékes számrendszerek n N = b i B i=0 i n b i B i B = (természetes) szám = számjegy az

Részletesebben

Bevezetés az informatikába

Bevezetés az informatikába Bevezetés az informatikába Az összeadás, kivonás, szorzás algoritmusai. Prefixumok az informatikában Előjel nélküli egész számok ábrázolása a digitális számítógépeknél. Szorzás, összeadás, kivonás. Előjeles

Részletesebben

Gábor Dénes Főiskola Győr. Mikroszámítógépek. Előadás vázlat. 2004/2005 tanév 4. szemeszter. Készítette: Markó Imre 2006

Gábor Dénes Főiskola Győr. Mikroszámítógépek. Előadás vázlat. 2004/2005 tanév 4. szemeszter. Készítette: Markó Imre 2006 Gábor Dénes Főiskola Győr Mikroszámítógépek Előadás vázlat 102 2004/2005 tanév 4. szemeszter A PROCESSZOR A processzorok jellemzése A processzor felépítése A processzorok üzemmódjai Regiszterkészlet Utasításfelépítés,

Részletesebben

INFO1 Számok és karakterek

INFO1 Számok és karakterek INFO1 Számok és karakterek Wettl Ferenc 2015. szeptember 29. Wettl Ferenc INFO1 Számok és karakterek 2015. szeptember 29. 1 / 22 Tartalom 1 Bináris számok, kettes komplemens számábrázolás Kettes számrendszer

Részletesebben

OAF Gregorics Tibor : Memória használat C++ szemmel (munkafüzet) 1

OAF Gregorics Tibor : Memória használat C++ szemmel (munkafüzet) 1 OAF Gregorics Tibor : Memória használat C++ szemmel (munkafüzet) 1 Számábrázolás Számok bináris alakja A számítógépek memóriájában a számokat bináris alakban (kettes számrendszerben) ábrázoljuk. A bináris

Részletesebben

Vektorok. Octave: alapok. A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István

Vektorok. Octave: alapok. A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Vektorok A fizika numerikus módszerei I. mf1n1a06- mf1n2a06 Csabai István Octave: alapok Az octave mint számológép: octave:##> 2+2 ans = 4 Válasz elrejtése octave:##> 2+2; octave:##> + - / * () Hatványozás:

Részletesebben

Bináris egység: bit (binary unit) bit ~ b; byte ~ B (Gb Gigabit;GB Gigabyte) Gb;GB;Gib;GiB mind más. Elnevezés Jele Értéke Elnevezés Jele Értéke

Bináris egység: bit (binary unit) bit ~ b; byte ~ B (Gb Gigabit;GB Gigabyte) Gb;GB;Gib;GiB mind más. Elnevezés Jele Értéke Elnevezés Jele Értéke Kódolások Adatok kódolása Bináris egység: bit (binary unit) bit ~ b; byte ~ B (Gb Gigabit;GB Gigabyte) Gb;GB;Gib;GiB mind más. Elnevezés Jele Értéke Elnevezés Jele Értéke Kilo K 1 000 Kibi Ki 1 024 Mega

Részletesebben

7.2.2. A TMS320C50 és TMS320C24x assembly programozására példák

7.2.2. A TMS320C50 és TMS320C24x assembly programozására példák 7.2.2. A TMS320C50 és TMS320C24x assembly programozására példák A TMS320C50 processzor Ez a DSP processzor az 1.3. fejezetben lett bemutatva. A TMS320C50 ##LINK: http://www.ti.com/product/tms320c50## egy

Részletesebben

Kedves Diákok! A feladatok legtöbbször egy pontot érnek. Ahol ettől eltérés van, azt külön jelöljük.

Kedves Diákok! A feladatok legtöbbször egy pontot érnek. Ahol ettől eltérés van, azt külön jelöljük. Kedves Diákok! Szeretettel köszöntünk Benneteket abból az alkalomból, hogy a Ceglédi Közgazdasági és Informatikai Szakközépiskola informatika tehetséggondozásának első levelét olvassátok! A tehetséggondozással

Részletesebben

1. INFORMATIKAI ALAPFOGALMAK HÍRKÖZLÉSI RENDSZER SZÁMRENDSZEREK... 6

1. INFORMATIKAI ALAPFOGALMAK HÍRKÖZLÉSI RENDSZER SZÁMRENDSZEREK... 6 1. INFORMATIKAI ALAPFOGALMAK... 2 1.1 AZ INFORMÁCIÓ... 2 1.2 MODELLEZÉS... 2 2. HÍRKÖZLÉSI RENDSZER... 3 2.1 REDUNDANCIA... 3 2.2 TÖMÖRÍTÉS... 3 2.3 HIBAFELISMERŐ ÉS JAVÍTÓ KÓDOK... 4 2.4 KRIPTOGRÁFIA...

Részletesebben

ÁTVÁLTÁSOK SZÁMRENDSZEREK KÖZÖTT, SZÁMÁBRÁZOLÁS, BOOLE-ALGEBRA

ÁTVÁLTÁSOK SZÁMRENDSZEREK KÖZÖTT, SZÁMÁBRÁZOLÁS, BOOLE-ALGEBRA 1. Tízes (decimális) számrendszerből: a. Kettes (bináris) számrendszerbe: Vegyük a 2634 10 -es számot, és váltsuk át bináris (kettes) számrendszerbe! A legegyszerűbb módszer: írjuk fel a számot, és húzzunk

Részletesebben

Utasításfajták Memóriacímzés Architektúrák Végrehajtás Esettanulmányok. 2. előadás. Kitlei Róbert november 28.

Utasításfajták Memóriacímzés Architektúrák Végrehajtás Esettanulmányok. 2. előadás. Kitlei Róbert november 28. 2. előadás Kitlei Róbert 2008. november 28. 1 / 21 Adatmozgató irányai regiszter és memória között konstans betöltése regiszterbe vagy memóriába memóriából memóriába közvetlenül másoló utasítás nincsen

Részletesebben

Matematikai alapok. Dr. Iványi Péter

Matematikai alapok. Dr. Iványi Péter Matematikai alapok Dr. Iványi Péter Számok A leggyakrabban használt adat típus Egész számok Valós számok Bináris számábrázolás Kettes számrendszer Bitek: és Byte: 8 bit 28 64 32 6 8 4 2 bináris decimális

Részletesebben

Tamás Péter (D. 424) Mechatronika, Optika és Gépészeti Informatika Tanszék (D 407)

Tamás Péter (D. 424) Mechatronika, Optika és Gépészeti Informatika Tanszék (D 407) Tamás Péter (D. 424) Mechatronika, Optika és Gépészeti Informatika Tanszék (D 407) 1 Előadás Bevezetés az informatikába Adatszerkezetek Algoritmusok, programozási technológiák Számítástudomány alapjai

Részletesebben

Tamás Péter (D. 424) Mechatronika, Optika és Gépészeti Informatika Tanszék (D 407)

Tamás Péter (D. 424) Mechatronika, Optika és Gépészeti Informatika Tanszék (D 407) Tamás Péter (D. 424) Mechatronika, Optika és Gépészeti Informatika Tanszék (D 407) Előadás Bevezetés az informatikába Adatszerkezetek Algoritmusok, programozási technológiák Számítástudomány alapjai Számítógépek

Részletesebben

A feladatok legtöbbször egy pontot érnek. Ahol ettől eltérés van, azt külön jelöljük.

A feladatok legtöbbször egy pontot érnek. Ahol ettől eltérés van, azt külön jelöljük. Szeretettel üdvözlünk Benneteket abból az alkalomból, hogy a Ceglédi Közgazdasági és Informatikai Szakközépiskola informatika tehetséggondozásának első levelét olvassátok! A tehetséggondozással az a célunk,

Részletesebben

DIGITÁLIS TECHNIKA I BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr.

DIGITÁLIS TECHNIKA I BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr. 26..5. DIGITÁLIS TEHNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet INÁRIS SZÁMRENDSZER 5. ELŐDÁS 2 EVEZETŐ ÁTTEKINTÉS 6. előadás témája a digitális rendszerekben

Részletesebben

DIGITÁLIS TECHNIKA I SZÁMRENDSZEREK HELYÉRTÉK SZÁMRENDSZEREK RÓMAI SZÁMOK ÉS RENDSZERÜK. Dr. Lovassy Rita Dr.

DIGITÁLIS TECHNIKA I SZÁMRENDSZEREK HELYÉRTÉK SZÁMRENDSZEREK RÓMAI SZÁMOK ÉS RENDSZERÜK. Dr. Lovassy Rita Dr. 6..6. DIGITÁLIS TECHNIK I Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet SZÁMRENDSZEREK 8. ELŐDÁS 8. előadás témája a digitális rendszerekben központi szerepet

Részletesebben

Gyakorló feladatok. /2 Maradék /16 Maradék /8 Maradék

Gyakorló feladatok. /2 Maradék /16 Maradék /8 Maradék Gyakorló feladatok Számrendszerek: Feladat: Ábrázold kettes számrendszerbe a 639 10, 16-os számrendszerbe a 311 10, 8-as számrendszerbe a 483 10 számot! /2 Maradék /16 Maradék /8 Maradék 639 1 311 7 483

Részletesebben

Számítógépes alapismeretek

Számítógépes alapismeretek Számítógépes alapismeretek 4. előadás Dr. Istenes Zoltán Eötvös Loránd Tudományegyetem Informatikai Kar Programozáselmélet és Szoftvertechnológiai Tanszék Programtervező Informatikus BSc 2008 / Budapest

Részletesebben

Járműfedélzeti rendszerek II. 1. előadás Dr. Bécsi Tamás

Járműfedélzeti rendszerek II. 1. előadás Dr. Bécsi Tamás Járműfedélzeti rendszerek II. 1. előadás Dr. Bécsi Tamás A tárgy órái Előadás hetente (St101) csüt. 8:15 Bécsi Tamás C elmélet Ajánlott irodalom Dennis Ritchie: A C programozási nyelv Gyakorlat hetente

Részletesebben

1. ábra. Repülő eszköz matematikai modellje ( fekete doboz )

1. ábra. Repülő eszköz matematikai modellje ( fekete doboz ) Wührl Tibor DIGITÁLIS SZABÁLYZÓ KÖRÖK NEMLINEARITÁSI PROBLÉMÁI FIXPONTOS SZÁMÁBRÁZOLÁS ESETÉN RENDSZERMODELL A pilóta nélküli repülő eszközök szabályzó körének tervezése során első lépésben a repülő eszköz

Részletesebben

Objektumorientált Programozás I.

Objektumorientált Programozás I. Objektumorientált Programozás I. Algoritmizálási alapismeretek Algoritmus végrehajtása a számítógépen Adattípusok Típuskonverziók ÓE-NIK, 2011 1 Hallgatói Tájékoztató A jelen bemutatóban található adatok,

Részletesebben

Szám- és kódrendszerek

Szám- és kódrendszerek Informatikai rendszerek alapjai Óbudai Egyetem Alba Regia M szaki Kar (AMK) Székesfehérvár 2015. november 27. 1 Számok és ábrázolásuk 2 3 Vektorgrakus ábrák Rasztergrakus ábrák Színek, felbontások Vázlat

Részletesebben

5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI

5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI 5. KOMBINÁCIÓS HÁLÓZATOK LEÍRÁSÁNAK SZABÁLYAI 1 Kombinációs hálózatok leírását végezhetjük mind adatfolyam-, mind viselkedési szinten. Az adatfolyam szintű leírásokhoz az assign kulcsszót használjuk, a

Részletesebben

Programozás BMEKOKAA146. Dr. Bécsi Tamás 2. előadás

Programozás BMEKOKAA146. Dr. Bécsi Tamás 2. előadás Programozás BMEKOKAA146 Dr. Bécsi Tamás 2. előadás Szintaktikai alapok Alapvető típusok, ismétlés C# típus.net típus Méret (byte) Leírás byte System.Byte 1Előjel nélküli 8 bites egész szám (0..255) char

Részletesebben

Tamás Péter (D. 424) Mechatronika, Optika és Gépészeti Informatika Tanszék (D 407)

Tamás Péter (D. 424) Mechatronika, Optika és Gépészeti Informatika Tanszék (D 407) Tamás Péter (D. 424) Mechatronika, Optika és Gépészeti Informatika Tanszék (D 407) 1 Kérdőív Tematika A számítógép működése Adatok Program Objektum 2 Kérdőív Kitöltötte 204 fő Felkészültség 28% 39% alap

Részletesebben

Architektúra I. A Számítási modell fogalma: A számításra vonatkozó alapelvek absztarakciója. Jellemzői: - Tudás alapú számítási modell.

Architektúra I. A Számítási modell fogalma: A számításra vonatkozó alapelvek absztarakciója. Jellemzői: - Tudás alapú számítási modell. Architektúra Számítási modellek: 7es évek: Az IBM 37 Neumann architektúrájú gépek korlátjuk széléhez értek, teljesítményüket nem lehetett már jobban növelni. Ezért az újdonságok kerültek előtérbe mint

Részletesebben

Adatszerkezetek Adatszerkezet fogalma. Az értékhalmaz struktúrája

Adatszerkezetek Adatszerkezet fogalma. Az értékhalmaz struktúrája Adatszerkezetek Összetett adattípus Meghatározói: A felvehető értékek halmaza Az értékhalmaz struktúrája Az ábrázolás módja Műveletei Adatszerkezet fogalma Direkt szorzat Minden eleme a T i halmazokból

Részletesebben

találhatók. A memória-szervezési modell mondja meg azt, hogy miként

találhatók. A memória-szervezési modell mondja meg azt, hogy miként Memória címzési módok Egy program futása során (legyen szó a program vezérléséről vagy adatkezelésről) a program utasításai illetve egy utasítás argumentumai a memóriában találhatók. A memória-szervezési

Részletesebben

Készítette: Nagy Tibor István

Készítette: Nagy Tibor István Készítette: Nagy Tibor István A változó Egy memóriában elhelyezkedő rekesz Egy értéket tárol Van azonosítója (vagyis neve) Van típusa (milyen értéket tárolhat) Az értéke értékadással módosítható Az értéke

Részletesebben

TARTALOMJEGYZÉK. 1. BEVEZETÉS A logikai hálózatok csoportosítása Logikai rendszerek... 6

TARTALOMJEGYZÉK. 1. BEVEZETÉS A logikai hálózatok csoportosítása Logikai rendszerek... 6 TARTALOMJEGYZÉK ELŐSZÓ... 3 1. BEVEZETÉS... 4 1.1. A logikai hálózatok csoportosítása... 5 1.2. Logikai rendszerek... 6 2. SZÁMRENDSZEREK ÉS KÓDRENDSZEREK... 7 2.1. Számrendszerek... 7 2.1.1. Számok felírása

Részletesebben

26.B 26.B. Analóg és digitális mennyiségek jellemzıi

26.B 26.B. Analóg és digitális mennyiségek jellemzıi 6.B Digitális alapáramkörök Logikai alapfogalmak Definiálja a digitális és az analóg jelek fogalmát és jellemzıit! Ismertesse a kettes és a tizenhatos számrendszer jellemzıit és az átszámítási algoritmusokat!

Részletesebben

Az informatika alapjai

Az informatika alapjai Az informatika alapjai Előadást egyáltalán nem követő, csak a legfontosabb (szükséges de nem elégséges) dolgokat, némi fogalmi alapokat (összezavarás céljából), feladatokat és példa feladatsort tartalmazó

Részletesebben

Alapismeretek. Tanmenet

Alapismeretek. Tanmenet Alapismeretek Tanmenet Alapismeretek TANMENET-Alapismeretek Témakörök Javasolt óraszám 1. Történeti áttekintés 2. Számítógépes alapfogalmak 3. A számítógép felépítése, hardver A központi egység 4. Hardver

Részletesebben

C programozás. { Márton Gyöngyvér, 2009 } { Sapientia, Erdélyi Magyar Tudományegyetem } http://www.ms.sapientia.ro/~mgyongyi

C programozás. { Márton Gyöngyvér, 2009 } { Sapientia, Erdélyi Magyar Tudományegyetem } http://www.ms.sapientia.ro/~mgyongyi C programozás Márton Gyöngyvér, 2009 Sapientia, Erdélyi Magyar Tudományegyetem http://www.ms.sapientia.ro/~mgyongyi 1 Könyvészet Kátai Z.: Programozás C nyelven Brian W. Kernighan, D.M. Ritchie: A C programozási

Részletesebben

Adatbázis rendszerek. dr. Siki Zoltán

Adatbázis rendszerek. dr. Siki Zoltán Adatbázis rendszerek I. dr. Siki Zoltán Adatbázis fogalma adatok valamely célszerűen rendezett, szisztéma szerinti tárolása Az informatika elterjedése előtt is számos adatbázis létezett pl. Vállalati személyzeti

Részletesebben

Matematikai alapok. Dr. Iványi Péter

Matematikai alapok. Dr. Iványi Péter Matematikai alapok Dr. Iványi Péter Számok A leggyakrabban használt adat típus Egész számok Valós számok Bináris számábrázolás Kettes számrendszer Bitek: 0 és 1 Byte: 8 bit 128 64 32 16 8 4 2 1 1 1 1 1

Részletesebben

Írjon olyan programot a standard könyvtár alkalmazásával, amely konzolról megadott valós adatokból meghatározza és kiírja a minimális értékűt!

Írjon olyan programot a standard könyvtár alkalmazásával, amely konzolról megadott valós adatokból meghatározza és kiírja a minimális értékűt! Írjon olyan programot a standard könyvtár alkalmazásával, amely konzolról megadott valós adatokból meghatározza és kiírja a minimális értékűt! valós adatokat növekvő sorrendbe rendezi és egy sorba kiírja

Részletesebben

C programozási nyelv Pointerek, tömbök, pointer aritmetika

C programozási nyelv Pointerek, tömbök, pointer aritmetika C programozási nyelv Pointerek, tömbök, pointer aritmetika Dr. Schuster György 2011. június 16. C programozási nyelv Pointerek, tömbök, pointer aritmetika 2011. június 16. 1 / 15 Pointerek (mutatók) Pointerek

Részletesebben

Szám- és kódrendszerek

Szám- és kódrendszerek Szám- és kódrendszerek Informatikai rendszerek alapjai Horváth Árpád 2015. november 27. Tartalomjegyzék 1. Számok és ábrázolásuk 1 1.1. Számok értelmezése.....................................

Részletesebben

Programozás alapjai. 5. előadás

Programozás alapjai. 5. előadás 5. előadás Wagner György Általános Informatikai Tanszék Cserélve kiválasztásos rendezés (1) A minimum-maximum keresés elvére épül. Ismétlés: minimum keresés A halmazból egy tetszőleges elemet kinevezünk

Részletesebben

IT - Alapismeretek. Feladatgyűjtemény

IT - Alapismeretek. Feladatgyűjtemény IT - Alapismeretek Feladatgyűjtemény Feladatok PowerPoint 2000 1. FELADAT TÖRTÉNETI ÁTTEKINTÉS Pótolja a hiányzó neveket, kifejezéseket! Az első négyműveletes számológépet... készítette. A tárolt program

Részletesebben

A racionális számok és a fixpontos processzorok numerikus felületének a kapcsolata

A racionális számok és a fixpontos processzorok numerikus felületének a kapcsolata 7.2.1. A racionális számok és a fixpontos processzorok numerikus felületének a kapcsolata A valósidejű jel- és képfeldolgozás területére eső alkalmazások esetében legtöbbször igény mutatkozik arra, hogy

Részletesebben

A C programozási nyelv I. Bevezetés

A C programozási nyelv I. Bevezetés A C programozási nyelv I. Bevezetés Miskolci Egyetem Általános Informatikai Tanszék A C programozási nyelv I. (bevezetés) CBEV1 / 1 A C nyelv története Dennis M. Ritchie AT&T Lab., 1972 rendszerprogramozás,

Részletesebben

Hatodik gyakorlat. Rendszer, adat, információ

Hatodik gyakorlat. Rendszer, adat, információ Hatodik gyakorlat Rendszer, adat, információ Alapfogalmak Rendszer: A rendszer egymással kapcsolatban álló elemek összessége, amelyek adott cél érdekében együttmőködnek egymással, és mőködésük során erıforrásokat

Részletesebben

Programozás alapjai. Wagner György Általános Informatikai Tanszék

Programozás alapjai. Wagner György Általános Informatikai Tanszék Általános Informatikai Tanszék Hirdetmények (1) Jelenlevők: műsz. informatikusok progr. matematikusok A tantárgy célja: alapfogalmak adatszerkezetek algoritmusok ismertetése Követelményrendszer: Nincs:

Részletesebben

DIGITÁLIS TECHNIKA BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr.

DIGITÁLIS TECHNIKA BINÁRIS SZÁMRENDSZER BEVEZETŐ ÁTTEKINTÉS BINÁRIS SZÁMRENDSZER HELYÉRTÉK. Dr. Lovassy Rita Dr. 7.4.. DIGITÁLIS TECHNIK Dr. Lovassy Rita Dr. Pődör álint Óbudai Egyetem KVK Mikroelektronikai és Technológia Intézet INÁRIS SZÁMRENDSZER 3. ELŐDÁS EVEZETŐ ÁTTEKINTÉS 6. előadás témája a digitális rendszerekben

Részletesebben

Számrendszerek és az informatika

Számrendszerek és az informatika Informatika tehetséggondozás 2012-2013 3. levél Az első levélben megismertétek a számrendszereket. A másodikban ízelítőt kaptatok az algoritmusos feladatokból. A harmadik levélben először megnézünk néhány

Részletesebben

Verilog HDL ismertető 2. hét : 1. hét dia

Verilog HDL ismertető 2. hét : 1. hét dia BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Verilog HDL ismertető 2. hét : 1. hét + 15 25 dia Fehér Béla, Raikovich

Részletesebben

4. Fejezet : Az egész számok (integer) ábrázolása

4. Fejezet : Az egész számok (integer) ábrázolása 4. Fejezet : Az egész számok (integer) ábrázolása The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson

Részletesebben

Informatikai alkalmazások - levelező. 2013. ősz

Informatikai alkalmazások - levelező. 2013. ősz Informatikai alkalmazások - levelező 2013. ősz Követelmények 2 db a félév gyakorlati anyagához kötődő házi feladat elkészítése Egyenként 20 pont (min. 50%) Utosló alkalommal megírt dolgozat Max. 25 pont

Részletesebben

Analóg és digitális jelek. Az adattárolás mértékegységei. Bit. Bájt. Nagy mennyiségû adatok mérése

Analóg és digitális jelek. Az adattárolás mértékegységei. Bit. Bájt. Nagy mennyiségû adatok mérése Analóg és digitális jelek Analóg mennyiség: Értéke tetszõleges lehet. Pl.:tömeg magasság,idõ Digitális mennyiség: Csak véges sok, elõre meghatározott értéket vehet fel. Pl.: gyerekek, feleségek száma Speciális

Részletesebben

Jel, adat, információ

Jel, adat, információ Kommunikáció Jel, adat, információ Jel: érzékszerveinkkel, műszerekkel felfogható fizikai állapotváltozás (hang, fény, feszültség, stb.) Adat: jelekből (számítástechnikában: számokból) képzett sorozat.

Részletesebben

Feladat: Indítsd el a Jegyzettömböt (vagy Word programot)! Alt + számok a numerikus billentyűzeten!

Feladat: Indítsd el a Jegyzettömböt (vagy Word programot)! Alt + számok a numerikus billentyűzeten! Jelek JEL: információs értékkel bír Csatorna: Az információ eljuttatásához szükséges közeg, ami a jeleket továbbítja a vevőhöz, Jelek típusai 1. érzékszervekkel felfogható o vizuális (látható) jelek 1D,

Részletesebben

I. el adás, A számítógép belseje

I. el adás, A számítógép belseje 2008. október 8. Követelmények Félévközi jegy feltétele két ZH teljesítése. Ha egy ZH nem sikerült, akkor lehetséges a pótlása. Mindkét ZH-hoz van pótlás. A pótzh körülbelül egy héttel az eredeti után

Részletesebben

Programozás I. C# bevezető. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar szeptember 17.

Programozás I. C# bevezető. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar szeptember 17. Programozás I. 2. előadás C# bevezető Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2012. szeptember 17. Sergyán (OE NIK) Programozás I. 2012. szeptember

Részletesebben

Számrendszerek. Bináris, hexadecimális

Számrendszerek. Bináris, hexadecimális Számrendszerek Bináris, hexadecimális Mindennapokban használt számrendszerek Decimális 60-as számrendszer az időmérésre DNS-ek vizsgálata négyes számrendszerben Tetszőleges természetes számot megadhatunk

Részletesebben

A tervfeladat sorszáma: 1 A tervfeladat címe: ALU egység 8 regiszterrel és 8 utasítással

A tervfeladat sorszáma: 1 A tervfeladat címe: ALU egység 8 regiszterrel és 8 utasítással .. A tervfeladat sorszáma: 1 A ALU egység 8 regiszterrel és 8 utasítással Minimálisan az alábbi képességekkel rendelkezzen az ALU 8-bites operandusok Aritmetikai funkciók: összeadás, kivonás, shift, komparálás

Részletesebben

1. Digitális írástudás: a kőtáblától a számítógépig 2. Szedjük szét a számítógépet 1. örök 3. Szedjük szét a számítógépet 2.

1. Digitális írástudás: a kőtáblától a számítógépig 2. Szedjük szét a számítógépet 1. örök 3. Szedjük szét a számítógépet 2. Témakörök 1. Digitális írástudás: a kőtáblától a számítógépig ( a kommunikáció fejlődése napjainkig) 2. Szedjük szét a számítógépet 1. ( a hardver architektúra elemei) 3. Szedjük szét a számítógépet 2.

Részletesebben

2.1. Jelátalakítás és kódolás

2.1. Jelátalakítás és kódolás 2.1. Jelátalakítás és kódolás Digitalizálás Az információ hordozója a jel, amely más-más formában kell, hogy megjelenjen az ember illetve a számítógép számára. Az ember alapvetően en a természetes környezetéből

Részletesebben

Dr. Wührl Tibor Ph.D. MsC 04 Ea. IP P címzés

Dr. Wührl Tibor Ph.D. MsC 04 Ea. IP P címzés Dr. Wührl Tibor Ph.D. MsC 04 Ea IP P címzés Csomagirányítás elve A csomagkapcsolt hálózatok esetén a kapcsolás a csomaghoz fűzött irányítási információk szerint megy végbe. Az Internet Protokoll (IP) alapú

Részletesebben

Adatszerkezetek Tömb, sor, verem. Dr. Iványi Péter

Adatszerkezetek Tömb, sor, verem. Dr. Iványi Péter Adatszerkezetek Tömb, sor, verem Dr. Iványi Péter 1 Adat Adat minden, amit a számítógépünkben tárolunk és a külvilágból jön Az adatnak két fontos tulajdonsága van: Értéke Típusa 2 Adat típusa Az adatot

Részletesebben

1. tétel. A kommunikáció információelméleti modellje. Analóg és digitális mennyiségek. Az információ fogalma, egységei. Informatika érettségi (diák)

1. tétel. A kommunikáció információelméleti modellje. Analóg és digitális mennyiségek. Az információ fogalma, egységei. Informatika érettségi (diák) 1. tétel A kommunikáció információelméleti modellje. Analóg és digitális mennyiségek. Az információ fogalma, egységei Ismertesse a kommunikáció általános modelljét! Mutassa be egy példán a kommunikációs

Részletesebben

Programozás I gyakorlat

Programozás I gyakorlat Programozás I. - 2. gyakorlat Változók, típusok, bekérés Tar Péter 1 Pannon Egyetem M szaki Informatikai Kar Rendszer - És Számítástudományi Tanszék Utolsó frissítés: September 21, 2009 1 tar@dcs.vein.hu

Részletesebben

Információs Technológia

Információs Technológia Információs Technológia A C programozási nyelv (Típusok és operátorok) Fodor Attila Pannon Egyetem Műszaki Informatika Kar Villamosmérnöki és Információs Rendszerek Tanszék foa@almos.vein.hu 2010 szeptember

Részletesebben