1. forduló Az adat, az információ és a hír jelentése és tartalma. A kommunikáció

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "1. forduló. 1.1. Az adat, az információ és a hír jelentése és tartalma. A kommunikáció"

Átírás

1 1. Az információ 1.1. Az adat, az információ és a hír jelentése és tartalma. A kommunikáció A tárgyaknak mérhető és nem mérhető, számunkra fontos tulajdonságait adatnak nevezzük. Egy tárgynak sok tulajdonsága adata - lehet, amelyek együttesen kizárólag az adott tárgyat azonosítják. Önmagában az adat nem közöl semmiféle ismeretet. Például, ha valamely tárgyról csupán azt az információt kapjuk, hogy kettő, az adat jelentését nem tudjuk értelmezni. Persze, ha ismernénk a kérdést, amire ezt a választ kaptuk, akkor az adat már értelmet nyerne. Az adat a tényeknek és elképzeléseknek nem értelmezett, de értelmezhető formában való közlése. Az adat tehát nem értelmezett ismeret. Ahhoz, hogy a közölt adatot vagy adatokat értelmezni tudjuk, valamiféle környezetbe kell helyezni. Az agyunkban tárolt adatokat nevezzük ismeretnek. A gondolkodás során az agyunkban tárolt adatok között összefüggéseket teremtünk, és ezen összefüggésekből kombinálva újabb adatokat állítunk elő. Az új adatokat információnak nevezzük. Információnak nevezzük az adatokon végrehajtott gondolati műveletek eredményét. Az információ értelmezett ismeret. Más megfogalmazás szerint az információ hírt hordozó jelek tartalmi jelentése, bizonytalanságot szüntet meg, új ismeret hordoz. : Az információközlés formai szabályainak összességét szintaktikai szabálynak nevezzük. A közlés tartalmi egyezményére vonatkozó szabályok összessége a szemantikai szabály. Szintaktikai szabályok például a magyar nyelv használatának szabályai, a mondatképzés, a szórend, stb. Szemantikai szabályok az egyes szavakhoz rendelt fogalmak. Adatgyűjtés közben sokszor kapunk olyan feladatokat, amely szükségtelenek az új ismeret létrehozásához. Az ember gondolkodása során nemcsak gyűjti, hanem rendszeri, kiválogatja, feldolgozza a számára fontos adatokat. Ezt az adatgyűjtés-adatfeldolgozás folyamatot információs folyamatnak nevezzük. Az információs folyamatok általában részfolyamatokból tevődnek össze. Az egyik részfolyamat eredménye lehet egy másik részfolyamatnak a kiindulási adata. A részfolyamatok között adatok átadása és átvétele folyik, ezt a folyamatot kommunikációnak nevezzük. Azt a közeget pedig, ahol az adatok áramlanak kommunikációs csatornának hívjuk. A kommunikáció két felet feltételez, amelyek közösen kialakított csatornán kommunikálnak egymással. A kommunikációs csatorna nagyon sokféle lehet: levegő, telefonvonal, rádióhullám, fény. (Bár az utóbbi kettő is a levegőben terjed.) A kommunikáció folyamata: Adó Kommunikációs csatorna Vevő 1.2. Az információ formája és továbbítása. Az információ kódolása Az információ megjelenési formái: beszéd, írott vagy nyomtatott anyag, hírközlés (füstjelek, rajz, dobszó, stb.), számítógépes adatbank, telekommunikációs, CD. 1

2 Az ősemberek még csak különböző hangok útján kommunikáltak egymással, majd kialakult a beszéd, a nyelvek. Az információ továbbításának módja a történelem kezdetén a beszéd volt. Az információ következő formája a jel volt. Az ókori Egyiptomban jeleket (hierogrifákat ) használtak az üzenetek továbbítására. Az ékírás, majd az írás (betűk, számok) a XX. századig az információ legfejlettebb formája lett. Külön meg kell említeni a piktogramokat, amelyek kis képek meghatározott jelentéssel. (Ilyenekkel találkozunk a pályaudvarokon, repülőtereken, stb.) A képírás, majd a betűírás kialakulásával az írott szöveg lett a fő információhordozó. A nyomtatás (Gutenberg) megjelenésével kezdődhetett el az információ tömeges átvitele, tárolása. A fejlődés következő állomása a beszéd átvitelére alkalmas eszközök feltalálása volt. A Morse-féle távírók, a telefonok, majd az elektromosság fejlődésével a rádiók voltak azok az eszközök, amelyek már képesek voltak a beszéd tömeges átvitelére is. A televízió a hang és a képi információ tömeges átvitelére is alkalmas. Ma az információt főként rádióhullámok útján továbbítják. Sokat hallani az ún. információs forradalomról, az információ értékéről. A mai modern világban az információ komoly érték lett, amely az gazdaság és politika minden területére hat. Információs hatalmak születnek (a médiumok: sajtó, rádió, televízió), amelyek nagyban befolyásolják egy ország életét. A számítógépes hálózatok, telekommunikációs rendszerek már hozzátartoznak napi életünkhöz. Meg kell ismernünk e gyorsan változó világ alapvető eszközeit ahhoz, hogy el tudjunk igazodni bennük. Ez már századunk technikája. Az információt különböző okokból (például, hogy illetéktelenek ne férjenek hozzá) kódolni szokták. A kódolás azt jelenti, hogy a bevitt adatokat valamilyen rendszer szerint átalakítják, és a továbbiakban a kódolt adatokkal dolgoznak. A kódolás legegyszerűbb változata az ún. titkosírás, amelyben például a betűk helyett az ábécében elfoglalt helyük szerinti számokat használnak. Elméletileg bármit kódolhatunk, a gyakorlatban ez attól függ, hogy mit akarunk kezdeni a kódolt információval. A mai világban legtöbbször a gyorsabb továbbítás és a titkosírás érdekében kódoljuk az információt. A kódolás valamely információ átalakítása egyezményes jelekké. A kód megállapodás szerinti jelek vagy szimbólumok rendszer, amellyel valamely információ egyértelműen meghatározható. Dekódoláson a kódolt információ visszaalakítását értjük. A digitális technikában az átalakítás feltétele olyan egyezményes előírás, amely minden jelhez (például számokhoz vagy betűkhöz) egyértelműen hozzárendel egy meghatározott bináris jelet. Az ilyen előírást kódnak, a hozzárendelés folyamatát kódolásnak nevezik. A számítógép csak kódolt formában érti meg az üzeneteinket, és az ő üzeneteit is csak dekódolva érthetjük meg A jel fogalma és fajtái. Az ASCII kódrendszer A jel valamely fizikai (kémiai) mennyiség értéke vagy értékváltozása. Jeleket használunk az információ továbbítására. A fizikában kétfajta jelet különböztetünk meg. Az egyik a folytonos, ún. analóg jel, a másik a diszkrét, úgynevezett digitális jel. Az analóg jel folytonos, értelmezési tartományában tetszőleges értékeket felvehet. A digitális jel értékei diszkrétek, csak meghatározott értékeket vehet fel. Az analóg és digitális jelek mellett megkülönböztetünk analóg, illetve digitális kijelzést. Az analóg kijelzésen általában a mutatós műszereke kijelzési módjait értjük (például a faliórák), míg a digitális kijelzésen a számokkal való megjelenítést (például a digitális órák). A digitális számítógépek olyan elektronikus számítógépek, amelyek csak két állapotot ismernek. A két állapotot logikai igaz, illetve logikai hamis értéknek nevezzük. A kétállapotú jellemzőt bitnek nevezzük. A bit az angol binary digit (bináris jegy) rövidítése. Egy bitnek két értéke lehet: 0 vagy 1. 2

3 A számítógépek az adatok digitálisan kódolt formáját, az ún. bitsorozatokat képesek feldolgozni. Bitsorozaton a 0-k és 1-esek meghatározott hosszúságú sorozatát értjük. Például az alkotja a 8 bit hosszúságú bitsorozatot. Egy bájtnak nevezzük a 8 bithosszúságú bitsorozatot. A byte szó az angol By Eight (nyolcasával) szavakból származik. Itt is használhatóak a prefixumok, bár picit más a jelentésük. 1 kilobájt (1 Kbájt) = 1024 bájt. 1 megabájt (1 Mbájt) = 1024 * 1024 bájt, azaz bájt =1024 Kbájt. 1 gigabájt (1 Gbájt) = 1024*1024*1024 bájt = 1024 Mbájt. Ahhoz, hogy a számítógép számára az információt érthetővé tegyük, kódolni kell, azaz a számítógép számára érthető bitsorozattá kell alakítani. A számítógép csak számokkal tud dolgozni, ezért a szöveges információt kódolni kell. A számítástechnikában nemzetközileg elfogadott kódrendszer az ASCII (American Standard Code for Information Interchange) és az EBCDIC (Extended Binary Code Decimal Interchange Code) kódrendszer. Az ASCII-kódrendszer az angol ábécé kis-és nagybetűit (a-tól z-ig), a számjegyeket (0-9), néhány írásjelet (!,?,+,%,*, stb.), vezérlőjeleket és speciális karaktereket tartalmaz. A betűket, számjegyeket, írásjeleket és más speciális jeleket (pl. vezérlőjeleket) összefoglaló nevükön karakternek nevezzük. Az ASCII-kódrendszerben a karakterkódok 0-tól 127-ig terjedhetnek. Az ASCII bővített változata (amit használunk) már nem csak az angol ábécé betűit tartalmazza. Például a magyar ASCII-t ki kellett egészíteni az ékezetes betűkkel. Például a nagy A betű kódja 65, a 0 -é 48, az á -é 160. A 256 különböző jel az egyes nemzeti karakterkészletek eltérése miatt kevés az egységes kódrendszer kialakítására, amelyben minden nemzet sajátos karakterei ugyanazzal a kóddal szerepelhetnének. Ezt a problémát oldja meg az UNICODE karakterkészlet, amely 16 biten tárolja a jeleket, így összesen 2 16 különböző karakter tárolására nyílik mód. Az UNICODE-karakterkészlet első 128 karaktere megfelel az ASCII-kódnak, így azzal felülről kompatibilisnek tekinthető. 3

4 2. Az informatika matematikai alapjai 2.1. Számrendszerek A helyiértékes számábrázolás A számokat többféleképpen jelölték az emberek a történelem során. (Erről a következő fejezetben lesz szó.) A ma legismertebb ábrázolásmód a helyiértékes számábrázolás. Egy másféle számábrázolásra jó példa lehet az ismert római számok leírása. A helyiértékes számábrázolás esetén tudni kell az alapszámot. Az általunk használt számrendszer a 10-es, más néven decimális számrendszer, amelynek alapszáma 10. A következőkben tárgyszerűen és röviden olvasható az általunk használt számrendszerek jellemzése A bináris számrendszer A bináris számrendszert kettes számrendszernek is nevezik. A számrendszer alapszáma: 2. A számrendszer számjegyei: 0 és az 1. A számrendszer helyiérték táblázata: ½ 1/ Az oktális számrendszer A oktális számrendszert nyolcas számrendszernek is nevezik. A számrendszer alapszáma: 8. A számrendszer számjegyei: 0; 1; 2; 3; 4; 5; 6; 7. A számrendszer helyiérték táblázata: /8 1/

5 A decimális számrendszer A decimális számrendszert tízes számrendszernek is nevezik. A számrendszer alapszáma: 10. A számrendszer számjegyei: 0; 1; 2; 3; 4; 5; 6; 7; 8; 9. A számrendszer helyiérték táblázata: /10 1/ A hexadecimális számrendszer A hexadecimális számrendszert tizenhatos számrendszernek is nevezik. A számrendszer alapszáma: 16. A tizenhatos számrendszerben nem tudunk tizenhat különböző számot leírni, mivel csupán tíz számjegyet ismerünk. Ésszerű és egyértelmű megoldást ad, ha a 9 feletti számjegyeket betűkkel helyettesítjük: A=10; B=11; C=12; D=13; E=14; F=15. A számrendszer számjegyei: 0; 1; 2; 3; 4; 5; 6; 7; 8; 9; A; B; C; D; E; F. A számrendszer helyiérték táblázata: /16 1/

6 2.2. Konverziók a számrendszerek között A konverzió azt jelenti, hogy az egyik számrendszerből hogyan lehet egy másik számrendszerbe átírni a kívánt számot. A konverzióhoz vagy magyarul átváltáshoz viszont tudni kell a számok egyértelmű leírását. Egy szám önmagában nem fejezi ki azt, hogy melyik számrendszerben írták le. Az 101 (egy nulla egy) szám értelmezhető az eddig felsorolt számrendszerek bármelyikében, hiszen a 0, és az 1 számjegyeket az összes számrendszer tartalmazza. A számrendszer alapszámát az egyértelműség miatt legtöbbször alsó indexben jelenítik meg. Amennyiben nem szerepel a számrendszer alapszáma a szám után indexként, akkor a szám alapértelmezés szerint tízes számrendszerben van. Példák: szám a szám olvasása kilenc hét kettő öt a tizenhatos számrendszerben 1A1B0 16 egy a egy bé nulla a tizenhatos számrendszerben egy nulla egy nulla a tizenhatos számrendszerben három hét öt a tízes számrendszerben vagy háromszázhetvenöt 1001 ezeregy (a tízes számrendszerben) egy egy egy nulla nulla a kettes számrendszerben 6

7 A decimális számrendszer konverziói Egy tízes számrendszerbeli egész számot a kettes számrendszerbe a következő algoritmussal konvertálhatunk (válthatunk) át: a decimális számot addig osztjuk kettővel, amíg a hányados nulla nem lesz. A maradékokat mindig feljegyezzük, majd a maradékot az utolsótól visszafelé olvasva, megkapjuk a bináris alakot. Példa: = osztva 2-vel: 53, maradt az : Egy tízes számrendszerbeli egész számot a nyolcas számrendszerbe a következő algoritmussal konvertálhatunk (válthatunk) át: a decimális számot addig osztjuk nyolccal, amíg a hányados nulla nem lesz. A maradékokat mindig feljegyezzük, majd a maradékot az utolsótól visszafelé olvasva megkapjuk az oktális alakot. Példa: = Egy tízes számrendszerbeli egész számot a tizenhatos számrendszerbe ugyanígy tudunk átváltani: a decimális számot addig osztjuk tizenhattal, amíg a hányados nulla nem lesz. A maradékokat mindig feljegyezzük, majd a maradékot az utolsótól visszafelé olvasva, megkapjuk a hexadecimális alakot. Természetesen a 9-nél nagyobb maradékokat a hexadecimális számrendszerben meghatározott jegyekre kell átírni. Példa: = 1C = C 0 1 7

8 A bináris számrendszer konverziói Egy bináris számot átválthatunk decimálissá, ha a számjegyeket a helyiértékükkel összeszorozzuk, majd a szorzatokat összeadjuk. Példa: = x1 + 32x0 + 16x1 + 8x0 + 4 x x x 1 = 81 Egy bináris számot átválthatunk hexadecimálissá, ha a számjegyeket a legkisebb helyiértékkel kezdve négyesével csoportosítjuk, majd a négy számjegyet sorba váltjuk át hexadecimálissá. 1. példa: = 33E E 7 2. példa: = 70F F 1 8

9 A hexadecimális számrendszer konverziói Egy hexadecimális számot átválthatunk decimálissá, ha a számjegyeket a helyiértékükkel összeszorozzuk, majd a szorzatokat összeadjuk. Példa: 2B4 16 = B 4 256x2 + 16x11+ 4x1 = 692 Egy hexadecimális számot átválthatunk binárissá, ha a számjegyeket a legkisebb helyiértékkel kezdve négy bináris számjeggyé alakítjuk. 1.példa : 2F29 16 = F példa: 4A 16 = A

10 2.3. Bináris számok összeadása Két bináris számot az alábbi segédtáblázat alapján adhatunk össze a legegyszerűbben: 1. számjegy 2. számjegy az előző oszlopból átvitel az összeg számjegye átvitel a következő oszlopba nincs nincs nincs nincs 0 van van (x) van (x) 0 van van (x) 0 van van (x) 1 van 1. példa Nincs átvitel ebben az egyszerű példában, ezért csak a két számjegy és az összeg oszlopát kell nézni a táblázatból:

11 2. példa Az átvitelt x-el jelölve az összeg a táblázat alapján meghatározható: átvitel: x x x példa A példa két olyan szám összeadását mutatja be, ahol minden lehetőség előfordul: átvitel: x x x x x x x

12 2.4. Belső adatábrázolás A számítógép az adatokat kódolt formában tárolja, kezeli és képzi. A RAM-ban nem lehetnek rendezetlenül az adatok, a számítógépnek tudnia kell, hogy az adott adat az éppen szám, szöveg, utasítás vagy teljesen más jellegű adat. Ehhez meg kell ismerni a különféle adatok tárolási módját, vagyis a belső ábrázolást. A fejezetben a következő adatok tárolásával foglakozunk: számok szöveges adatok logikai adatok Számok ábrázolása A számokat alapvetően nulla és egyesek sorozatával tudjuk ábrázolni, ezért kézenfekvő a bináris számrendszer használata. A decimális számokat is lehet ábrázolni úgy, hogy a decimális számjegyeknek egy kettes számrendszerbeli kódot feleltetünk meg. A számok ábrázolását a következő csoportosításban tekintjük át: bináris számok ábrázolása fixpontos lebegőpontos decimális számok ábrázolása pakolt zónázott Bináris számok ábrázolása A számok ábrázolásánál tekintetbe kell venni, hogy velük műveleteket lehessen végezni. Az áramkör tetszőleges algoritmusra elkészíthető, de nem mindegy a sorozatgyártásnál az áramkör előállítási költsége és a mérete. A pozitív bináris számok ábrázolásánál csak azt kell tudni, hogy hány biten ábrázoljuk, azután már beírható a kívánt pozíciókra. A negatív számok ábrázolása sem lenne nagy gond, ha a nullától való távolságát (abszolút érték) vennénk, majd egy bit jelezné, hogy pozitív vagy negatív a szám. Ez olykor valóban így van, azonban egyszerűbbé tehető a számolást végző áramkör, ha csak az összeadást kell elvégeznie. A kivonás miatt viszont valamilyen speciális módon kell tárolni a negatív bináris számokat, hogy az összeadás után az eredmény helyes legyen. Az alábbiakban megismerkedünk a számábrázoláshoz szükséges definíciókkal. 12

13 Mielőtt belevágnánk a közepébe, nézzük egy érdekes játékot. Írjunk le egy ötjegyű számot, például: majd alatta hagyjunk 4 üres sort, aztán leírunk egy másik számot. A játék úgy szól, hogy megkérünk valakit, hogy a megadott szám alá írjon egy tetszőleges ötjegyű számot. Aztán mi is írunk egy ilyen számot, majd ismét a megkért személy írhat egy ötjegyű számot, végül ismét mi. A leírt 1+4=5 darab szám összege az általunk előre leírt szám lesz. Hogyan csináljuk? Úgy, hogy az elsőnek leírt számhoz t kell hozzáadni. Miért pont annyit? Mert nekünk csak annyi a dolgunk, hogy a megkért személy által írt számhoz olyan számot kell párban írnunk, hogy ha a két számot összeadjuk, akkor az eredmény legyen. 2* pedig éppen Figyeljük meg! A két szám összege éppen A két szám összege éppen Miért volt ez a sok hűhó? Azért, mert a nak a 9-es komplemense éppen , a kilences komplemense pedig Egy p alapú számrendszer esetén egy n jegyű szám p 1-es komplemense az a szám, amely úgy áll elő, hogy az adott n jegyű szám minden számjegyét a legnagyobb értékű számjegyre kiegészítjük. 1. pé1da 37 esetén (p=10; n=2; legnagyobb értékű számjegy: 9): 62 a 9-es (p 1) komplemens, mivel 62+37= példa esetén (p=2; n=5; legnagyobb értékű számjegy: 1): az 1-es (p 1) komplemens. 13

14 Adott egy p alapú számrendszer. A számrendszerben egy n jegyű szám p-és komplemense úgy áll elő, hogy a p 1-es komplemenshez egyet hozzáadunk. 1. példa 37 esetén (p=10; n=2; legnagyobb értékű számjegy: 9): 62 a 9-es komplemens, 62+1=63 a 10-es komplemens. 2. példa 462 esetén (p=10; n=3; legnagyobb értékű számjegy: 9): 537 a 9-es komplemens, 537+1=538 a 10-es komplemens, 3. példa esetén (p=2; n=5; legnagyobb értékű számjegy: 1): 1001 az 1-es komplemens, (a szám első 1-ese helyett a komplemensben 0 van, ezért csak 4 jegyű a komplemens = 1010 a 2-es komplemens. 14

15 Negatív számok ábrázolása A következőkben a számok ábrázolását segítő példák következnek. Minden esetben kiemelten fontos, hogy hány biten ábrázoljuk a bináris számokat! 1. példa Nézzük meg 4 biten a 4 ábrázolását! 5 = A 101 bináris szám egyes komplemenses alakjához a számot ki kell egészíteni 4 bitre úgy, hogy értéke egyértelmű maradjon. Az egyes komplemens előállítása ezután a bitek átbillentését jelenti, vagyis ahol 0 volt ott 1-es, ahol 1-es volt ott 0 kell szerepeljen. (Azaz a számjegyek összege 1) Az egyes komplemenses alakhoz egyet hozzáadva kapjuk a negatív bináris szám kettes komplemensét. 4 bit a 101 előjel nélküli felírása az 101 alak kiegészítése 4 bitre a 100 szám egyes komplemense (bitek ellentetjére) a 100 szám kettes komplemense (+1 hozzáadása) Így az eredmény: példa Nézzük meg 4 biten a 1 ábrázolását! 1 = bit a 1 előjel nélküli felírása 1 az 1 alak kiegészítése 4 bitre a 1 szám egyes komplemense (bitek ellentetjére) a 1 szám kettes komplemense (+1 hozzáadása) Így az eredmény:

16 3. példa Nézzük meg 4 biten a 3 ábrázolását! 3 = 11 2 A 11 bináris szám egyes komplemenses alakjához a számot ki kell egészíteni 4 bitre úgy, hogy értéke egyértelmű maradjon. Az egyes komplemens előállítása ezután a bitek átbillentését jelenti, vagyis ahol 0 volt ott 1-es, ahol 1-es volt ott 0 kell szerepeljen. 4 bit a 11 előjel nélküli felírása 1 1 az 11 alak kiegészítése 4 bitre a 11 szám egyes komplemense (bitek ellentetjére) a 11 szám kettes komplemense (+1 hozzáadása) Így az eredmény: példa Nézzük meg 4 biten a 15 ábrázolását! 15 = Mivel a szám négy bites, így nincs szükség a kiegészítésre. 4 bit a 1111 előjel nélküli felírása a 1111 szám egyes komplemense (bitek ellentetjére) a 1111 szám kettes komplemense (+1 hozzáadása) Így az eredmény: példa Nézzük meg 4 biten a 19 ábrázolását! 193 = Mivel a szám négy biten nem fér el, ezért nem ábrázolható. A számítógépen minden számábrázolás csak korlátok között képzelhető el. Négy biten ábrázolható legnagyobb szám a

17 6. példa Adott az 1010 bináris szám 4 bites, kettes komplemens alakban. Mennyi az értéke decimálisan? A negatív számokat ábrázoljuk kettes komplemenses alakban, ezért a decimális szám is biztosan negatív lesz. A visszaváltásnál is fontos, hogy 4 biten ábrázolták a számot, hiszen a visszaváltásnál is a kettes komplemensé alakítás a cél: 4 bit a negatív szám kettes komplemense határozzuk meg a fenti szám egyes komplemensét határozzuk meg az előző sor kettes komplemensét váltsuk át decimális számrendszerbe 6 írjuk elé az előjelet 6 Így az eredmény: Pozítív és negatív szám összege Egy tetszőleges számhoz egy negatív szám hozzáadása ugyanazt eredményezi, mintha a negatív szám abszolút értékét az előjel elhagyásával kapott pozitív számot vonnánk ki. Példa: 5 + ( 2) = 3, aminek ugyanaz az eredménye, mint az 5 (+ 2) = 3 műveletnek. Ez az egyszerű szabály a számítógép számára egy kicsit mást jelent. A negatív bináris számok tárolását Neumann János ötlete alapján az ún. kettes komplemens alakkal lehet megoldani. A negatív számot kettes komplemens alakban hozzáadva egy számhoz valóban kivonást végzünk el. 17

18 Példa: Egy pozitív bináris számot adunk össze, egy kettes komplemens alakban ábrázolt negatív bináris számmal 2 bájton. Az összeg, vagyis az eredmény matematikailag értelmetlen lenne, de az ábrázolási tartomány korlátozott volta miatt a túlcsordult bittel nem foglalkozik a számítógép, hiszen nem tudja hol tárolni. Neumann ötlete azért volt nagyszerű, mert a bináris számrendszerben így elég csak az összeadás művelete, nem szükséges a kivonás, miáltal a műveleteket végző áramkörök sokkal egyszerűbbek lehetnek: A bináris szám ábrázolási tartománya 1. bájt 0. bájt túlcsor dult bit Az ábrázolás miatt az összeg is csak 2 bájton képződik A számítógépnek ezután nem kell ismernie a kivonást, hogy ha egy pozitív számhoz hozzáadom kivonandó kettes komplemensét, akkor valójában kivontam ezt a számot a pozitív számból. Ha valaki megkérdezi a Kedves Olvasót, hogy vonja ki a 931-ből a 129-et anélkül, hogy ténylegesen elvégzi a kivonást, akkor ugye úgy oldaná meg, hogy kiszámolná a 129 kilences komplemensét, ami 870, majd hozzáadna 1-et, így kapna 871 et, ami a 129 tízes komplemense. Ezután pedig hozzáadná a 931-hez =1802. Az egyes elhagyjuk, azaz 802 az eredmény. Vagyis =

19 A fixpontos számábrázolás Az egész számokat ábrázoljuk fixpontosan. A bináris (tört-egész elválasztó) pont fix helyen található, vagyis a helyiértékeknek állandó és határozott helyük van. Az ábrázolt szám nagysága függ attól, hogy hány biten ábrázoljuk, tehát bináris számrendszerben hány jegyű számot ábrázolunk. Az egész számok ábrázolásásra általában 2, vagy 4 bájt használatos. A bináris egész számokat mi most 2 bájton ábrázoljuk. Az ábrázolásnál figyeljünk arra, hogy a biteket jobbról balra, nullával kezdve szokás számozni. Különböző módon kell ábrázolni a pozitív és a negatív számokat. A pozitív számok és a nulla esetén az ábrázolás mindig nullával kezdődik (15. bit), s utána legfeljebb 15 bináris számjegy (14-0. bit) szerepelhet. A nulla az elején a pozitív előjel jelölésre szolgál. A negatív számokat a 16 bites 2-es komplemenses alakkal ábrázoljuk. Ez esetben megfigyelhető, hogy a kettes komplemens alak miatt az ábrázolás elején (15. bit) mindig 1-es található, vagyis az 1-el kezdődő fixpontos ábrázolás biztosan egy negatív számot takar. előjel bit bináris egész szám bitek számozása: bájt 0. bájt fix, bináris pont Az ábrázolható számok binárisan decimálisan 2-es kompl.? Ábrázolható számtartomány: tól től igen ig ig nem legnagyobb nem negatív: nem legkisebb nem negatív: nem legnagyobb negatív: igen legkisebb negatív: igen Ennek megfelelően 2 bájton a legnagyobb ábrázolható szám a , a legkisebb a nulla, ha negatív számokat nem ábrázolunk. Egy bájton pedig az értelmezési tartomány: , ha pozitív és negatív számokat is ábrázolunk (tárolunk). Ha nem, akkor

Kedves Diákok! A feladatok legtöbbször egy pontot érnek. Ahol ettől eltérés van, azt külön jelöljük.

Kedves Diákok! A feladatok legtöbbször egy pontot érnek. Ahol ettől eltérés van, azt külön jelöljük. Kedves Diákok! Szeretettel köszöntünk Benneteket abból az alkalomból, hogy a Ceglédi Közgazdasági és Informatikai Szakközépiskola informatika tehetséggondozásának első levelét olvassátok! A tehetséggondozással

Részletesebben

Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez

Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez Segédlet az Informatika alapjai I. című tárgy számrendszerek fejezetéhez Sándor Tamás, sandor.tamas@kvk.bmf.hu Takács Gergely, takacs.gergo@kvk.bmf.hu Lektorálta: dr. Schuster György PhD, hal@k2.jozsef.kando.hu

Részletesebben

SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA

SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA 1 ELSŐ GYAKORLAT SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA A feladat elvégzése során a következőket fogjuk gyakorolni: Számrendszerek közti átváltás előjelesen és előjel nélkül. Bináris, decimális, hexadexcimális számrendszer.

Részletesebben

Analóg és digitális jelek. Az adattárolás mértékegységei. Bit. Bájt. Nagy mennyiségû adatok mérése

Analóg és digitális jelek. Az adattárolás mértékegységei. Bit. Bájt. Nagy mennyiségû adatok mérése Analóg és digitális jelek Analóg mennyiség: Értéke tetszõleges lehet. Pl.:tömeg magasság,idõ Digitális mennyiség: Csak véges sok, elõre meghatározott értéket vehet fel. Pl.: gyerekek, feleségek száma Speciális

Részletesebben

Jel, adat, információ

Jel, adat, információ Kommunikáció Jel, adat, információ Jel: érzékszerveinkkel, műszerekkel felfogható fizikai állapotváltozás (hang, fény, feszültség, stb.) Adat: jelekből (számítástechnikában: számokból) képzett sorozat.

Részletesebben

Számrendszerek. Bináris, hexadecimális

Számrendszerek. Bináris, hexadecimális Számrendszerek Bináris, hexadecimális Mindennapokban használt számrendszerek Decimális 60-as számrendszer az időmérésre DNS-ek vizsgálata négyes számrendszerben Tetszőleges természetes számot megadhatunk

Részletesebben

5.1.4 Laborgyakorlat: A Windows számológép használata hálózati címeknél

5.1.4 Laborgyakorlat: A Windows számológép használata hálózati címeknél 5.1.4 Laborgyakorlat: A Windows számológép használata hálózati címeknél Célok Átkapcsolás a Windows Számológép két működési módja között. A Windows Számológép használata a decimális (tízes), a bináris

Részletesebben

Aritmetikai utasítások I.

Aritmetikai utasítások I. Aritmetikai utasítások I. Az értékadó és aritmetikai utasítások során a címzési módok különböző típusaira látunk példákat. A 8086/8088-as mikroprocesszor memóriája és regiszterei a little endian tárolást

Részletesebben

Számrendszerek és az informatika

Számrendszerek és az informatika Informatika tehetséggondozás 2012-2013 3. levél Az első levélben megismertétek a számrendszereket. A másodikban ízelítőt kaptatok az algoritmusos feladatokból. A harmadik levélben először megnézünk néhány

Részletesebben

Bináris egység: bit (binary unit) bit ~ b; byte ~ B (Gb Gigabit;GB Gigabyte) Gb;GB;Gib;GiB mind más. Elnevezés Jele Értéke Elnevezés Jele Értéke

Bináris egység: bit (binary unit) bit ~ b; byte ~ B (Gb Gigabit;GB Gigabyte) Gb;GB;Gib;GiB mind más. Elnevezés Jele Értéke Elnevezés Jele Értéke Kódolások Adatok kódolása Bináris egység: bit (binary unit) bit ~ b; byte ~ B (Gb Gigabit;GB Gigabyte) Gb;GB;Gib;GiB mind más. Elnevezés Jele Értéke Elnevezés Jele Értéke Kilo K 1 000 Kibi Ki 1 024 Mega

Részletesebben

Jelátalakítás és kódolás

Jelátalakítás és kódolás Jelátalakítás és kódolás Információ, adat, kódolás Az információ valamely jelenségre vonatkozó értelmes közlés, amely új ismereteket szolgáltat az információ felhasználójának. Valójában információnak tekinthető

Részletesebben

1. Digitális írástudás: a kőtáblától a számítógépig 2. Szedjük szét a számítógépet 1. örök 3. Szedjük szét a számítógépet 2.

1. Digitális írástudás: a kőtáblától a számítógépig 2. Szedjük szét a számítógépet 1. örök 3. Szedjük szét a számítógépet 2. Témakörök 1. Digitális írástudás: a kőtáblától a számítógépig ( a kommunikáció fejlődése napjainkig) 2. Szedjük szét a számítógépet 1. ( a hardver architektúra elemei) 3. Szedjük szét a számítógépet 2.

Részletesebben

Hardverközeli programozás 1 1. gyakorlat. Kocsis Gergely 2015.02.17.

Hardverközeli programozás 1 1. gyakorlat. Kocsis Gergely 2015.02.17. Hardverközeli programozás 1 1. gyakorlat Kocsis Gergely 2015.02.17. Információk Kocsis Gergely http://irh.inf.unideb.hu/user/kocsisg 2 zh + 1 javító (a gyengébbikre) A zh sikeres, ha az elért eredmény

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

1. tétel. A kommunikáció információelméleti modellje. Analóg és digitális mennyiségek. Az információ fogalma, egységei. Informatika érettségi (diák)

1. tétel. A kommunikáció információelméleti modellje. Analóg és digitális mennyiségek. Az információ fogalma, egységei. Informatika érettségi (diák) 1. tétel A kommunikáció információelméleti modellje. Analóg és digitális mennyiségek. Az információ fogalma, egységei Ismertesse a kommunikáció általános modelljét! Mutassa be egy példán a kommunikációs

Részletesebben

Számrendszerek. A római számok írására csak hét jelt használtak. Ezek segítségével, jól meghatározott szabályok szerint képezték a különböz számokat.

Számrendszerek. A római számok írására csak hét jelt használtak. Ezek segítségével, jól meghatározott szabályok szerint képezték a különböz számokat. Számrendszerek A római számok írására csak hét jelt használtak Ezek segítségével, jól meghatározott szabályok szerint képezték a különböz számokat Római számjegyek I V X L C D M E számok értéke 1 5 10

Részletesebben

INFO1 Számok és karakterek

INFO1 Számok és karakterek INFO1 Számok és karakterek Wettl Ferenc 2015. szeptember 29. Wettl Ferenc INFO1 Számok és karakterek 2015. szeptember 29. 1 / 22 Tartalom 1 Bináris számok, kettes komplemens számábrázolás Kettes számrendszer

Részletesebben

Számrendszerek, számábrázolás

Számrendszerek, számábrázolás Számrendszerek, számábrázolás Nagy Zsolt 1. Bevezetés Mindannyian, nap, mint nap használjuk a következ fogalmakat: adat, információ. Adatokkal találkozunk az utcán, a médiumokban, a boltban. Információt

Részletesebben

INFORMATIKA MATEMATIKAI ALAPJAI

INFORMATIKA MATEMATIKAI ALAPJAI INFORMATIKA MATEMATIKAI ALAPJAI Készítette: Kiss Szilvia ZKISZ informatikai szakcsoport Az információ 1. Az információ fogalma Az érzékszerveinken keresztül megszerzett új ismereteket információnak nevezzük.

Részletesebben

S z á m í t á s t e c h n i k a i a l a p i s m e r e t e k

S z á m í t á s t e c h n i k a i a l a p i s m e r e t e k S z á m í t á s t e c h n i k a i a l a p i s m e r e t e k T a r t a l o m Mintafeladatok... 4 Számrendszerek, logikai mőveletek... 4 Gyakorló feladatok... 19 Számrendszerek, logikai mőveletek... 19 Megoldások...

Részletesebben

IT - Alapismeretek. Megoldások

IT - Alapismeretek. Megoldások IT - Alapismeretek Megoldások 1. Az első négyműveletes számológépet Leibniz és Schickard készítette. A tárolt program elve Neumann János nevéhez fűződik. Az első generációs számítógépek működése a/az

Részletesebben

Az Informatika Elméleti Alapjai

Az Informatika Elméleti Alapjai Az Informatika Elméleti Alapjai dr. Kutor László Törtszámok bináris ábrázolása, Az információ értelmezése és mérése http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 BMF NIK

Részletesebben

Digitális technika VIMIAA01

Digitális technika VIMIAA01 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR MÉRÉSTECHNIKA ÉS INFORMÁCIÓS RENDSZEREK TANSZÉK Digitális technika VIMIAA01 Fehér Béla BME MIT Digitális Rendszerek Számítógépek

Részletesebben

2.3. Soros adatkommunikációs rendszerek CAN (Harmadik rész alapfogalmak II.)

2.3. Soros adatkommunikációs rendszerek CAN (Harmadik rész alapfogalmak II.) 2.3. Soros adatkommunikációs rendszerek CAN (Harmadik rész alapfogalmak II.) 2. Digitálistechnikai alapfogalmak II. Ahhoz, hogy valamilyen szinten követni tudjuk a CAN hálózatban létrejövő információ-átviteli

Részletesebben

Informatika elméleti alapjai. January 17, 2014

Informatika elméleti alapjai. January 17, 2014 Szám- és kódrendszerek Informatika elméleti alapjai Horváth Árpád January 17, 2014 Contents 1 Számok és ábrázolásuk Számrendszerek Helyiérték nélküliek, pl római számok (MMVIIII) Helyiértékesek a nulla

Részletesebben

IT - Alapismeretek. Feladatgyűjtemény

IT - Alapismeretek. Feladatgyűjtemény IT - Alapismeretek Feladatgyűjtemény Feladatok PowerPoint 2000 1. FELADAT TÖRTÉNETI ÁTTEKINTÉS Pótolja a hiányzó neveket, kifejezéseket! Az első négyműveletes számológépet... készítette. A tárolt program

Részletesebben

Dr. Wührl Tibor Ph.D. MsC 04 Ea. IP P címzés

Dr. Wührl Tibor Ph.D. MsC 04 Ea. IP P címzés Dr. Wührl Tibor Ph.D. MsC 04 Ea IP P címzés Csomagirányítás elve A csomagkapcsolt hálózatok esetén a kapcsolás a csomaghoz fűzött irányítási információk szerint megy végbe. Az Internet Protokoll (IP) alapú

Részletesebben

1. előadás. Adatok, számrendszerek, kódolás. Dr. Kallós Gábor

1. előadás. Adatok, számrendszerek, kódolás. Dr. Kallós Gábor 1. előadás Adatok, számrendszerek, kódolás Dr. Kallós Gábor 2014 2015 1 Tartalom Adat, információ, kód Az információ áramlásának klasszikus modellje Számrendszerek Út a 10-es számrendszerig 10-es és 2-es

Részletesebben

BEVEZETÉS AZ INFORMATIKÁBA 1. rész TARTALOMJEGYZÉK

BEVEZETÉS AZ INFORMATIKÁBA 1. rész TARTALOMJEGYZÉK BEVEZETÉS AZ INFORMATIKÁBA 1. rész TARTALOMJEGYZÉK BEVEZETÉS AZ INFORMATIKÁBA 1. RÉSZ... 1 TARTALOMJEGYZÉK... 1 AZ INFORMÁCIÓ... 2 Az információ fogalma... 2 Közlemény, hír, adat, információ... 3 Az információ

Részletesebben

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez TANMENETJAVASLAT Dr. Korányi Erzsébet MATEMATIKA tankönyv ötödikeseknek címû tankönyvéhez A heti 3 óra, évi 111 óra B heti 4 óra, évi 148 óra Javaslat témazáró dolgozatra: Dr. Korányi Erzsébet: Matematika

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

Kódolás. A számítógép adatokkal dolgozik. Értelmezzük az adat és az információ fogalmát.

Kódolás. A számítógép adatokkal dolgozik. Értelmezzük az adat és az információ fogalmát. Kódolás A számítógép adatokkal dolgozik. Értelmezzük az adat és az információ fogalmát. Mi az információ? Az információ egy értelmes közlés, amely új ismeretet, új tudást ad. (Úgy is fogalmazhatunk, hogy

Részletesebben

Számold meg a pontokat A bináris számok

Számold meg a pontokat A bináris számok 1. Foglalkozás Számold meg a pontokat A bináris számok Tartalom A számítógépekben az adatokat nullák és egyesek sorozataként tároljuk és továbbítjuk. Hogyan tudjuk ábrázolni a szavakat és a számokat pusztán

Részletesebben

Az Informatika Elméleti Alapjai

Az Informatika Elméleti Alapjai Az Informatika Elméleti Alapjai dr. Kutor László Minimális redundanciájú kódok Statisztika alapú tömörítő algoritmusok http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 BMF

Részletesebben

ÉRETTSÉGI TÉTELCÍMEK 2012 Informatika

ÉRETTSÉGI TÉTELCÍMEK 2012 Informatika Budapesti Egyetemi Katolikus Gimnázium és Kollégium ÉRETTSÉGI TÉTELCÍMEK 2012 Informatika Reischlné Rajzó Zsuzsanna Szaktanár Endrédi Józsefné Igazgató Kelt: Budapest, 2012 március 1. tétel A kommunikáció

Részletesebben

C programozás. { Márton Gyöngyvér, 2009 } { Sapientia, Erdélyi Magyar Tudományegyetem } http://www.ms.sapientia.ro/~mgyongyi

C programozás. { Márton Gyöngyvér, 2009 } { Sapientia, Erdélyi Magyar Tudományegyetem } http://www.ms.sapientia.ro/~mgyongyi C programozás Márton Gyöngyvér, 2009 Sapientia, Erdélyi Magyar Tudományegyetem http://www.ms.sapientia.ro/~mgyongyi 1 Könyvészet Kátai Z.: Programozás C nyelven Brian W. Kernighan, D.M. Ritchie: A C programozási

Részletesebben

IBAN: INTERNATIONAL BANK ACCOUNT NUMBER. I. Az IBAN formái

IBAN: INTERNATIONAL BANK ACCOUNT NUMBER. I. Az IBAN formái IBAN: INTERNATIONAL BANK ACCOUNT NUMBER A EUROPEAN COMMITTEE FOR BANKING STANDARDS (ECBS) által 2001. februárban kiadott, EBS204 V3 jelű szabvány rögzíti a nemzetközi számlaszám formáját, valamint eljárást

Részletesebben

Informatikai alkalmazások - levelező. 2013. ősz

Informatikai alkalmazások - levelező. 2013. ősz Informatikai alkalmazások - levelező 2013. ősz Követelmények 2 db a félév gyakorlati anyagához kötődő házi feladat elkészítése Egyenként 20 pont (min. 50%) Utosló alkalommal megírt dolgozat Max. 25 pont

Részletesebben

2013.11.25. H=0 H=1. Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban,

2013.11.25. H=0 H=1. Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban, Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban, akkor a i (gyakorisága) = k i a i relatív gyakorisága: A jel információtartalma:

Részletesebben

Az Informatika Elméleti Alapjai

Az Informatika Elméleti Alapjai Az Informatika Elméleti Alapjai dr. Kutor László Jelek típusai Átalakítás az analóg és digitális rendszerek között http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 IEA 3/1

Részletesebben

Számítógép felépítése

Számítógép felépítése Alaplap, processzor Számítógép felépítése Az alaplap A számítógép teljesítményét alapvetően a CPU és belső busz sebessége (a belső kommunikáció sebessége), a memória mérete és típusa, a merevlemez sebessége

Részletesebben

4. Fejezet : Az egész számok (integer) ábrázolása

4. Fejezet : Az egész számok (integer) ábrázolása 4. Fejezet : Az egész számok (integer) ábrázolása The Architecture of Computer Hardware and Systems Software: An InformationTechnology Approach 3. kiadás, Irv Englander John Wiley and Sons 2003 Wilson

Részletesebben

Informatika szóbeli vizsga témakörök

Informatika szóbeli vizsga témakörök KECSKEMÉTI MŰSZAKI SZAKKÉPZŐ ISKOLA, SPECIÁLIS SZAKISKOLA ÉS KOLLÉGIUM 6000 Kecskemét, Szolnoki út 31., Telefon: 76/480-744, Fax: 487-928 KANDÓ KÁLMÁN SZAKKÖZÉPISKOLA ÉS SZAKISKOLÁJA 6000 Kecskemét, Bethlen

Részletesebben

2.1. Jelátalakítás és kódolás

2.1. Jelátalakítás és kódolás 2.1. Jelátalakítás és kódolás Digitalizálás Az információ hordozója a jel, amely más-más formában kell, hogy megjelenjen az ember illetve a számítógép számára. Az ember alapvetően en a természetes környezetéből

Részletesebben

Számrendszerek. Átváltás a számrendszerek között: Általában 10-es számrendszerből váltunk tetszőlegesre és tetszőlegest 10-esre.

Számrendszerek. Átváltás a számrendszerek között: Általában 10-es számrendszerből váltunk tetszőlegesre és tetszőlegest 10-esre. Számrendszerek Tízes számrendszer: Ez az általános, informatikán kívül is használt legelterjedtebb számrendszer. Alapja 10 szám 0,1,2,3 9. Decimális számrendszernek is nevezzük. Egyik felhasználása az

Részletesebben

A tervfeladat sorszáma: 1 A tervfeladat címe: ALU egység 8 regiszterrel és 8 utasítással

A tervfeladat sorszáma: 1 A tervfeladat címe: ALU egység 8 regiszterrel és 8 utasítással .. A tervfeladat sorszáma: 1 A ALU egység 8 regiszterrel és 8 utasítással Minimálisan az alábbi képességekkel rendelkezzen az ALU 8-bites operandusok Aritmetikai funkciók: összeadás, kivonás, shift, komparálás

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

Analóg-digitál átalakítók (A/D konverterek)

Analóg-digitál átalakítók (A/D konverterek) 9. Laboratóriumi gyakorlat Analóg-digitál átalakítók (A/D konverterek) 1. A gyakorlat célja: Bemutatjuk egy sorozatos közelítés elvén működő A/D átalakító tömbvázlatát és elvi kapcsolási rajzát. Tanulmányozzuk

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

PC-Kismester verseny második forduló feladatai. Beküldési határidő: 2011. január 31.

PC-Kismester verseny második forduló feladatai. Beküldési határidő: 2011. január 31. PC-Kismester XIV. informatikai verseny feladatok 1. oldal, összesen: 6 5-8. osztály PC-Kismester verseny második forduló feladatai Beküldési határidő: 2011. január 31. Informatikai alapismeretek 1. Végezzétek

Részletesebben

Békéscsabai Kemény Gábor Logisztikai és Közlekedési Szakközépiskola "Az új szakképzés bevezetése a Keményben" TÁMOP-2.2.5.

Békéscsabai Kemény Gábor Logisztikai és Közlekedési Szakközépiskola Az új szakképzés bevezetése a Keményben TÁMOP-2.2.5. Szakképesítés: Log Autószerelő - 54 525 02 iszti Tantárgy: Elektrotechnikaelektronika Modul: 10416-12 Közlekedéstechnikai alapok Osztály: 12.a Évfolyam: 12. 32 hét, heti 2 óra, évi 64 óra Ok Dátum: 2013.09.21

Részletesebben

Tudnivalók az otthon kidolgozandó feladatokról

Tudnivalók az otthon kidolgozandó feladatokról Tudnivalók az otthon kidolgozandó feladatokról Otthon kidolgozandó feladat megoldásának beküldése csak azok számára kötelező, akik fölvették az Assembly programozás konzultáció kurzust. Minden hallgató,

Részletesebben

Az informatika alapjai

Az informatika alapjai Az informatika alapjai Előadást egyáltalán nem követő, csak a legfontosabb (szükséges de nem elégséges) dolgokat, némi fogalmi alapokat (összezavarás céljából), feladatokat és példa feladatsort tartalmazó

Részletesebben

A valós számok halmaza

A valós számok halmaza VA 1 A valós számok halmaza VA 2 A valós számok halmazának axiómarendszere és alapvető tulajdonságai Definíció Az R halmazt a valós számok halmazának nevezzük, ha teljesíti a következő axiómarendszerben

Részletesebben

SZÁMÍTÓGÉP FELÉPÍTÉSE (TK 61-TŐL)

SZÁMÍTÓGÉP FELÉPÍTÉSE (TK 61-TŐL) SZÁMÍTÓGÉP FELÉPÍTÉSE (TK 61-TŐL) SZÁMÍTÓGÉP Olyan elektronikus berendezés, amely adatok, információk feldolgozására képes emberi beavatkozás nélkül valamilyen program segítségével. HARDVER Összes műszaki

Részletesebben

Információs társadalom

Információs társadalom SZÓBELI TÉMAKÖRÖK INFORMATIKÁBÓL 2015. Információs társadalom Kommunikáció fogalma, fajtái, általános modellje. Példák. A jel, adat, információ, zaj és a redundancia fogalma. Példák. Különbség a zaj és

Részletesebben

Írjon olyan programot a standard könyvtár alkalmazásával, amely konzolról megadott valós adatokból meghatározza és kiírja a minimális értékűt!

Írjon olyan programot a standard könyvtár alkalmazásával, amely konzolról megadott valós adatokból meghatározza és kiírja a minimális értékűt! Írjon olyan programot a standard könyvtár alkalmazásával, amely konzolról megadott valós adatokból meghatározza és kiírja a minimális értékűt! valós adatokat növekvő sorrendbe rendezi és egy sorba kiírja

Részletesebben

OKTATÁSI MINISZTÉRIUM. SZÓBELI VIZSGATÉTELEK A többször módosított 100/1997. (VI. 13.) Korm. rendelet alapján szervezett OKJ szakmai vizsgához

OKTATÁSI MINISZTÉRIUM. SZÓBELI VIZSGATÉTELEK A többször módosított 100/1997. (VI. 13.) Korm. rendelet alapján szervezett OKJ szakmai vizsgához OKTATÁSI MINISZTÉRIUM SZÓBELI VIZSGATÉTELEK A többször módosított 100/1997. (VI. 13.) Korm. rendelet alapján szervezett OKJ szakmai vizsgához SZÁMÍTÁSTECHNIKAI SZOFTVERÜZEMELTETŐ OKJ 52 4641 03 A szóbeli

Részletesebben

Törtek. Rendelhetőek nagyon jó szemléltethető eszközök könyvesboltokban és internetek is, pl:

Törtek. Rendelhetőek nagyon jó szemléltethető eszközök könyvesboltokban és internetek is, pl: Törtek A törteknek kétféle értelmezése van: - Egy egészet valamennyi részre (nevező) osztunk, és abból kiválasztunk valahány darabot (számláló) - Valamennyi egészet (számláló), valahány részre osztunk

Részletesebben

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros! Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása

Részletesebben

MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5.

MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5. MATEMATIKA ÍRÁSBELI VIZSGA 2009. május 5. I. rész Fontos tudnivalók A megoldások sorrendje tetszőleges. A feladatok megoldásához szöveges adatok tárolására és megjelenítésére nem alkalmas zsebszámológépet

Részletesebben

Oszthatósági problémák

Oszthatósági problémák Oszthatósági problémák Érdekes kérdés, hogy egy adott számot el lehet-e osztani egy másik számmal (maradék nélkül). Ezek eldöntésére a matematika tanulmányok során néhány speciális esetre látunk is példát,

Részletesebben

I. A Digitális Technika alapjai

I. A Digitális Technika alapjai z információ mennyisége evezetés I. Digitális Technika alapjai Pap Imre evezetés Ebben a könyvben az információfeldolgozás alapjaival ismerkedünk, elsősorban a digitális technikával, és ennek matematikai

Részletesebben

13. Egy x és egy y hosszúságú sorozat konvolúciójának hossza a. x-y-1 b. x-y c. x+y d. x+y+1 e. egyik sem

13. Egy x és egy y hosszúságú sorozat konvolúciójának hossza a. x-y-1 b. x-y c. x+y d. x+y+1 e. egyik sem 1. A Huffman-kód prefix és forráskiterjesztéssel optimálissá tehető, ezért nem szükséges hozzá a forrás valószínűség-eloszlásának ismerete. 2. Lehet-e tökéletes kriptorendszert készíteni? Miért? a. Lehet,

Részletesebben

1. Alapfogalmak Információ o o

1. Alapfogalmak Információ o o http://fariblghu.wrdpress.cm/2011/12/31/final-exam-tpics-it/ 1. Alapfgalmak Infrmáció Adat http://fariblghu.wrdpress.cm az infrmatika nem definiált alapfgalma körülírással megfgalmazva: lyan tény, közlés,

Részletesebben

Mechatronika Modul 1: Alapismeretek

Mechatronika Modul 1: Alapismeretek Mechatronika Modul : Alapismeretek Oktatói segédlet (Elképzelés) Készítették: Matthias Römer Chemnitz-i Műszaki Egyetem, Szerszámgépek és Gyártási Folyamatok Intézete, Németország Cser Adrienn Corvinus

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 3 III. MEGFELELTETÉSEk, RELÁCIÓk 1. BEVEZETÉS Emlékeztetünk arra, hogy az rendezett párok halmazát az és halmazok Descartes-féle szorzatának nevezzük. Más szóval az és halmazok

Részletesebben

2. TÉTEL. Információ: Adatok összessége. Értelmezett adat, mely számunkra új és fontos.

2. TÉTEL. Információ: Adatok összessége. Értelmezett adat, mely számunkra új és fontos. INFORMÁCIÓ ÁBRÁZOLÁS 02. tétel (SZÁM, LOGIKAI ÉRTÉK, SZÖVEG, KÉP, HANG, FILM STB). 2. TÉTEL Adat: A bennünket körülvevő mérhető és nem mérhető jellemzők a világban. - mérhető: hőmérséklet, távolság, idő,

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

C programozási nyelv Pointerek, tömbök, pointer aritmetika

C programozási nyelv Pointerek, tömbök, pointer aritmetika C programozási nyelv Pointerek, tömbök, pointer aritmetika Dr. Schuster György 2011. június 16. C programozási nyelv Pointerek, tömbök, pointer aritmetika 2011. június 16. 1 / 15 Pointerek (mutatók) Pointerek

Részletesebben

A vezérlő alkalmas 1x16, 2x16, 2x20, 4x20 karakteres kijelzők meghajtására. Az 1. ábrán látható a modul bekötése.

A vezérlő alkalmas 1x16, 2x16, 2x20, 4x20 karakteres kijelzők meghajtására. Az 1. ábrán látható a modul bekötése. Soros LCD vezérlő A vezérlő modul lehetővé teszi, hogy az LCD-t soros vonalon illeszthessük alkalmazásunkhoz. A modul több soros protokollt is támogat, úgy, mint az RS232, I 2 C, SPI. Továbbá az LCD alapfunkcióit

Részletesebben

Készítette: Nagy Tibor István

Készítette: Nagy Tibor István Készítette: Nagy Tibor István A változó Egy memóriában elhelyezkedő rekesz Egy értéket tárol Van azonosítója (vagyis neve) Van típusa (milyen értéket tárolhat) Az értéke értékadással módosítható Az értéke

Részletesebben

Bevezetés a programozásba

Bevezetés a programozásba Bevezetés a programozásba 1. Előadás Bevezetés, kifejezések http://digitus.itk.ppke.hu/~flugi/ Egyre precízebb A programozás természete Hozzál krumplit! Hozzál egy kiló krumplit! Hozzál egy kiló krumplit

Részletesebben

A számítógép felépítése és működése. Számítógép

A számítógép felépítése és működése. Számítógép A számítógép felépítése és működése A számítógép alapvető működését tekintve adatfeldolgozó gép. Ez magában foglalja az adatok beolvasását a külvilágból, amivel számításokat végez és tárol, a számítások

Részletesebben

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása 1 Információk 2 A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin Elérhetőség mesko.katalin@tfk.kefo.hu Fogadóóra: szerda 9:50-10:35 Számonkérés időpontok Április 25. 9 00 Május 17. 9 00 Június

Részletesebben

A KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA INFORMATIKA TÉMAKÖREI: 1. Információs társadalom

A KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA INFORMATIKA TÉMAKÖREI: 1. Információs társadalom A KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA INFORMATIKA TÉMAKÖREI: 1. Információs társadalom 1.1. A kommunikáció 1.1.1. A kommunikáció általános modellje 1.1.2. Információs és kommunikációs technológiák és rendszerek

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit 1. Valós számsorozaton valós számok meghatározott sorrendű végtelen listáját értjük. A hangsúly az egymásután következés rendjén van.

Részletesebben

Egyszerű programozási tételek

Egyszerű programozási tételek Egyszerű programozási tételek 2. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. szeptember 15. Sergyán (OE NIK) AAO 02 2011. szeptember 15.

Részletesebben

Informatika Rendszerek Alapjai

Informatika Rendszerek Alapjai Informatika Rendszerek Alapjai Dr. Kutor László Jelek típusai Átalakítás analóg és digitális rendszerek között http://uni-obuda.hu/users/kutor/ IRA 2014 2014. ősz IRA3/1 Analóg jelek digitális feldolgozhatóságának

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint ÉRETTSÉGI VIZSGA 2005. november 5. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM A dolgozatokat az útmutató utasításai szerint, jól követhetően

Részletesebben

Tömbök kezelése. Példa: Vonalkód ellenőrzőjegyének kiszámítása

Tömbök kezelése. Példa: Vonalkód ellenőrzőjegyének kiszámítása Tömbök kezelése Példa: Vonalkód ellenőrzőjegyének kiszámítása A számokkal jellemzett adatok, pl. személyi szám, adószám, taj-szám, vonalkód, bankszámlaszám esetében az elírásból származó hibát ún. ellenőrző

Részletesebben

M/74. közismereti informatika írásbeli (teszt) érettségi vizsgához

M/74. közismereti informatika írásbeli (teszt) érettségi vizsgához OKTATÁSI MINISZTÉRIUM Világbanki Középiskolák 2003. M/74 Elbírálási útmutató közismereti informatika írásbeli (teszt) érettségi vizsgához Tételszám Megoldás Pontszám Tételszám Megoldás Pontszám 1. B 2

Részletesebben

2. Tétel Milyen fontosabb közhasznú információs forrásokat ismer?

2. Tétel Milyen fontosabb közhasznú információs forrásokat ismer? Szóbeli érettségi tételek INFORMATIKÁBÓL 2016 1. Tétel Ismertesse az információ fogalmát! Ismertesse az informatikai rendszerek és a társadalom kölcsönhatását! Jellemezze az információs technológiai forradalmat

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

VIII. Szervezeti kommunikáció

VIII. Szervezeti kommunikáció BBTE, Politika-, Közigazgatás- és Kommunikációtudományi kar, Szatmárnémeti egyetemi kirendeltség VIII. Szervezeti kommunikáció Szervezési- és vezetési elméletek 2013 Május 27 Gál Márk doktorandusz Közigazgatási

Részletesebben

TANMENETJAVASLAT. Matematika. 2. osztály

TANMENETJAVASLAT. Matematika. 2. osztály TANMENETJAVASLAT Matematika 2. osztály 2 1. Ismerkedés a 2. osztályos matematika tankönyvvel és gyakorlókönyvvel Tankönyv Gyakorlókönyv 2. Tárgyak, személyek a megadott szempont szerint (alak, szín, nagyság).

Részletesebben

Ismerkedjünk tovább a számítógéppel. Alaplap és a processzeor

Ismerkedjünk tovább a számítógéppel. Alaplap és a processzeor Ismerkedjünk tovább a számítógéppel Alaplap és a processzeor Neumann-elvű számítógépek főbb egységei A részek feladatai: Központi egység: Feladata a számítógép vezérlése, és a számítások elvégzése. Operatív

Részletesebben

8. Mezőutasítások. Schulcz Róbert schulcz@hit.bme.hu. 8. Mezőutasítások. v2013.10.24.

8. Mezőutasítások. Schulcz Róbert schulcz@hit.bme.hu. 8. Mezőutasítások. v2013.10.24. Schulcz Róbert schulcz@hit.bme.hu A tananyagot kizárólag a BME hallgatói használhatják fel tanulási céllal. Minden egyéb felhasználáshoz a szerző engedélye szükséges! 1 Mezőutasítások (1) A Word lehetőségeit

Részletesebben

Automaták és formális nyelvek

Automaták és formális nyelvek Automaták és formális nyelvek Bevezetés a számítástudomány alapjaiba 1. Formális nyelvek 2006.11.13. 1 Automaták és formális nyelvek - bevezetés Automaták elmélete: információs gépek általános absztrakt

Részletesebben

Adatszerkezetek Tömb, sor, verem. Dr. Iványi Péter

Adatszerkezetek Tömb, sor, verem. Dr. Iványi Péter Adatszerkezetek Tömb, sor, verem Dr. Iványi Péter 1 Adat Adat minden, amit a számítógépünkben tárolunk és a külvilágból jön Az adatnak két fontos tulajdonsága van: Értéke Típusa 2 Adat típusa Az adatot

Részletesebben

1. A komplex számok definíciója

1. A komplex számok definíciója 1. A komplex számok definíciója A számkör bővítése Tétel Nincs olyan n természetes szám, melyre n + 3 = 1. Bizonyítás Ha n természetes szám, akkor n+3 3. Ezért bevezettük a negatív számokat, közöttük van

Részletesebben

A/D és D/A konverterek vezérlése számítógéppel

A/D és D/A konverterek vezérlése számítógéppel 11. Laboratóriumi gyakorlat A/D és D/A konverterek vezérlése számítógéppel 1. A gyakorlat célja: Az ADC0804 és a DAC08 konverterek ismertetése, bekötése, néhány felhasználási lehetőség tanulmányozása,

Részletesebben

Programozási tételek. Dr. Iványi Péter

Programozási tételek. Dr. Iványi Péter Programozási tételek Dr. Iványi Péter 1 Programozási tételek A programozási tételek olyan általános algoritmusok, melyekkel programozás során gyakran találkozunk. Az algoritmusok általában számsorozatokkal,

Részletesebben

Tudásszint mérés feladatlap

Tudásszint mérés feladatlap Tudásszint mérés feladatlap 9. évfolyam Útmutató: Semmilyen segédeszköz nem használható! A feladatlap kitöltésére 40 perc áll rendelkezésedre! Gondold át válaszaidat! Név:... Dátum:... Iskola:... Osztály:...

Részletesebben

Matematika feladatbank I. Statisztika. és feladatgyűjtemény középiskolásoknak

Matematika feladatbank I. Statisztika. és feladatgyűjtemény középiskolásoknak Matematika feladatbank I. Statisztika Elméleti összefoglaló és feladatgyűjtemény középiskolásoknak ÍRTA ÉS ÖSSZEÁLLÍTOTTA: Dugasz János 2011 Fapadoskonyv.hu Kft. Dugasz János Tartalom Bevezető 7 Adatok

Részletesebben

Programzás I. - 1. gyakorlat

Programzás I. - 1. gyakorlat Programzás I. - 1. gyakorlat Alapok Tar Péter 1 Pannon Egyetem Műszaki Informatikai Kar Számítástudomány Alkalmazása Tanszék Utolsó frissítés: September 15, 2007 1 tar@dcs.vein.hu Tar Péter (PE-MIK-DCS)

Részletesebben

Készítette: Fuszenecker Róbert Konzulens: Dr. Tuzson Tibor, docens

Készítette: Fuszenecker Róbert Konzulens: Dr. Tuzson Tibor, docens A nyílt kulcsú titkosítás és a digitális aláírás Készítette: Fuszenecker Róbert Konzulens: Dr. Tuzson Tibor, docens Budapest Műszaki Főiskola Kandó Kálmán Műszaki Főiskolai Kar Műszertechnikai és Automatizálási

Részletesebben

1 INFORMÁCIÓ, INFORMÁCIÓS RENDSZEREK

1 INFORMÁCIÓ, INFORMÁCIÓS RENDSZEREK 1 1 INFORMÁCIÓ, INFORMÁCIÓS RENDSZEREK Kapcsolatunk a külvilággal folyamatos, hiszen mi magunk is a világ részei vagyunk. A világ pedig tele van jelenségekkel, személyekkel, tárgyakkal. Ezek a dolgok pedig

Részletesebben