1. forduló Az adat, az információ és a hír jelentése és tartalma. A kommunikáció

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "1. forduló. 1.1. Az adat, az információ és a hír jelentése és tartalma. A kommunikáció"

Átírás

1 1. Az információ 1.1. Az adat, az információ és a hír jelentése és tartalma. A kommunikáció A tárgyaknak mérhető és nem mérhető, számunkra fontos tulajdonságait adatnak nevezzük. Egy tárgynak sok tulajdonsága adata - lehet, amelyek együttesen kizárólag az adott tárgyat azonosítják. Önmagában az adat nem közöl semmiféle ismeretet. Például, ha valamely tárgyról csupán azt az információt kapjuk, hogy kettő, az adat jelentését nem tudjuk értelmezni. Persze, ha ismernénk a kérdést, amire ezt a választ kaptuk, akkor az adat már értelmet nyerne. Az adat a tényeknek és elképzeléseknek nem értelmezett, de értelmezhető formában való közlése. Az adat tehát nem értelmezett ismeret. Ahhoz, hogy a közölt adatot vagy adatokat értelmezni tudjuk, valamiféle környezetbe kell helyezni. Az agyunkban tárolt adatokat nevezzük ismeretnek. A gondolkodás során az agyunkban tárolt adatok között összefüggéseket teremtünk, és ezen összefüggésekből kombinálva újabb adatokat állítunk elő. Az új adatokat információnak nevezzük. Információnak nevezzük az adatokon végrehajtott gondolati műveletek eredményét. Az információ értelmezett ismeret. Más megfogalmazás szerint az információ hírt hordozó jelek tartalmi jelentése, bizonytalanságot szüntet meg, új ismeret hordoz. : Az információközlés formai szabályainak összességét szintaktikai szabálynak nevezzük. A közlés tartalmi egyezményére vonatkozó szabályok összessége a szemantikai szabály. Szintaktikai szabályok például a magyar nyelv használatának szabályai, a mondatképzés, a szórend, stb. Szemantikai szabályok az egyes szavakhoz rendelt fogalmak. Adatgyűjtés közben sokszor kapunk olyan feladatokat, amely szükségtelenek az új ismeret létrehozásához. Az ember gondolkodása során nemcsak gyűjti, hanem rendszeri, kiválogatja, feldolgozza a számára fontos adatokat. Ezt az adatgyűjtés-adatfeldolgozás folyamatot információs folyamatnak nevezzük. Az információs folyamatok általában részfolyamatokból tevődnek össze. Az egyik részfolyamat eredménye lehet egy másik részfolyamatnak a kiindulási adata. A részfolyamatok között adatok átadása és átvétele folyik, ezt a folyamatot kommunikációnak nevezzük. Azt a közeget pedig, ahol az adatok áramlanak kommunikációs csatornának hívjuk. A kommunikáció két felet feltételez, amelyek közösen kialakított csatornán kommunikálnak egymással. A kommunikációs csatorna nagyon sokféle lehet: levegő, telefonvonal, rádióhullám, fény. (Bár az utóbbi kettő is a levegőben terjed.) A kommunikáció folyamata: Adó Kommunikációs csatorna Vevő 1.2. Az információ formája és továbbítása. Az információ kódolása Az információ megjelenési formái: beszéd, írott vagy nyomtatott anyag, hírközlés (füstjelek, rajz, dobszó, stb.), számítógépes adatbank, telekommunikációs, CD. 1

2 Az ősemberek még csak különböző hangok útján kommunikáltak egymással, majd kialakult a beszéd, a nyelvek. Az információ továbbításának módja a történelem kezdetén a beszéd volt. Az információ következő formája a jel volt. Az ókori Egyiptomban jeleket (hierogrifákat ) használtak az üzenetek továbbítására. Az ékírás, majd az írás (betűk, számok) a XX. századig az információ legfejlettebb formája lett. Külön meg kell említeni a piktogramokat, amelyek kis képek meghatározott jelentéssel. (Ilyenekkel találkozunk a pályaudvarokon, repülőtereken, stb.) A képírás, majd a betűírás kialakulásával az írott szöveg lett a fő információhordozó. A nyomtatás (Gutenberg) megjelenésével kezdődhetett el az információ tömeges átvitele, tárolása. A fejlődés következő állomása a beszéd átvitelére alkalmas eszközök feltalálása volt. A Morse-féle távírók, a telefonok, majd az elektromosság fejlődésével a rádiók voltak azok az eszközök, amelyek már képesek voltak a beszéd tömeges átvitelére is. A televízió a hang és a képi információ tömeges átvitelére is alkalmas. Ma az információt főként rádióhullámok útján továbbítják. Sokat hallani az ún. információs forradalomról, az információ értékéről. A mai modern világban az információ komoly érték lett, amely az gazdaság és politika minden területére hat. Információs hatalmak születnek (a médiumok: sajtó, rádió, televízió), amelyek nagyban befolyásolják egy ország életét. A számítógépes hálózatok, telekommunikációs rendszerek már hozzátartoznak napi életünkhöz. Meg kell ismernünk e gyorsan változó világ alapvető eszközeit ahhoz, hogy el tudjunk igazodni bennük. Ez már századunk technikája. Az információt különböző okokból (például, hogy illetéktelenek ne férjenek hozzá) kódolni szokták. A kódolás azt jelenti, hogy a bevitt adatokat valamilyen rendszer szerint átalakítják, és a továbbiakban a kódolt adatokkal dolgoznak. A kódolás legegyszerűbb változata az ún. titkosírás, amelyben például a betűk helyett az ábécében elfoglalt helyük szerinti számokat használnak. Elméletileg bármit kódolhatunk, a gyakorlatban ez attól függ, hogy mit akarunk kezdeni a kódolt információval. A mai világban legtöbbször a gyorsabb továbbítás és a titkosírás érdekében kódoljuk az információt. A kódolás valamely információ átalakítása egyezményes jelekké. A kód megállapodás szerinti jelek vagy szimbólumok rendszer, amellyel valamely információ egyértelműen meghatározható. Dekódoláson a kódolt információ visszaalakítását értjük. A digitális technikában az átalakítás feltétele olyan egyezményes előírás, amely minden jelhez (például számokhoz vagy betűkhöz) egyértelműen hozzárendel egy meghatározott bináris jelet. Az ilyen előírást kódnak, a hozzárendelés folyamatát kódolásnak nevezik. A számítógép csak kódolt formában érti meg az üzeneteinket, és az ő üzeneteit is csak dekódolva érthetjük meg A jel fogalma és fajtái. Az ASCII kódrendszer A jel valamely fizikai (kémiai) mennyiség értéke vagy értékváltozása. Jeleket használunk az információ továbbítására. A fizikában kétfajta jelet különböztetünk meg. Az egyik a folytonos, ún. analóg jel, a másik a diszkrét, úgynevezett digitális jel. Az analóg jel folytonos, értelmezési tartományában tetszőleges értékeket felvehet. A digitális jel értékei diszkrétek, csak meghatározott értékeket vehet fel. Az analóg és digitális jelek mellett megkülönböztetünk analóg, illetve digitális kijelzést. Az analóg kijelzésen általában a mutatós műszereke kijelzési módjait értjük (például a faliórák), míg a digitális kijelzésen a számokkal való megjelenítést (például a digitális órák). A digitális számítógépek olyan elektronikus számítógépek, amelyek csak két állapotot ismernek. A két állapotot logikai igaz, illetve logikai hamis értéknek nevezzük. A kétállapotú jellemzőt bitnek nevezzük. A bit az angol binary digit (bináris jegy) rövidítése. Egy bitnek két értéke lehet: 0 vagy 1. 2

3 A számítógépek az adatok digitálisan kódolt formáját, az ún. bitsorozatokat képesek feldolgozni. Bitsorozaton a 0-k és 1-esek meghatározott hosszúságú sorozatát értjük. Például az alkotja a 8 bit hosszúságú bitsorozatot. Egy bájtnak nevezzük a 8 bithosszúságú bitsorozatot. A byte szó az angol By Eight (nyolcasával) szavakból származik. Itt is használhatóak a prefixumok, bár picit más a jelentésük. 1 kilobájt (1 Kbájt) = 1024 bájt. 1 megabájt (1 Mbájt) = 1024 * 1024 bájt, azaz bájt =1024 Kbájt. 1 gigabájt (1 Gbájt) = 1024*1024*1024 bájt = 1024 Mbájt. Ahhoz, hogy a számítógép számára az információt érthetővé tegyük, kódolni kell, azaz a számítógép számára érthető bitsorozattá kell alakítani. A számítógép csak számokkal tud dolgozni, ezért a szöveges információt kódolni kell. A számítástechnikában nemzetközileg elfogadott kódrendszer az ASCII (American Standard Code for Information Interchange) és az EBCDIC (Extended Binary Code Decimal Interchange Code) kódrendszer. Az ASCII-kódrendszer az angol ábécé kis-és nagybetűit (a-tól z-ig), a számjegyeket (0-9), néhány írásjelet (!,?,+,%,*, stb.), vezérlőjeleket és speciális karaktereket tartalmaz. A betűket, számjegyeket, írásjeleket és más speciális jeleket (pl. vezérlőjeleket) összefoglaló nevükön karakternek nevezzük. Az ASCII-kódrendszerben a karakterkódok 0-tól 127-ig terjedhetnek. Az ASCII bővített változata (amit használunk) már nem csak az angol ábécé betűit tartalmazza. Például a magyar ASCII-t ki kellett egészíteni az ékezetes betűkkel. Például a nagy A betű kódja 65, a 0 -é 48, az á -é 160. A 256 különböző jel az egyes nemzeti karakterkészletek eltérése miatt kevés az egységes kódrendszer kialakítására, amelyben minden nemzet sajátos karakterei ugyanazzal a kóddal szerepelhetnének. Ezt a problémát oldja meg az UNICODE karakterkészlet, amely 16 biten tárolja a jeleket, így összesen 2 16 különböző karakter tárolására nyílik mód. Az UNICODE-karakterkészlet első 128 karaktere megfelel az ASCII-kódnak, így azzal felülről kompatibilisnek tekinthető. 3

4 2. Az informatika matematikai alapjai 2.1. Számrendszerek A helyiértékes számábrázolás A számokat többféleképpen jelölték az emberek a történelem során. (Erről a következő fejezetben lesz szó.) A ma legismertebb ábrázolásmód a helyiértékes számábrázolás. Egy másféle számábrázolásra jó példa lehet az ismert római számok leírása. A helyiértékes számábrázolás esetén tudni kell az alapszámot. Az általunk használt számrendszer a 10-es, más néven decimális számrendszer, amelynek alapszáma 10. A következőkben tárgyszerűen és röviden olvasható az általunk használt számrendszerek jellemzése A bináris számrendszer A bináris számrendszert kettes számrendszernek is nevezik. A számrendszer alapszáma: 2. A számrendszer számjegyei: 0 és az 1. A számrendszer helyiérték táblázata: ½ 1/ Az oktális számrendszer A oktális számrendszert nyolcas számrendszernek is nevezik. A számrendszer alapszáma: 8. A számrendszer számjegyei: 0; 1; 2; 3; 4; 5; 6; 7. A számrendszer helyiérték táblázata: /8 1/

5 A decimális számrendszer A decimális számrendszert tízes számrendszernek is nevezik. A számrendszer alapszáma: 10. A számrendszer számjegyei: 0; 1; 2; 3; 4; 5; 6; 7; 8; 9. A számrendszer helyiérték táblázata: /10 1/ A hexadecimális számrendszer A hexadecimális számrendszert tizenhatos számrendszernek is nevezik. A számrendszer alapszáma: 16. A tizenhatos számrendszerben nem tudunk tizenhat különböző számot leírni, mivel csupán tíz számjegyet ismerünk. Ésszerű és egyértelmű megoldást ad, ha a 9 feletti számjegyeket betűkkel helyettesítjük: A=10; B=11; C=12; D=13; E=14; F=15. A számrendszer számjegyei: 0; 1; 2; 3; 4; 5; 6; 7; 8; 9; A; B; C; D; E; F. A számrendszer helyiérték táblázata: /16 1/

6 2.2. Konverziók a számrendszerek között A konverzió azt jelenti, hogy az egyik számrendszerből hogyan lehet egy másik számrendszerbe átírni a kívánt számot. A konverzióhoz vagy magyarul átváltáshoz viszont tudni kell a számok egyértelmű leírását. Egy szám önmagában nem fejezi ki azt, hogy melyik számrendszerben írták le. Az 101 (egy nulla egy) szám értelmezhető az eddig felsorolt számrendszerek bármelyikében, hiszen a 0, és az 1 számjegyeket az összes számrendszer tartalmazza. A számrendszer alapszámát az egyértelműség miatt legtöbbször alsó indexben jelenítik meg. Amennyiben nem szerepel a számrendszer alapszáma a szám után indexként, akkor a szám alapértelmezés szerint tízes számrendszerben van. Példák: szám a szám olvasása kilenc hét kettő öt a tizenhatos számrendszerben 1A1B0 16 egy a egy bé nulla a tizenhatos számrendszerben egy nulla egy nulla a tizenhatos számrendszerben három hét öt a tízes számrendszerben vagy háromszázhetvenöt 1001 ezeregy (a tízes számrendszerben) egy egy egy nulla nulla a kettes számrendszerben 6

7 A decimális számrendszer konverziói Egy tízes számrendszerbeli egész számot a kettes számrendszerbe a következő algoritmussal konvertálhatunk (válthatunk) át: a decimális számot addig osztjuk kettővel, amíg a hányados nulla nem lesz. A maradékokat mindig feljegyezzük, majd a maradékot az utolsótól visszafelé olvasva, megkapjuk a bináris alakot. Példa: = osztva 2-vel: 53, maradt az : Egy tízes számrendszerbeli egész számot a nyolcas számrendszerbe a következő algoritmussal konvertálhatunk (válthatunk) át: a decimális számot addig osztjuk nyolccal, amíg a hányados nulla nem lesz. A maradékokat mindig feljegyezzük, majd a maradékot az utolsótól visszafelé olvasva megkapjuk az oktális alakot. Példa: = Egy tízes számrendszerbeli egész számot a tizenhatos számrendszerbe ugyanígy tudunk átváltani: a decimális számot addig osztjuk tizenhattal, amíg a hányados nulla nem lesz. A maradékokat mindig feljegyezzük, majd a maradékot az utolsótól visszafelé olvasva, megkapjuk a hexadecimális alakot. Természetesen a 9-nél nagyobb maradékokat a hexadecimális számrendszerben meghatározott jegyekre kell átírni. Példa: = 1C = C 0 1 7

8 A bináris számrendszer konverziói Egy bináris számot átválthatunk decimálissá, ha a számjegyeket a helyiértékükkel összeszorozzuk, majd a szorzatokat összeadjuk. Példa: = x1 + 32x0 + 16x1 + 8x0 + 4 x x x 1 = 81 Egy bináris számot átválthatunk hexadecimálissá, ha a számjegyeket a legkisebb helyiértékkel kezdve négyesével csoportosítjuk, majd a négy számjegyet sorba váltjuk át hexadecimálissá. 1. példa: = 33E E 7 2. példa: = 70F F 1 8

9 A hexadecimális számrendszer konverziói Egy hexadecimális számot átválthatunk decimálissá, ha a számjegyeket a helyiértékükkel összeszorozzuk, majd a szorzatokat összeadjuk. Példa: 2B4 16 = B 4 256x2 + 16x11+ 4x1 = 692 Egy hexadecimális számot átválthatunk binárissá, ha a számjegyeket a legkisebb helyiértékkel kezdve négy bináris számjeggyé alakítjuk. 1.példa : 2F29 16 = F példa: 4A 16 = A

10 2.3. Bináris számok összeadása Két bináris számot az alábbi segédtáblázat alapján adhatunk össze a legegyszerűbben: 1. számjegy 2. számjegy az előző oszlopból átvitel az összeg számjegye átvitel a következő oszlopba nincs nincs nincs nincs 0 van van (x) van (x) 0 van van (x) 0 van van (x) 1 van 1. példa Nincs átvitel ebben az egyszerű példában, ezért csak a két számjegy és az összeg oszlopát kell nézni a táblázatból:

11 2. példa Az átvitelt x-el jelölve az összeg a táblázat alapján meghatározható: átvitel: x x x példa A példa két olyan szám összeadását mutatja be, ahol minden lehetőség előfordul: átvitel: x x x x x x x

12 2.4. Belső adatábrázolás A számítógép az adatokat kódolt formában tárolja, kezeli és képzi. A RAM-ban nem lehetnek rendezetlenül az adatok, a számítógépnek tudnia kell, hogy az adott adat az éppen szám, szöveg, utasítás vagy teljesen más jellegű adat. Ehhez meg kell ismerni a különféle adatok tárolási módját, vagyis a belső ábrázolást. A fejezetben a következő adatok tárolásával foglakozunk: számok szöveges adatok logikai adatok Számok ábrázolása A számokat alapvetően nulla és egyesek sorozatával tudjuk ábrázolni, ezért kézenfekvő a bináris számrendszer használata. A decimális számokat is lehet ábrázolni úgy, hogy a decimális számjegyeknek egy kettes számrendszerbeli kódot feleltetünk meg. A számok ábrázolását a következő csoportosításban tekintjük át: bináris számok ábrázolása fixpontos lebegőpontos decimális számok ábrázolása pakolt zónázott Bináris számok ábrázolása A számok ábrázolásánál tekintetbe kell venni, hogy velük műveleteket lehessen végezni. Az áramkör tetszőleges algoritmusra elkészíthető, de nem mindegy a sorozatgyártásnál az áramkör előállítási költsége és a mérete. A pozitív bináris számok ábrázolásánál csak azt kell tudni, hogy hány biten ábrázoljuk, azután már beírható a kívánt pozíciókra. A negatív számok ábrázolása sem lenne nagy gond, ha a nullától való távolságát (abszolút érték) vennénk, majd egy bit jelezné, hogy pozitív vagy negatív a szám. Ez olykor valóban így van, azonban egyszerűbbé tehető a számolást végző áramkör, ha csak az összeadást kell elvégeznie. A kivonás miatt viszont valamilyen speciális módon kell tárolni a negatív bináris számokat, hogy az összeadás után az eredmény helyes legyen. Az alábbiakban megismerkedünk a számábrázoláshoz szükséges definíciókkal. 12

13 Mielőtt belevágnánk a közepébe, nézzük egy érdekes játékot. Írjunk le egy ötjegyű számot, például: majd alatta hagyjunk 4 üres sort, aztán leírunk egy másik számot. A játék úgy szól, hogy megkérünk valakit, hogy a megadott szám alá írjon egy tetszőleges ötjegyű számot. Aztán mi is írunk egy ilyen számot, majd ismét a megkért személy írhat egy ötjegyű számot, végül ismét mi. A leírt 1+4=5 darab szám összege az általunk előre leírt szám lesz. Hogyan csináljuk? Úgy, hogy az elsőnek leírt számhoz t kell hozzáadni. Miért pont annyit? Mert nekünk csak annyi a dolgunk, hogy a megkért személy által írt számhoz olyan számot kell párban írnunk, hogy ha a két számot összeadjuk, akkor az eredmény legyen. 2* pedig éppen Figyeljük meg! A két szám összege éppen A két szám összege éppen Miért volt ez a sok hűhó? Azért, mert a nak a 9-es komplemense éppen , a kilences komplemense pedig Egy p alapú számrendszer esetén egy n jegyű szám p 1-es komplemense az a szám, amely úgy áll elő, hogy az adott n jegyű szám minden számjegyét a legnagyobb értékű számjegyre kiegészítjük. 1. pé1da 37 esetén (p=10; n=2; legnagyobb értékű számjegy: 9): 62 a 9-es (p 1) komplemens, mivel 62+37= példa esetén (p=2; n=5; legnagyobb értékű számjegy: 1): az 1-es (p 1) komplemens. 13

14 Adott egy p alapú számrendszer. A számrendszerben egy n jegyű szám p-és komplemense úgy áll elő, hogy a p 1-es komplemenshez egyet hozzáadunk. 1. példa 37 esetén (p=10; n=2; legnagyobb értékű számjegy: 9): 62 a 9-es komplemens, 62+1=63 a 10-es komplemens. 2. példa 462 esetén (p=10; n=3; legnagyobb értékű számjegy: 9): 537 a 9-es komplemens, 537+1=538 a 10-es komplemens, 3. példa esetén (p=2; n=5; legnagyobb értékű számjegy: 1): 1001 az 1-es komplemens, (a szám első 1-ese helyett a komplemensben 0 van, ezért csak 4 jegyű a komplemens = 1010 a 2-es komplemens. 14

15 Negatív számok ábrázolása A következőkben a számok ábrázolását segítő példák következnek. Minden esetben kiemelten fontos, hogy hány biten ábrázoljuk a bináris számokat! 1. példa Nézzük meg 4 biten a 4 ábrázolását! 5 = A 101 bináris szám egyes komplemenses alakjához a számot ki kell egészíteni 4 bitre úgy, hogy értéke egyértelmű maradjon. Az egyes komplemens előállítása ezután a bitek átbillentését jelenti, vagyis ahol 0 volt ott 1-es, ahol 1-es volt ott 0 kell szerepeljen. (Azaz a számjegyek összege 1) Az egyes komplemenses alakhoz egyet hozzáadva kapjuk a negatív bináris szám kettes komplemensét. 4 bit a 101 előjel nélküli felírása az 101 alak kiegészítése 4 bitre a 100 szám egyes komplemense (bitek ellentetjére) a 100 szám kettes komplemense (+1 hozzáadása) Így az eredmény: példa Nézzük meg 4 biten a 1 ábrázolását! 1 = bit a 1 előjel nélküli felírása 1 az 1 alak kiegészítése 4 bitre a 1 szám egyes komplemense (bitek ellentetjére) a 1 szám kettes komplemense (+1 hozzáadása) Így az eredmény:

16 3. példa Nézzük meg 4 biten a 3 ábrázolását! 3 = 11 2 A 11 bináris szám egyes komplemenses alakjához a számot ki kell egészíteni 4 bitre úgy, hogy értéke egyértelmű maradjon. Az egyes komplemens előállítása ezután a bitek átbillentését jelenti, vagyis ahol 0 volt ott 1-es, ahol 1-es volt ott 0 kell szerepeljen. 4 bit a 11 előjel nélküli felírása 1 1 az 11 alak kiegészítése 4 bitre a 11 szám egyes komplemense (bitek ellentetjére) a 11 szám kettes komplemense (+1 hozzáadása) Így az eredmény: példa Nézzük meg 4 biten a 15 ábrázolását! 15 = Mivel a szám négy bites, így nincs szükség a kiegészítésre. 4 bit a 1111 előjel nélküli felírása a 1111 szám egyes komplemense (bitek ellentetjére) a 1111 szám kettes komplemense (+1 hozzáadása) Így az eredmény: példa Nézzük meg 4 biten a 19 ábrázolását! 193 = Mivel a szám négy biten nem fér el, ezért nem ábrázolható. A számítógépen minden számábrázolás csak korlátok között képzelhető el. Négy biten ábrázolható legnagyobb szám a

17 6. példa Adott az 1010 bináris szám 4 bites, kettes komplemens alakban. Mennyi az értéke decimálisan? A negatív számokat ábrázoljuk kettes komplemenses alakban, ezért a decimális szám is biztosan negatív lesz. A visszaváltásnál is fontos, hogy 4 biten ábrázolták a számot, hiszen a visszaváltásnál is a kettes komplemensé alakítás a cél: 4 bit a negatív szám kettes komplemense határozzuk meg a fenti szám egyes komplemensét határozzuk meg az előző sor kettes komplemensét váltsuk át decimális számrendszerbe 6 írjuk elé az előjelet 6 Így az eredmény: Pozítív és negatív szám összege Egy tetszőleges számhoz egy negatív szám hozzáadása ugyanazt eredményezi, mintha a negatív szám abszolút értékét az előjel elhagyásával kapott pozitív számot vonnánk ki. Példa: 5 + ( 2) = 3, aminek ugyanaz az eredménye, mint az 5 (+ 2) = 3 műveletnek. Ez az egyszerű szabály a számítógép számára egy kicsit mást jelent. A negatív bináris számok tárolását Neumann János ötlete alapján az ún. kettes komplemens alakkal lehet megoldani. A negatív számot kettes komplemens alakban hozzáadva egy számhoz valóban kivonást végzünk el. 17

18 Példa: Egy pozitív bináris számot adunk össze, egy kettes komplemens alakban ábrázolt negatív bináris számmal 2 bájton. Az összeg, vagyis az eredmény matematikailag értelmetlen lenne, de az ábrázolási tartomány korlátozott volta miatt a túlcsordult bittel nem foglalkozik a számítógép, hiszen nem tudja hol tárolni. Neumann ötlete azért volt nagyszerű, mert a bináris számrendszerben így elég csak az összeadás művelete, nem szükséges a kivonás, miáltal a műveleteket végző áramkörök sokkal egyszerűbbek lehetnek: A bináris szám ábrázolási tartománya 1. bájt 0. bájt túlcsor dult bit Az ábrázolás miatt az összeg is csak 2 bájton képződik A számítógépnek ezután nem kell ismernie a kivonást, hogy ha egy pozitív számhoz hozzáadom kivonandó kettes komplemensét, akkor valójában kivontam ezt a számot a pozitív számból. Ha valaki megkérdezi a Kedves Olvasót, hogy vonja ki a 931-ből a 129-et anélkül, hogy ténylegesen elvégzi a kivonást, akkor ugye úgy oldaná meg, hogy kiszámolná a 129 kilences komplemensét, ami 870, majd hozzáadna 1-et, így kapna 871 et, ami a 129 tízes komplemense. Ezután pedig hozzáadná a 931-hez =1802. Az egyes elhagyjuk, azaz 802 az eredmény. Vagyis =

19 A fixpontos számábrázolás Az egész számokat ábrázoljuk fixpontosan. A bináris (tört-egész elválasztó) pont fix helyen található, vagyis a helyiértékeknek állandó és határozott helyük van. Az ábrázolt szám nagysága függ attól, hogy hány biten ábrázoljuk, tehát bináris számrendszerben hány jegyű számot ábrázolunk. Az egész számok ábrázolásásra általában 2, vagy 4 bájt használatos. A bináris egész számokat mi most 2 bájton ábrázoljuk. Az ábrázolásnál figyeljünk arra, hogy a biteket jobbról balra, nullával kezdve szokás számozni. Különböző módon kell ábrázolni a pozitív és a negatív számokat. A pozitív számok és a nulla esetén az ábrázolás mindig nullával kezdődik (15. bit), s utána legfeljebb 15 bináris számjegy (14-0. bit) szerepelhet. A nulla az elején a pozitív előjel jelölésre szolgál. A negatív számokat a 16 bites 2-es komplemenses alakkal ábrázoljuk. Ez esetben megfigyelhető, hogy a kettes komplemens alak miatt az ábrázolás elején (15. bit) mindig 1-es található, vagyis az 1-el kezdődő fixpontos ábrázolás biztosan egy negatív számot takar. előjel bit bináris egész szám bitek számozása: bájt 0. bájt fix, bináris pont Az ábrázolható számok binárisan decimálisan 2-es kompl.? Ábrázolható számtartomány: tól től igen ig ig nem legnagyobb nem negatív: nem legkisebb nem negatív: nem legnagyobb negatív: igen legkisebb negatív: igen Ennek megfelelően 2 bájton a legnagyobb ábrázolható szám a , a legkisebb a nulla, ha negatív számokat nem ábrázolunk. Egy bájton pedig az értelmezési tartomány: , ha pozitív és negatív számokat is ábrázolunk (tárolunk). Ha nem, akkor

SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA

SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA 1 ELSŐ GYAKORLAT SZÁMÉRTÉKEK (ÁT)KÓDOLÁSA A feladat elvégzése során a következőket fogjuk gyakorolni: Számrendszerek közti átváltás előjelesen és előjel nélkül. Bináris, decimális, hexadexcimális számrendszer.

Részletesebben

5.1.4 Laborgyakorlat: A Windows számológép használata hálózati címeknél

5.1.4 Laborgyakorlat: A Windows számológép használata hálózati címeknél 5.1.4 Laborgyakorlat: A Windows számológép használata hálózati címeknél Célok Átkapcsolás a Windows Számológép két működési módja között. A Windows Számológép használata a decimális (tízes), a bináris

Részletesebben

Bináris egység: bit (binary unit) bit ~ b; byte ~ B (Gb Gigabit;GB Gigabyte) Gb;GB;Gib;GiB mind más. Elnevezés Jele Értéke Elnevezés Jele Értéke

Bináris egység: bit (binary unit) bit ~ b; byte ~ B (Gb Gigabit;GB Gigabyte) Gb;GB;Gib;GiB mind más. Elnevezés Jele Értéke Elnevezés Jele Értéke Kódolások Adatok kódolása Bináris egység: bit (binary unit) bit ~ b; byte ~ B (Gb Gigabit;GB Gigabyte) Gb;GB;Gib;GiB mind más. Elnevezés Jele Értéke Elnevezés Jele Értéke Kilo K 1 000 Kibi Ki 1 024 Mega

Részletesebben

Jelátalakítás és kódolás

Jelátalakítás és kódolás Jelátalakítás és kódolás Információ, adat, kódolás Az információ valamely jelenségre vonatkozó értelmes közlés, amely új ismereteket szolgáltat az információ felhasználójának. Valójában információnak tekinthető

Részletesebben

Számrendszerek, számábrázolás

Számrendszerek, számábrázolás Számrendszerek, számábrázolás Nagy Zsolt 1. Bevezetés Mindannyian, nap, mint nap használjuk a következ fogalmakat: adat, információ. Adatokkal találkozunk az utcán, a médiumokban, a boltban. Információt

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

IT - Alapismeretek. Megoldások

IT - Alapismeretek. Megoldások IT - Alapismeretek Megoldások 1. Az első négyműveletes számológépet Leibniz és Schickard készítette. A tárolt program elve Neumann János nevéhez fűződik. Az első generációs számítógépek működése a/az

Részletesebben

2.3. Soros adatkommunikációs rendszerek CAN (Harmadik rész alapfogalmak II.)

2.3. Soros adatkommunikációs rendszerek CAN (Harmadik rész alapfogalmak II.) 2.3. Soros adatkommunikációs rendszerek CAN (Harmadik rész alapfogalmak II.) 2. Digitálistechnikai alapfogalmak II. Ahhoz, hogy valamilyen szinten követni tudjuk a CAN hálózatban létrejövő információ-átviteli

Részletesebben

1. előadás. Adatok, számrendszerek, kódolás. Dr. Kallós Gábor

1. előadás. Adatok, számrendszerek, kódolás. Dr. Kallós Gábor 1. előadás Adatok, számrendszerek, kódolás Dr. Kallós Gábor 2014 2015 1 Tartalom Adat, információ, kód Az információ áramlásának klasszikus modellje Számrendszerek Út a 10-es számrendszerig 10-es és 2-es

Részletesebben

Kódolás. A számítógép adatokkal dolgozik. Értelmezzük az adat és az információ fogalmát.

Kódolás. A számítógép adatokkal dolgozik. Értelmezzük az adat és az információ fogalmát. Kódolás A számítógép adatokkal dolgozik. Értelmezzük az adat és az információ fogalmát. Mi az információ? Az információ egy értelmes közlés, amely új ismeretet, új tudást ad. (Úgy is fogalmazhatunk, hogy

Részletesebben

Számold meg a pontokat A bináris számok

Számold meg a pontokat A bináris számok 1. Foglalkozás Számold meg a pontokat A bináris számok Tartalom A számítógépekben az adatokat nullák és egyesek sorozataként tároljuk és továbbítjuk. Hogyan tudjuk ábrázolni a szavakat és a számokat pusztán

Részletesebben

2013.11.25. H=0 H=1. Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban,

2013.11.25. H=0 H=1. Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban, Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban, akkor a i (gyakorisága) = k i a i relatív gyakorisága: A jel információtartalma:

Részletesebben

BEVEZETÉS AZ INFORMATIKÁBA 1. rész TARTALOMJEGYZÉK

BEVEZETÉS AZ INFORMATIKÁBA 1. rész TARTALOMJEGYZÉK BEVEZETÉS AZ INFORMATIKÁBA 1. rész TARTALOMJEGYZÉK BEVEZETÉS AZ INFORMATIKÁBA 1. RÉSZ... 1 TARTALOMJEGYZÉK... 1 AZ INFORMÁCIÓ... 2 Az információ fogalma... 2 Közlemény, hír, adat, információ... 3 Az információ

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

Az Informatika Elméleti Alapjai

Az Informatika Elméleti Alapjai Az Informatika Elméleti Alapjai dr. Kutor László Minimális redundanciájú kódok Statisztika alapú tömörítő algoritmusok http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 BMF

Részletesebben

C programozás. { Márton Gyöngyvér, 2009 } { Sapientia, Erdélyi Magyar Tudományegyetem } http://www.ms.sapientia.ro/~mgyongyi

C programozás. { Márton Gyöngyvér, 2009 } { Sapientia, Erdélyi Magyar Tudományegyetem } http://www.ms.sapientia.ro/~mgyongyi C programozás Márton Gyöngyvér, 2009 Sapientia, Erdélyi Magyar Tudományegyetem http://www.ms.sapientia.ro/~mgyongyi 1 Könyvészet Kátai Z.: Programozás C nyelven Brian W. Kernighan, D.M. Ritchie: A C programozási

Részletesebben

Tudnivalók az otthon kidolgozandó feladatokról

Tudnivalók az otthon kidolgozandó feladatokról Tudnivalók az otthon kidolgozandó feladatokról Otthon kidolgozandó feladat megoldásának beküldése csak azok számára kötelező, akik fölvették az Assembly programozás konzultáció kurzust. Minden hallgató,

Részletesebben

IBAN: INTERNATIONAL BANK ACCOUNT NUMBER. I. Az IBAN formái

IBAN: INTERNATIONAL BANK ACCOUNT NUMBER. I. Az IBAN formái IBAN: INTERNATIONAL BANK ACCOUNT NUMBER A EUROPEAN COMMITTEE FOR BANKING STANDARDS (ECBS) által 2001. februárban kiadott, EBS204 V3 jelű szabvány rögzíti a nemzetközi számlaszám formáját, valamint eljárást

Részletesebben

Írjon olyan programot a standard könyvtár alkalmazásával, amely konzolról megadott valós adatokból meghatározza és kiírja a minimális értékűt!

Írjon olyan programot a standard könyvtár alkalmazásával, amely konzolról megadott valós adatokból meghatározza és kiírja a minimális értékűt! Írjon olyan programot a standard könyvtár alkalmazásával, amely konzolról megadott valós adatokból meghatározza és kiírja a minimális értékűt! valós adatokat növekvő sorrendbe rendezi és egy sorba kiírja

Részletesebben

I. A Digitális Technika alapjai

I. A Digitális Technika alapjai z információ mennyisége evezetés I. Digitális Technika alapjai Pap Imre evezetés Ebben a könyvben az információfeldolgozás alapjaival ismerkedünk, elsősorban a digitális technikával, és ennek matematikai

Részletesebben

1. Alapfogalmak Információ o o

1. Alapfogalmak Információ o o http://fariblghu.wrdpress.cm/2011/12/31/final-exam-tpics-it/ 1. Alapfgalmak Infrmáció Adat http://fariblghu.wrdpress.cm az infrmatika nem definiált alapfgalma körülírással megfgalmazva: lyan tény, közlés,

Részletesebben

Készítette: Nagy Tibor István

Készítette: Nagy Tibor István Készítette: Nagy Tibor István A változó Egy memóriában elhelyezkedő rekesz Egy értéket tárol Van azonosítója (vagyis neve) Van típusa (milyen értéket tárolhat) Az értéke értékadással módosítható Az értéke

Részletesebben

Készítette: Fuszenecker Róbert Konzulens: Dr. Tuzson Tibor, docens

Készítette: Fuszenecker Róbert Konzulens: Dr. Tuzson Tibor, docens A nyílt kulcsú titkosítás és a digitális aláírás Készítette: Fuszenecker Róbert Konzulens: Dr. Tuzson Tibor, docens Budapest Műszaki Főiskola Kandó Kálmán Műszaki Főiskolai Kar Műszertechnikai és Automatizálási

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I. 1 I. HALmAZOk 1. JELÖLÉSEk A halmaz fogalmát tulajdonságait gyakran használjuk a matematikában. A halmazt nem definiáljuk, ezt alapfogalomnak tekintjük. Ez nem szokatlan, hiszen

Részletesebben

2. TÉTEL. Információ: Adatok összessége. Értelmezett adat, mely számunkra új és fontos.

2. TÉTEL. Információ: Adatok összessége. Értelmezett adat, mely számunkra új és fontos. INFORMÁCIÓ ÁBRÁZOLÁS 02. tétel (SZÁM, LOGIKAI ÉRTÉK, SZÖVEG, KÉP, HANG, FILM STB). 2. TÉTEL Adat: A bennünket körülvevő mérhető és nem mérhető jellemzők a világban. - mérhető: hőmérséklet, távolság, idő,

Részletesebben

SZÁMÍTÓGÉP FELÉPÍTÉSE (TK 61-TŐL)

SZÁMÍTÓGÉP FELÉPÍTÉSE (TK 61-TŐL) SZÁMÍTÓGÉP FELÉPÍTÉSE (TK 61-TŐL) SZÁMÍTÓGÉP Olyan elektronikus berendezés, amely adatok, információk feldolgozására képes emberi beavatkozás nélkül valamilyen program segítségével. HARDVER Összes műszaki

Részletesebben

4. Számelmélet, számrendszerek

4. Számelmélet, számrendszerek I. Elméleti összefoglaló A maradékos osztás tétele: 4. Számelmélet, számrendszerek Legyen a tetszőleges, b pedig nullától különböző egész szám. Ekkor léteznek olyan, egyértelműen meghatározott q és r egész

Részletesebben

Oszthatósági problémák

Oszthatósági problémák Oszthatósági problémák Érdekes kérdés, hogy egy adott számot el lehet-e osztani egy másik számmal (maradék nélkül). Ezek eldöntésére a matematika tanulmányok során néhány speciális esetre látunk is példát,

Részletesebben

A számítógép felépítése és működése. Számítógép

A számítógép felépítése és működése. Számítógép A számítógép felépítése és működése A számítógép alapvető működését tekintve adatfeldolgozó gép. Ez magában foglalja az adatok beolvasását a külvilágból, amivel számításokat végez és tárol, a számítások

Részletesebben

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros! Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása

Részletesebben

0644. MODUL SZÁMELMÉLET. Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA

0644. MODUL SZÁMELMÉLET. Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA 0644. MODUL SZÁMELMÉLET Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA 0644. Számelmélet Közös osztók, közös többszörösök Tanári útmutató MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály

Részletesebben

Programzás I. - 1. gyakorlat

Programzás I. - 1. gyakorlat Programzás I. - 1. gyakorlat Alapok Tar Péter 1 Pannon Egyetem Műszaki Informatikai Kar Számítástudomány Alkalmazása Tanszék Utolsó frissítés: September 15, 2007 1 tar@dcs.vein.hu Tar Péter (PE-MIK-DCS)

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 0622 ÉRETTSÉGI VIZSGA 2007. november 7. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM A dolgozatokat az útmutató utasításai

Részletesebben

Automaták és formális nyelvek

Automaták és formális nyelvek Automaták és formális nyelvek Bevezetés a számítástudomány alapjaiba 1. Formális nyelvek 2006.11.13. 1 Automaták és formális nyelvek - bevezetés Automaták elmélete: információs gépek általános absztrakt

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Egyszerű programozási tételek

Egyszerű programozási tételek Egyszerű programozási tételek 2. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. szeptember 15. Sergyán (OE NIK) AAO 02 2011. szeptember 15.

Részletesebben

1. A komplex számok definíciója

1. A komplex számok definíciója 1. A komplex számok definíciója A számkör bővítése Tétel Nincs olyan n természetes szám, melyre n + 3 = 1. Bizonyítás Ha n természetes szám, akkor n+3 3. Ezért bevezettük a negatív számokat, közöttük van

Részletesebben

Új műveletek egy háromértékű logikában

Új műveletek egy háromértékű logikában A Magyar Tudomány Napja 2012. Új műveletek egy háromértékű logikában Dr. Szász Gábor és Dr. Gubán Miklós Tartalom A probléma előzményei A hagyományos műveletek Az új műveletek koncepciója Alkalmazási példák

Részletesebben

A vezérlő alkalmas 1x16, 2x16, 2x20, 4x20 karakteres kijelzők meghajtására. Az 1. ábrán látható a modul bekötése.

A vezérlő alkalmas 1x16, 2x16, 2x20, 4x20 karakteres kijelzők meghajtására. Az 1. ábrán látható a modul bekötése. Soros LCD vezérlő A vezérlő modul lehetővé teszi, hogy az LCD-t soros vonalon illeszthessük alkalmazásunkhoz. A modul több soros protokollt is támogat, úgy, mint az RS232, I 2 C, SPI. Továbbá az LCD alapfunkcióit

Részletesebben

Zárthelyi dolgozat feladatainak megoldása 2003. õsz

Zárthelyi dolgozat feladatainak megoldása 2003. õsz Zárthelyi dolgozat feladatainak megoldása 2003. õsz 1. Feladat 1. Milyen egységeket rendelhetünk az egyedi információhoz? Mekkora az átváltás közöttük? Ha 10-es alapú logaritmussal számolunk, a mértékegység

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Jó munkát és eredményes versenyzést!

Jó munkát és eredményes versenyzést! Megyei Középiskolai Informatika Verseny 2009/2010 Kedves Versenyző! A Megyei Középiskolai Informatika Verseny jában 14 feladat szerepel. Alapvetően az informatikai alapismeretek (elmélet, hardver, szoftver)

Részletesebben

Informatika szóbeli vizsga témakörök

Informatika szóbeli vizsga témakörök KECSKEMÉTI MŰSZAKI SZAKKÉPZŐ ISKOLA, SPECIÁLIS SZAKISKOLA ÉS KOLLÉGIUM 6000 Kecskemét, Szolnoki út 31., Telefon: 76/480-744, Fax: 487-928 KANDÓ KÁLMÁN SZAKKÖZÉPISKOLA ÉS SZAKISKOLÁJA 6000 Kecskemét, Bethlen

Részletesebben

találhatók. A memória-szervezési modell mondja meg azt, hogy miként

találhatók. A memória-szervezési modell mondja meg azt, hogy miként Memória címzési módok Egy program futása során (legyen szó a program vezérléséről vagy adatkezelésről) a program utasításai illetve egy utasítás argumentumai a memóriában találhatók. A memória-szervezési

Részletesebben

INF1: Informatika alapismeretek. 2. lecke: Jelkészletek

INF1: Informatika alapismeretek. 2. lecke: Jelkészletek INF1: Informatika alapismeretek 2. lecke: Jelkészletek INF1: INFORMATIKA ALAPISMERETEK A LECKÉBEN ELŐFORDULÓ ISMERETEK A jel és a jelkészlet fogalma. A leckében előforduló ismeretek 3/8 INF1: INFORMATIKA

Részletesebben

Hibajavító kódolás (előadásvázlat, 2012. november 14.) Maróti Miklós

Hibajavító kódolás (előadásvázlat, 2012. november 14.) Maróti Miklós Hibajavító kódolás (előadásvázlat, 2012 november 14) Maróti Miklós Ennek az előadásnak a megértéséhez a következő fogalmakat kell tudni: test, monoid, vektortér, dimenzió, mátrixok Az előadáshoz ajánlott

Részletesebben

A/D és D/A konverterek vezérlése számítógéppel

A/D és D/A konverterek vezérlése számítógéppel 11. Laboratóriumi gyakorlat A/D és D/A konverterek vezérlése számítógéppel 1. A gyakorlat célja: Az ADC0804 és a DAC08 konverterek ismertetése, bekötése, néhány felhasználási lehetőség tanulmányozása,

Részletesebben

M/74. közismereti informatika írásbeli (teszt) érettségi vizsgához

M/74. közismereti informatika írásbeli (teszt) érettségi vizsgához OKTATÁSI MINISZTÉRIUM Világbanki Középiskolák 2003. M/74 Elbírálási útmutató közismereti informatika írásbeli (teszt) érettségi vizsgához Tételszám Megoldás Pontszám Tételszám Megoldás Pontszám 1. B 2

Részletesebben

1. tétel. A kommunikáció információelméleti modellje. Analóg és digitális mennyiségek. Az információ fogalma, egységei. Informatika érettségi (tanári)

1. tétel. A kommunikáció információelméleti modellje. Analóg és digitális mennyiségek. Az információ fogalma, egységei. Informatika érettségi (tanári) 1. tétel A kommunikáció információelméleti modellje. Analóg és digitális mennyiségek. Az információ fogalma, egységei Ismertesse a kommunikáció általános modelljét! Mutassa be egy példán a kommunikációs

Részletesebben

Programozási tételek. Dr. Iványi Péter

Programozási tételek. Dr. Iványi Péter Programozási tételek Dr. Iványi Péter 1 Programozási tételek A programozási tételek olyan általános algoritmusok, melyekkel programozás során gyakran találkozunk. Az algoritmusok általában számsorozatokkal,

Részletesebben

C programozási nyelv Pointerek, tömbök, pointer aritmetika

C programozási nyelv Pointerek, tömbök, pointer aritmetika C programozási nyelv Pointerek, tömbök, pointer aritmetika Dr. Schuster György 2011. június 16. C programozási nyelv Pointerek, tömbök, pointer aritmetika 2011. június 16. 1 / 15 Pointerek (mutatók) Pointerek

Részletesebben

1. Gyakorlat. Rövid elméleti összefoglaló. típus változónév <= kezdőérték><, >;

1. Gyakorlat. Rövid elméleti összefoglaló. <tárolási osztály>típus <típus > változónév <= kezdőérték><, >; Rövid elméleti összefoglaló 1. Gyakorlat A C++ nyelv hatékony, általános célú programozási nyelv, amely hagyományos fejlesztőeszközként és objektum-orientált programozási nyelvként egyaránt használható.

Részletesebben

RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNYEK INFORMATIKÁBÓL

RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNYEK INFORMATIKÁBÓL RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNYEK INFORMATIKÁBÓL 1. Információs társadalom 1.1. A kommunikáció 1.1.1. A jelek csoportosítása 1.1.2. Kód, kódolás, bináris kód 1.1.3. A kommunikáció általános modellje

Részletesebben

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek

Diszkrét matematika II., 5. előadás. Lineáris egyenletrendszerek 1 Diszkrét matematika II, 5 előadás Lineáris egyenletrendszerek Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach/ 2007 március 8 Egyenletrendszerek Középiskolás módszerek:

Részletesebben

III. Felzárkóztató mérés SZÉCHENYI ISTVÁN EGYETEM GYŐR TÁVKÖZLÉSI TANSZÉK

III. Felzárkóztató mérés SZÉCHENYI ISTVÁN EGYETEM GYŐR TÁVKÖZLÉSI TANSZÉK Mérési utasítás ARP, ICMP és DHCP protokollok vizsgálata Ezen a mérésen a hallgatók az ARP, az ICMP és a DHCP protokollok működését tanulmányozzák az előző mérésen megismert Wireshark segítségével. A mérés

Részletesebben

Bevezetés a programozásba

Bevezetés a programozásba Bevezetés a programozásba 1. Előadás Bevezetés, kifejezések http://digitus.itk.ppke.hu/~flugi/ Egyre precízebb A programozás természete Hozzál krumplit! Hozzál egy kiló krumplit! Hozzál egy kiló krumplit

Részletesebben

Adatszerkezetek Tömb, sor, verem. Dr. Iványi Péter

Adatszerkezetek Tömb, sor, verem. Dr. Iványi Péter Adatszerkezetek Tömb, sor, verem Dr. Iványi Péter 1 Adat Adat minden, amit a számítógépünkben tárolunk és a külvilágból jön Az adatnak két fontos tulajdonsága van: Értéke Típusa 2 Adat típusa Az adatot

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

VIII. Szervezeti kommunikáció

VIII. Szervezeti kommunikáció BBTE, Politika-, Közigazgatás- és Kommunikációtudományi kar, Szatmárnémeti egyetemi kirendeltség VIII. Szervezeti kommunikáció Szervezési- és vezetési elméletek 2013 Május 27 Gál Márk doktorandusz Közigazgatási

Részletesebben

Matematika (alsó tagozat)

Matematika (alsó tagozat) Matematika (alsó tagozat) Az értékelés elvei és eszközei A tanév során az értékelés alapja a tanulók állandó megfigyelése. Folyamatos fejlesztő célzatú szóbeli értékelés visszajelzést ad a tanuló számára

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

5. foglalkozás. Húsz találgatás Információelmélet

5. foglalkozás. Húsz találgatás Információelmélet 5. foglalkozás Húsz találgatás Információelmélet Röviden Mennyi információ van egy 1000 oldalas könyvben? Egy 1000 oldalas telefonkönyvben vagy 1000 üres lapon vagy Tolkien A Gyűrűk Ura könyvében van több

Részletesebben

Információs társadalom

Információs társadalom SZÓBELI TÉMAKÖRÖK INFORMATIKÁBÓL 2015. Információs társadalom Kommunikáció fogalma, fajtái, általános modellje. Példák. A jel, adat, információ, zaj és a redundancia fogalma. Példák. Különbség a zaj és

Részletesebben

MATEMATIKA VERSENY --------------------

MATEMATIKA VERSENY -------------------- Eötvös Károly Közös Fenntartású Általános Iskola 2013. és Alapfokú Művészetoktatási Intézmény 831 Vonyarcvashegy, Fő u. 8/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen,

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2011. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2011. május 3. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM Matematika középszint

Részletesebben

1. óra Tanévi feladatok balesetvédelem, baleset megelőzés 2. óra Ismétlés. 3. óra

1. óra Tanévi feladatok balesetvédelem, baleset megelőzés 2. óra Ismétlés. 3. óra 1. óra Tanévi feladatok balesetvédelem, baleset megelőzés 2. óra Ismétlés Informatikai alapismeretek (fogalmak): Információ (Új ismeretet jelent, amely a megszerzőjének szükséges és érthető) Informatika

Részletesebben

ismerd meg! A vonalkódokról

ismerd meg! A vonalkódokról ismerd meg! A vonalkódokról A vonalkód az adatoknak olyan grafikus elrendezése, melyet optikai leolvasóval (vonalkód olvasóval) egyszerűen vissza lehet fejteni. Ezeket általában áruk csomagolására nyomtatják,

Részletesebben

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit

Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit Számsorozatok (1) First Prev Next Last Go Back Full Screen Close Quit 1. Valós számsorozaton valós számok meghatározott sorrendű végtelen listáját értjük. A hangsúly az egymásután következés rendjén van.

Részletesebben

Programozás. 2. bővített kiadás írta Fábián Zoltán Budapest, 2007 április

Programozás. 2. bővített kiadás írta Fábián Zoltán Budapest, 2007 április Programozás 2. bővített kiadás írta Fábián Zoltán Budapest, 2007 április 1 BEVEZETÉS... 7 2 ALAPFOGALMAK... 8 3 ALGORITMUSOK... 9 3.1 ALGORITMUSELÍRÓ MÓDSZEREK, NYELVEK... 12 3.1.1 Folyamatábra... 12 3.1.2

Részletesebben

Bizonylatok felvitele mindig a gazdasági eseménnyel kezdődik, majd ezután attól függően jelennek meg dinamikusan a további adatmezők.

Bizonylatok felvitele mindig a gazdasági eseménnyel kezdődik, majd ezután attól függően jelennek meg dinamikusan a további adatmezők. Bizonylatok felvitele Bizonylatok felvitele mindig a gazdasági eseménnyel kezdődik, majd ezután attól függően jelennek meg dinamikusan a további adatmezők. Fej Gazdasági esemény Kezdjük el begépelni a

Részletesebben

5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus.

5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus. 5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus. Optimalis feszítőfák Egy összefüggő, irányítatlan

Részletesebben

w w w. h a n s a g i i s k. h u 1

w w w. h a n s a g i i s k. h u 1 w w w. h a n s a g i i s k. h u Adatbázis-kezelés Adatbázisok Az adatbázisok rendezett adatok halmaza. Rendezett adatok közt sokkal gyorsabban lehet keresni! Napjainkban a relációs típusú adatbázis terjedt

Részletesebben

Valószínűség-számítás, statisztika, titkosítási és rendezési algoritmusok szemléltetése számítógép segítségével Kiss Gábor, Őri István

Valószínűség-számítás, statisztika, titkosítási és rendezési algoritmusok szemléltetése számítógép segítségével Kiss Gábor, Őri István Valószínűség-számítás, statisztika, titkosítási és rendezési algoritmusok szemléltetése számítógép segítségével Kiss Gábor, Őri István Budapesti Műszaki Főiskola, NIK, Matematikai és Számítástudományi

Részletesebben

Az információ kódolása

Az információ kódolása Kódolás Az információ kódolása Kódolás közölnivalónknak a szokásostól eltérő ábrázolása, kifejezési formája. Információ tárolása számítógépen a gép számára érthető, olvasható formában kell megadni. A gépek

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

3. Vezérlőszelepek csoportosítása, kialakítása

3. Vezérlőszelepek csoportosítása, kialakítása 3. Vezérlőszelepek csoportosítása, kialakítása Pneumatikus vezérlőelemek A pneumatikus működtetésű végrehajtó elemek (munkahengerek, forgatóhengerek, stb.) mozgását az irány, a sebesség, az erő és a működési

Részletesebben

Informatika SZTE 2014/15 tavaszi félév

Informatika SZTE 2014/15 tavaszi félév Informatika SZTE 2014/15 tavaszi félév dr. Németh Tamás egyetemi adjunktus SZTE TTIK, Informatikai Tanszékcsoport, Számítógépes Algoritmusok és Mesterséges Intelligencia Tanszék Tematika Informatikai alapfogalmak,

Részletesebben

Informatikai ismeretek

Informatikai ismeretek Kovács Gábor Informatikai ismeretek Kézirat Tartalomjegyzék BEVEZETÉS 1. FEJEZET: HARDVER ALAPOK 1. 1. Fejezet: Elektronikai Alapfogalmak 1. 2. Fejezet: Informatikai Alapfogalmak 1. 3. Fejezet: Számábrázolás

Részletesebben

Kódolás. Informatika alapjai-3 Kódolás 1/9

Kódolás. Informatika alapjai-3 Kódolás 1/9 Informatika alapjai-3 Kódolás 1/9 Kódolás A hétköznapi életben a mennyiségek kétféleképpen jelennek meg: Analóg érték: folyamatosan változó, például pillanatnyi idı, egy test tömege. A valóságot leíró

Részletesebben

Függvények II. Indítsuk el az Excel programot! A minta alapján vigyük be a Munka1 munkalapra a táblázat adatait! 1. ábra Minta az adatbevitelhez

Függvények II. Indítsuk el az Excel programot! A minta alapján vigyük be a Munka1 munkalapra a táblázat adatait! 1. ábra Minta az adatbevitelhez Bevezetés Ebben a fejezetben megismerkedünk a Logikai függvények típusaival és elsajátítjuk alkalmazásukat. Jártasságot szerzünk bonyolultabb feladatok megoldásában, valamint képesek leszünk a függvények

Részletesebben

Amortizációs költségelemzés

Amortizációs költségelemzés Amortizációs költségelemzés Amennyiben műveleteknek egy M 1,...,M m sorozatának a futási idejét akarjuk meghatározni, akkor egy lehetőség, hogy külön-külön minden egyes művelet futási idejét kifejezzük

Részletesebben

50. modul 1. melléklet 2. évfolyam tanítói fólia

50. modul 1. melléklet 2. évfolyam tanítói fólia 50. modul 1. melléklet 2. évfolyam tanítói fólia 50. modul 2. melléklet 2. évfolyam tanítói fólia 50. modul 3. melléklet 2. évfolyam tanítói fólia 50. modul 4. melléklet 2. évfolyam tanítói fólia és csoport

Részletesebben

Tamás Péter (D. 424) Mechatronika, Optika és Gépészeti Informatika Tanszék (D 407)

Tamás Péter (D. 424) Mechatronika, Optika és Gépészeti Informatika Tanszék (D 407) Tamás Péter (D. 424) Mechatronika, Optika és Gépészeti Informatika Tanszék (D 407) 1 Kérdőív Tematika A számítógép működése Adatok Program Objektum 2 Kérdőív Kitöltötte 204 fő Felkészültség 28% 39% alap

Részletesebben

Kódoláselméleti alapfogalmak

Kódoláselméleti alapfogalmak Kódoláselméleti alapfogalmak Benesóczky Zoltán 2005 Ez összefoglaló digitális technika tantárgy kódolással foglalkozó anyagrészéhez készült, az informatika szakos hallgatók részére. Több-kevesebb részletességgel

Részletesebben

A KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA INFORMATIKA TÉMAKÖREI: 1. Információs társadalom

A KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA INFORMATIKA TÉMAKÖREI: 1. Információs társadalom A KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA INFORMATIKA TÉMAKÖREI: 1. Információs társadalom 1.1. A kommunikáció 1.1.1. A kommunikáció általános modellje 1.1.2. Információs és kommunikációs technológiák és rendszerek

Részletesebben

1.1.1 Dátum és idő függvények

1.1.1 Dátum és idő függvények 1.1.1 Dátum és idő függvények Azt már tudjuk, hogy két dátum különbsége az eltelt napok számát adja meg, köszönhetően a dátum tárolási módjának az Excel-ben. Azt is tudjuk a korábbiakból, hogy a MA() függvény

Részletesebben

Azonosító jel: ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM

Azonosító jel: ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika középszint írásbeli vizsga I. összetevő

Részletesebben

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL

LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL LINEÁRIS PROGRAMOZÁSI FELADATOK MEGOLDÁSA SZIMPLEX MÓDSZERREL x 1-2x 2 6 -x 1-3x 3 = -7 x 1 - x 2-3x 3-2 3x 1-2x 2-2x 3 4 4x 1-2x 2 + x 3 max Alapfogalmak: feltételrendszer (narancs színnel jelölve), célfüggvény

Részletesebben

Országos kompetenciamérés 2007

Országos kompetenciamérés 2007 Országos kompetenciamérés 2007 Év végi értékelés Váci Utcai Ének-zenei Általános Iskola Bevezető Az Országos kompetenciamérés 2007. május 30-án ötödik alkalommal zajlott le, a mi iskolánkban a negyedikes,

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Titkosírás. Biztos, hogy titkos? Szabó István előadása. Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak...

Titkosírás. Biztos, hogy titkos? Szabó István előadása. Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak... Biztos, hogy titkos? Szabó István előadása Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak...) Története Az ókortól kezdve rengeteg feltört titkosírás létezik. Monoalfabetikus

Részletesebben

Programtervezési ismeretek -3-1 - A halmaz absztrakt adattípus

Programtervezési ismeretek -3-1 - A halmaz absztrakt adattípus Programtervezési ismeretek -3-1 - A halmaz absztrakt adattípus Definíció: Halmaz Halmazon adott tulajdonságú elemek, objektumok összességét, együttesét értjük. Minden elemről, objektumról egyértelműen

Részletesebben

A + B = B + A, A + ( B + C ) = ( A + B ) + C.

A + B = B + A, A + ( B + C ) = ( A + B ) + C. 6. LOGIKAI ÁRAMKÖRÖK Számítógépekben, műszerekben, vezérlő automatákban alapvető szerep jut az olyan áramköröknek, melyek valamilyen logikai összefüggést fejeznek ki. Ezeknek a logikai áramköröknek az

Részletesebben

Az annotáció elvei. Oravecz Csaba MTA Nyelvtudományi Intézet {oravecz}@nytud.hu. MANYE vitaülés 2006. február 20.

Az annotáció elvei. Oravecz Csaba MTA Nyelvtudományi Intézet {oravecz}@nytud.hu. MANYE vitaülés 2006. február 20. Oravecz Csaba MTA Nyelvtudományi Intézet {oravecz}@nytud.hu MANYE vitaülés 2006. február 20. Bevezetés Nyelvi erőforrások, szöveges adatbázisok növekvő jelentősége. Bevezetés Nyelvi erőforrások, szöveges

Részletesebben

Webprogramozás szakkör

Webprogramozás szakkör Webprogramozás szakkör Előadás 4 (2012.03.26) Bevezető Mi is az a programozási nyelv, mit láttunk eddig (HTML+CSS)? Az eddig tanult két nyelven is mondhatni programoztunk, de ez nem a klasszikus értelemben

Részletesebben

Multimédia szoftver szabványok

Multimédia szoftver szabványok Multimédia szoftver szabványok HEFOP 3.5.1 Korszerű felnőttképzési módszerek kifejlesztése és alkalmazása EMIR azonosító: HEFOP-3.5.1-K-2004-10-0001/2.0 Tananyagfejlesztő: Máté István Lektorálta: Brückler

Részletesebben

Számítástechnikai alapismeretek jegyzet

Számítástechnikai alapismeretek jegyzet Számítástechnikai alapismeretek jegyzet Barhács Oktatóközpont 2002. Számítástechnikai alapismeretek modul 1. Fejezet Adatok és információk 1 Az információ világa A világ melyben élünk leképezhető adatok

Részletesebben

38. A gráfalgoritmusok alkalmazása

38. A gráfalgoritmusok alkalmazása 38. A gráfalgoritmusok alkalmazása Állapotok és átmenetek A gráf adattípus nagyon sokféle feladat megoldásánál alkalmazható. Rejtvények, játékok, közlekedési és szállítási problémák, stratégiai feladatok

Részletesebben

VASVÁRI PÁL GIMNÁZIUM HELYI TANTERVE 2013, Tantárgy megnevezése: INFORMATIKA

VASVÁRI PÁL GIMNÁZIUM HELYI TANTERVE 2013, Tantárgy megnevezése: INFORMATIKA VASVÁRI PÁL GIMNÁZIUM HELYI TANTERVE 2013, Tantárgy megnevezése: INFORMATIKA Heti óraszám 9. évf. 10. évf. 11. évf. 12.é vf. Általános képzés.d... osztály 3 3 4 4 Érettségi előkészítő 2 2 2 12. évfolyam

Részletesebben