Dinamikus fehérjerendszerek a sejtben
|
|
- Viktor Orosz
- 6 évvel ezelőtt
- Látták:
Átírás
1 BIOLÓGIAI MOZGÁSOK Dinamikus fehérjerendszerek a sejtben Ritmusosan összehúzódó szívizomsejt Osztódó sejt Kellermayer Miklós Axon (neurit) növekedés Mozgó spermatociták BIOLÓGIAI MOZGÁSOK A citoszkeletális rendszer Intracelluláris dinamikus fehérje vázrendszer Tovakúszó keratinocita Kemotaxis Három fő filamentum-osztály: A. Vékony (aktin) B. Intermedier C. Mikrotubulus Mikrotubulusok Aktin Filamentumok mechanikája fontos Polimerizáció: okos tégla alegységekből DNS Szerep: A. Mozgás, alakváltozás B. Sejtosztódás C. Intracelluláris transzport Sebgyógyulás modell - fibroblasztok kollektív mozgása Listeria baktériumok intracelluláris mozgása
2 A citoszkeletális rendszer A citoszkeletális filamentumok rugalmassága Hook-féle rugalmasság A rugó- (vagy merevségi) állandó (k=f/δl) nem anyagfüggő paraméter. A rugóállandó (k) függ a test alaki paramétereitől, az erő irányától, és azt mutatja meg, hogy egységnyi megnyúlást mekkora erő idéz elő. A Longitudinális merevség: κ = L F ΔL = EA L F Termikus rugalmasság A polimerlánc átlagos alakja leírható egyszerű paraméterek segítségével: R 2 = 2L p L A perzisztenciahossz a lánc hajlítómerevségével áll összefüggésben: minél rövidebb L p, annál hajlékonyabb a lánc, és megfordítva. L p = EI k B T EI = hajlítómerevség E=Young modulus I=hajlítási tehetetlenségi nyomaték (körkeresztmetszetű rúd esetében I=r 4 π/4) k B =Boltzmann állandó T = abszolút hőmérséklet. Aktin (rodamin-phalloidin) Vimentin (anti-vimentin) Mikrotubulusok (GFP-tubulin) Hajlítómerevség: Merev lánc l>>l 1. Mechanika 2. Polimerizáció 2r κ = 4π 3 Er 4 L 3 F Szemiflexibilis lánc l~l Flexibilis lánc l<<l Polimerizáció Alegységek összeállásának folyamata Polimerizációs egyensúlyok 1. valódi equilibrium A polimerizáció fázisai: 1. Lag fázis: nukleáció 2. Növekedés fázisa 3. Equilibrium (egyensúly) fázisa 2. dinamikus instabilitás: folyamatos, lassú növekedést követő katasztrofikus depolimerizáció Polimer mennyiség Equilibrium Növekedés Lag Idő 3. Treadmilling: taposómalom
3 Erőkifejtés citoszkeletális filamentum polimerizációjával Az aktin monomer (G-aktin) Brown-féle kilincskerék mechanizmus Az eukarióta sejtekben legnagyobb mennyiségben előforduló fehérje (az összfehérje 5%-a) Koncentrációja a sejtben: 2-8 mg/ml ( μm) [G-aktin oldat esetére ez 25 nm átlagot molekulák közötti távolságot jelent] 4 nukleotid 2 k be k ki m F Diffúzió Alegység: globuláris (G-) aktin MW: 43 kda, 375 aminosav, 1 molekula kötött adenozin nukleotid (ATP vagy ADP) Szubdomének (4) Genetikai variabilitás: emlôsökben 6 különböző aktin, három családban (α izomeredetű, β, γ nemizomeredetű) 3 1 Az aktin filamentum (F-aktin) Aktin a sejtben 37 nm cortex (a sejt pereme) "stress" rostok, sejtnyúlványok (lamellipodia, filopodia, microspikes, focal contacts, invagináció) mikrovillus szöges (+) vég ~7 nm vastag, hossza in vitro több 10 μm, in vivo 1-2 μm Jobbmenetes dupla helix. Szerkezetileg polarizált hegyes (-) vég Szemiflexibilis polimerlánc (perzisztenciahossz: ~10 μm) Szerkezeti polarizáció ( szöges, hegyes vég) Aszimmetriás polimerizáció: ATP sapka ATP sapka Stress rostok cortex filopodium
4 Aktin-függő sejtmozgás Aktin-függő sejtmozgás megnyilvánulásai aktin-dús kéreg álláb szubsztrát aktin polimerizáció és álláb kitüremkedés retrakció nem polimerizált aktin mozgása álláb további növekedése fokális kontaktusok Retrográd áramlás Filopodium képződési dinamika Citoplaszt (anukleáris sejtfragmentum) autonóm mozgása) Membrán fodrozódás Aktin dinamika a lamellipodiumban Intracelluláris patogének is kihasználják az aktin rendszert Arp2/3 Listeria monocytogenes intracelluláris motilitása
5 Mikrotubuláris rendszer Eukarióta sejtek tubulinból és kapcsolódó fehérjékből álló rendszere. A mikrotubulusok építőköve: tubulin Alegység: tubulin Idegszövetben az összfehérje 10-20%-a MW: ~50 kd: α- és β-tubulin -> heterodimér 1 molekula kötött guanozin nukleotid (GTP vagy GDP); kicserélhető (β), illetve nem kicserélhető (α) Szerkezeti polaritás Genetikai variabilitás: legalább 6 különböző α illetve β tubulin α β A mikrotubulus Polimerizációs egyensúlyok mikrotubulusokban Treadmilling Dinamikus instabilitás ~25 nm vastag, üreges 13 protofilamentum jobbmenetes rövidmenetű helix balmenetes hosszúmenetű helix Merev polimerlánc (perzisztenciahossz: néhány mm!) Szerkezeti polarizáció: +vég: polimerizáció gyors, β-alegység által terminált -vég: polimerizáció lassú, α-alegység által terminált GTP-sapka
6 Mikrotubuláris rendszer az eukarióta sejtben Mikrotubuláris rendszer fukciói Interfázisos sejt 1. Autópályák motorfehérjék számára 2. Érzékeli, monitorozza és megtalálja a sejt geometriai középpontját 3. Motilitási funkciók (sejtosztódás) Hol található az eukarióta sejtben? interfázisos sejt cytoplasmája, axon, cilium, flagellum, osztódó sejt húzóorsója. Polaritás a sejten belül centrosomában -vég, a periférián +vég. Centrosoma: 2 centriolum, centrosoma matrix, benne γ-tubulin Sejt polaritás "fixálása" MT asszociált fehérjék (capping protein) segítségével. Ciliáris sejt Osztódó sejt Idegsejt Intermedier filamentális rendszer Intermedier filamentum építőkövek 8-10 nm átmérőjű szövetspecifikus, filamentális fehérjerendszer, mely a legtöbb (de nem minden) állati sejtben megtalálható. Alapvető szerep: mechanikai ellenállás biztosítása Intermedier filamentum dimer: Fej 1A 1B 2A 2B Farok Vimentin, Vic Small Tulajdonságok: -Kémiailag ellenálló (detergensek, magas ionerősség) -Denaturáló szerekkel (pl. urea) extrahálható -Fibrózus monomer (nem globuláris, mint az aktin vagy tubulin) -amino-terminális fej -centrális rúd (α-hélix, heptád ismétlődés) -carboxy-terminális farok -a szövetspecifikus monomérek egymástól a végeik szerkezetében különböznek
7 Az intermedier filamentum alegysége: coiled-coil dimer Heptád ismétlődés szerkezet, hidrofób aminosavak Intermedier filamentumok csoportosítása Szövetspecificitás alapján (Klasszikus csoportosítás) Szövet típus Intermedier filamentum Epithelium Keratinok Izom Dezmin Mesenchyma Glia Ideg Vimentin Glialis fibrillaris savanyú fehérje (GFAP) Neurofilamentum (NF-L, NF-M, NF-H) Vimentin dimer szalagdiagramja Vimentin dimer drótháló diagramja Intermedier filamentumok polimerizációja A sejtben teljesen polimerizált állapotban (nem dinamikus egyensúly) Centrális rudak (α-hélix) hidrofób-hidrofób kölcsönhatása -> colied-coil dimer Intemedier filamentumok szöveti funkciói Szöveti mechanikai stabilitás biztosítása Epiteliális (hám-) sejtekben: -Pathologia: epidermolysis bullosa simplex. Mutáció a keratin génben. Enyhe mechanikai hatásra (pl. dörzsölés) fellépő hólyagos hámszétesés. 2 dimer -> tetramer (antiparallel elrendeződés, szerkezeti apolaritás) protofilamentum Tetramerek longitudinális sorozata -> protofilamentum 8 protofilamentum -> filamentum filamentum
8 Dinamikus vimentin átrendeződés az élő sejtben MOTORFEHÉRJÉK 1. Specifikus filamentumhoz kapcsolódnak. 2. Elmozdulást és erőt generálnak. 3. Kémiai energiát használnak fel. GFP-konjugált vimentin 3T3 sejtben Egyedi filamentum turnover A motorfehérjék típusai Motorfehérjék munkaciklusa 1. Aktin alapú Miozinok: Konvencionális (miozin II) és nem-konvencionális Miozin szupercsalád (I-XXIV osztályok). Plusz vég irányába mozognak. 2. Mikrotubulus alapú a. Dineinek: Ciliáris (flagelláris) és citoplazmáris dineinek. A mikrotubulus mentén a minusz vég irányába mozognak. b. Kinezinek: Kinezin szupercsalád: konvencionális és nem-konvencionális. A mikrotubulus mentén a plusz vég irányába mozognak. c. Dinaminok: MT-függő GTPáz aktivitás Biológiai szerep: vakuoláris fehérjeválogatás (pinchase enzimek)? 3. DNS alapú mechanoenzimek DNS és RNS polimerázok, vírus kapszid csomagoló motor, kondenzinek A DNS fonal mentén haladnak és fejtenek ki erőt 4. Rotációs motorok F1F0-ATP szintetáz Bakteriális flagelláris motor 5. Mechanoenzim komplexek Riboszóma Munkaciklus Kapcsolt τ on Szétkapcsolt τ off Duty ratio : r = δv v δ=munka- vagy lépéstávolság V=ATPáz sebesség v=motilitási sebesség Processzív motor: r->1 Pl. kinezin, DNS-, RNS-polimeráz. Munkaciklus nagy részében kapcsolt állapotban. Egymaga képes a terhét továbbítani. Nonprocesszív motor: r->0 Pl. miozin. Munkaciklus nagy részében szétkapcsolt állapotban Sokaság működik együtt. Egyetlen motorfehérje által kifejtett erő: néhány pn.
9 NEM-PROCESSZÍV MOTORFEHÉRJÉK Miozin PROCESSZÍV MOTORFEHÉRJÉK Három-gyöngy próba A nem-processzív motorok sokaságban dolgoznak. Kinezin Lépéstávolság: 8 nm (minden második tubulin alegység közötti távolság) Miozin V Mikorogyöngy elmozdulás Idő Knight et al, Lépéstávolság: ~36 nm nm (aktin filament hélix félmenet emelkedés) 200 nm Lépéstávolság: 5,5 nm (szomszédos aktin alegységek közötti távolság) Szintetikus vastag filamentum AFM felvétel A processzív motorok egyedül dolgoznak. Dinaminok DNS Motorok Vakuoláris fehérjeválogatás GTPázok Processzív motorok T7 DNS Polimeráz pinchase funkció RNS Polimeráz RNS Polimeráz, Wang et al
10 Vírus portális motor Különleges DNS motor ROTÁCIÓS MOTOROK I: F1F0-ATP SZINTETÁZ 20 nm ATP 200 nm ATP Diszkrét 120 rotációs lépések φ29 bakteriofág portális motor Kinosita ROTÁCIÓS MOTOROK II: Bakteriális flagellum motor Mechanoenzim komplex Riboszóma 2.7 nm-es lépések (egy triplett) s transzlokációs idő Transzlokációval csatolt helikáz aktivitás Fordulatszám: > rpm Fogyasztás: W Hatásfok: > 80% Energiaforrás: protonok
A biológiai mozgás molekuláris mechanizmusai
BIOLÓGIAI MOZGÁSOK A biológiai mozgás molekuláris mechanizmusai Kollektív mozgás Szervezet mozgása ( Az évszázad ugrása ) Szerv mozgás BIOLÓGIAI MOZGÁSOK BIOLÓGIAI MOZGÁSOK Ritmusosan összehúzódó szívizomsejt
Dinamikus fehérjerendszerek a sejtben. Kellermayer Miklós
Dinamikus fehérjerendszerek a sejtben Kellermayer Miklós BIOLÓGIAI MOZGÁSOK Ritmusosan összehúzódó szívizomsejt Osztódó sejt Axon (neurit) növekedés Mozgó spermatociták BIOLÓGIAI MOZGÁSOK Tovakúszó keratinocita
Citoszkeleton. Sejtek rugalmassága. Polimer mechanika: Hooke-rugalmasság. A citoszkeleton filamentumai. Fogászati anyagtan fizikai alapjai 12.
Fogászati anyagtan fizikai alapjai 12. Sejtek rugalmassága Citoszkeleton Eukariota sejtek dinamikus vázrendszere Három fő filamentum-osztály: A. Vékony (aktin) B. Intermedier C. Mikrotubulus Polimerizáció:
A CITOSZKELETÁLIS RENDSZER (Nyitrai Miklós, )
A CITOSZKELETÁLIS RENDSZER (Nyitrai Miklós, 2010.11.30.) 1. Mi a citoszkeleton? 2. Polimerizá, polimerizás egyensúly 3. ilamentumok osztályozása 4. Motorfehérjék Citoszkeleton Eukariota sejtek dinamikus
Tartalom. A citoszkeleton meghatározása. Citoszkeleton. Mozgás a biológiában A CITOSZKELETÁLIS RENDSZER 12/9/2016
Tartalom A CITOSZKELETÁLIS RENDSZER Nyitrai Miklós, 2016 november 29. 1. Mi a citoszkeleton? 2. Polimerizáció, polimerizációs egyensúly 3. Filamentumok osztályozása 4. Motorfehérjék A citoszkeleton meghatározása
11/15/10! A CITOSZKELETÁLIS RENDSZER! Polimerizáció! Polimerizációs egyensúly! Erő iránya szerint:! 1. valódi egyensúly (aktin)" Polimer mechanika!
11/15/10! A CITOSZKELETÁLIS RENDSZER! 1. Mi a citoszkeleton?! 2. Polimerizáció, polimerizációs egyensúly! 3. Filamentumok osztályozása! Citoszkeleton : Eukariota sejtek dinamikus vázrendszere! Három fő
A citoszkeletális rendszer, motorfehérjék.
A citoszkeletális rendszer, motorfehérjék. SCIENCE PHOTO LIBRARY Huber Tamás 2012. 10. 15. Citoszkeleton: eukarióta sejtek dinamikus fehérjevázrendszere Három fő filamentum-osztály: A. Intermedier B. Mikrotubulus
A citoszkeletális rendszer, motorfehérjék.
A citoszkeletális rendszer, motorfehérjék. Citoszkeleton: eukarióta sejtek dinamikus fehérjevázrendszere Három fő filamentum-osztály: A. Intermedier B. Mikrotubulus C. Mikrofilamentum SCIENCE PHOTO LIBRARY
A CITOSZKELETÁLIS RENDSZER FUTÓ KINGA
A CITOSZKELETÁLIS RENDSZER FUTÓ KINGA 2013.10.09. CITOSZKELETON - DEFINÍCIÓ Fehérjékből felépülő, a sejt vázát alkotó intracelluláris rendszer. Eukarióta és prokarióta sejtekben egyaránt megtalálható.
A citoszkeletális rendszer, a harántcsíkolt izom biofizikája.
A citoszkeletális rendszer, a harántcsíkolt izom biofizikája. SCIENCE PHOTO LIBRARY Kupi Tünde 2010. 10. 19. Citoszkeleton: eukarióta sejtek dinamikus fehérjevázrendszere Három fı filamentum-osztály: A.
Történeti áttekintés. Eukarióta. Prokarióta. A citoszkeletális rendszer. Motorfehérjék. A biológiai mozgás molekuláris mechanizmusai.
A citoszkeletális rendszer. Motorfehérjék. A biológiai mozgás molekuláris mechanizmusai. Előadásvázlat TK. 345-353. oldal citoszkeleton története polimer mechanika vizsgálómódszerek polimerizáció aktin
A citoszkeleton. A citoszkeleton, a motorfehérjék, az izom és működésének szabályozása. A citoszkeleton. A citoszkeleton.
, a motorfehérjék, az izom és működésének szabályozása PTE ÁOK Biofizikai Intézet Ujfalusi Zoltán 2012. január-február Eukarióta sejtek dinamikus vázrendszere Három fő filamentum-osztály: 1. Intermedier
Az élő sejt fizikai Biológiája: motorfehérjék, egyensúlytól távoli folyamatok
Tematika Az élő sejt fizikai Biológiája: motorfehérjék, egyensúlytól távoli folyamatok Kellermayer Miklós Motorfehérjék működése. A munkaciklus Egyensúlytól távoli folyamatok. Erővezérelt fehérjegombolyodás.
A citoszkeletális rendszer
A citoszkeletális rendszer A citoszkeletális filamentumok típusai, polimerizációja, jellemzıik, mechanikai tulajdonságaik. Asszociált fehérjék 2013.09.24. Citoszkeleton Fehérjékbıl felépülı, a sejt vázát
A citoszkeleton. A citoszkeleton, a motorfehérjék, az izom és működésének szabályozása. A citoszkeleton. A citoszkeleton. Az aktin.
, a motorfehérjék, az izom és működésének szabályozása PTE ÁOK Biofizikai Intézet Ujfalusi Zoltán 2011. január-február Eukarióta sejtek dinamikus vázrendszere Három fő filamentum-osztály: 1. Intermedier
A biológiai mozgások. A biológiai mozgás molekuláris mechanizmusai. Motorfehérjék. Motorfehérjék közös tulajdonságai
A biológiai mozgások Molekuláris mozgás A biológiai mozgás molekuláris mechanizmusai Celluláris mozgás Mártonfalvi Zsolt Bakteriális flagellum Szervezet mozgása Keratocita mozgása felületen 1 Motorfehérjék
A CITOSZKELETÁLIS RENDSZER Bugyi Beáta PTE ÁOK, Biofizikai Intézet. 9. A sejtmozgás mechanizmusai
A CITOSZKELETÁLIS RENDSZER 2011. 05. 03. Bugyi Beáta PTE ÁOK, Biofizikai Intézet 9. A sejtmozgás mechanizmusai Sejtmozgás, motilitás 1. Sejten belüli, intracelluláris mozgás izom összehúzódás organellumok
A biológiai mozgások. Motorfehérjék. Motorfehérjék közös tulajdonságai 4/22/2015. A biológiai mozgás molekuláris mechanizmusai. Szerkezeti homológia
A biológiai mozgások Molekuláris mozgás A biológiai mozgás molekuláris mechanizmusai. Celluláris mozgás Mártonfalvi Zsolt Bakteriális flagellum Szervezet mozgása Keratocita mozgása felületen Motorfehérjék
A citoszkeleton Eukarióta sejtváz
A citoszkeleton Eukarióta sejtváz - Alak és belső szerkezet - Rugalmas struktúra sejt izomzat - Fehérjékből épül fel A citoszkeleton háromféle filamentumból épül fel Intermedier filamentum mikrotubulus
A motorfehérjék definíciója. A biológiai motorok 12/9/2016. Motorfehérjék. Molekuláris gépek. A biológiai mozgás
A motorfehérjék definíciója Motorfehérjék Nyitrai Miklós, 2016 november 30. Molekuláris gépek A molekuláris mozgások alapját gyakran motor fehérjék biztosítják. Megértésük a biológia egyik súlyponti kérdése;
BIOMECHANIKA 2 Erőhatások eredete és következményei biológiai rendszerekben
BIOMECHANIKA 2 Erőhatások eredete és következményei biológiai rendszerekben A MOZGÁS MOLEKULÁRIS MECHANIZMUSAI MOLEKULÁRIS MOZGÁS MOTORFEHÉRJÉK DR. BUGYI BEÁTA - BIOFIZIKA ELŐADÁS PÉCSI TUDOMÁNYEGYETEM
Polimerlánc egyensúlyi alakja. Féregszerű polimermodell (Wormlike chain) WLC (wormlike chain): Entropikus rugalmasság vizualizálása
Polimerlánc egyensúlyi alakja Az a makroállapot, amely a legtöbb mikroállapottal valósítható meg (legvalószínűbb állapot) DNS molekulák fluoreszcencia mikroszkóp alatt Féregszerű polimermodell (Wormlike
Citoszkeleton Sejtmozgás
Citoszkeleton Sejtmozgás Citoszkeleton funkciói Sejtalak meghatározása Organellumok kihorgonyzása Organellumok mozgatása Húzószilárdság Kromoszóma mozgatás Sejtpolaritás Motilitás Citoszkeleton Mikrofilamentumok
A diffúzió csak rövid méretsálán gyors. Az élő sejt fizikai Biológiája: Diffúzió, polimerizáció, reptáció
A diffúzió csak rövid méretsálán gyors Az élő sejt fizikai Biológiája: Diffúzió, polimerizáció, reptáció Kellermayer Miklós Négyzetes összefüggés: meredekség=2 A DIFFÚZIÓ ÉS BOLYONGÓ MOZGÁS KAPCSOLATA
Tubulin, mikrotubuláris rendszer és mikrotubulus asszociált fehérjék
Tubulin, mikrotubuláris rendszer és mikrotubulus asszociált fehérjék Talián Csaba Gábor PTE ÁOK, Biofizika Intézet 2012. február 21. Transzmissziós elektronmikroszkópos felvétel egy Heliozoa axopódiumának
Biomolekulák nanomechanikája A biomolekuláris rugalmasság alapjai
Fogorvosi Anyagtan Fizikai Alapjai Biomolekulák nanomechanikája A biomolekuláris rugalmasság alapjai Mártonfalvi Zsolt Biofizikai és Sugárbiológiai Intézet Semmelweis Egyetem Budapest Biomolekulák mint
A citoszkeletális rendszer
A citoszkeletális rendszer Az eukarióta sejtek dinamikus fehérje-vázrendszere, amely specifikus fehérjepolimer filamentumokból épül fel. Mikrofilamentumok Mikrotubulusok Intermedier filamentumok Aktin
Sejtmozgás és adhézió Molekuláris biológia kurzus 8. hét. Kun Lídia Genetikai, Sejt és Immunbiológiai Intézet
Sejtmozgás és adhézió Molekuláris biológia kurzus 8. hét Kun Lídia Genetikai, Sejt és Immunbiológiai Intézet Sejtmozgás -amőboid - csillós - kontrakció Sejt adhézió -sejt-ecm -sejt-sejt MOZGÁS A sejtmozgás
Motorfehérjék november 30.; Nyitrai
Motorfehérjék 2011. november 30.; Nyitrai Molekuláris gépek A molekuláris mozgások alapját gyakran motor fehérjék biztosítják. Megértésük a biológia egyik súlyponti kérdése; Gépek a mikro/nano-világban
Tubulin, mikrotubuláris rendszer és mikrotubulus asszociált fehérjék
Tubulin, mikrotubuláris rendszer és mikrotubulus asszociált fehérjék Talián Csaba Gábor PTE ÁOK, Biofizika Intézet 2011. február 22. Transzmissziós elektronmikroszkópos felvétel egy Heliozoa axopódiumának
Az élő sejt fizikai Biológiája: TERMODINAMIKAI ÁRAMOK. Tematika ANYAGÁRAM (DIFFÚZIÓ) Diffúzió, polimerizáció, reptáció. Kellermayer Miklós
Tematika Az élő sejt fizikai Biológiája: Diffúzió, polimerizáció, reptáció Diffúzió, diffúzió-vezérelt folyamatok Biopolimérek dinamikája. Polimerizáció, depolimerizáció Polimérek diffúziója. Reptáció.
2. AKTIN-KÖTŐ FEHÉRJÉK
A CITOSZKELETÁLIS RENDSZER 2011. 02. 15. Bugyi Beáta PTE ÁOK, Biofizikai Intézet 2. AKTIN-KÖTŐ FEHÉRJÉK Citoszkeletális aktin HEp-2 sejtekben - rodamin-falloidin jelölés forrás: Nyitrai Miklós, Grama László,
DNS, RNS, Fehérjék. makromolekulák biofizikája. Biológiai makromolekulák. A makromolekulák TÖMEG szerinti mennyisége a sejtben NAGY
makromolekulák biofizikája DNS, RNS, Fehérjék Kellermayer Miklós Tér Méret, alak, lokális és globális szerkezet Idő Fluktuációk, szerkezetváltozások, gombolyodás Kölcsönhatások Belső és külső kölcsöhatások,
Sejtciklus. Sejtciklus. Centriólum ciklus (centroszóma ciklus) A sejtosztódás mechanizmusa. Mikrotubulusok és motor fehérjék szerepe a mitózisban
A sejtosztódás mechanizmusa Mikrotubulusok és motor fehérjék szerepe a mitózisban 2010.03.23. Az M fázis alatti események: mag osztódása (mitózis) mitotikus orsó: MT + MAP (pl. motorfehérjék) citoplazma
Biofizika I 2013-2014 2014.12.02.
ÁTTEKINTÉS AZ IZOM TÍPUSAI: SZERKEZET és FUNKCIÓ A HARÁNTCSÍKOLT IZOM SZERKEZETE MŰKÖDÉSÉNEK MOLEKULÁRIS MECHANIZMUSA IZOM MECHANIKA Biofizika I. -2014. 12. 02. 03. Dr. Bugyi Beáta PTE ÁOK Biofizikai Intézet
Kollár Veronika
A harántcsíkolt izom szerkezete, az izommőködés és szabályozás molekuláris alapjai Kollár Veronika 2010. 11. 11. Az izom citoszkeletális filamentumok és motorfehérjék rendezett összeszervezıdésébıl álló
A sejtváz. Mikrotubulusok (25 nm átmérő) Mikrofilamentumok (7 nm átmérő) Intermedier filamentumok (8-12 nm átmérő)
A sejtváz A citoszkeleton, vagy sejtváz kötegek hálózatából felépülő struktúra, mely a sejt szilárdításán, alakjának biztosításán túl, a mozgásban, a szállításban is szerepet játszik. Három molekuláris
2011. október 11. Szabad János
2011. október 11 Szabad János szabad@mdbio.szote.u-szeged.hu Egy állatsejt szervez dése - Export a sejtmagból a citoplazmába - Import a citoplazmából a sejtmagba - Import a sejtszervecskékbe - A szekréciós
Makromolekulák. Fehérjetekeredé. rjetekeredés. Biopolimer. Polimerek
Biopolimerek Makromolekulá Makromolekulák. Fehé Fehérjetekeredé rjetekeredés. Osztódó sejt magorsófonala 2011. November 16. Huber Tamá Tamás Dohány levél epidermális sejtjének aktin hálózata Bakteriofágból
A centriólum és a sejtek mozgási organellumai
A centriólum A centriólum és a sejtek mozgási organellumai Egysejtű eukarióta sejtekben,soksejtű állatok sejtjeiben 9x3-triplet A,B és C tubulus alegységek hengerpalástszerű helyezkedéssel Hossza 0,3mm
A membránok és a citoszkeleton kapcsolata. A sejtosztódás és a sejtciklus. Előadó:Gönczi Mónika Debreceni Egyetem, ÁOK, Élettani Intézet
2018 A membránok és a citoszkeleton kapcsolata. A sejtosztódás és a sejtciklus Előadó:Gönczi Mónika Debreceni Egyetem, ÁOK, Élettani Intézet A citoszkeleton alkotói Mikrofilamentumok Intermedier filamentumok
BIOMECHANIKA 3 Erőhatások eredete és következményei biológiai rendszerekben
BIOMECHANIKA 3 Erőhatások eredete és következményei biológiai rendszerekben A MOZGÁS MOLEKULÁRIS MECHANIZMUSAI SZERVEZET SZINTŰ MOZGÁS AZ IZOMMŰKÖDÉS MOLEKULÁRIS MECHANIZMUSAI DR. BUGYI BEÁTA- BIOFIZIKA
Tudjunk Egymásról Bugyi Beáta 22/11/2012
Listeria monocytogenes Loisel, Boujemaa et al. Nature 1999 Összetett aktin hálózatok Spire/formin szinergia Reymann et al. Nature Materials 1 ADF/aktin Bosch, Bugyi B et al. Molecular Cell 7 Reymann et
Biopolimer 12/7/09. Makromolekulák szerkezete. Fehérje szerkezet, és tekeredés. DNS. Polimerek. Kardos Roland DNS elsődleges szerkezete
Biopolimerek Makromolekulák szerkezete. Fehérje szerkezet, és tekeredés. Osztódó sejt magorsófonala Kardos Roland 2009.10.29. Dohány levél epidermális sejtjének aktin hálózat Bakteriofágból kiszabaduló
Egyedi molekula vizsgálatok
Élő sejtben: molekulagépezetek sokasága Egyedi molekula vizsgálatok Kellermayer Miklós Tovakúszó keratinocita Mikrotubulus dinamikus instabilitás Vezikulum transzport kinezinnel Fehérjeszintézis riboszómán
MULTICELLULÁRIS SZERVEZŐDÉS: SEJT-SEJT (SEJT-MÁTRIX) KÖLCSÖNHATÁSOK 1. Bevezetés (2.)Extracelluláris mátrix (ECM) (Kollagén, hialuron sav,
MULTICELLULÁRIS SZERVEZŐDÉS: SEJT-SEJT (SEJT-MÁTRIX) KÖLCSÖNHATÁSOK 1. Bevezetés (2.)Extracelluláris mátrix (ECM) (Kollagén, hialuron sav, proteoglikánok) (3.)Multiadhéziós fehérjék és sejtfelszíni receptorok
Nanomedicina Szimpózium, 2008. Nanomechanika: Egyedi Biomolekulák Manipulálása. Kellermayer Miklós
Nanomedicina Szimpózium, 28 Nanomechanika: Egyedi Biomolekulák Manipulálása Kellermayer Miklós Semmelweis Egyetem Általános Orvostudományi Kar Biofizikai és Sugárbiológiai Intézet ÉLŐ SEJTBEN: BONYOLULT
Sejtváz Sejtek mozgása
Sejtváz Sejtek mozgása Sejtváz: Az eukarióta sejtekben vékony fonálszerű struktúra 3 fő alrendszer alkotja: Mikrofilamentumok: 7-9 nm átmérőjű aktinfonalakból áll; Intermedier filamentumok: 10 nm átmérőjűek;
Az élő sejt fizikai Biológiája:
Az élő sejt fizikai Biológiája: Modellépítés, biológiai rendszerek skálázódása Kellermayer Miklós Fizikai biológia Ma már nem csak kvalitatív megfigyeléseket, hanem kvantitatív méréseket végzünk (biológiai
Biokémiai kutatások ma
Nyitray László Biokémiai Tanszék Hb Biokémiai kutatások ma Makromolekulák szerkezet-funkció kutatása Molekuláris biológia minden szinten Redukcionista molekuláris biológia vs. holisztikus rendszerbiológia
1. AKTIN CITOSZKELETON
A CITOSZKELETÁLIS REDSZER 20. 02. 08.. AKTI CITOSZKELETO Citozeletáli atin HEp-2 ejteben - rodamin-falloidin jelölé forrá: yitrai Miló, Grama Lázló, PTE ÁOK, Biofiziai Intézet CITOSZKELETO CITO : ejt /
sejt működés jovo.notebook March 13, 2018
1 A R É F Z S O I B T S Z E S R V E Z D É S I S E Z I N E T E K M O I B T O V N H C J W W R X S M R F Z Ö R E W T L D L K T E I A D Z W I O S W W E T H Á E J P S E I Z Z T L Y G O A R B Z M L A H E K J
Az élő sejt fizikai Biológiája Kellermayer Miklós
Fizikai biológia Az élő sejt fizikai Biológiája Kellermayer Miklós Ma már nem csak kvalitatív megfigyeléseket, hanem kvantitatív méréseket végzünk (biológiai adatok kvantitatív adatok). Kvantitatív adatokból
transzláció DNS RNS Fehérje A fehérjék jelenléte nélkülözhetetlen minden sejt számára: enzimek, szerkezeti fehérjék, transzportfehérjék
Transzláció A molekuláris biológia centrális dogmája transzkripció transzláció DNS RNS Fehérje replikáció Reverz transzkriptáz A fehérjék jelenléte nélkülözhetetlen minden sejt számára: enzimek, szerkezeti
A dezmin nanomechanikai vizsgálata
A dezmin nanomechanikai vizsgálata Doktori értekezés Dr. Kiss Balázs Semmelweis Egyetem Elméleti Orvostudományok Doktori Iskola Témavezető: Dr. Kellermayer Miklós egyetemi tanár, az orvostudományok doktora
Kollokviumi vizsgakérdések biokémiából humánkineziológia levelező (BSc) 2015
Kollokviumi vizsgakérdések biokémiából humánkineziológia levelező (BSc) 2015 A kérdés 1. A sejtről általában, a szervetlen alkotórészeiről, a vízről részletesen. 2. A sejtről általában, a szervetlen alkotórészeiről,
Gyógyszerrezisztenciát okozó fehérjék vizsgálata
Gyógyszerrezisztenciát okozó fehérjék vizsgálata AKI kíváncsi kémikus kutatótábor 2017.06.25-07.01. Témavezetők : Telbisz Ágnes, Horváth Tamás Kutatók : Dobolyi Zsófia, Bereczki Kristóf, Horváth Ákos Gyógyszerrezisztencia
Biomolekulák mint polimerek. Milyen alakúak a biopolimerek? 4/22/2015. Biopolimerek osztályozása hajlékonyságuk alapján
4/22/2015 Orvosi Biofizika II. Biomechanika Biomolekuláris és szöveti rugalmasság Mártonfalvi Zsolt Biomolekulák mint polimerek A biomolekulák polimerek. Közös bennük: Lineáris elsődleges szerkezet (fehérje,
3. Sejtalkotó molekulák III. Fehérjék, enzimműködés, fehérjeszintézis (transzkripció, transzláció, poszt szintetikus módosítások)
3. Sejtalkotó molekulák III. Fehérjék, enzimműködés, fehérjeszintézis (transzkripció, transzláció, poszt szintetikus módosítások) 3.1 Fehérjék, enzimek A genetikai információ egyik fő manifesztálódása
SEJTBIOLÓGIA biomérnök hallgatók számára
SEJTBIOLÓGIA biomérnök hallgatók számára Kilencedik rész: A citoszkeleton Novák Béla docens Proofreading: Sveiczer Ákos ösztöndíjas kutató 1994. december 16. Copyright 1994 BME, Mezõgazdasági Kémiai Technológia
Sejtváz, aktin mikrofilamentumok, motor fehérjék
Sejtváz, aktin mikrofilamentumok, motor fehérjék Sejtváz Az eukarióta sejtek citoplazmájában található, fehérjefonalakból álló hálózat. (~citoszkeleton) Feladatai: -strukturális vázat alkotva, meghatározza
A Földön előforduló sejtek (pro- és eukarioták) közös és eltérő tulajdonságai. A sejtes szerveződés evolúciója.
A tárgy neve: Sejtbiológia előadás 1. Jellege: Törzs Gazda tanszék: Állattani és Sejtbiológiai Tanszék Felelős oktató: Dr. Gulya Károly Kredit: 2 Heti óraszám: 2 Típus: előadás Számonkérés: K A Földön
Fehérjeszerkezet, és tekeredés
Fehérjeszerkezet, és tekeredés Futó Kinga 2013.10.08. Polimerek Polimer: hasonló alegységekből (monomer) felépülő makromolekulák Alegységek száma: tipikusan 10 2-10 4 Titin: 3,435*10 4 aminosav C 132983
Biofizika I 2013-2014 2014.12.03.
Biofizika I. -2014. 12. 02. 03. Dr. Bugyi Beáta PTE ÁOK Biofizikai Intézet A KERESZTHÍD CIKLUSHOZ KAPCSOLÓDÓ ERŐKIEJTÉS egy kereszthíd ciklus során a miozin II fej elmozdulása: í ~10 nm 10 10 egy kereszthíd
A harántcsíkolt izom struktúrája általános felépítés
harántcsíkolt izom struktúrája általános felépítés LC-2 Izom LC1/3 Izom fasciculus LMM S-2 S-1 HMM rod Miozin molekula S-1 LMM HMM S-2 S-1 Izomrost H Band Z Disc csík I csík M Z-Szarkomér-Z Miofibrillum
Fizikai biológia. Modellépítés kiinduló szempontjai. Mitől élő az élő? Az élő sejt fizikai Biológiája
Fizikai biológia Az élő sejt fizikai Biológiája Kellermayer Miklós Ma már nem csak kvalitatív megfigyeléseket, hanem kvantitatív méréseket végzünk (biológiai adatok kvantitatív adatok). Kvantitatív adatokból
Speciális fluoreszcencia spektroszkópiai módszerek
Speciális fluoreszcencia spektroszkópiai módszerek Fluoreszcencia kioltás Fluoreszcencia Rezonancia Energia Transzfer (FRET), Lumineszcencia A molekuláknak azt a fényemisszióját, melyet a valamilyen módon
2007/11/05 Molekuláris biológia előadások - Putnoky 1-1
1-1 Fehérje transzportmechanizmusok az eukariota sejtben: 1) transzmembrán transzport kitekert formában, egyedi fehérjék transzportja célzottan - citoszol ER, citoszol MT 2) póruson keresztüli transzport
Hemoglobin - myoglobin. Konzultációs e-tananyag Szikla Károly
Hemoglobin - myoglobin Konzultációs e-tananyag Szikla Károly Myoglobin A váz- és szívizom oxigén tároló fehérjéje Mt.: 17.800 153 aminosavból épül fel A lánc kb 75 % a hélix 8 db hélix, köztük nem helikális
Bio-nanorendszerek. Vonderviszt Ferenc. Pannon Egyetem Nanotechnológia Tanszék
Bio-nanorendszerek Vonderviszt Ferenc Pannon Egyetem Nanotechnológia Tanszék Technológia: képesség az anyag szerkezetének, az anyagot felépítő részecskék elrendeződésének befolyásolására. A technológiai
Több oxigéntartalmú funkciós csoportot tartalmazó vegyületek
Több oxigéntartalmú funkciós csoportot tartalmazó vegyületek Hidroxikarbonsavak α-hidroxi karbonsavak -Glikolsav (kézkrémek) - Tejsav (tejtermékek, izomláz, fogszuvasodás) - Citromsav (citrusfélékben,
Rövid anyagtudomány. Biomolekulák és sejtek mechanikai tulajdonságai ÉL SEJT: MOLEKULAGÉPEZETEK SOKASÁGA MIÉRT EGYEDI MOLEKULÁK?
Egészségügyi Mérnök MSc ÉL SEJT: MOLEKULAGÉPEZETEK SOKASÁGA Biomolekulák és sejtek mechanikai tulajdonságai Tovacsúszó keratinocita Mikrotubulus dinamikus instabilitás Kellermayer Miklós Semmelweis Egyetem
Fehérjeszerkezet, és tekeredés. Futó Kinga
Fehérjeszerkezet, és tekeredés Futó Kinga Polimerek Polimer: hasonló alegységekből (monomer) felépülő makromolekulák Alegységek száma: tipikusan 10 2-10 4 Titin: 3,435*10 4 aminosav C 132983 H 211861 N
Orvosi Biofizika II. A Biomechanika története. Mechanikai alapok. Biomechanika: Biomolekuláris és szöveti rugalmasság
Orvosi Biofizika II. Biomechanika: Biomolekuláris és szöveti rugalmasság 1. Történeti áttekintés 2. Mechanikai alapok 3. Celluláris biomechanika 4. Szöveti biomechanika 5. Molekuláris biomechanika Kellermayer
ANATÓMIA FITNESS AKADÉMIA
ANATÓMIA FITNESS AKADÉMIA sejt szövet szerv szervrendszer sejtek általános jellemzése: az élet legkisebb alaki és működési egysége minden élőlény sejtes felépítésű minden sejtre jellemző: határoló rendszer
Biofizika I
ÁTTEKINTÉS AZ IZOM 9. A HARÁNTCSÍKOLT IZOM SZERKEZETE ÉS MECHANIKÁJA 10. AZ IZOMMŰKÖDÉS ÉS SZABÁLYOZÁS MOLEKULÁRIS ALAPJAI TÍPUSAI: SZERKEZET és FUNKCIÓ MŰKÖDÉSÉNEK MOLEKULÁRIS MECHANIZMUSAI MECHANIKAI
(1) A T sejtek aktiválása (2) Az ön reaktív T sejtek toleranciája. α lánc. β lánc. V α. V β. C β. C α.
Immunbiológia II A T sejt receptor () heterodimer α lánc kötőhely β lánc 14. kromoszóma 7. kromoszóma 1 V α V β C α C β EXTRACELLULÁRIS TÉR SEJTMEMBRÁN CITOSZÓL αlánc: VJ régió β lánc: VDJ régió Nincs
A nukleinsavak polimer vegyületek. Mint polimerek, monomerekből épülnek fel, melyeket nukleotidoknak nevezünk.
Nukleinsavak Szerkesztette: Vizkievicz András A nukleinsavakat először a sejtek magjából sikerült tiszta állapotban kivonni. Innen a név: nucleus = mag (lat.), a sav a kémhatásukra utal. Azonban nukleinsavak
MEDICINÁLIS ALAPISMERETEK AZ ÉLŐ SZERVEZETEK KÉMIAI ÉPÍTŐKÖVEI AZ AMINOSAVAK ÉS FEHÉRJÉK 1. kulcsszó cím: Aminosavak
Modul cím: MEDICINÁLIS ALAPISMERETEK AZ ÉLŐ SZERVEZETEK KÉMIAI ÉPÍTŐKÖVEI AZ AMINOSAVAK ÉS FEHÉRJÉK 1. kulcsszó cím: Aminosavak Egy átlagos emberben 10-12 kg fehérje van, mely elsősorban a vázizomban található.
a. Nyugalmi potenciál b. Transzport proteinek c. Akciós potenciál. Nyugalmi potenciál. 3 tényező határozza meg:
Egy idegsejt működése a. Nyugalmi potenciál b. Transzport proteinek c. Nyugalmi potenciál Az ionok vándorlása 5. Alacsonyabb koncentráció ioncsatorna membrán Passzív Aktív 3 tényező határozza meg: 1. Koncentráció
Miért egyedi molekulák? Miért egyedi molekulák? Biomolekulák és sejtek mechanikai tulajdonságai. Élő sejtben: molekulagépezetek sokasága
Élő sejtben: molekulagépezetek sokasága Biomolekulák és sejtek mechanikai tulajdonságai Tovakúszó keratinocita Mikrotubulus dinamikus instabilitás Kellermayer Miklós Semmelweis Egyetem Biofizikai és Sugárbiológiai
Miért egyedi molekulák?
Soroljon fel 3 olyan tulajdonságot, ami csak a vízre jellemző! Biomolekulák és sejtek mechanikai tulajdonságai Kellermayer Miklós Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Élő sejtben: molekulagépezetek
A replikáció mechanizmusa
Az öröklődés molekuláris alapjai A DNS megkettőződése, a replikáció Szerk.: Vizkievicz András A DNS-molekula az élőlények örökítő anyaga, kódolt formában tartalmazza mindazon információkat, amelyek a sejt,
a. Szinaptikus jelátvitel b. Receptorok c. Szignál transzdukció neuronokban d. Neuromoduláció. Szinaptikus jelátvitel.
Az idegsejtek kommunikációja a. Szinaptikus jelátvitel b. eceptorok c. Szignál transzdukció neuronokban d. Neuromoduláció Szinaptikus jelátvitel Terjedő szignál 35. Stimulus eceptor végződések Érző neuron
Komplex egyszerű Aktin alapú mikrofilamentum rsz. Hogyan vizsgálhatunk folyamatokat? Komplex egyszerű S E J T
Biofizikai módszerek a citoszkeleton vizsgálatára I. Kinetikai, steady-state módszerek, spektroszkópiai vizsgálatok Komplex egyszerű S E J T A citoszkeletális rendszer Orbán József, 213 Április Aktin citoszkeleton
A kemotaxis biológiai és klinikai
A kemotaxis biológiai és klinikai jelentősége - Válogatott fejezetek A kemotaxis biológiai és klinikai jelentősége - Válogatott fejezetek - Írta: Kőhidai László Szakmailag ellenőrizte: Csaba György Láng
AZ EMBERI TEST FELÉPÍTÉSE
AZ EMBERI TEST FELÉPÍTÉSE Szalai Annamária ESZSZK GYITO Általános megfontolások anatómia-élettan: az egészséges emberi szervezet felépítésével és működésével foglalkozik emberi test fő jellemzői: kétoldali
Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen
Az orvosi biotechnológiai mesterképzés megfeleltetése az Európai Unió új társadalmi kihívásainak a Pécsi Tudományegyetemen és a Debreceni Egyetemen Azonosító szám: TÁMOP-4.1.2-08/1/A-2009-0011 Az orvosi
9. előadás: Sejtosztódás és sejtciklus
9. előadás: Sejtosztódás és sejtciklus Egysejtű organizmusok esetén a sejtosztódás során egy új egyed keletkezik (reprodukció) Többsejtő szervezetek esetén a sejtosztódás részt vesz: a növekedésben és
1. Az élő szervezetek felépítése és az életfolyamatok 17
Élődi Pál BIOKÉMIA vomo; Akadémiai Kiadó, Budapest 1980 Tartalom Bevezetés 1. Az élő szervezetek felépítése és az életfolyamatok 17 Mi jellemző az élőre? 17. Biogén elemek 20. Biomolekulák 23. A víz 26.
Sejt. Aktin működés, dinamika plus / barbed end pozitív / szakállas vég 1. nukleáció 2. elongáció (hosszabbodás) 3. dinamikus egyensúly
Biofizikai módszerek a citoszkeleton vizsgálatára I: Kinetikai és steady-state spektroszkópiai módszerek Sejt Citoszkeletális rendszerek Orbán József, 2014 április Institute of Biophysics Citoszkeleton:
Izomműködés. Harántcsíkolt izom. Simaizom és simaizom-alapú szervek biofizikája.
Izomműködés. Harántcsíkolt izom. Simaizom és simaizom-alapú szervek biofizikája. Hirdetés D.R. Wilkie professzor előadására a londoni Villamosmérnöki Intézetben. A téma: izom. Kapható: LINEÁRIS MOTOR.
A METABOLIZMUS ENERGETIKÁJA
A METABOLIZMUS ENERGETIKÁJA Futó Kinga 2014.10.01. Metabolizmus Metabolizmus = reakciók együttese, melyek a sejtekben lejátszódnak. Energia nyerés szempontjából vannak fototrófok ill. kemotrófok. szervesanyag
A METABOLIZMUS ENERGETIKÁJA
A METABOLIZMUS ENERGETIKÁJA Futó Kinga 2013.10.02. Metabolizmus Metabolizmus = reakciók együttese, melyek a sejtekben lejátszódnak. Energia nyerés szempontjából vannak fototrófok ill. kemotrófok. szervesanyag
Egy idegsejt működése. a. Nyugalmi potenciál b. Transzport proteinek c. Akciós potenciál
Egy idegsejt működése a. Nyugalmi potenciál b. Transzport proteinek c. Akciós potenciál Nyugalmi potenciál Az ionok vándorlása 5. Alacsonyabb koncentráció ioncsatorna membrán Passzív Aktív 3 tényező határozza
A fehérjék hierarchikus szerkezete
Fehérjék felosztása A fehérjék hierarchikus szerkezete Smeller László Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Biológiai funkció alapján Enzimek (pl.: tripszin, citokróm-c ) Transzportfehérjék
MOTORENZIMEK MŰKÖDÉSÉNEK SOKFÉLESÉGE
MOTORENZIMEK MŰKÖDÉSÉNEK SOKFÉLESÉGE MTA doktori értekezés Kovács Mihály Eötvös Loránd Tudományegyetem Természettudományi Kar Biológiai Intézet Biokémiai Tanszék 2010 Tartalomjegyzék 1. Összefoglalás 4
KÖLCSÖNHATÁS ÉS DINAMIKA. az NMR spektroszkópia, mint a modern szem. Bodor Andrea
KÖLCSÖNHATÁS ÉS DINAMIKA az NMR spektroszkópia, mint a modern szem Bodor Andrea ELTE Szerkezeti Kémiai és Biológiai Laboratórium A Magyar Tudomány Ünnepe, 2012.11.08. Edvard Munch: A Nap (1911-1916) AZ
Elválasztástechnikai és bioinformatikai kutatások. Dr. Harangi János DE, TTK, Biokémiai Tanszék
Elválasztástechnikai és bioinformatikai kutatások Dr. Harangi János DE, TTK, Biokémiai Tanszék Fő kutatási területek Enzimek vizsgálata mannozidáz amiláz OGT Analitikai kutatások Élelmiszer analitika Magas
Mechanika, dinamika. p = m = F t vagy. m t
Mechanika, dinamika Mozgás, alakváltozás és ennek háttere Newton: a mozgás természetes állapot. A témakör egyik kulcsfontosságú fizikai mennyisége az impulzus (p), vagy lendület, vagy mozgásmennyiség.