Speciális fluoreszcencia spektroszkópiai módszerek

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Speciális fluoreszcencia spektroszkópiai módszerek"

Átírás

1 Speciális fluoreszcencia spektroszkópiai módszerek Fluoreszcencia kioltás Fluoreszcencia Rezonancia Energia Transzfer (FRET), Lumineszcencia A molekuláknak azt a fényemisszióját, melyet a valamilyen módon (például fénnyel való besugárzással) gerjesztett molekula a hőmérsékleti sugárzáson kívül kibocsát, gyűjtőnéven lumineszcenciának nevezzük. Lumineszcencia típusai - fluoreszcencia - foszforeszcencia 1

2 Jablonski diagramm A gerjesztett állapotú elektron lecsengési lehetőségei Gerjesztés Fluoreszcencia 10-9 s k f Foszforeszcencia 10-3 s k ph s E=hν Alap állapot Relaxáció Gerjesztett állapot k q k ic Kioltás vagy Energia transzfer Internal conversion (HŐ) 2

3 Fluoreszcencia alapfogalmak Kvantumhatásfok: a kibocsátott fotonok száma, osztva az elnyelt fotonok számával. Q f f k f knr Élettartam: az az időtartam ami alatt az intenzitás az e-ed részére csökken le. 1 k f k nr k Fluoreszcencia kioltás Azon lecsengési folyamatok esetén, amikor egy fluorofórokat tartalmazó oldatban, olyan molekulák vagy ionok (kioltók) vannak jelen, amelyek megfelelő elektronszerkezettel rendelkeznek ahhoz, hogy a gerjesztett molekulákkal találkozva, azok energiáját átvegyék, és valamilyen formában disszipálják (pl.hő) fluoreszcencia kioltásról beszélünk. A kioltás által új lecsengési út válik lehetővé Q= k f / k f +k ic +k q Q~F Fluoreszcencia intenzitás lecsökken! 3

4 Kioltás típusai Kioltás típusai Fluorofór + : Nincs emisszió Kioltó Sötét komplex h*υ (a gerjesztés előtt jön létre) Gerjesztés + : Fluorofór Kioltó h*υ Gerjesztés Ütközési komplex (a gerjesztés után jön létre) Fluorofór + Kioltó 4

5 Stern-Volmer egyenlet ( a kioltás mértékének kvantifikálása) Max Volmer ( ) Otto Stern ( ) Fizikai Nobel díj (1943) F 0 : fluoreszcencia intenzitás a kioltó hiányában F : fluoreszcencia intenzitás a kioltó jelenlétében K sv : Stern-Volmer állandó [Q] : kioltó koncentrációja Stern-Volmer egyenlet F 0 1 K [ Q sv ] F 0 5

6 Stern-Volmer állandó(k sv ) A fluorofór hozzáférhetőségéről ad információt! Dinamikus kioltás K sv =k q * τ 0 Hogyan dönthető el milyen típusú kioltásról van szó? k q : bimolekuláris sebességi állandó, ami a fluorofór és a kioltó diffúziós képességével, illetve a fluorofór hozzáférhetőségével áll összefüggésben Einstein-Stokes D=kT/6πhR k q = 1x10 10 M -1 s -1 k q < 1x10 10 M -1 s -1 k q > 1x10 10 M -1 s -1 diffúzió kontrollált sztérikus elfedettség kötés Dinamikus kioltás Statikus kioltás 6

7 Semleges kioltók: akrilamid, nitroxidok sztérikus viszonyok feltérképezése Töltéssel rendelkező kioltók: jodid, cézium, kobalt töltés viszonyok meghatározása Kioltók típusai Alkalmazás Fehérjék folding -jának vizsgálata Fehérjék konformációs állapotának és töltés viszonyainak feltérképezése Membránok permeabilitása Diffúziós állandók meghatározása Ld: később 7

8 FRET Förster típusú / fluoreszcencia rezonancia energia transzfer a gerjesztett állapotban lévő molekula (donor), valamint egy megfelelő spektroszkópiai paraméterekkel rendelkező molekula (akceptor) között, dipól-dipól kölcsönhatás révén, sugárzás nélküli energiaátadás formájában jön létre. Az energiatranszfer által új lecsengési út válik lehetővé Q= k f /(k f +k ic +k t ) Q~F Förster típusú energiatranszfer feltételei hν G hν D 1. Dipól-dipól kölcsönhatás 2. Donor-akceptor távolság 2-10nm 3. Megfelelő orientáció 4. Donor emissziós és az akceptor abszorpciós spektrumának átfedése - D + k t ~ 1/R 6 E R - A + hν A Fluoreszcencia intenzitás lecsökken! 8

9 A donor emissziós és az akceptor abszorpciós spektrumának átfedése Hullámhossz J= átfedési integrál n= közeg törésmutatója R= donor-akceptor távolság κ= orientációs faktor kt konst. J( )n 4 6 kfr κ 2 Hogyan határozható meg a transzfer hatásfok? τ DA : élettartam az akceptor jelenlétében τ D : élettartam az akceptor hiányában F DA : fluoreszcens intenzitás az akceptor jelenlétében F D : fluoreszcens intenzitás az akceptor hiányában Donor Floreszcencia emissziója energia csökken! transzfer Abszorpció Emisszió Donor Energia transzfer Akceptor Akceptor emissziója nő! 9

10 Energia transzfer hatásfok a donorakceptor távolság függvényében Förster féle kritikus távolság donor-akceptor pároknál E R R0 R 6 Förster féle kritikus távolság (R 0 ): Az a donor-akceptor távolság aminél a transzfer hatásfok

11 Energia transzfer típusai Heterotranszfer: különböző fluorofórok között jön létre Homotranszfer: azonos fluorofórok között jön létre, melyeket kis Stokes eltolódás jellemez Távolság mérés (molekuláris mérőszalag) Fehérjék konformációs vizsgálat Alkalmazás Fehérjék interakciója Makromolekulák asszociációs vizsgálata (pl. DNS) Fehérjék interakciója Fehérjék konformációs változása 11

12 Aktin monomer Aktin filamentum - vég (nettó depolimerizáció) Milyen a nukleotid kötő zsebben található fluorofór hozzáférhetősége? Nukleotid kötőzseb Nukleotid kötőzseb εatp εatp + vég (nettó polimerizáció) Cofilin Profilin 12

13 F 0 / F Aktinkötő fehérjék hatása az ATP- kötőzseb konformációjára 3,00 2,75 2,50 2,25 2,00 1,75 Ksv profilin = 1.02 M -1 Ksv 1 = 0.28 M -1 Ksv cofilin = 0.09 M -1 1,50 = 20% (bound -ATP) 1,25 1,00 Ksv 2 = 53.6 M -1 (free -ATP) 0,0 0,1 0,2 0,3 0,4 0,5 Akrilamid (M) Profilin jelenlétében a fluorofor hozzáférhetősége nagyobb! Cofilin jelenlétében a fluorofor hozzáférhetősége kisebb! 13

Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET) Modern Biofizikai Kutatási Módszerek

Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET) Modern Biofizikai Kutatási Módszerek Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET) Modern Biofizikai Kutatási Módszerek 2012. 11. 08. Fotonok és molekulák ütközése Fény (foton) ütközése a molekulákkal fényszóródás abszorpció E=hν

Részletesebben

Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET)

Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET) Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET) Biofizika szeminárium PTE ÁOK Biofizikai Intézet Huber Tamás 2014. 02. 11-13. A gerjesztett állapotú elektron lecsengési lehetőségei Gerjesztés Fluoreszcencia

Részletesebben

Fluoreszcencia 2. (Kioltás, Anizotrópia, FRET)

Fluoreszcencia 2. (Kioltás, Anizotrópia, FRET) Fluoreszcencia 2. (Kioltás, Anizotrópia, FRET) Gerjesztés A gerjesztett állapotú elektron lecsengési lehetőségei Fluoreszcencia 10-9 s k f Foszforeszcencia 10-3 s k ph 10-15 s Fizika-Biofizika 2. Huber

Részletesebben

Speciális fluoreszcencia spektroszkópiai alkalmazások. Emlékeztető: az abszorpció definíciója. OD = A = - log (I / I 0 ) = ε (λ) c x

Speciális fluoreszcencia spektroszkópiai alkalmazások. Emlékeztető: az abszorpció definíciója. OD = A = - log (I / I 0 ) = ε (λ) c x Speciális fluoreszcencia spektroszkópiai alkalmazások Nyitrai Miklós; 2011 február 21. FRET Emlékeztető: az abszorpció definíciója I 0 I anyag OD = A = - log (I / I 0 ) = ε (λ) c x Röv: optical density

Részletesebben

Abszorpció, emlékeztetõ

Abszorpció, emlékeztetõ Hogyan készültek ezek a képek? PÉCI TUDMÁNYEGYETEM ÁLTALÁN RVTUDMÁNYI KAR Fluoreszcencia spektroszkópia (Nyitrai Miklós; február.) Lumineszcencia - elemi lépések Abszorpció, emlékeztetõ Energia elnyelése

Részletesebben

Szerves oldott anyagok molekuláris spektroszkópiájának alapjai

Szerves oldott anyagok molekuláris spektroszkópiájának alapjai Szerves oldott anyagok molekuláris spektroszkópiájának alapjai 1. Oldott molekulában lejátszódó energetikai jelenségek a Jablonski féle energia diagram alapján 2. Példák oldatok abszorpciójára és fotolumineszcenciájára

Részletesebben

Lumineszcencia spektrometria összefoglaló

Lumineszcencia spektrometria összefoglaló Lumineszcencia spektrometria összefoglaló Ismétlés: fény (elektromágneses sugárzás) elnyelés: abszorpció elektron gerjesztés: excitáció alap és gerjesztett állapot atomi energiaszintek, energiaszintek

Részletesebben

Lumineszcencia. Lumineszcencia. mindenütt. Lumineszcencia mindenütt. Lumineszcencia mindenütt. Alapjai, tulajdonságai, mérése. Kellermayer Miklós

Lumineszcencia. Lumineszcencia. mindenütt. Lumineszcencia mindenütt. Lumineszcencia mindenütt. Alapjai, tulajdonságai, mérése. Kellermayer Miklós Alapjai, tulajdonságai, mérése Kellermayer Miklós Fotolumineszcencia Radiolumineszcencia Fotolumineszcencia Radiolumineszcencia Aurora borrealis (sarki fény) Biolumineszcencia GFP-egér Biolumineszcencia

Részletesebben

Ragyogó molekulák: dióhéjban a fluoreszcenciáról és biológiai alkalmazásairól

Ragyogó molekulák: dióhéjban a fluoreszcenciáról és biológiai alkalmazásairól Ragyogó molekulák: dióhéjban a fluoreszcenciáról és biológiai alkalmazásairól Kele Péter egyetemi adjunktus Lumineszcencia jelenségek Biolumineszcencia (biológiai folyamat, pl. luciferin-luciferáz) Kemilumineszcencia

Részletesebben

Lumineszcencia spektrometria összefoglaló

Lumineszcencia spektrometria összefoglaló Lumineszcencia spektrometria összefoglaló Ismétlés: fény (elektromágneses sugárzás) elnyelés: abszorpció elektron gerjesztés: excitáció alap és gerjesztett állapot atomi energiaszintek, energiaszintek

Részletesebben

Bevezetés a fluoreszcenciába

Bevezetés a fluoreszcenciába Bevezetés a fluoreszcenciába Gerjesztett Excited Singlet szingulett Manifold állapot S1 Jablonski diagram Belső internal konverzió conversion S2 k isc k -isc Triplett állapot Excited Triplet Manifold T1

Részletesebben

Lumineszcencia spektroszkópia

Lumineszcencia spektroszkópia Lumineszcencia spektroszkópia Elektron+vibrációs+rotációs-spektroszkópia alapjai 213. február Fizika-Biofizika II. szemeszter Orbán József PTE ÁOK Biofizikai Intézet Definíciók, törvények SPEKTROSZKÓPIAI

Részletesebben

Műszeres analitika II. (TKBE0532)

Műszeres analitika II. (TKBE0532) Műszeres analitika II. (TKBE0532) 4. előadás Spektroszkópia alapjai Dr. Andrási Melinda Debreceni Egyetem Természettudományi és Technológiai Kar Szervetlen és Analitikai Kémiai Tanszék A fény elektromágneses

Részletesebben

Biomolekuláris szerkezeti dinamika

Biomolekuláris szerkezeti dinamika Kísérletek, mérések célja Biomolekuláris szerkezeti dinamika Kellermayer Miklós Biomolekuláris szerkezet és működés pontosabb megismerése (folyamatok, állapotok, átmenetek, kölcsönhatások, mozgások, stb.)

Részletesebben

Reakciókinetika és katalízis

Reakciókinetika és katalízis Reakciókinetika és katalízis 8. előadás: 1/18 A fény hatására lejátszódó folyamatok részlépései: az elektromágneses sugárzás (foton) elnyelése ill. kibocsátása - fizikai folyamatok a gerjesztett részecskék

Részletesebben

Lumineszcencia alapjelenségek

Lumineszcencia alapjelenségek Lumineszcencia alapjelenségek (Nyitrai Miklós; 211 február 7.) Lumineszcencia Definíció: Egyes anyagok spontán fénykibocsátása, a termikus fényemissziótól függetlenül, elektrongerjesztést követően. Lumineszcens

Részletesebben

Lumineszcencia. Lumineszcencia. Molekulaszerkezet. Atomszerkezet

Lumineszcencia. Lumineszcencia. Molekulaszerkezet. Atomszerkezet Lumineszcencia Lumineszcencia Alapok, tulajdonságok Molekula energiája Spinállapotok Lumineszcencia típusai Lumineszcencia átmenetei A lumineszcencia paraméterei A lumineszcencia mérése Polarizáció, anizotrópia

Részletesebben

A fluoreszcencia orvosibiológiai. alkalmazásai. Fluoreszcencia forrása I. Fluoreszcencia alkalmazások. Kellermayer Miklós

A fluoreszcencia orvosibiológiai. alkalmazásai. Fluoreszcencia forrása I. Fluoreszcencia alkalmazások. Kellermayer Miklós A fluoresczencia orvosbiológiai alkalmazásai Kellermayer Miklós A fluoreszcencia orvosibiológiai alkalmazásai Fluoreszcencia mikroszkópia DNS szekvenálás (lánc terminációs módszer) DNS festés (EtBr) DNS

Részletesebben

Biomolekuláris szerkezeti dinamika

Biomolekuláris szerkezeti dinamika Kísérletek, mérések célja Biomolekuláris szerkezeti dinamika Kellermayer Miklós Biomolekuláris szerkezet és működés pontosabb megismerése (folyamatok, állapotok, átmenetek, kölcsönhatások, stb.) Rádióspektroszkópiák

Részletesebben

Sejt. Aktin működés, dinamika plus / barbed end pozitív / szakállas vég 1. nukleáció 2. elongáció (hosszabbodás) 3. dinamikus egyensúly

Sejt. Aktin működés, dinamika plus / barbed end pozitív / szakállas vég 1. nukleáció 2. elongáció (hosszabbodás) 3. dinamikus egyensúly Biofizikai módszerek a citoszkeleton vizsgálatára I: Kinetikai és steady-state spektroszkópiai módszerek Sejt Citoszkeletális rendszerek Orbán József, 2014 április Institute of Biophysics Citoszkeleton:

Részletesebben

Lumineszcencia Fényforrások

Lumineszcencia Fényforrások Kiegészítés: színkeverés Lumineszcencia Fényforrások Alapszinek additív keverése Alapszinek kiegészítő szineinek keverése: Szubtraktív keverés Fidy udit Egyetemi tanár 2015, November 5 Emlékeztető.. Abszorpciós

Részletesebben

DSC. DSC : differential scanning calorimetry. DSC : differential scanning calorimetry. ITC : isothermal titration calorimetry

DSC. DSC : differential scanning calorimetry. DSC : differential scanning calorimetry. ITC : isothermal titration calorimetry DSC : differential scanning calorimetry Kalorimetriás módszerek a liposzómák vizsgálatában DSC : differential scanning calorimetry ITC : isothermal titration calorimetry 1 2 DSC minta differenciális referencia

Részletesebben

Síkban polarizált fény Síkban polarizált fény

Síkban polarizált fény Síkban polarizált fény 2013.02.15. Fluorescencia aniotrópia, Luminescencia Fluorescencia Reonancia nergiatransfer A molekuláknak at a fénemissióját, amelet a valamilen módon (például fénnel való besugárással) gerjestett molekula

Részletesebben

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István OPTIKA Fénykibocsátás mechanizmusa Dr. Seres István Bohr modell Niels Bohr (19) Rutherford felfedezte az atommagot, és igazolta, hogy negatív töltésű elektronok keringenek körülötte. Niels Bohr Bohr ezt

Részletesebben

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény; Abszorpciós spektroszkópia

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény;   Abszorpciós spektroszkópia Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2016 március 1.) Az abszorpció mérése;

Részletesebben

Optikai spektroszkópiai módszerek

Optikai spektroszkópiai módszerek Mi történhet, ha egy mintát fénnyel világítunk meg? Optikai spektroszkópiai módszerek megvilágító fény (elnyelt fény) minta átjutott fény Abszorpció UV-VIS, IR Smeller László kibocsátott fény Lumineszcencia

Részletesebben

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény;  Abszorpciós spektroszkópia Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2015 január 27.) Az abszorpció mérése;

Részletesebben

differenciális pásztázó kalorimetria DSC: differential scanning calorimetry ITC : isothermal titration calorimetry

differenciális pásztázó kalorimetria DSC: differential scanning calorimetry ITC : isothermal titration calorimetry Kalorimetriás módszerek a liposzómák vizsgálatában DSC : differential scanning calorimetry ITC : isothermal titration calorimetry 1 DSC: differential scanning calorimetry differenciális pásztázó kalorimetria

Részletesebben

DSC: differential scanning calorimetry. ITC : isothermal titration calorimetry. differenciális pásztázó kalorimetria

DSC: differential scanning calorimetry. ITC : isothermal titration calorimetry. differenciális pásztázó kalorimetria DSC : differential scanning calorimetry Kalorimetriás módszerek a liposzómák vizsgálatában DSC : differential scanning calorimetry ITC : isothermal titration calorimetry 1 2 DSC: differential scanning

Részletesebben

Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez

Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez A Név... Válassza ki a helyes mértékegységeket! állandó intenzitás abszorbancia moláris extinkciós A) J s -1 - l mol -1 cm B) W g/cm 3 - C) J s -1 m -2 - l mol -1 cm -1 D) J m -2 cm - A Wien-féle eltolódási

Részletesebben

Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia?

Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia? Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia? Prof. Túri László (ELTE, Kémiai Intézet) turi@chem.elte.hu 2012. november 19. Szent László Gimnázium Önképzőkör 1 Kapcsolódási pontok

Részletesebben

A fény keletkezése. Hőmérsékleti sugárzás. Hőmérsékleti sugárzás. Lumineszcencia. Lézer. Tapasztalat: a forró testek Hőmérsékleti sugárzás

A fény keletkezése. Hőmérsékleti sugárzás. Hőmérsékleti sugárzás. Lumineszcencia. Lézer. Tapasztalat: a forró testek Hőmérsékleti sugárzás A fény keletkezése Hőmérsékleti sugárzás Hőmérsékleti sugárzás Lumineszcencia Lézer Tapasztalat: a forró testek Hőmérsékleti sugárzás Környezetének hőfokától függetlenül minden test minden, abszolút nulla

Részletesebben

Abszorpciós fotometria

Abszorpciós fotometria abszorpció Abszorpciós fotometria Spektroszkópia - Színképvizsgálat Spektro-: görög; jelente kép/szín -szkópia: görög; néz/látás/vizsgálat Ujfalusi Zoltán PTE ÁOK Biofizikai Intézet 2012. február Vizsgálatok

Részletesebben

Komplex egyszerű Aktin alapú mikrofilamentum rsz. Hogyan vizsgálhatunk folyamatokat? Komplex egyszerű S E J T

Komplex egyszerű Aktin alapú mikrofilamentum rsz. Hogyan vizsgálhatunk folyamatokat? Komplex egyszerű S E J T Biofizikai módszerek a citoszkeleton vizsgálatára I. Kinetikai, steady-state módszerek, spektroszkópiai vizsgálatok Komplex egyszerű S E J T A citoszkeletális rendszer Orbán József, 213 Április Aktin citoszkeleton

Részletesebben

Lumineszcencia: a fényt kibocsátó rendszer nem a magas hőmérséklet miatt világít!!! Ez az ún. hideg emisszió

Lumineszcencia: a fényt kibocsátó rendszer nem a magas hőmérséklet miatt világít!!! Ez az ún. hideg emisszió Fluoresz Fluores zcenc cencia ia spektroszkópia Lumineszcencia: a fényt kibocsátó rendszer nem a magas hőmérséklet miatt világít!!! Ez az ún. hideg emisszió emisszió jelensége. Orbán József Biofizika szeminárium

Részletesebben

Atomszerkezet. Fehérjék szerkezetvizsgáló módszerei. Molekulaszerkezet. Molekula energiája. Lumineszcenciás technikák. E e > E v > E r. + E v.

Atomszerkezet. Fehérjék szerkezetvizsgáló módszerei. Molekulaszerkezet. Molekula energiája. Lumineszcenciás technikák. E e > E v > E r. + E v. Atomszerkezet Fehérjék szerkezetvizsgáló módszerei Lumineszcenciás technikák Kellermayer Miklós Növekvő energiájú pályák Fotonemisszió: E=hf Molekulaszerkezet Molekula energiája Molekula: kémiai kötéssel

Részletesebben

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció

Részletesebben

Abszorpciós fotometria

Abszorpciós fotometria A fény Abszorpciós fotometria Ujfalusi Zoltán PTE ÁOK Biofizikai ntézet 2011. szeptember 15. E B x x Transzverzális hullám A fény elektromos térerősségvektor hullámhossz Az elektromos a mágneses térerősség

Részletesebben

Az elektromágneses spektrum

Az elektromágneses spektrum Az elektromágneses spektrum 400 nm 750 nm Hőmérsékleti sugárzás 1 Minden test anyagi minőségétől független, csak a test hőmérséklete által meghatározott spektrumú elektromágneses sugárzást bocsát ki, melyet

Részletesebben

Abszorpciós fotometria

Abszorpciós fotometria abszorpció A fény Abszorpciós fotometria Ujfalusi Zoltán PTE ÁOK Biofizikai Intézet 2013. január Elektromágneses hullám Transzverzális hullám elektromos térerősségvektor hullámhossz E B x mágneses térerősségvektor

Részletesebben

Rövid ismertető. Modern mikroszkópiai módszerek. A mikroszkóp. A mikroszkóp. Az optikai mikroszkópia áttekintése

Rövid ismertető. Modern mikroszkópiai módszerek. A mikroszkóp. A mikroszkóp. Az optikai mikroszkópia áttekintése Rövid ismertető Modern mikroszkópiai módszerek Nyitrai Miklós 2010. március 16. A mikroszkópok csoportosítása Alapok, ismeretek A működési elvek Speciális módszerek A mikroszkópia története ld. Pdf. Minél

Részletesebben

Abszorpciós fotometria

Abszorpciós fotometria 2013 január Abszorpciós fotometria Elektron-spektroszkópia alapjai Biofizika. szemeszter Orbán József PTE ÁOK Biofizikai ntézet Definíciók, törvények FÉNYTAN ALAPOK SMÉTLÉS - Elektromágneses sugárzás,

Részletesebben

FOTOKÉMIAI REAKCIÓK, REAKCIÓKINETIKAI ALAPOK

FOTOKÉMIAI REAKCIÓK, REAKCIÓKINETIKAI ALAPOK FOTOKÉMIAI REAKCIÓK, REAKCIÓKINETIKAI ALAPOK Légköri nyomanyagok forrásai: bioszféra hiroszféra litoszféra világűr emberi tevékenység AMI BELÉP, ANNAK TÁVOZNIA IS KELL! Légköri nyomanyagok nyelői: száraz

Részletesebben

Biomolekuláris szerkezet és dinamika vizsgálata. Gerjesztés során elnyelt energia sorsa. Fluoreszcencia és különleges alkalmazásai

Biomolekuláris szerkezet és dinamika vizsgálata. Gerjesztés során elnyelt energia sorsa. Fluoreszcencia és különleges alkalmazásai Biomolekuláris szerkezet és dinamika vizsgálata Fluoreszcencia, egymolekula biofizika, rádióspektroszkópiák (EPR, NMR, MRI) John Dalton (1766-1844) 1 nm Oxigén atomok rhodium egykristály felületén Cary

Részletesebben

Abszorpciós spektrometria összefoglaló

Abszorpciós spektrometria összefoglaló Abszorpciós spektrometria összefoglaló smétlés: fény (elektromágneses sugárzás) tulajdonságai, kettős természet fény anyag kölcsönhatás típusok (reflexió, transzmisszió, abszorpció, szórás) Abszorpció

Részletesebben

ORVOSI BIOFIZIKA. Damjanovich Sándor Mátyus László QT Szerkesztette

ORVOSI BIOFIZIKA. Damjanovich Sándor Mátyus László QT Szerkesztette ORVOSI BIOFIZIKA Szerkesztette Damjanovich Sándor Mátyus László QT34 078 Medicina Könyvkiadó Rt. Budapest, 2000 Készült az Oktatási Minisztérium támogatásával írta Damjanovich Sándor Gáspár Rezső Krasznai

Részletesebben

Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása

Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása Abrankó László Műszeres analitika Molekulaspektroszkópia Minőségi elemzés Kvalitatív Cél: Meghatározni, hogy egy adott mintában jelen vannak-e bizonyos ismert komponensek. Vagy ismeretlen komponensek azonosítása

Részletesebben

Abszorpciós spektrumvonalak alakja. Vonalak eredete (ld. előző óra)

Abszorpciós spektrumvonalak alakja. Vonalak eredete (ld. előző óra) Abszorpciós spektrumvonalak alakja Vonalak eredete (ld. előző óra) Nagysága Kiszélesedése Elem mennyiségének becslése a vonalerősségből Elemi statfiz Boltzmann-faktor: Megadja egy állapot súlyát a sokaságban

Részletesebben

Fluoreszcencia spektroszkópia

Fluoreszcencia spektroszkópia Fluoreszcencia spektroszkópia A fény: elektromágneses hullám Huber Tamás Biofizika szeminárium PTE ÁOK Biofizikai Intézet 2014. február 04-06. 1 Elektromágneses spektrum Lumineszcencia: gerjesztett állapotú

Részletesebben

Fluoreszcencia spektroszkópia

Fluoreszcencia spektroszkópia Elektromágneses spektrum Fluoreszcencia spektroszkópia Ujfalusi Zoltán A fény: elektromágneses hullám Biofizika szeminárium PTE ÁOK Biofizikai Intézet 2011. február 14-16. Lumineszcencia: a fényt kibocsátó

Részletesebben

2.3. Az abszorpciós spektrum és mérése

2.3. Az abszorpciós spektrum és mérése 2.3. Az abszorpciós spektrum és mérése 2.3.1. Beer-Lambert törvény 0 k 0 x d k dx 0 e k x E log T 0 % 100 0 c l x 0 10 cx Beer-Lambert törvény A(), E(), OD() c OD () () OD c (nm) c (mol/dm 3 ) 2.3.2. Az

Részletesebben

Mézerek és lézerek. Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19.

Mézerek és lézerek. Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. és lézerek Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. Fény és anyag kölcsönhatása 2 / 19 Fény és anyag kölcsönhatása Fény és anyag kölcsönhatása E 2 (1) (2) (3) E 1 (1) gerjesztés (2) spontán

Részletesebben

Mozgékony molekulák vizsgálata modern mikroszkópiával

Mozgékony molekulák vizsgálata modern mikroszkópiával Dr. Vámosi György Mozgékony molekulák vizsgálata modern mikroszkópiával Debreceni Egyetem ÁOK Biofizikai és Sejtbiológiai Intézet Debrecen, 2015. nov. 25. www.meetthescientist.hu 1 26 Fulbright ösztöndíj

Részletesebben

Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft

Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft Atom- és molekula-spektroszkópiás módszerek Módszer Elv Vizsgált anyag típusa Atom abszorpciós spektrofotometria (AAS) A szervetlen Lángfotometria

Részletesebben

2. Szerves anyagok oldatának fotolumineszcencia színképének meghatározása

2. Szerves anyagok oldatának fotolumineszcencia színképének meghatározása Spektroszkópiai mérések. Fizikus MSc. Alkalmazott fizikus szakirány Környezettudományi MSc, Környezetfizika szakirány 2. Szerves anyagok oldatának fotolumineszcencia színképének meghatározása 1. Elméleti

Részletesebben

A fény. Abszorpciós fotometria Fluoreszcencia spektroszkópia. A fény. A spektrumok megjelenési formái. A fény kettıs természete: Huber Tamás

A fény. Abszorpciós fotometria Fluoreszcencia spektroszkópia. A fény. A spektrumok megjelenési formái. A fény kettıs természete: Huber Tamás A fény Abszorpciós fotometria Fluoreszcencia spektroszkópia. 2010. október 19. Huber Tamás PTE ÁOK Biofizikai Intézet E A fény elektromos térerısségvektor hullámhossz A fény kettıs természete: Hullám (terjedéskor)

Részletesebben

Az elektromágneses hullámok

Az elektromágneses hullámok 203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert

Részletesebben

Abszorpciós spektroszkópia

Abszorpciós spektroszkópia Tartalomjegyzék Abszorpciós spektroszkópia (Nyitrai Miklós; 2011 február 1.) Dolgozat: május 3. 18:00-20:00. Egész éves anyag. Korábbi dolgozatok nem számítanak bele. Felmentés 80% felett. A fény; Elektromágneses

Részletesebben

Stokes-féle eltolódási törvény

Stokes-féle eltolódási törvény mléketető: fluorescencia spektrumok Fluorescencia polariáció, aniotrópia FRT Definíció! a. missiós spektrum b. Gerjestési spektrum (ld. absorpciós sp.) Stokes-féle eltolódási törvén A emissiós spektrum

Részletesebben

Szervetlen komponensek analízise. A, Atomspektroszkópia B, Molekulaspektroszkópia C, Elektrokémia D, Egyéb (radiokémia, termikus analízis, stb.

Szervetlen komponensek analízise. A, Atomspektroszkópia B, Molekulaspektroszkópia C, Elektrokémia D, Egyéb (radiokémia, termikus analízis, stb. Szervetlen komponensek analízise A, Atomspektroszkópia B, Molekulaspektroszkópia C, Elektrokémia D, Egyéb (radiokémia, termikus analízis, stb.) A fény λ i( k r ωt + φ0 ) Elektromágneses sugárzás E( r,

Részletesebben

Atomfizika. Fizika kurzus Dr. Seres István

Atomfizika. Fizika kurzus Dr. Seres István Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés J.J. Thomson (1897) Katódsugárcsővel végzett kísérleteket az elektron fajlagos töltésének (e/m) meghatározására. A katódsugarat alkotó részecskét

Részletesebben

PÉCSI TUDOMÁNYEGYETEM. Fluoreszcens módszerek alkalmazása nanostruktúrák vizsgálatában. Jánosi Tibor Zoltán

PÉCSI TUDOMÁNYEGYETEM. Fluoreszcens módszerek alkalmazása nanostruktúrák vizsgálatában. Jánosi Tibor Zoltán PÉCSI TUDOMÁNYEGYETEM Fizika Doktori Iskola Nemlineáris optika és spektroszkópia program Fluoreszcens módszerek alkalmazása nanostruktúrák vizsgálatában PhD értekezés Jánosi Tibor Zoltán Témavezető: Dr.

Részletesebben

Koherens fény (miért is különleges a lézernyaláb?)

Koherens fény (miért is különleges a lézernyaláb?) Koherens fény (miért is különleges a lézernyaláb?) Inkoherens fény Atomok egymástól függetlenül sugároznak ki különböző hullámhosszon sugároznak ki elektromágneses hullámokat Pl: Termikus sugárzó Koherens

Részletesebben

In vivo szövetanalízis. Különös tekintettel a biolumineszcens és fluoreszcens képalkotási eljárásokra

In vivo szövetanalízis. Különös tekintettel a biolumineszcens és fluoreszcens képalkotási eljárásokra In vivo szövetanalízis Különös tekintettel a biolumineszcens és fluoreszcens képalkotási eljárásokra In vivo képalkotó rendszerek Célja Noninvazív módon Biológiai folyamatokat képes rögzíteni Élő egyedekben

Részletesebben

Az élő sejt fizikai Biológiája Kellermayer Miklós

Az élő sejt fizikai Biológiája Kellermayer Miklós Fizikai biológia Az élő sejt fizikai Biológiája Kellermayer Miklós Ma már nem csak kvalitatív megfigyeléseket, hanem kvantitatív méréseket végzünk (biológiai adatok kvantitatív adatok). Kvantitatív adatokból

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

Reakciókinetika és katalízis

Reakciókinetika és katalízis Reakciókinetika és katalízis k 4. előadás: 1/14 Különbségek a gázfázisú és az oldatreakciók között: 1 Reaktáns molekulák által betöltött térfogat az oldatreakciónál jóval nagyobb. Nincs akadálytalan mozgás.

Részletesebben

ADATÉRTÉKEL ELJÁRÁSOK SEJTFELSZÍNI FEHÉRJEMINTÁZATOK ANALÍZISÉRE SZENTESI GERGELY

ADATÉRTÉKEL ELJÁRÁSOK SEJTFELSZÍNI FEHÉRJEMINTÁZATOK ANALÍZISÉRE SZENTESI GERGELY ADATÉRTÉKEL ELJÁRÁSOK SEJTFELSZÍNI FEHÉRJEMINTÁZATOK ANALÍZISÉRE SZENTESI GERGELY Témavezet k: Dr. Mátyus László Dr. Jenei Attila DEBRECENI EGYETEM ORVOS ÉS EGÉSZSÉGTUDOMÁNYI CENTRUM ÁLTALÁNOS ORVOSTUDOMÁNYI

Részletesebben

Koherens fény (miért is különleges a lézernyaláb?)

Koherens fény (miért is különleges a lézernyaláb?) Koherens fény (miért is különleges a lézernyaláb?) Inkoherens fény Atomok egymástól függetlenül sugároznak ki különböző hullámhosszon, különböző fázissal fotonokat. Pl: Termikus sugárzó Koherens fény Atomok

Részletesebben

Optikai spektroszkópiai módszerek

Optikai spektroszkópiai módszerek Mi történhet, ha egy mintát énnye viágítunk meg? Optikai spektroszkópiai módszerek megviágító ény (enyet ény) minta átjutott ény Abszorpció UV-VIS, IR Smeer Lászó kibocsátott ény Lumineszcencia (Fuoreszcencia

Részletesebben

Modern mikroszkópiai módszerek 2 2011 2012

Modern mikroszkópiai módszerek 2 2011 2012 FLUORESZCENCIA MIKROSZKÓPIA A mintának a megvilágító fény által kiváltott fluoreszcencia emisszióját képezzük le. 1 Bugyi Beáta - PTE ÁOK Biofizikai Intézet 2 FLUOROFÓROK BELSŐ (INTRINSIC) FLUORESZCENCIA

Részletesebben

Polarizált fény, polarizáció. Polarizáció fogalma. A polarizált fény. Síkban polarizált fény. A polarizátor

Polarizált fény, polarizáció. Polarizáció fogalma. A polarizált fény. Síkban polarizált fény. A polarizátor Polariált fén, polariáció PÉCSI TUDOMÁNYGYTM ÁLTALÁNOS ORVOSTUDOMÁNYI KAR Fluorescencia aniotrópia, FRT Megjelenés fotóáskor! Nitrai Miklós, 2015 február 10. Miért van ilen hatása? Polariáció fogalma A

Részletesebben

Tenzidek kritikus micellaképződési koncentrációjának és aggregációs számának meghatározása fluoreszcens spektroszkópiával

Tenzidek kritikus micellaképződési koncentrációjának és aggregációs számának meghatározása fluoreszcens spektroszkópiával monomer miella konentráió Tenzidek kritikus miellaképződési konentráiójának és aggregáiós számának meghatározása fluoreszens spektroszkópiával A felületaktív anyagoknak nagy jelentősége van az alkalmazott

Részletesebben

Tropomiozin és nehéz meromiozin hatása a formin által nukleált aktin filamentumok flexibilitására

Tropomiozin és nehéz meromiozin hatása a formin által nukleált aktin filamentumok flexibilitására Tropomiozin és nehéz meromiozin hatása a formin által nukleált aktin filamentumok flexibilitására Ujfalusi Zoltán Témavezető: PROF. DR. N YITRAI MIKLÓS Doktori iskola: I n t e r d i s z c i p l i n á r

Részletesebben

Optika Gröller BMF Kandó MTI

Optika Gröller BMF Kandó MTI Optika Gröller BMF Kandó MTI Optikai alapfogalmak Fény: transzverzális elektromágneses hullám n = c vákuum /c közeg Optika Gröller BMF Kandó MTI Az elektromágneses spektrum Az anyag és a fény kölcsönhatása

Részletesebben

ALKÍMIA MA Az anyagról mai szemmel, a régiek megszállottságával.

ALKÍMIA MA Az anyagról mai szemmel, a régiek megszállottságával. ALKÍMIA MA Az anyagról mai szemmel, a régiek megszállottságával www.chem.elte.hu/pr Kvíz az előző előadáshoz Programajánlatok december 6. 18:00 Posztoczky Károly Csillagvizsgáló, Tata Posztoczky Károly

Részletesebben

Atomfizika. Fizika kurzus Dr. Seres István

Atomfizika. Fizika kurzus Dr. Seres István Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés 440 BC Democritus, Leucippus, Epicurus 1660 Pierre Gassendi 1803 1897 1904 1911 19 193 John Dalton Joseph John (J.J.) Thomson J.J. Thomson

Részletesebben

Orvosi Biofizika II. Szigorlati tételsor Korai atommodellek. Rutherford-féle kísérlet. Franck-Hertz kísérlet. Bohr-féle atommodell.

Orvosi Biofizika II. Szigorlati tételsor Korai atommodellek. Rutherford-féle kísérlet. Franck-Hertz kísérlet. Bohr-féle atommodell. Orvosi Biofizika II. Szigorlati tételsor 2013. 1. Korai atommodellek. Rutherford-féle kísérlet. Franck-Hertz kísérlet. Bohr-féle atommodell. 2. Kvantummechanikai atommodell. Kvantumszámok. A Heisenberg-féle

Részletesebben

Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)

Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT) Röntgensugárzás az orvostudományban Röntgen kép és Komputer tomográf (CT) Orbán József, Biofizikai Intézet, 2008 Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken

Részletesebben

Fehérjeszerkezet, és tekeredés

Fehérjeszerkezet, és tekeredés Fehérjeszerkezet, és tekeredés Futó Kinga 2013.10.08. Polimerek Polimer: hasonló alegységekből (monomer) felépülő makromolekulák Alegységek száma: tipikusan 10 2-10 4 Titin: 3,435*10 4 aminosav C 132983

Részletesebben

Kémiai Intézet Kémiai Laboratórium. F o t o n o k k e r e s z tt ü z é b e n a D N S

Kémiai Intézet Kémiai Laboratórium. F o t o n o k k e r e s z tt ü z é b e n a D N S Szalay SzalayPéter Péter egyetemi egyetemi tanár tanár ELTE, ELTE,Kémiai Kémiai Intézet Intézet Elméleti ElméletiKémiai Kémiai Laboratórium Laboratórium F o t o n o k k e r e s z tt ü z é b e n a D N S

Részletesebben

Az áramlási citométer és sejtszorter felépítése és működése, diagnosztikai alkalmazásai

Az áramlási citométer és sejtszorter felépítése és működése, diagnosztikai alkalmazásai Az áramlási citométer és sejtszorter felépítése és működése, diagnosztikai alkalmazásai Az áramlási citométer és sejtszorter felépítése és működése Kereskedelmi forgalomban kapható készülékek 1 Fogalmak

Részletesebben

UV-VIS spektrofotometriás tartomány. Analitikai célokra: nm

UV-VIS spektrofotometriás tartomány. Analitikai célokra: nm UV-VIS spektrofotometriás tartomány nalitikai célokra: 00-800 nm Elektron átmenetek és az atomok spektruma E h h c Molekulák elektron átmenetei és UVlátható spektruma Elektron átmenetek formaldehidben

Részletesebben

Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet

Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Utolsó módosítás: 2016. május 4. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum

Részletesebben

Kémiai anyagszerkezettan

Kémiai anyagszerkezettan Kémiai anyagszerkezettan Előadó: Kubinyi Miklós tel: 21-37 kubinyi@mail.bme.hu Grofcsik András tel: 14-84 agrofcsik@mail.bme.hu Tananyag az intraneten (tavalyi): http://oktatas.ch.bme.hu/oktatas/ konyvek/fizkem/kasz/

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

Modern Fizika Labor. 11. Spektroszkópia. Fizika BSc. A mérés dátuma: dec. 16. A mérés száma és címe: Értékelés: A beadás dátuma: dec. 21.

Modern Fizika Labor. 11. Spektroszkópia. Fizika BSc. A mérés dátuma: dec. 16. A mérés száma és címe: Értékelés: A beadás dátuma: dec. 21. Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. dec. 16. A mérés száma és címe: 11. Spektroszkópia Értékelés: A beadás dátuma: 2011. dec. 21. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin

Részletesebben

Fizikai kémia és radiokémia labor II, Laboratóriumi gyakorlat: Spektroszkópia mérés

Fizikai kémia és radiokémia labor II, Laboratóriumi gyakorlat: Spektroszkópia mérés Fizikai kémia és radiokémia labor II, Laboratóriumi gyakorlat: Spektroszkópia mérés A gyakorlatra vigyenek magukkal pendrive-ot, amire a mérési adatokat átvehetik. Ajánlott irodalom: P. W. Atkins: Fizikai

Részletesebben

1. mérés: Benzolszármazékok UV spektrofotometriás vizsgálata

1. mérés: Benzolszármazékok UV spektrofotometriás vizsgálata 1. mérés: Benzolszármazékok UV spektrofotometriás vizsgálata A vegyi anyagok (atomok és molekulák) és az elektromágneses sugárzás kölcsönhatásának vizsgálata jelentős szerepet játszik ezen anyagok mind

Részletesebben

OPTIKA. Vozáry Eszter November

OPTIKA. Vozáry Eszter November OPTIKA Vozáry Eszter 2015. November FÉNY Energia: elektromágneses hullám c = λf részecske foton ε = hf Szubjektív érzet látás fény és színérzékelés ELEKTROMÁGNESES SPEKTRUM c = λf ε = hf FÉNY TRANSZVERZÁLIS

Részletesebben

ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK. Kalocsai Angéla, Kozma Enikő

ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK. Kalocsai Angéla, Kozma Enikő ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK Kalocsai Angéla, Kozma Enikő RUTHERFORD-FÉLE ATOMMODELL HIBÁI Elektromágneses sugárzáselmélettel ellentmondásban van Mivel: a keringő elektronok gyorsulnak Energiamegmaradás

Részletesebben

-A homogén detektorok közül a gyakorlatban a Si és a Ge egykristályból készültek a legelterjedtebbek.

-A homogén detektorok közül a gyakorlatban a Si és a Ge egykristályból készültek a legelterjedtebbek. Félvezető detektorok - A legfiatalabb detektor család; a 1960-as évek közepétől kezdték alkalmazni őket. - Működésük bizonyos értelemben hasonló a gáztöltésű detektorokéhoz, ezért szokták őket szilárd

Részletesebben

Szentjánosbogár, trópusi halak, sarki fény Mi a közös a természet fénytüneményeiben?

Szentjánosbogár, trópusi halak, sarki fény Mi a közös a természet fénytüneményeiben? Szentjánosbogár, trópusi halak, sarki fény Mi a közös a természet fénytüneményeiben? Szalay Péter egyetemi tanár ELTE, Kémiai Intézet Elméleti Kémiai Laboratórium Van közös bennük? Egy kis történelem

Részletesebben

Tantárgy neve. Környezetfizika. Meghirdetés féléve 6 Kreditpont 2 Összóraszám (elm+gyak) 2+0

Tantárgy neve. Környezetfizika. Meghirdetés féléve 6 Kreditpont 2 Összóraszám (elm+gyak) 2+0 Tantárgy neve Környezetfizika Tantárgy kódja FIB2402 Meghirdetés féléve 6 Kreditpont 2 Összóraszám (elm+gyak) 2+0 Számonkérés módja Kollokvium Előfeltétel (tantárgyi kód) - Tantárgyfelelős neve Dr. Varga

Részletesebben

www.biophys.dote.hu jelszó: geta5

www.biophys.dote.hu jelszó: geta5 www.biophys.dote.hu felhasználónév: hallgatok jelszó: geta5 Mi a Biofizika? 1. Fizikai módszerek alkalmazása biológiai rendszerek kutatására Pl. Rtg. diffrakciós kísérletek makromolekulák szerkezetének

Részletesebben

Kvantumos információ megosztásának és feldolgozásának fizikai alapjai

Kvantumos információ megosztásának és feldolgozásának fizikai alapjai Kvantumos információ megosztásának és feldolgozásának fizikai alapjai Kis Zsolt Kvantumoptikai és Kvantuminformatikai Osztály MTA Wigner Fizikai Kutatóközpont H-1121 Budapest, Konkoly-Thege Miklós út 29-33

Részletesebben

Részletes szakmai beszámoló Az erbb proteinek asszociációjának kvantitatív jellemzése című OTKA pályázatról (F049025)

Részletes szakmai beszámoló Az erbb proteinek asszociációjának kvantitatív jellemzése című OTKA pályázatról (F049025) Részletes szakmai beszámoló Az erbb proteinek asszociációjának kvantitatív jellemzése című OTKA pályázatról (F049025) A pályázat megvalósítása során célunk volt egyrészt a molekulák asszociációjának tanulmányozására

Részletesebben

Modern Fizika Labor Fizika BSC

Modern Fizika Labor Fizika BSC Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. március 2. A mérés száma és címe: 5. Elektronspin rezonancia Értékelés: A beadás dátuma: 2009. március 5. A mérést végezte: Márton Krisztina Zsigmond

Részletesebben

2. ZH IV I.

2. ZH IV I. Fizikai kémia 2. ZH IV. kérdések 2018-19. I. félévtől Szükséges adatok és állandók: k=1,38066 10-23 JK; c= 2,99792458 10 8 m/s; e= 1,602177 10-19 C; h=6,62608 10-34 Js; N A= 6,02214 10 23 mol -1 ; me=

Részletesebben

Gyors-kinetikai módszerek

Gyors-kinetikai módszerek Gyors-kinetikai módszerek Biofizika szemináriumok Futó Kinga Gyorskinetika - mozgástan Reakciókinetika: reakciók időbeli leírása reakciómechanizmusok reakciódinamika (molekuláris szintű történés) reakciósebesség:

Részletesebben