Speciális fluoreszcencia spektroszkópiai alkalmazások. Emlékeztető: az abszorpció definíciója. OD = A = - log (I / I 0 ) = ε (λ) c x

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Speciális fluoreszcencia spektroszkópiai alkalmazások. Emlékeztető: az abszorpció definíciója. OD = A = - log (I / I 0 ) = ε (λ) c x"

Átírás

1 Speciális fluoreszcencia spektroszkópiai alkalmazások Nyitrai Miklós; 2011 február 21. FRET Emlékeztető: az abszorpció definíciója I 0 I anyag OD = A = - log (I / I 0 ) = ε (λ) c x Röv: optical density I = I ε(λ) c x Fl. emlékeztető Aleksander Jablonski ( ) lengyel fizikus A Jablonski diagram Abszorbció Fluoreszcencia Foszforeszcencia Definíciók Lumin.-fluor.-foszfor. Spektrum Élettartam Kvantumhatásfok Anizotrópia Fotonok és molekulák kölcsönhatása Lecsengési folyamatok Fotonok és molekulák kölcsönhatása fényszóródás abszorpció gerjesztő fény fluoreszcencia foszforeszcencia Energia hő (belső konverzió) Fluoreszcencia (ns) Foszforeszcencia (ms) Fluoreszcencia kioltás Fluoreszcencia rezonancia energiatranszfer alap állapot gerjesztett állapot relaxáció Fluoreszcencia kioltás Belső konverzió Energia transzfer (hő) 1

2 Hogyan képzeljük el a lecsengési folyamatok hatását? gerjesztés gerjesztés A sebességi állandók értelmezése? Virtuális tartály k 1 k 2 (+k 3 k 4 k 5 k... k i ) lecsengés lecsengés Steady-state esetben annyi folyik ki mint amennyi befolyik. Az egyes lecsengések valószínűsége: k i / k összes gerjesztés A fluoreszcencia értelmezése? Mi történik, ha újabb lecsengési út válik lehetővé? gerjesztés k f / (k 0 + k f ) k f / (k 0 + k f + k ú ) (Φ =N emitt /N absz ) k 0 k f k 0 k ú k f lecsengés Fluoreszcencia intentzitás Fl. intenzitás csökkenés! Például fluoreszcencia kioltás! Hogyan értelmezhető a fluoreszcencia élettartam? Emlékeztető: lecsengési görbe! gerjesztés Mi a fluoreszcencia kioltás? k 0 k ú k f k 0 k ú Egy újabb lecsengési út fl. élettartam csökkenést okoz! k f A fluorofórok által kibocsátott fény intenzitásának csökkenése olyan molekulák vagy ionok jelenlétében melyek elektronszerkezete megfelelő ahhoz, hogy a gerjesztett állapotban lévő fluorofórral kapcsolatba lépve annak gerjesztési energiáját átvegyék, majd azt valamilyen formában disszipálják (például hő). Kioltó: a kioltásért felelős molekula! Versengés a fluoreszcencia kibocsátása és a nem sugárzásos átmenet között csökkent fluoreszcencia emisszió! Például fluoreszcencia kioltás! 2

3 Fluoreszcencia kioltás típusai Dinamikus kioltás Ütközés a gerjesztett állapotban lévő fluorofór és egy másik, az oldatban lévő nem fluoreszkáló molekula között a fluorofór gerjesztett állapotának deaktivációja és visszatérés az alapállapotba. nem kémiai reakció! Diffúzió által befolyásolt! Sztatikus kioltás Nem fluoreszkáló (sötét) komplexek kialakulása az alapállapotban lévő fluorofór és a kioltó között a gerjesztett állapotban lévő molekulák száma csökken. A fluoreszcencia emisszió anélkül csökken, hogy a fluorofór élettartama megváltozna. Létrejöttében a diffúziónak nincs szerepe. Ha kioltás valószínűsége közel 1: erős kioltó A kioltás mérése A fluoreszcencia intenzitást mérjük különböző kioltó koncentrációk mellett. A kioltás mérése és értelmezése A fluoreszcencia intenzitást (élettartamot) mérjük különböző kioltó koncentrációk mellett. A Stern-Volmer egyenlet F 0 / F = τ 0 / τ = 1+K SV [Q] = 1+ k q τ 0 [Q] A meredekség: K SV F 0 F 1 F 2 Kioltó koncentráció fluoreszcencia intenzitás F 0 / F kioltó koncentráció kioltó koncentráció Eredmények értelmezése Hogyan választható külön a sztatikus és dinamikus kioltás? Kísérletileg meghatározható a Stern-Volmer állandó (K SV ). K SV = k q τ 0 Mi a különbség a hatásukban? A fluorofórok hozzáférhetőségét tükrözi a bimolekuláris sebességi állandó (k q ) értéke. k q k q = 1 x M -1 s -1 diffúzió kontrollált kioltás < 1 x M -1 s -1 sztérikus elfedettség F 0 / F = τ 0 / τ = 1+K SV [Q] NEM érzékeny a sztatikus kioltásra! 3

4 A kioltók típusai Semleges kioltók: Akrilamid, nitroxidok sztérikus viszonyok jellemzése Példa: Triptofán fluoreszcencia kioltása az aktin monomer és polimer formájában Töltéssel rendelkező kioltók: jodid, cézium, kobalt elektrosztatikus viszonyok monitorozása [a fehérje töltése fontos (Lys, Arg, His, Asp, Glu)] Aktin-monomer Kioltási eredmények akrilamiddal 4-es alegység 2-es alegység monomerben filamentumban 3-es alegység 1-es alegység akrilamid (mm) Kioltási eredmények céziummal Adatok filamentumban monomerben cézium klorid (mm) 4

5 Az aktin monomerhez kötött ε-atp vel végzett kioltási kísérlet ε-atp kofilin nélkül F0/F F0/dF 4-es alegység 2-es alegység ABP Fo/F Fo/dF akrilamid (M) /akrilamid (1/M) 3-es alegység 1-es alegység Nukleotidkötő zseb ε-atp kofilin nélkül ε-atp kofilin jelenlétében 1 alfa 0.19 K beta 0.81 K alfa K (dF/Fo (dF/Fo beta 0.92 K /akrilamid (1/M) /akrilamid (1/M) Módosított Stern-Volmer Egyenlet (Lehrer-egyenlet) Kombinált Statikus és Dinamikus Kioltás Több mint egy fluorofór populáció, eltérő hozzáférhetőséggel. F 0 / ΔF = 1/α + 1/(α K SV [Q]) α : a kioltó által hozzáférhető fluorofór aránya K SV = 5 M -1 meredekség: 1/(αK SV ) A fluorofór kioltása mind ütközéssel mind komplexek kialakulása révén jön létre ugyanazon kioltó által. metszéspont: 1/α 5

6 A fluoreszcencia kioltásának egy speciális módja: Fotonok és molekulák kölcsönhatása Fluoreszcencia Rezonancia Energiatranszfer (FRET) Fotonok és molekulák kölcsönhatása fényszóródás abszorpció Energia hő (belső konverzió) Fluoreszcencia (ns) Foszforeszcencia (ms) Fluoreszcencia kioltás Fluoreszcencia rezonancia energiatranszfer Fluoreszcencia rezonancia energiatranszfer (FRET) - Theodor Förster, 1948 Hogyan kell érteni a dipól-dipól kölcsönhatást? A Förster típusú energiatranszfer a gerjesztett állapotban lévő molekula (donor), valamint egy megfelelő spektroszkópiai követelményeket kielégítő molekula (akceptor) között dipól-dipól kölcsönhatás révén, sugárzás nélküli energiaátadás formájában jön létre. Apoláris molekula: ha a molekulán belül a töltéseloszlás egyenletes Poláris molekula: ha a molekulán belül a töltéseloszlás nem egyenletes (a pozitív és negatív töltések középpontja nem esik egybe ) Dipólus-molekula: a két pólussal rendelkező (poláros) molekula. A FRET létrejöttének feltételei Mit értünk itt spektrális átfedésen? Fluoreszcens donor molekula. A donor és akceptor molekulák alkalmas orientációja. Átfedés a donor emissziós spektruma és az akceptor abszorpciós spektruma között. Megfelelő távolságtartomány: a donor és akceptor molekula közötti távolság (R) 2-10 nm!

7 Példa spektrális átfedésre További FRET paraméterek hν G hν D - D + k t ~ 1/R E R - A + hν A k t = konst. * J(λ) n -4 k f R - κ 2 J(λ): átfedési integrál, n: törésmutató ( ), k f : a fluoreszcencia emissziójának sebességi állandója, R: a donor és az akceptor molekula közötti távolság, κ 2 : orientációs faktor (alkalmasan 2/3) FRET donor acceptor pairs A Förster-féle kritikus távolság: R 0 R 0 = [η -4 Q 0 κ 2 J(λ)] 1/ κ 2 (κ-négyzet) = orientációs faktor, a donor emissziós vektorának és az akceptor abszorpciós vektorának relatív orientációjáról tudósít várható érték 0 4 között általában a k 2 = 2/3 (gyors mozgások miatti átlagolódás következtében) η = a közeg törésmutatója ( ) Q 0 = a donor kvantumhatásfoka akceptor hiányában J(λ) = átfedési integrál Donor BFP BFP CFP GFP FITC Alexa488 Fluorescein Fluorescein Acceptor GFP YFP YFP Rhodamine Rhodamine Alexa555 Cy5 Texas Red A Förster-féle kritikus távolság értékek Ebben a távolság tartományban alkalmazható a módszer! A FRET hatásfoka E = 1 (F DA / F D ) Tipikus értékek: Donor Akceptor R o (Å) Fluoreszcein Tetramethylrhodamine 55 IAEDANS Fluoreszcein 4 EDANS Dabcyl 33 Fluoreszcein Fluoreszcein 44 BODIPY FL BODIPY FL 57 Fluoreszcein QSY 7 and QSY 9 dyes 1 ahol F DA : a donor intenzitása akceptor mellett; F D : a donor intentzitása akceptor nélkül. Számolható élettartamokkal is! E = 1 (τ DA / τ D ) 7

8 Távolságmérés FRET Segítségével (Molekuláris Mérőszalag) Förster Távolság Az a távolság melyen a FRET hatásfok felére csökken (transzferhatásfok 0.5). E = R 0 R 0 + R FRET hatásfok R0 = R0 + R E FRET a Jablonski diagrammon A gerjesztett donor relaxációja az akceptor molekulának történő energiaátadással! A FRET hatásfokának távolságfüggése hν G hν D - D + k t ~ 1/R E R - A + hν A E = R0 R0 + R A FRET Jablonskisémája Alkalmazható távolságmérésre! Molekuláris mérőszalag! A FRET hatásfokának távolságfüggése A FRET legfontosabb alkalmazási lehetőségei FRET távolságok meghatározására alkalmas megfelelő donorakceptor párok esetén Molekulák közötti kölcsönhatások létrejöttének tanulmányozása Molekulákon belüli szerkezeti változások tanulmányozása FRET 8

9 Egy alkalmazás alapgondolata Cameleons: Ca 2+ indicators based on CaM + GFP mutants A módszer sejtbiológiai vizsgálatokban is alkalmazható Fuorescence resonance/förster energy transfer (FRET) is the radiationless transfer of energy between two molecules, which can occur if they are very close to each other (< 10 nm), see Fig.. Therefore FRET makes it possible to measure if two molecules, for example a ligand and a receptor, interact with eachother. For FRET to happen the fluorescence emission spectrum of the donor has to overlap with the adsorption spectrum of the acceptor and the donor and acceptor transition dipole orientations must be approximately parallell. The transfer can be measured by looking at the quenching of fluorescence of the donor in presence and absence of the acceptor, or by excitation of the donor and then looking at the fluorescence of the acceptor. Atsushi Miyawaki Fig. Upper Left: The acceptor and donor fluorophores must be closer than ~ 10 nm for the energy transfer to occur. Lower Left: The emission spectrum of the donor must overlap with the excitation spectrum of the acceptor. Right: An example of the acceptor bleaching FRET technique with CFP as the donor and YFP as the acceptor. Interaction - FRET (Fluorescence Resonance Energy Transfer) FRET: NKA IP 3 R Donor ProteinA CFP Excitation nm < 5-10 nm Acceptor ProteinB YFP Emission >570 nm NKA IP 3 R Hogyan történik egy mérés? Before After Donor GFP-NKA Photobleaching of acceptor removes FRET detected as increased donor signal Distance < 12 nm 1. Alkalmas fluorofórok kiválasztása, jellemzése. 2. Fluoreszcencia intenzitás mérése. 3. FRET hatásfok számolása. Acceptor Cy3-IP 3 R Donor diff Ouabain binding to NKA shortens the distance stronger interaction increased FRET efficiency 15-25% 4. Távolság meghatározása. 9

10 Példa alkalmazásra: 9-Anthroylnitrile kötése a miozin S1-hez 12 szerinből 1 jelölhető fluorofórral a miozin S1-en belül 9-anthroylnitrile (ANN) kötése a miozin S1-hez ANN-el potenciálisan jelölhető 12 db szerin aminosav (donor)? Melyik? Akceptorral jelölhető, ismert pozíciójú aminosavak ANN kötése a miozin S1-hez Összefoglalás FRET A Ser-181-hez kapcsolódott a fluorofór! 10

Speciális fluoreszcencia spektroszkópiai módszerek

Speciális fluoreszcencia spektroszkópiai módszerek Speciális fluoreszcencia spektroszkópiai módszerek Fluoreszcencia kioltás Fluoreszcencia Rezonancia Energia Transzfer (FRET), Lumineszcencia A molekuláknak azt a fényemisszióját, melyet a valamilyen módon

Részletesebben

Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET) Modern Biofizikai Kutatási Módszerek

Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET) Modern Biofizikai Kutatási Módszerek Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET) Modern Biofizikai Kutatási Módszerek 2012. 11. 08. Fotonok és molekulák ütközése Fény (foton) ütközése a molekulákkal fényszóródás abszorpció E=hν

Részletesebben

Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET)

Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET) Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET) Biofizika szeminárium PTE ÁOK Biofizikai Intézet Huber Tamás 2014. 02. 11-13. A gerjesztett állapotú elektron lecsengési lehetőségei Gerjesztés Fluoreszcencia

Részletesebben

Fluoreszcencia 2. (Kioltás, Anizotrópia, FRET)

Fluoreszcencia 2. (Kioltás, Anizotrópia, FRET) Fluoreszcencia 2. (Kioltás, Anizotrópia, FRET) Gerjesztés A gerjesztett állapotú elektron lecsengési lehetőségei Fluoreszcencia 10-9 s k f Foszforeszcencia 10-3 s k ph 10-15 s Fizika-Biofizika 2. Huber

Részletesebben

Abszorpció, emlékeztetõ

Abszorpció, emlékeztetõ Hogyan készültek ezek a képek? PÉCI TUDMÁNYEGYETEM ÁLTALÁN RVTUDMÁNYI KAR Fluoreszcencia spektroszkópia (Nyitrai Miklós; február.) Lumineszcencia - elemi lépések Abszorpció, emlékeztetõ Energia elnyelése

Részletesebben

Szerves oldott anyagok molekuláris spektroszkópiájának alapjai

Szerves oldott anyagok molekuláris spektroszkópiájának alapjai Szerves oldott anyagok molekuláris spektroszkópiájának alapjai 1. Oldott molekulában lejátszódó energetikai jelenségek a Jablonski féle energia diagram alapján 2. Példák oldatok abszorpciójára és fotolumineszcenciájára

Részletesebben

Bevezetés a fluoreszcenciába

Bevezetés a fluoreszcenciába Bevezetés a fluoreszcenciába Gerjesztett Excited Singlet szingulett Manifold állapot S1 Jablonski diagram Belső internal konverzió conversion S2 k isc k -isc Triplett állapot Excited Triplet Manifold T1

Részletesebben

Lumineszcencia spektrometria összefoglaló

Lumineszcencia spektrometria összefoglaló Lumineszcencia spektrometria összefoglaló Ismétlés: fény (elektromágneses sugárzás) elnyelés: abszorpció elektron gerjesztés: excitáció alap és gerjesztett állapot atomi energiaszintek, energiaszintek

Részletesebben

Lumineszcencia. Lumineszcencia. mindenütt. Lumineszcencia mindenütt. Lumineszcencia mindenütt. Alapjai, tulajdonságai, mérése. Kellermayer Miklós

Lumineszcencia. Lumineszcencia. mindenütt. Lumineszcencia mindenütt. Lumineszcencia mindenütt. Alapjai, tulajdonságai, mérése. Kellermayer Miklós Alapjai, tulajdonságai, mérése Kellermayer Miklós Fotolumineszcencia Radiolumineszcencia Fotolumineszcencia Radiolumineszcencia Aurora borrealis (sarki fény) Biolumineszcencia GFP-egér Biolumineszcencia

Részletesebben

Lumineszcencia spektrometria összefoglaló

Lumineszcencia spektrometria összefoglaló Lumineszcencia spektrometria összefoglaló Ismétlés: fény (elektromágneses sugárzás) elnyelés: abszorpció elektron gerjesztés: excitáció alap és gerjesztett állapot atomi energiaszintek, energiaszintek

Részletesebben

Lumineszcencia spektroszkópia

Lumineszcencia spektroszkópia Lumineszcencia spektroszkópia Elektron+vibrációs+rotációs-spektroszkópia alapjai 213. február Fizika-Biofizika II. szemeszter Orbán József PTE ÁOK Biofizikai Intézet Definíciók, törvények SPEKTROSZKÓPIAI

Részletesebben

Reakciókinetika és katalízis

Reakciókinetika és katalízis Reakciókinetika és katalízis 8. előadás: 1/18 A fény hatására lejátszódó folyamatok részlépései: az elektromágneses sugárzás (foton) elnyelése ill. kibocsátása - fizikai folyamatok a gerjesztett részecskék

Részletesebben

Lumineszcencia. Lumineszcencia. Molekulaszerkezet. Atomszerkezet

Lumineszcencia. Lumineszcencia. Molekulaszerkezet. Atomszerkezet Lumineszcencia Lumineszcencia Alapok, tulajdonságok Molekula energiája Spinállapotok Lumineszcencia típusai Lumineszcencia átmenetei A lumineszcencia paraméterei A lumineszcencia mérése Polarizáció, anizotrópia

Részletesebben

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény; Abszorpciós spektroszkópia

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény;   Abszorpciós spektroszkópia Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2016 március 1.) Az abszorpció mérése;

Részletesebben

A fluoreszcencia orvosibiológiai. alkalmazásai. Fluoreszcencia forrása I. Fluoreszcencia alkalmazások. Kellermayer Miklós

A fluoreszcencia orvosibiológiai. alkalmazásai. Fluoreszcencia forrása I. Fluoreszcencia alkalmazások. Kellermayer Miklós A fluoresczencia orvosbiológiai alkalmazásai Kellermayer Miklós A fluoreszcencia orvosibiológiai alkalmazásai Fluoreszcencia mikroszkópia DNS szekvenálás (lánc terminációs módszer) DNS festés (EtBr) DNS

Részletesebben

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény;  Abszorpciós spektroszkópia Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2015 január 27.) Az abszorpció mérése;

Részletesebben

Lumineszcencia alapjelenségek

Lumineszcencia alapjelenségek Lumineszcencia alapjelenségek (Nyitrai Miklós; 211 február 7.) Lumineszcencia Definíció: Egyes anyagok spontán fénykibocsátása, a termikus fényemissziótól függetlenül, elektrongerjesztést követően. Lumineszcens

Részletesebben

Polarizált fény, polarizáció. Polarizáció fogalma. A polarizált fény. Síkban polarizált fény. A polarizátor

Polarizált fény, polarizáció. Polarizáció fogalma. A polarizált fény. Síkban polarizált fény. A polarizátor Polariált fén, polariáció PÉCSI TUDOMÁNYGYTM ÁLTALÁNOS ORVOSTUDOMÁNYI KAR Fluorescencia aniotrópia, FRT Megjelenés fotóáskor! Nitrai Miklós, 2015 február 10. Miért van ilen hatása? Polariáció fogalma A

Részletesebben

Ragyogó molekulák: dióhéjban a fluoreszcenciáról és biológiai alkalmazásairól

Ragyogó molekulák: dióhéjban a fluoreszcenciáról és biológiai alkalmazásairól Ragyogó molekulák: dióhéjban a fluoreszcenciáról és biológiai alkalmazásairól Kele Péter egyetemi adjunktus Lumineszcencia jelenségek Biolumineszcencia (biológiai folyamat, pl. luciferin-luciferáz) Kemilumineszcencia

Részletesebben

Biomolekuláris szerkezeti dinamika

Biomolekuláris szerkezeti dinamika Kísérletek, mérések célja Biomolekuláris szerkezeti dinamika Kellermayer Miklós Biomolekuláris szerkezet és működés pontosabb megismerése (folyamatok, állapotok, átmenetek, kölcsönhatások, mozgások, stb.)

Részletesebben

Sejt. Aktin működés, dinamika plus / barbed end pozitív / szakállas vég 1. nukleáció 2. elongáció (hosszabbodás) 3. dinamikus egyensúly

Sejt. Aktin működés, dinamika plus / barbed end pozitív / szakállas vég 1. nukleáció 2. elongáció (hosszabbodás) 3. dinamikus egyensúly Biofizikai módszerek a citoszkeleton vizsgálatára I: Kinetikai és steady-state spektroszkópiai módszerek Sejt Citoszkeletális rendszerek Orbán József, 2014 április Institute of Biophysics Citoszkeleton:

Részletesebben

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció

Részletesebben

Műszeres analitika II. (TKBE0532)

Műszeres analitika II. (TKBE0532) Műszeres analitika II. (TKBE0532) 4. előadás Spektroszkópia alapjai Dr. Andrási Melinda Debreceni Egyetem Természettudományi és Technológiai Kar Szervetlen és Analitikai Kémiai Tanszék A fény elektromágneses

Részletesebben

Komplex egyszerű Aktin alapú mikrofilamentum rsz. Hogyan vizsgálhatunk folyamatokat? Komplex egyszerű S E J T

Komplex egyszerű Aktin alapú mikrofilamentum rsz. Hogyan vizsgálhatunk folyamatokat? Komplex egyszerű S E J T Biofizikai módszerek a citoszkeleton vizsgálatára I. Kinetikai, steady-state módszerek, spektroszkópiai vizsgálatok Komplex egyszerű S E J T A citoszkeletális rendszer Orbán József, 213 Április Aktin citoszkeleton

Részletesebben

Abszorpciós spektroszkópia

Abszorpciós spektroszkópia Tartalomjegyzék Abszorpciós spektroszkópia (Nyitrai Miklós; 2011 február 1.) Dolgozat: május 3. 18:00-20:00. Egész éves anyag. Korábbi dolgozatok nem számítanak bele. Felmentés 80% felett. A fény; Elektromágneses

Részletesebben

DSC. DSC : differential scanning calorimetry. DSC : differential scanning calorimetry. ITC : isothermal titration calorimetry

DSC. DSC : differential scanning calorimetry. DSC : differential scanning calorimetry. ITC : isothermal titration calorimetry DSC : differential scanning calorimetry Kalorimetriás módszerek a liposzómák vizsgálatában DSC : differential scanning calorimetry ITC : isothermal titration calorimetry 1 2 DSC minta differenciális referencia

Részletesebben

Az elektromágneses spektrum

Az elektromágneses spektrum Az elektromágneses spektrum 400 nm 750 nm Hőmérsékleti sugárzás 1 Minden test anyagi minőségétől független, csak a test hőmérséklete által meghatározott spektrumú elektromágneses sugárzást bocsát ki, melyet

Részletesebben

Síkban polarizált fény Síkban polarizált fény

Síkban polarizált fény Síkban polarizált fény 2013.02.15. Fluorescencia aniotrópia, Luminescencia Fluorescencia Reonancia nergiatransfer A molekuláknak at a fénemissióját, amelet a valamilen módon (például fénnel való besugárással) gerjestett molekula

Részletesebben

Biomolekuláris szerkezeti dinamika

Biomolekuláris szerkezeti dinamika Kísérletek, mérések célja Biomolekuláris szerkezeti dinamika Kellermayer Miklós Biomolekuláris szerkezet és működés pontosabb megismerése (folyamatok, állapotok, átmenetek, kölcsönhatások, stb.) Rádióspektroszkópiák

Részletesebben

Stokes-féle eltolódási törvény

Stokes-féle eltolódási törvény mléketető: fluorescencia spektrumok Fluorescencia polariáció, aniotrópia FRT Definíció! a. missiós spektrum b. Gerjestési spektrum (ld. absorpciós sp.) Stokes-féle eltolódási törvén A emissiós spektrum

Részletesebben

Lumineszcencia Fényforrások

Lumineszcencia Fényforrások Kiegészítés: színkeverés Lumineszcencia Fényforrások Alapszinek additív keverése Alapszinek kiegészítő szineinek keverése: Szubtraktív keverés Fidy udit Egyetemi tanár 2015, November 5 Emlékeztető.. Abszorpciós

Részletesebben

differenciális pásztázó kalorimetria DSC: differential scanning calorimetry ITC : isothermal titration calorimetry

differenciális pásztázó kalorimetria DSC: differential scanning calorimetry ITC : isothermal titration calorimetry Kalorimetriás módszerek a liposzómák vizsgálatában DSC : differential scanning calorimetry ITC : isothermal titration calorimetry 1 DSC: differential scanning calorimetry differenciális pásztázó kalorimetria

Részletesebben

DSC: differential scanning calorimetry. ITC : isothermal titration calorimetry. differenciális pásztázó kalorimetria

DSC: differential scanning calorimetry. ITC : isothermal titration calorimetry. differenciális pásztázó kalorimetria DSC : differential scanning calorimetry Kalorimetriás módszerek a liposzómák vizsgálatában DSC : differential scanning calorimetry ITC : isothermal titration calorimetry 1 2 DSC: differential scanning

Részletesebben

ADATÉRTÉKEL ELJÁRÁSOK SEJTFELSZÍNI FEHÉRJEMINTÁZATOK ANALÍZISÉRE SZENTESI GERGELY

ADATÉRTÉKEL ELJÁRÁSOK SEJTFELSZÍNI FEHÉRJEMINTÁZATOK ANALÍZISÉRE SZENTESI GERGELY ADATÉRTÉKEL ELJÁRÁSOK SEJTFELSZÍNI FEHÉRJEMINTÁZATOK ANALÍZISÉRE SZENTESI GERGELY Témavezet k: Dr. Mátyus László Dr. Jenei Attila DEBRECENI EGYETEM ORVOS ÉS EGÉSZSÉGTUDOMÁNYI CENTRUM ÁLTALÁNOS ORVOSTUDOMÁNYI

Részletesebben

Optikai spektroszkópiai módszerek

Optikai spektroszkópiai módszerek Mi történhet, ha egy mintát fénnyel világítunk meg? Optikai spektroszkópiai módszerek megvilágító fény (elnyelt fény) minta átjutott fény Abszorpció UV-VIS, IR Smeller László kibocsátott fény Lumineszcencia

Részletesebben

Kémiai kötések. Kémiai kötések kj / mol 0,8 40 kj / mol

Kémiai kötések. Kémiai kötések kj / mol 0,8 40 kj / mol Kémiai kötések A természetben az anyagokat felépítő atomok nem önmagukban, hanem gyakran egymáshoz kapcsolódva léteznek. Ezeket a kötéseket összefoglaló néven kémiai kötéseknek nevezzük. Kémiai kötések

Részletesebben

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István OPTIKA Fénykibocsátás mechanizmusa Dr. Seres István Bohr modell Niels Bohr (19) Rutherford felfedezte az atommagot, és igazolta, hogy negatív töltésű elektronok keringenek körülötte. Niels Bohr Bohr ezt

Részletesebben

Atomszerkezet. Fehérjék szerkezetvizsgáló módszerei. Molekulaszerkezet. Molekula energiája. Lumineszcenciás technikák. E e > E v > E r. + E v.

Atomszerkezet. Fehérjék szerkezetvizsgáló módszerei. Molekulaszerkezet. Molekula energiája. Lumineszcenciás technikák. E e > E v > E r. + E v. Atomszerkezet Fehérjék szerkezetvizsgáló módszerei Lumineszcenciás technikák Kellermayer Miklós Növekvő energiájú pályák Fotonemisszió: E=hf Molekulaszerkezet Molekula energiája Molekula: kémiai kötéssel

Részletesebben

FOTOKÉMIAI REAKCIÓK, REAKCIÓKINETIKAI ALAPOK

FOTOKÉMIAI REAKCIÓK, REAKCIÓKINETIKAI ALAPOK FOTOKÉMIAI REAKCIÓK, REAKCIÓKINETIKAI ALAPOK Légköri nyomanyagok forrásai: bioszféra hiroszféra litoszféra világűr emberi tevékenység AMI BELÉP, ANNAK TÁVOZNIA IS KELL! Légköri nyomanyagok nyelői: száraz

Részletesebben

Abszorpciós fotometria

Abszorpciós fotometria abszorpció A fény Abszorpciós fotometria Ujfalusi Zoltán PTE ÁOK Biofizikai Intézet 2013. január Elektromágneses hullám Transzverzális hullám elektromos térerősségvektor hullámhossz E B x mágneses térerősségvektor

Részletesebben

Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft

Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft Atom- és molekula-spektroszkópiás módszerek Módszer Elv Vizsgált anyag típusa Atom abszorpciós spektrofotometria (AAS) A szervetlen Lángfotometria

Részletesebben

Modern Fizika Labor. 11. Spektroszkópia. Fizika BSc. A mérés dátuma: dec. 16. A mérés száma és címe: Értékelés: A beadás dátuma: dec. 21.

Modern Fizika Labor. 11. Spektroszkópia. Fizika BSc. A mérés dátuma: dec. 16. A mérés száma és címe: Értékelés: A beadás dátuma: dec. 21. Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. dec. 16. A mérés száma és címe: 11. Spektroszkópia Értékelés: A beadás dátuma: 2011. dec. 21. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin

Részletesebben

PÉCSI TUDOMÁNYEGYETEM. Fluoreszcens módszerek alkalmazása nanostruktúrák vizsgálatában. Jánosi Tibor Zoltán

PÉCSI TUDOMÁNYEGYETEM. Fluoreszcens módszerek alkalmazása nanostruktúrák vizsgálatában. Jánosi Tibor Zoltán PÉCSI TUDOMÁNYEGYETEM Fizika Doktori Iskola Nemlineáris optika és spektroszkópia program Fluoreszcens módszerek alkalmazása nanostruktúrák vizsgálatában PhD értekezés Jánosi Tibor Zoltán Témavezető: Dr.

Részletesebben

Részletes szakmai beszámoló Az erbb proteinek asszociációjának kvantitatív jellemzése című OTKA pályázatról (F049025)

Részletes szakmai beszámoló Az erbb proteinek asszociációjának kvantitatív jellemzése című OTKA pályázatról (F049025) Részletes szakmai beszámoló Az erbb proteinek asszociációjának kvantitatív jellemzése című OTKA pályázatról (F049025) A pályázat megvalósítása során célunk volt egyrészt a molekulák asszociációjának tanulmányozására

Részletesebben

Mézerek és lézerek. Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19.

Mézerek és lézerek. Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. és lézerek Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. Fény és anyag kölcsönhatása 2 / 19 Fény és anyag kölcsönhatása Fény és anyag kölcsönhatása E 2 (1) (2) (3) E 1 (1) gerjesztés (2) spontán

Részletesebben

Szalay Péter (ELTE, Kémia Intézet) Szentjánosbogár, trópusi halak, sarki fény Mi a közös a természet fénytüneményeiben?

Szalay Péter (ELTE, Kémia Intézet) Szentjánosbogár, trópusi halak, sarki fény Mi a közös a természet fénytüneményeiben? Szalay Péter (ELTE, Kémia Intézet) Szentjánosbogár, trópusi halak, sarki fény Mi a közös a természet fénytüneményeiben? Boronkay György Műszaki Középiskola és Gimnázium Budapest, 2011. október 27. www.meetthescientist.hu

Részletesebben

Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez

Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez A Név... Válassza ki a helyes mértékegységeket! állandó intenzitás abszorbancia moláris extinkciós A) J s -1 - l mol -1 cm B) W g/cm 3 - C) J s -1 m -2 - l mol -1 cm -1 D) J m -2 cm - A Wien-féle eltolódási

Részletesebben

Fluoreszcencia spektroszkópia

Fluoreszcencia spektroszkópia Fluoreszcencia spektroszkópia A fény: elektromágneses hullám Huber Tamás Biofizika szeminárium PTE ÁOK Biofizikai Intézet 2014. február 04-06. 1 Elektromágneses spektrum Lumineszcencia: gerjesztett állapotú

Részletesebben

Modern mikroszkópiai módszerek 2 2011 2012

Modern mikroszkópiai módszerek 2 2011 2012 FLUORESZCENCIA MIKROSZKÓPIA A mintának a megvilágító fény által kiváltott fluoreszcencia emisszióját képezzük le. 1 Bugyi Beáta - PTE ÁOK Biofizikai Intézet 2 FLUOROFÓROK BELSŐ (INTRINSIC) FLUORESZCENCIA

Részletesebben

Abszorpciós spektrometria összefoglaló

Abszorpciós spektrometria összefoglaló Abszorpciós spektrometria összefoglaló smétlés: fény (elektromágneses sugárzás) tulajdonságai, kettős természet fény anyag kölcsönhatás típusok (reflexió, transzmisszió, abszorpció, szórás) Abszorpció

Részletesebben

Fluoreszcencia spektroszkópia

Fluoreszcencia spektroszkópia Elektromágneses spektrum Fluoreszcencia spektroszkópia Ujfalusi Zoltán A fény: elektromágneses hullám Biofizika szeminárium PTE ÁOK Biofizikai Intézet 2011. február 14-16. Lumineszcencia: a fényt kibocsátó

Részletesebben

Abszorpciós spektrumvonalak alakja. Vonalak eredete (ld. előző óra)

Abszorpciós spektrumvonalak alakja. Vonalak eredete (ld. előző óra) Abszorpciós spektrumvonalak alakja Vonalak eredete (ld. előző óra) Nagysága Kiszélesedése Elem mennyiségének becslése a vonalerősségből Elemi statfiz Boltzmann-faktor: Megadja egy állapot súlyát a sokaságban

Részletesebben

Abszorpciós fotometria

Abszorpciós fotometria abszorpció Abszorpciós fotometria Spektroszkópia - Színképvizsgálat Spektro-: görög; jelente kép/szín -szkópia: görög; néz/látás/vizsgálat Ujfalusi Zoltán PTE ÁOK Biofizikai Intézet 2012. február Vizsgálatok

Részletesebben

A módszerek jelentősége. Gyors-kinetika módszerek. A módszerek közös tulajdonsága. Milyen módszerekről tanulunk?

A módszerek jelentősége. Gyors-kinetika módszerek. A módszerek közös tulajdonsága. Milyen módszerekről tanulunk? Gyors-kinetika módszerek módszerek jelentősége 2010. március 9. Nyitrai Miklós biológiai mechanizmusok megértése; iológiai folyamatok időskálája; Vándorló melanocita (Victor SMLL). ms skálán való mérések.

Részletesebben

A kovalens kötés polaritása

A kovalens kötés polaritása Általános és szervetlen kémia 4. hét Kovalens kötés A kovalens kötés kialakulásakor szabad atomokból molekulák jönnek létre. A molekulák létrejötte mindig energia csökkenéssel jár. A kovalens kötés polaritása

Részletesebben

Lumineszcencia: a fényt kibocsátó rendszer nem a magas hőmérséklet miatt világít!!! Ez az ún. hideg emisszió

Lumineszcencia: a fényt kibocsátó rendszer nem a magas hőmérséklet miatt világít!!! Ez az ún. hideg emisszió Fluoresz Fluores zcenc cencia ia spektroszkópia Lumineszcencia: a fényt kibocsátó rendszer nem a magas hőmérséklet miatt világít!!! Ez az ún. hideg emisszió emisszió jelensége. Orbán József Biofizika szeminárium

Részletesebben

RÉSZLETES BESZÁMOLÓ Az OTKA által támogatott konzorcium működésében az Uzsoki utcai Kórház feladata a szövetminták gyűjtése, előzetes feldolgozása, ill. a betegek utánkövetése, valamint az utánkövétésre

Részletesebben

1D multipulzus NMR kísérletek

1D multipulzus NMR kísérletek D multipulzus NMR kísérletek Rohonczy János ELTE, Szervetlen Kémia Tanszék Modern szerkezetkutatási módszerek elıadás 202. . Protonlecsatolt heteronukleáris mérések Elv 3 C mag detektálása alatt a protoncsatornán

Részletesebben

Szentjánosbogár, trópusi halak, sarki fény Mi a közös a természet fénytüneményeiben?

Szentjánosbogár, trópusi halak, sarki fény Mi a közös a természet fénytüneményeiben? Szentjánosbogár, trópusi halak, sarki fény Mi a közös a természet fénytüneményeiben? Szalay Péter egyetemi tanár ELTE, Kémiai Intézet Elméleti Kémiai Laboratórium Van közös bennük? Egy kis történelem

Részletesebben

Vezetők elektrosztatikus térben

Vezetők elektrosztatikus térben Vezetők elektrosztatikus térben Vezető: a töltések szabadon elmozdulhatnak Ha a vezető belsejében a térerősség nem lenne nulla akkor áram folyna. Ha a felületen a térerősségnek lenne tangenciális (párhuzamos)

Részletesebben

Optikai spektroszkópiai módszerek

Optikai spektroszkópiai módszerek Mi történhet, ha egy mintát énnye viágítunk meg? Optikai spektroszkópiai módszerek megviágító ény (enyet ény) minta átjutott ény Abszorpció UV-VIS, IR Smeer Lászó kibocsátott ény Lumineszcencia (Fuoreszcencia

Részletesebben

Rövid ismertető. Modern mikroszkópiai módszerek. A mikroszkóp. A mikroszkóp. Az optikai mikroszkópia áttekintése

Rövid ismertető. Modern mikroszkópiai módszerek. A mikroszkóp. A mikroszkóp. Az optikai mikroszkópia áttekintése Rövid ismertető Modern mikroszkópiai módszerek Nyitrai Miklós 2010. március 16. A mikroszkópok csoportosítása Alapok, ismeretek A működési elvek Speciális módszerek A mikroszkópia története ld. Pdf. Minél

Részletesebben

Az elektromágneses hullámok

Az elektromágneses hullámok 203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert

Részletesebben

Abszorpciós fotometria

Abszorpciós fotometria 2013 január Abszorpciós fotometria Elektron-spektroszkópia alapjai Biofizika. szemeszter Orbán József PTE ÁOK Biofizikai ntézet Definíciók, törvények FÉNYTAN ALAPOK SMÉTLÉS - Elektromágneses sugárzás,

Részletesebben

A fény keletkezése. Hőmérsékleti sugárzás. Hőmérsékleti sugárzás. Lumineszcencia. Lézer. Tapasztalat: a forró testek Hőmérsékleti sugárzás

A fény keletkezése. Hőmérsékleti sugárzás. Hőmérsékleti sugárzás. Lumineszcencia. Lézer. Tapasztalat: a forró testek Hőmérsékleti sugárzás A fény keletkezése Hőmérsékleti sugárzás Hőmérsékleti sugárzás Lumineszcencia Lézer Tapasztalat: a forró testek Hőmérsékleti sugárzás Környezetének hőfokától függetlenül minden test minden, abszolút nulla

Részletesebben

Tartalom. A citoszkeleton meghatározása. Citoszkeleton. Mozgás a biológiában A CITOSZKELETÁLIS RENDSZER 12/9/2016

Tartalom. A citoszkeleton meghatározása. Citoszkeleton. Mozgás a biológiában A CITOSZKELETÁLIS RENDSZER 12/9/2016 Tartalom A CITOSZKELETÁLIS RENDSZER Nyitrai Miklós, 2016 november 29. 1. Mi a citoszkeleton? 2. Polimerizáció, polimerizációs egyensúly 3. Filamentumok osztályozása 4. Motorfehérjék A citoszkeleton meghatározása

Részletesebben

Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia?

Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia? Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia? Prof. Túri László (ELTE, Kémiai Intézet) turi@chem.elte.hu 2012. november 19. Szent László Gimnázium Önképzőkör 1 Kapcsolódási pontok

Részletesebben

Kémiai reakciók sebessége

Kémiai reakciók sebessége Kémiai reakciók sebessége reakciósebesség (v) = koncentrációváltozás változáshoz szükséges idő A változás nem egyenletes!!!!!!!!!!!!!!!!!! v= ± dc dt a A + b B cc + dd. Melyik reagens koncentrációváltozását

Részletesebben

Modern fizika laboratórium

Modern fizika laboratórium Modern fizika laboratórium 11. Az I 2 molekula disszociációs energiája Készítette: Hagymási Imre A mérés dátuma: 2007. október 3. A beadás dátuma: 2007. október xx. 1. Bevezetés Ebben a mérésben egy kétatomos

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

Biomolekuláris szerkezet és dinamika vizsgálata. Gerjesztés során elnyelt energia sorsa. Fluoreszcencia és különleges alkalmazásai

Biomolekuláris szerkezet és dinamika vizsgálata. Gerjesztés során elnyelt energia sorsa. Fluoreszcencia és különleges alkalmazásai Biomolekuláris szerkezet és dinamika vizsgálata Fluoreszcencia, egymolekula biofizika, rádióspektroszkópiák (EPR, NMR, MRI) John Dalton (1766-1844) 1 nm Oxigén atomok rhodium egykristály felületén Cary

Részletesebben

Kémiai Intézet Kémiai Laboratórium. F o t o n o k k e r e s z tt ü z é b e n a D N S

Kémiai Intézet Kémiai Laboratórium. F o t o n o k k e r e s z tt ü z é b e n a D N S Szalay SzalayPéter Péter egyetemi egyetemi tanár tanár ELTE, ELTE,Kémiai Kémiai Intézet Intézet Elméleti ElméletiKémiai Kémiai Laboratórium Laboratórium F o t o n o k k e r e s z tt ü z é b e n a D N S

Részletesebben

Biomolekuláris rendszerek. vizsgálata. Semmelweis Egyetem. Osváth Szabolcs. A mikroszkópok legfontosabb típusai

Biomolekuláris rendszerek. vizsgálata. Semmelweis Egyetem. Osváth Szabolcs. A mikroszkópok legfontosabb típusai Mekkorák a dolgok? Semmelweis Egyetem szabolcs.osvath@eok.sote.hu Osváth Szabolcs Biomolekuláris rendszerek vizsgálata Hans Jansen és Zacharias Jansen 1590-ben összetett mikroszkópot épít - pásztázó mikroszkópok

Részletesebben

ALKÍMIA MA Az anyagról mai szemmel, a régiek megszállottságával.

ALKÍMIA MA Az anyagról mai szemmel, a régiek megszállottságával. ALKÍMIA MA Az anyagról mai szemmel, a régiek megszállottságával www.chem.elte.hu/pr Kvíz az előző előadáshoz Programajánlatok december 6. 18:00 Posztoczky Károly Csillagvizsgáló, Tata Posztoczky Károly

Részletesebben

2. Szerves anyagok oldatának fotolumineszcencia színképének meghatározása

2. Szerves anyagok oldatának fotolumineszcencia színképének meghatározása Spektroszkópiai mérések. Fizikus MSc. Alkalmazott fizikus szakirány Környezettudományi MSc, Környezetfizika szakirány 2. Szerves anyagok oldatának fotolumineszcencia színképének meghatározása 1. Elméleti

Részletesebben

Tropomiozin és nehéz meromiozin hatása a formin által nukleált aktin filamentumok flexibilitására

Tropomiozin és nehéz meromiozin hatása a formin által nukleált aktin filamentumok flexibilitására Tropomiozin és nehéz meromiozin hatása a formin által nukleált aktin filamentumok flexibilitására Ujfalusi Zoltán Témavezető: PROF. DR. N YITRAI MIKLÓS Doktori iskola: I n t e r d i s z c i p l i n á r

Részletesebben

KÉMIAI ANYAGSZERKEZETTAN

KÉMIAI ANYAGSZERKEZETTAN KÉMIAI ANYAGSZERKEZETTAN (Ábragyűjtemény) / tanév /. BEVEZETÉS.. ábra. A Fraunhofer-vonalak a Nap színképében Minta omorú holografikus rács Rések Fényforrás Fotódiódatömb.. ábra. Egyutas UV-látható abszorpciós

Részletesebben

Koherens fény (miért is különleges a lézernyaláb?)

Koherens fény (miért is különleges a lézernyaláb?) Koherens fény (miért is különleges a lézernyaláb?) Inkoherens fény Atomok egymástól függetlenül sugároznak ki különböző hullámhosszon sugároznak ki elektromágneses hullámokat Pl: Termikus sugárzó Koherens

Részletesebben

http://www.flickr.com Az atommag állapotait kvantummechanikai állapotfüggvénnyel írjuk le. A mag paritását ezen fv. paritása adja meg. Paritás: egy állapot tértükrözéssel szemben mutatott viselkedését

Részletesebben

Abszorpciós fotometria

Abszorpciós fotometria A fény Abszorpciós fotometria Ujfalusi Zoltán PTE ÁOK Biofizikai ntézet 2011. szeptember 15. E B x x Transzverzális hullám A fény elektromos térerősségvektor hullámhossz Az elektromos a mágneses térerősség

Részletesebben

BIOFIZIKA. Metodika- 2. Liliom Károly. MTA TTK Enzimológiai Intézet liliom@enzim.hu

BIOFIZIKA. Metodika- 2. Liliom Károly. MTA TTK Enzimológiai Intézet liliom@enzim.hu BIOFIZIKA 2012 11 12 Metodika- 2 Liliom Károly MTA TTK Enzimológiai Intézet liliom@enzim.hu A biofizika előadások temakkája 1. 09-03 Biofizika: fizikai szemlélet, modellalkotás, biometria 2. 09-10 SZÜNET

Részletesebben

Koherens fény (miért is különleges a lézernyaláb?)

Koherens fény (miért is különleges a lézernyaláb?) Koherens fény (miért is különleges a lézernyaláb?) Inkoherens fény Atomok egymástól függetlenül sugároznak ki különböző hullámhosszon, különböző fázissal fotonokat. Pl: Termikus sugárzó Koherens fény Atomok

Részletesebben

A fény tulajdonságai

A fény tulajdonságai Spektrofotometria A fény tulajdonságai A fény, mint hullámjelenség (lambda) (nm) hullámhossz (nű) (f) (Hz, 1/s) frekvencia, = c/ c (m/s) fénysebesség (2,998 10 8 m/s) (σ) (cm -1 ) hullámszám, = 1/ A amplitúdó

Részletesebben

Gyors-kinetikai módszerek

Gyors-kinetikai módszerek Gyors-kinetikai módszerek Biofizika szemináriumok Futó Kinga Gyorskinetika - mozgástan Reakciókinetika: reakciók időbeli leírása reakciómechanizmusok reakciódinamika (molekuláris szintű történés) reakciósebesség:

Részletesebben

Kolloidkémia 1. előadás Első- és másodrendű kémiai kötések és szerepük a kolloid rendszerek kialakulásában. Szőri Milán: Kolloidkémia

Kolloidkémia 1. előadás Első- és másodrendű kémiai kötések és szerepük a kolloid rendszerek kialakulásában. Szőri Milán: Kolloidkémia Kolloidkémia 1. előadás Első- és másodrendű kémiai kötések és szerepük a kolloid rendszerek kialakulásában 1 Órarend 2 Kurzussal kapcsolatos emlékeztető Kurzus: Az előadás látogatása ajánlott Gyakorlat

Részletesebben

A CITOSZKELETÁLIS RENDSZER (Nyitrai Miklós, )

A CITOSZKELETÁLIS RENDSZER (Nyitrai Miklós, ) A CITOSZKELETÁLIS RENDSZER (Nyitrai Miklós, 2010.11.30.) 1. Mi a citoszkeleton? 2. Polimerizá, polimerizás egyensúly 3. ilamentumok osztályozása 4. Motorfehérjék Citoszkeleton Eukariota sejtek dinamikus

Részletesebben

Víz. Az élő anyag szerkezeti egységei. A vízmolekula szerkezete. Olyan mindennapi, hogy fel sem tűnik, milyen különleges

Víz. Az élő anyag szerkezeti egységei. A vízmolekula szerkezete. Olyan mindennapi, hogy fel sem tűnik, milyen különleges Az élő anyag szerkezeti egységei víz nukleinsavak fehérjék membránok Olyan mindennapi, hogy fel sem tűnik, milyen különleges A Föld felszínének 2/3-át borítja Előfordulása az emberi szövetek felépítésében

Részletesebben

Elektrosztatikus számítások. Elektrosztatikus számítások. Elektrosztatikus számítások. Elektrosztatikus számítások Definíciók

Elektrosztatikus számítások. Elektrosztatikus számítások. Elektrosztatikus számítások. Elektrosztatikus számítások Definíciók Jelentősége szubsztrát kötődés szolvatáció ionizációs állapotok (pka) mechanizmus katalízis ioncsatornák szimulációk (szerkezet) all-atom dipolar fluid dipolar lattice continuum Definíciók töltéseloszlás

Részletesebben

Reakciókinetika és katalízis

Reakciókinetika és katalízis Reakciókinetika és katalízis k 4. előadás: 1/14 Különbségek a gázfázisú és az oldatreakciók között: 1 Reaktáns molekulák által betöltött térfogat az oldatreakciónál jóval nagyobb. Nincs akadálytalan mozgás.

Részletesebben

2, = 5221 K (7.2)

2, = 5221 K (7.2) 7. Gyakorlat 4A-7 Az emberi szem kb. 555 nm hullámhossznál a Iegnagyobb érzékenységű. Adjuk meg annak a fekete testnek a hőmérsékletét, amely sugárzásának a spektrális teljesitménye ezen a hullámhosszon

Részletesebben

Tenzidek kritikus micellaképződési koncentrációjának és aggregációs számának meghatározása fluoreszcens spektroszkópiával

Tenzidek kritikus micellaképződési koncentrációjának és aggregációs számának meghatározása fluoreszcens spektroszkópiával monomer miella konentráió Tenzidek kritikus miellaképződési konentráiójának és aggregáiós számának meghatározása fluoreszens spektroszkópiával A felületaktív anyagoknak nagy jelentősége van az alkalmazott

Részletesebben

Színképelemzés. Romsics Imre 2014. április 11.

Színképelemzés. Romsics Imre 2014. április 11. Színképelemzés Romsics Imre 2014. április 11. 1 Más néven: Spektrofotometria A színképből kinyert információkból megállapítható: az atomok elektronszerkezete az elektronállapotokat jellemző kvantumszámok

Részletesebben

Kémiai anyagszerkezettan

Kémiai anyagszerkezettan Kémiai anyagszerkezettan Előadó: Kubinyi Miklós tel: 21-37 kubinyi@mail.bme.hu Grofcsik András tel: 14-84 agrofcsik@mail.bme.hu Tananyag az intraneten (tavalyi): http://oktatas.ch.bme.hu/oktatas/ konyvek/fizkem/kasz/

Részletesebben

Az áramlási citométer és sejtszorter felépítése és működése, diagnosztikai alkalmazásai

Az áramlási citométer és sejtszorter felépítése és működése, diagnosztikai alkalmazásai Az áramlási citométer és sejtszorter felépítése és működése, diagnosztikai alkalmazásai Az áramlási citométer és sejtszorter felépítése és működése Kereskedelmi forgalomban kapható készülékek 1 Fogalmak

Részletesebben

Geometriai alapok. Ha a beeső sugár nem merőleges. Fluoreszcencia Rezonancia Energiatranszfer (FRET) Röntgen diffrakció, szerkezet meghatározás

Geometriai alapok. Ha a beeső sugár nem merőleges. Fluoreszcencia Rezonancia Energiatranszfer (FRET) Röntgen diffrakció, szerkezet meghatározás A fluoreszcenci kioltásánk egy speciális módj Fluoreszcenci Rezonnci Energitrnszfer (FRET) Röntgen diffrkció, szerkezet meghtározás Nyitri Miklós; 2010 március 2. Biofizik Röntgen diffrkció, szerkezet

Részletesebben

3. A kémiai kötés. Kémiai kölcsönhatás

3. A kémiai kötés. Kémiai kölcsönhatás 3. A kémiai kötés Kémiai kölcsönhatás ELSŐDLEGES MÁSODLAGOS OVALENS IONOS FÉMES HIDROGÉN- KÖTÉS DIPÓL- DIPÓL, ION- DIPÓL, VAN DER WAALS v. DISZPERZIÓS Kémiai kötések Na Ionos kötés Kovalens kötés Fémes

Részletesebben

Lumineszcencia. Dr. Vámosi György

Lumineszcencia. Dr. Vámosi György Lumineszcencia Dr. Vámosi György Lumineszcencia Lumineszcencia: gerjesztett molekulák fényemissziója a hőmérsékleti sugárzáson kívül, hideg emisszió Fluoreszcencia: szinglet-szinglet átmenet Foszforeszcencia:

Részletesebben

In vivo szövetanalízis. Különös tekintettel a biolumineszcens és fluoreszcens képalkotási eljárásokra

In vivo szövetanalízis. Különös tekintettel a biolumineszcens és fluoreszcens képalkotási eljárásokra In vivo szövetanalízis Különös tekintettel a biolumineszcens és fluoreszcens képalkotási eljárásokra In vivo képalkotó rendszerek Célja Noninvazív módon Biológiai folyamatokat képes rögzíteni Élő egyedekben

Részletesebben

Szervetlen komponensek analízise. A, Atomspektroszkópia B, Molekulaspektroszkópia C, Elektrokémia D, Egyéb (radiokémia, termikus analízis, stb.

Szervetlen komponensek analízise. A, Atomspektroszkópia B, Molekulaspektroszkópia C, Elektrokémia D, Egyéb (radiokémia, termikus analízis, stb. Szervetlen komponensek analízise A, Atomspektroszkópia B, Molekulaspektroszkópia C, Elektrokémia D, Egyéb (radiokémia, termikus analízis, stb.) A fény λ i( k r ωt + φ0 ) Elektromágneses sugárzás E( r,

Részletesebben

Az ionizáló sugárzások fajtái, forrásai

Az ionizáló sugárzások fajtái, forrásai Az ionizáló sugárzások fajtái, forrásai magsugárzás Magsugárzások Röntgensugárzás Függelék. Intenzitás 2. Spektrum 3. Atom Repetitio est mater studiorum. Röntgen Ionizációnak nevezzük azt a folyamatot,

Részletesebben