A diffúzió csak rövid méretsálán gyors. Az élő sejt fizikai Biológiája: Diffúzió, polimerizáció, reptáció

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A diffúzió csak rövid méretsálán gyors. Az élő sejt fizikai Biológiája: Diffúzió, polimerizáció, reptáció"

Átírás

1 A diffúzió csak rövid méretsálán gyors Az élő sejt fizikai Biológiája: Diffúzió, polimerizáció, reptáció Kellermayer Miklós Négyzetes összefüggés: meredekség=2 A DIFFÚZIÓ ÉS BOLYONGÓ MOZGÁS KAPCSOLATA A polimérek alakja a bolyongó mozgásra emlékeztet Brown-mozgás - random walk r1 R rn Négyzetgyök törvény : R 2 = Nl 2 = Ll R = elmozdulás N = elemi lépések száma l = r i = átlagos szabad úthossz r i = elemi lépés Nl = L = teljes út Bolyongó (Brown-féle) mozgás ( random walk ) r1 Négyzetgyök törvény : R 2 R rn = Nl 2 = Ll R = vég-vég távolság; r i = elemi vektor; N = elemi vektorok száma; l = r i = korrelációs hossz ( perzisztenciahossz, hajlítómerevség mértéke); Nl = L = kontúrhossz Az elemi vektorok orientációs rendezetlenségre törekvése rugalmasságot eredményez Entropikus rugalmasság: Termikus gerjesztésre a polimerlánc random, ide-oda hajló fluktuációkat végez. Nő a lánc konformációs entrópiája (elemi vektorok orientációs rendezetlensége). Az entrópiamaximumra törekvés miatt a polimerlánc rövidül. Átlagos részecske sebesség: v = l τ Teljes bolyongási idő: t = Nτ R = Nl 2 = t τ l 2 = tvl = 3Dt Diffúziós együttható: D = 1 3 vl Bolyongó (diffúzióvezérelt) mozgás esetén R=elmozdulás, N= elemi lépések száma, L=teljes megtett út, és l=átlagos szabad úthossz. Makroszkópikus folyamat esetén: <Δx 2 >=2Dτ. <Δx 2 > = átlagos négyzetes elmozdulás, D = diffúziós állandó, τ = diffúziós idő (megfigyelés időtartama)

2 Polimerlánc egyensúlyi alakja Az a makroállapot, amely a legtöbb mikroállapottal valósítható meg (legvalószínűbb állapot) Féregszerű polimermodell (Wormlike chain) WLC (wormlike chain): ha s elég nagy, cosθ () s s függvényében lecseng: cosθ () s = exp s l p =perzisztencia hossz l p ha s<<l p, akkor cosθ () s ~1, és a θ(s) szög körül fluktuál. Ha s>>l p, akkor cosθ () s ~, azaz θ(s) és 36 közötti értékeket ugyanolyan valószínűséggel vehet fel. A perzisztencia hossz értelme: az a hossz, amelyen belül a lánc megtartja irányát (emlékszik rá). A perzisztencia hosszon túl a lánc elfelejti irányítottságát. s θ(s) DNS molekulák atomerő mikroszkópos felvétele 5 nm EI = hajlítómerevség (E = Young modulus - anyagfüggő, I = keresztmetszet másodrendű nyomatéka - alakfüggő); kbt = termikus energia Értelme: minél merevebb egy lánc, annál nagyobb távolságon (lp) lesznek csak észlelhetők a termikusan gerjesztett fluktuációk. A globális alak és rugalmasság között összefüggés van l = perzisztencia hossz (hajlítómerevséget jellemzi) L = kontúrhossz Entropikus rugalmasság vizualizálása Csomókötés egyetlen DNS láncra Merev lánc l>>l Mikrotubulus mikrogyöngy mozgatható lézercsipeszben Fáziskontraszt kép Fluoreszcencia kép Szemiflexibilis lánc l~l Aktin filamentum Flexibilis lánc l<<l DNS molekula mikrogyöngy stacionárius lézercsipeszben Kinosita Group

3 A humán genom fizikai mérete A tanteremnyi modell-sejtre adaptálva: Idealizált sejt: 2 µm oldalfalú kocka Analógia - Tanterem: 2 m oldalfalú kocka filamentum a reptációs alagútban A DIFFÚZIÓ SPECIÁLIS ESETE: REPTÁCIÓ Reptáció: polimér hálóban történő kígyószerű diffúzió. (Reptilia: hüllők) DNS vastagsága 2 nm 2 mm DNA teljes hossza 2 m 2 km Perzisztenciahossz (LP) 5 nm 5 cm Átlagos vég-vég hossz 32 µm 32 m polimér mátrix: entanglement (összegabalyodás) Actin filamentumok metilcellulóz mátrixban. Egyenirányított diffúzió Girációs sugár (RG) 13 µm 13 m Tehát: az egyensúlyi alakú DNS nem férne el a sejtben. Teljesen kompakt DNS (elméletileg legkisebb) térfogata (2 mm alapterületű, 2 km hosszú henger térfogata): 8 m 3 (2 m élhosszúságú kocka) A DNS-t a sejtben csomagolni szükséges! Egyedi nukleoszóma partikulum: hiszton fehérjekomplex (oktamer) + ~1.6-ször köré tekeredett DNS 2 L N τ r = μ k T τ r = Reptációs idő, egy kontúrhossznyi távolság megtételéhez szükséges idő; L = kontúrhossz; N= elemi szegmensek száma; μ = lánc mozgékonyság; kt = termikus energia D r = ( a N ) τ r 2 D r = Reptációs diffúziós állandó; N= elemi szegmensek száma; a = elemi szegmens hossz (~perzisztenciahossz); τ r = reptációs idő. N.B.: számláló az átlagos négyzetes elmozdulással analóg. Polimerizáció Alegységek összeállásának folyamata Polimerizációs egyensúlyok 1. valódi equilibrium Polimer mennyiség A polimerizáció fázisai: 1. Lag fázis: nukleáció 2. Növekedés fázisa 3. Equilibrium (egyensúly) fázisa Equilibrium 2. dinamikus instabilitás: folyamatos, lassú növekedést követő katasztrofikus depolimerizáció Növekedés Lag Idő 3. Treadmilling: taposómalom

4 Dinamikus instabilitás Mikrotubulusok In vivo treadmilling Gary Borisy Aktin GFP-aktin Speckle microscope Clare Waterman-Storer Microtubulusok Gary Borisy Motilitás aktin polimerizációval Intracelluláris patogének mozgása Motilitás aktin polimerizációval In vitro körülmények Listeria monocytogenes F-aktin jelölés phalloidinnel Shigella flexneri Listeria Xenopus extraktumban ActA-val aszimmetrikusan bevont mikrogyöngy Xenopus extraktumban ActA-val szimmetrikusan bevont mikrogyöngy Xenopus extraktumban ActA: A protein expressed by the bacterium Listeria monocytogenes that is responsible for the "rocketing" motility of the bacterium throughout the eukaryotic host cell. In addition to other host proteins, ActA binds actin directly.

5 A diffúzió speciális esete: Brown-féle kilincskerék Kilincs Kilincskerék potenciál A polimerizációs erő megmérhető Brown-féle mozgás k be δ k ki Diffúzió F Listeria monocytogenes intracelluláris mozgása aktin polimerizációval K(F) = erő jelenlétében fennálló disszociációs állandó - az a monomer koncentráció, amelynél a nettó filamentum növekedés. Kc = kritikus koncentráció ( erőnél); F = erő; δ = diszkrét növekedés egyetlen monomer beépülésekor. kbt = termikus energia. N.B.: F lehet + vagy -. A folyamat lehet reakcióvezérelt (a kbe-hez képest túl gyors diffúzió) vagy diffúzióvezérelt (a kbe-hez képest lassú diffúzió). MT-depolimerizációvezérelt erőkifejtés MCAK: MT-depolimerizáló kinezin MCAK: Kinezin-13 A MT + végéhez kötődik Diffúziós mechanizmussal keresi meg a + véget ATP-t hidrolizál MT depolimerizációt szabályoz ( katasztrófa-faktor ) MCAK-indukált MT depolimerizáció Vezikulum transzport MT depolimerizációval Kromoszóma (kinetochore) mozgatás MT depolimerizációval Diffúziós keresés a MT mentén (GFP-MCAK)

6 Motorfehérjék Az élő sejt fizikai Biológiája: motorfehérjék 1. Specifikus citoszkeletális filamentumhoz kapcsolódnak (DE ) 2. Elmozdulást és erőt generálnak 3. Kémiai energiát használnak fel 4. Kémiai energiát közvetlenül alakítják mechanikai munkává (nincs közbülső hővagy elektromos energia) Motorfehérjék alaptípusai In vitro aktomiozin motilitás 1. Aktin alapú Miozinok: Konvencionális (miozin II) és nem-konvencionális Miozin szupercsalád (I-XXIV osztályok). Plusz vég irányába mozognak. Miozin Aktin 2. Mikrotubulus alapú a. Dineinek: Ciliáris (flagelláris) és citoplazmáris dineinek. A mikrotubulus mentén a minusz vég irányába mozognak. b. Kinezinek: Kinezin szupercsalád: konvencionális és nem-konvencionális. A mikrotubulus mentén a plusz vég irányába mozognak. c. Dinaminok: MT-függő GTPáz aktivitás Biológiai szerep: vakuoláris fehérjeválogatás (pinchase enzimek)? Mikroszkóp fedőlemez HMM 1 mm ATP 3 mm MgCl2 3. DNS alapú mechanoenzimek DNS és RNS polimerázok, vírus kapszid csomagoló motor, kondenzinek A DNS fonal mentén haladnak és fejtenek ki erőt 4. Rotációs motorok F1F-ATP szintetáz Bakteriális flagelláris motor Vastag filamentum Gyakoriság Immobilis frakció Mobilis frakció (1.3 μm/s) 5. Mechanoenzim komplexek Riboszóma Aktin filamentum Sebesség (μm/s)

7 processzív A miozin szupercsalád 5% homológia a tagok között A miozin II 2 db alfa-hélixből coiled-coil könnyűláncok nyaki v. pánt régió "konvencionális" 2-fejű Regulatórikus könnyű lánc (RLC) ATP-kötő zseb csupasz zóna miozin fejek Minusz vég irányába mozog miozin fejek miozin farok Nyak (erőkar) Esszenciális könnyű lánc (ELC) Konverter domén Aktin-kötő hely A miozin fej (Subfragment-1) Típusok: axonemális és citoplazmáris. Sok alegységes fehérjék (Mr~5 kda) A minusz vég irányába mozognak. Koordinált működésük meghajlítja a ciliumot. Dineinek A motor domén mutációi hipertrofiás kardiomiopátiához vezetnek!

8 minusz vég irányába mozog Processzív motorok. Plusz vég irányába mozognak. Vesicular transport Vakuoláris fehérjeválogatás GTPázok Dinaminok Switch domén: hasonlít a miozinhoz és G-fehérjékhez. pinchase funkció DNS motorok Processzív motorok Vírus portális motor Különleges DNS motor T7 DNS Polimeráz φ29 bacteriofág portális motor RNS Polimeráz RNS Polimeráz, Wang et al

9 DNS mechanoenzimek Kondenzinek SMC fehérjecsalád SMC = "structural maintenance of chromosomes" MukBEF nanomechanika és kondenzációs model ROTÁCIÓS MOTOROK I: F1F-ATP SZINTETÁZ ROTÁCIÓS MOTOROK II: Bakteriális flagellum motor 2 nm ATP 2 nm ATP Diszkrét 12 rotációs lépések Kinosita Fordulatszám: > 2 rpm Fogyasztás: 1-16 W Hatásfok: > 8% Energiaforrás: protonok

10 Mechanoenzim komplex Riboszóma Az élő sejt fizikai Biológiája: Egyensúlytól távoli folyamatok Wen et al. Nature nm-es lépések (egy triplett).78 s transzlokációs idő Transzlokációval csatolt helikáz aktivitás Titin: rugalmas molekuláris gyöngyfüzér Izomköteg Titinmolekula nanomechanikája lézercsipesszel Izomrost Erőválasz Erővezérelt szerkezetváltozások: Nemlineáris rugalmasságra szuperponált domén kitekeredés Összehúzódás Z Vékony filamentum Titin I-szakaszbeli szegmens M Szarkomer Vastag filamentum Miofibrillum Z A ~28 nm Nemlineáris rugalmasság Domén kitekeredés C Megnyúlás (µm) B F E D Nemlineáris rugalmasság A-B C D E F Ig-domén (7-szálú ß-hordó) tandem Ig-régió PEVKdomén tandem Ig-régió A domének egymás után, a mechanikai stabilitásuk növekvő sorrendjében tekerednek ki.

11 Erővezérelt fehérje-kitekeredés Titin I55-62 rekombináns fragmentum kitekerése G k off Fx ß Tranzíciós állapot Titin I55-62: viszkoelasztikus molekulaszakasz Az I55-62 fragmentum kitekeredési görbéje 2 Gyakoriság ΔL Natív állapot x ß F unf = k BT x β ln Kitekert állapot Reakció koordináta rx β k B T k unf ΔL Kitekeredési erő (pn) 4 2 pn Kitekerési erő 5 nm ΔL = 29,8 ± 3,5 nm 2 pn 5 nm ΔL = 29,8 ± 3,5 nm Mechanikai stabilitás alapja: Az Ig domén első és utolsó ß-láncait összetartó, párhuzamosan csatolt H-hidak A mechanikai stabilitás biológiai logikája Szerkezetet összetartó H-hidak párhuzamos csatolása Nagy kitereredési erő Titin nanomanipulálás erővisszacsatolt lézercsipesszel Referencia jel (erő) Csapdázott gyöngy Mozgatott gyöngy T12 anti-titin ellenanyaggal bevont gyöngy Mért jel (+/-) (erő) Σ Szerkezetet összetartó H-hidak soros csatolása Alacsony kitereredési erő sulfo-sanpah keresztkötővel bevont latex gyöngy titin Feedback vezérlés mozgatható mikropipetta Vezérelt kimenet (+/-) (piezo mogás)

12 Konstans-erő kísérlet egyetlen titinmolekulán Titin kitekeredés konstans erőnél 3 Lépcsőméret eloszlás 28.2 ± 14.6 SD Megnyúlás (nm) Kvázi erőrámpa x1 6 Idő (1 3 s) ~2-perces adatsor High-force clamp Low-force clamp Kiteredési görbe Visszatekeredési görbe Megnyúlás (nm) Monoexponenciális Singleexponential görbeillesztés fit Megnyúlás (nm) ~28 nm lépcsők x x1 3 A várttól eltérések mutatkoznak a lépcsőméret eloszlásban, a monoexponenciális idő-megnyúlás görbe lefutásában és az erőfüggő sebességi állandó összefüggésben. Freqency Rate constant (s -1 ) Megnyúláslépcsők többsége: egyedi doménkitekeredési esemény Step size (nm) Erőfüggő sebességi állandók Feedback force (pn) Megnyúlás (µm) Doménkitekeredés hirtelen ugrásokban Kitekeredési ugrások Doméncsoportok korrelált szerkezeti elrendeződést mutatnak fej farok 1.6 Topografikus magasság (nm) Autokorreláció függvény Axiális távolság (nm) Kellermayer et al. BBA Bioenergetics doménből álló csoportok kooperatíven tekeredhetnek ki. Megnyúlás (µm) Szerkezeti átmenetek alacsony erőnél Nagy lépcső (>1 nm) Elsimult átmenet Az elsimult és nagy, lépcsőszerű átmeneteket a PEVK doménben kialakuló rövid- és hosszútávú elektrosztatikus kölcsönhatások okozhatják, amelyek a mechanikai fáradás alapjául szolgálnak. 8 pn 7 pn 6 pn 5 pn 4 pn 3 pn 2 pn 1 pn 5 pn Molekuláris fáradás Domén kitekered és Sima Nagy lépcső T12 9D1 (PEVK) Megnyúlás (μm) Z Trombitás et al. J. Struct. Biol Titin T12 és 9D1 ellenanyagokkal megragadva Megnyúlás (μm)

13 Megnyúlás (nm) Titin gombolyodás konstans erőnél Kitekert állapot Gyors kontrakció (entrópikus kollapszus) Szerkezeti fluktuációk (A fázis időtartama rövidül az erő csökkenésével) Végső kontrakció (ritkán tapasztalható) Teljesen feltekert állapot x1 3 Az erőt ~3 pn alá kell csökkenteni jelentős domén visszatekeredéshez. A fluktuáció diffuzív keresés a konformációs térben. Részleges viszatekeredés: doméncsoportok kooperatívan tekeredhetnek. Kitekeredés Megnyúlás (μm) Megnyúlás (μm) Fluktuációk Domén unfolding ~7 nm 4 pn Fluktuációk Részleges refolding Megnyúlás (nm) A visszatekeredési útvonal változatos még egyetlen molekula esetén is x1 3 Erővezérelt ki- és visszatekeredés Titinben: -Kooperatív kitekeredés -Mechanikai fáradás -Diffuzív keresés a konformációs térben -Kooperatív visszatekeredés -Mechanikai erő és random fehérjeszakaszok modulálhatják a gombolyodás folyamatát

Az élő sejt fizikai Biológiája: motorfehérjék, egyensúlytól távoli folyamatok

Az élő sejt fizikai Biológiája: motorfehérjék, egyensúlytól távoli folyamatok Tematika Az élő sejt fizikai Biológiája: motorfehérjék, egyensúlytól távoli folyamatok Kellermayer Miklós Motorfehérjék működése. A munkaciklus Egyensúlytól távoli folyamatok. Erővezérelt fehérjegombolyodás.

Részletesebben

Polimerlánc egyensúlyi alakja. Féregszerű polimermodell (Wormlike chain) WLC (wormlike chain): Entropikus rugalmasság vizualizálása

Polimerlánc egyensúlyi alakja. Féregszerű polimermodell (Wormlike chain) WLC (wormlike chain): Entropikus rugalmasság vizualizálása Polimerlánc egyensúlyi alakja Az a makroállapot, amely a legtöbb mikroállapottal valósítható meg (legvalószínűbb állapot) DNS molekulák fluoreszcencia mikroszkóp alatt Féregszerű polimermodell (Wormlike

Részletesebben

Az élő sejt fizikai Biológiája: TERMODINAMIKAI ÁRAMOK. Tematika ANYAGÁRAM (DIFFÚZIÓ) Diffúzió, polimerizáció, reptáció. Kellermayer Miklós

Az élő sejt fizikai Biológiája: TERMODINAMIKAI ÁRAMOK. Tematika ANYAGÁRAM (DIFFÚZIÓ) Diffúzió, polimerizáció, reptáció. Kellermayer Miklós Tematika Az élő sejt fizikai Biológiája: Diffúzió, polimerizáció, reptáció Diffúzió, diffúzió-vezérelt folyamatok Biopolimérek dinamikája. Polimerizáció, depolimerizáció Polimérek diffúziója. Reptáció.

Részletesebben

Biomolekulák nanomechanikája A biomolekuláris rugalmasság alapjai

Biomolekulák nanomechanikája A biomolekuláris rugalmasság alapjai Fogorvosi Anyagtan Fizikai Alapjai Biomolekulák nanomechanikája A biomolekuláris rugalmasság alapjai Mártonfalvi Zsolt Biofizikai és Sugárbiológiai Intézet Semmelweis Egyetem Budapest Biomolekulák mint

Részletesebben

Miért egyedi molekulák? Miért egyedi molekulák? Biomolekulák és sejtek mechanikai tulajdonságai. Élő sejtben: molekulagépezetek sokasága

Miért egyedi molekulák? Miért egyedi molekulák? Biomolekulák és sejtek mechanikai tulajdonságai. Élő sejtben: molekulagépezetek sokasága Élő sejtben: molekulagépezetek sokasága Biomolekulák és sejtek mechanikai tulajdonságai Tovakúszó keratinocita Mikrotubulus dinamikus instabilitás Kellermayer Miklós Semmelweis Egyetem Biofizikai és Sugárbiológiai

Részletesebben

Miért egyedi molekulák?

Miért egyedi molekulák? Soroljon fel 3 olyan tulajdonságot, ami csak a vízre jellemző! Biomolekulák és sejtek mechanikai tulajdonságai Kellermayer Miklós Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Élő sejtben: molekulagépezetek

Részletesebben

11/15/10! A CITOSZKELETÁLIS RENDSZER! Polimerizáció! Polimerizációs egyensúly! Erő iránya szerint:! 1. valódi egyensúly (aktin)" Polimer mechanika!

11/15/10! A CITOSZKELETÁLIS RENDSZER! Polimerizáció! Polimerizációs egyensúly! Erő iránya szerint:! 1. valódi egyensúly (aktin) Polimer mechanika! 11/15/10! A CITOSZKELETÁLIS RENDSZER! 1. Mi a citoszkeleton?! 2. Polimerizáció, polimerizációs egyensúly! 3. Filamentumok osztályozása! Citoszkeleton : Eukariota sejtek dinamikus vázrendszere! Három fő

Részletesebben

Citoszkeleton. Sejtek rugalmassága. Polimer mechanika: Hooke-rugalmasság. A citoszkeleton filamentumai. Fogászati anyagtan fizikai alapjai 12.

Citoszkeleton. Sejtek rugalmassága. Polimer mechanika: Hooke-rugalmasság. A citoszkeleton filamentumai. Fogászati anyagtan fizikai alapjai 12. Fogászati anyagtan fizikai alapjai 12. Sejtek rugalmassága Citoszkeleton Eukariota sejtek dinamikus vázrendszere Három fő filamentum-osztály: A. Vékony (aktin) B. Intermedier C. Mikrotubulus Polimerizáció:

Részletesebben

Egyedi molekula vizsgálatok

Egyedi molekula vizsgálatok Élő sejtben: molekulagépezetek sokasága Egyedi molekula vizsgálatok Kellermayer Miklós Tovakúszó keratinocita Mikrotubulus dinamikus instabilitás Vezikulum transzport kinezinnel Fehérjeszintézis riboszómán

Részletesebben

Az élő sejt fizikai Biológiája Kellermayer Miklós

Az élő sejt fizikai Biológiája Kellermayer Miklós Fizikai biológia Az élő sejt fizikai Biológiája Kellermayer Miklós Ma már nem csak kvalitatív megfigyeléseket, hanem kvantitatív méréseket végzünk (biológiai adatok kvantitatív adatok). Kvantitatív adatokból

Részletesebben

Nanomedicina Szimpózium, 2008. Nanomechanika: Egyedi Biomolekulák Manipulálása. Kellermayer Miklós

Nanomedicina Szimpózium, 2008. Nanomechanika: Egyedi Biomolekulák Manipulálása. Kellermayer Miklós Nanomedicina Szimpózium, 28 Nanomechanika: Egyedi Biomolekulák Manipulálása Kellermayer Miklós Semmelweis Egyetem Általános Orvostudományi Kar Biofizikai és Sugárbiológiai Intézet ÉLŐ SEJTBEN: BONYOLULT

Részletesebben

A biológiai mozgás molekuláris mechanizmusai

A biológiai mozgás molekuláris mechanizmusai BIOLÓGIAI MOZGÁSOK A biológiai mozgás molekuláris mechanizmusai Kollektív mozgás Szervezet mozgása ( Az évszázad ugrása ) Szerv mozgás BIOLÓGIAI MOZGÁSOK BIOLÓGIAI MOZGÁSOK Ritmusosan összehúzódó szívizomsejt

Részletesebben

Tartalom. A citoszkeleton meghatározása. Citoszkeleton. Mozgás a biológiában A CITOSZKELETÁLIS RENDSZER 12/9/2016

Tartalom. A citoszkeleton meghatározása. Citoszkeleton. Mozgás a biológiában A CITOSZKELETÁLIS RENDSZER 12/9/2016 Tartalom A CITOSZKELETÁLIS RENDSZER Nyitrai Miklós, 2016 november 29. 1. Mi a citoszkeleton? 2. Polimerizáció, polimerizációs egyensúly 3. Filamentumok osztályozása 4. Motorfehérjék A citoszkeleton meghatározása

Részletesebben

A CITOSZKELETÁLIS RENDSZER (Nyitrai Miklós, )

A CITOSZKELETÁLIS RENDSZER (Nyitrai Miklós, ) A CITOSZKELETÁLIS RENDSZER (Nyitrai Miklós, 2010.11.30.) 1. Mi a citoszkeleton? 2. Polimerizá, polimerizás egyensúly 3. ilamentumok osztályozása 4. Motorfehérjék Citoszkeleton Eukariota sejtek dinamikus

Részletesebben

Dinamikus fehérjerendszerek a sejtben

Dinamikus fehérjerendszerek a sejtben BIOLÓGIAI MOZGÁSOK Dinamikus fehérjerendszerek a sejtben Ritmusosan összehúzódó szívizomsejt Osztódó sejt Kellermayer Miklós Axon (neurit) növekedés Mozgó spermatociták BIOLÓGIAI MOZGÁSOK A citoszkeletális

Részletesebben

A biológiai mozgások. Motorfehérjék. Motorfehérjék közös tulajdonságai 4/22/2015. A biológiai mozgás molekuláris mechanizmusai. Szerkezeti homológia

A biológiai mozgások. Motorfehérjék. Motorfehérjék közös tulajdonságai 4/22/2015. A biológiai mozgás molekuláris mechanizmusai. Szerkezeti homológia A biológiai mozgások Molekuláris mozgás A biológiai mozgás molekuláris mechanizmusai. Celluláris mozgás Mártonfalvi Zsolt Bakteriális flagellum Szervezet mozgása Keratocita mozgása felületen Motorfehérjék

Részletesebben

DNS, RNS, Fehérjék. makromolekulák biofizikája. Biológiai makromolekulák. A makromolekulák TÖMEG szerinti mennyisége a sejtben NAGY

DNS, RNS, Fehérjék. makromolekulák biofizikája. Biológiai makromolekulák. A makromolekulák TÖMEG szerinti mennyisége a sejtben NAGY makromolekulák biofizikája DNS, RNS, Fehérjék Kellermayer Miklós Tér Méret, alak, lokális és globális szerkezet Idő Fluktuációk, szerkezetváltozások, gombolyodás Kölcsönhatások Belső és külső kölcsöhatások,

Részletesebben

A biológiai mozgások. A biológiai mozgás molekuláris mechanizmusai. Motorfehérjék. Motorfehérjék közös tulajdonságai

A biológiai mozgások. A biológiai mozgás molekuláris mechanizmusai. Motorfehérjék. Motorfehérjék közös tulajdonságai A biológiai mozgások Molekuláris mozgás A biológiai mozgás molekuláris mechanizmusai Celluláris mozgás Mártonfalvi Zsolt Bakteriális flagellum Szervezet mozgása Keratocita mozgása felületen 1 Motorfehérjék

Részletesebben

A citoszkeletális rendszer, motorfehérjék.

A citoszkeletális rendszer, motorfehérjék. A citoszkeletális rendszer, motorfehérjék. SCIENCE PHOTO LIBRARY Huber Tamás 2012. 10. 15. Citoszkeleton: eukarióta sejtek dinamikus fehérjevázrendszere Három fő filamentum-osztály: A. Intermedier B. Mikrotubulus

Részletesebben

Dinamikus fehérjerendszerek a sejtben. Kellermayer Miklós

Dinamikus fehérjerendszerek a sejtben. Kellermayer Miklós Dinamikus fehérjerendszerek a sejtben Kellermayer Miklós BIOLÓGIAI MOZGÁSOK Ritmusosan összehúzódó szívizomsejt Osztódó sejt Axon (neurit) növekedés Mozgó spermatociták BIOLÓGIAI MOZGÁSOK Tovakúszó keratinocita

Részletesebben

A citoszkeletális rendszer, motorfehérjék.

A citoszkeletális rendszer, motorfehérjék. A citoszkeletális rendszer, motorfehérjék. Citoszkeleton: eukarióta sejtek dinamikus fehérjevázrendszere Három fő filamentum-osztály: A. Intermedier B. Mikrotubulus C. Mikrofilamentum SCIENCE PHOTO LIBRARY

Részletesebben

A citoszkeletális rendszer, a harántcsíkolt izom biofizikája.

A citoszkeletális rendszer, a harántcsíkolt izom biofizikája. A citoszkeletális rendszer, a harántcsíkolt izom biofizikája. SCIENCE PHOTO LIBRARY Kupi Tünde 2010. 10. 19. Citoszkeleton: eukarióta sejtek dinamikus fehérjevázrendszere Három fı filamentum-osztály: A.

Részletesebben

Rövid anyagtudomány. Biomolekulák és sejtek mechanikai tulajdonságai ÉL SEJT: MOLEKULAGÉPEZETEK SOKASÁGA MIÉRT EGYEDI MOLEKULÁK?

Rövid anyagtudomány. Biomolekulák és sejtek mechanikai tulajdonságai ÉL SEJT: MOLEKULAGÉPEZETEK SOKASÁGA MIÉRT EGYEDI MOLEKULÁK? Egészségügyi Mérnök MSc ÉL SEJT: MOLEKULAGÉPEZETEK SOKASÁGA Biomolekulák és sejtek mechanikai tulajdonságai Tovacsúszó keratinocita Mikrotubulus dinamikus instabilitás Kellermayer Miklós Semmelweis Egyetem

Részletesebben

A CITOSZKELETÁLIS RENDSZER FUTÓ KINGA

A CITOSZKELETÁLIS RENDSZER FUTÓ KINGA A CITOSZKELETÁLIS RENDSZER FUTÓ KINGA 2013.10.09. CITOSZKELETON - DEFINÍCIÓ Fehérjékből felépülő, a sejt vázát alkotó intracelluláris rendszer. Eukarióta és prokarióta sejtekben egyaránt megtalálható.

Részletesebben

Történeti áttekintés. Eukarióta. Prokarióta. A citoszkeletális rendszer. Motorfehérjék. A biológiai mozgás molekuláris mechanizmusai.

Történeti áttekintés. Eukarióta. Prokarióta. A citoszkeletális rendszer. Motorfehérjék. A biológiai mozgás molekuláris mechanizmusai. A citoszkeletális rendszer. Motorfehérjék. A biológiai mozgás molekuláris mechanizmusai. Előadásvázlat TK. 345-353. oldal citoszkeleton története polimer mechanika vizsgálómódszerek polimerizáció aktin

Részletesebben

Biofizika I 2013-2014 2014.12.02.

Biofizika I 2013-2014 2014.12.02. ÁTTEKINTÉS AZ IZOM TÍPUSAI: SZERKEZET és FUNKCIÓ A HARÁNTCSÍKOLT IZOM SZERKEZETE MŰKÖDÉSÉNEK MOLEKULÁRIS MECHANIZMUSA IZOM MECHANIKA Biofizika I. -2014. 12. 02. 03. Dr. Bugyi Beáta PTE ÁOK Biofizikai Intézet

Részletesebben

Transzportfolyamatok a mikroszkópikus méretskálán: Diffúzió, Brown-mozgás, ozmózis. A sejt méretskálája. Biomolekuláris rendszerek méretskálája

Transzportfolyamatok a mikroszkópikus méretskálán: Diffúzió, Brown-mozgás, ozmózis. A sejt méretskálája. Biomolekuláris rendszerek méretskálája Transzportfolyamatok a mikroszkópikus méretskálán: Diffúzió, Brown-mozgás, ozmózis Kellermayer Miklós Cary and Michael Huang (http://htwins.net) Biomolekuláris rendszerek méretskálája A sejt méretskálája

Részletesebben

A CITOSZKELETÁLIS RENDSZER Bugyi Beáta PTE ÁOK, Biofizikai Intézet. 9. A sejtmozgás mechanizmusai

A CITOSZKELETÁLIS RENDSZER Bugyi Beáta PTE ÁOK, Biofizikai Intézet. 9. A sejtmozgás mechanizmusai A CITOSZKELETÁLIS RENDSZER 2011. 05. 03. Bugyi Beáta PTE ÁOK, Biofizikai Intézet 9. A sejtmozgás mechanizmusai Sejtmozgás, motilitás 1. Sejten belüli, intracelluláris mozgás izom összehúzódás organellumok

Részletesebben

BIOMECHANIKA 2 Erőhatások eredete és következményei biológiai rendszerekben

BIOMECHANIKA 2 Erőhatások eredete és következményei biológiai rendszerekben BIOMECHANIKA 2 Erőhatások eredete és következményei biológiai rendszerekben A MOZGÁS MOLEKULÁRIS MECHANIZMUSAI MOLEKULÁRIS MOZGÁS MOTORFEHÉRJÉK DR. BUGYI BEÁTA - BIOFIZIKA ELŐADÁS PÉCSI TUDOMÁNYEGYETEM

Részletesebben

A motorfehérjék definíciója. A biológiai motorok 12/9/2016. Motorfehérjék. Molekuláris gépek. A biológiai mozgás

A motorfehérjék definíciója. A biológiai motorok 12/9/2016. Motorfehérjék. Molekuláris gépek. A biológiai mozgás A motorfehérjék definíciója Motorfehérjék Nyitrai Miklós, 2016 november 30. Molekuláris gépek A molekuláris mozgások alapját gyakran motor fehérjék biztosítják. Megértésük a biológia egyik súlyponti kérdése;

Részletesebben

Kollár Veronika

Kollár Veronika A harántcsíkolt izom szerkezete, az izommőködés és szabályozás molekuláris alapjai Kollár Veronika 2010. 11. 11. Az izom citoszkeletális filamentumok és motorfehérjék rendezett összeszervezıdésébıl álló

Részletesebben

A citoszkeleton Eukarióta sejtváz

A citoszkeleton Eukarióta sejtváz A citoszkeleton Eukarióta sejtváz - Alak és belső szerkezet - Rugalmas struktúra sejt izomzat - Fehérjékből épül fel A citoszkeleton háromféle filamentumból épül fel Intermedier filamentum mikrotubulus

Részletesebben

A citoszkeletális rendszer

A citoszkeletális rendszer A citoszkeletális rendszer Az eukarióta sejtek dinamikus fehérje-vázrendszere, amely specifikus fehérjepolimer filamentumokból épül fel. Mikrofilamentumok Mikrotubulusok Intermedier filamentumok Aktin

Részletesebben

A citoszkeleton. A citoszkeleton, a motorfehérjék, az izom és működésének szabályozása. A citoszkeleton. A citoszkeleton.

A citoszkeleton. A citoszkeleton, a motorfehérjék, az izom és működésének szabályozása. A citoszkeleton. A citoszkeleton. , a motorfehérjék, az izom és működésének szabályozása PTE ÁOK Biofizikai Intézet Ujfalusi Zoltán 2012. január-február Eukarióta sejtek dinamikus vázrendszere Három fő filamentum-osztály: 1. Intermedier

Részletesebben

Sejtciklus. Sejtciklus. Centriólum ciklus (centroszóma ciklus) A sejtosztódás mechanizmusa. Mikrotubulusok és motor fehérjék szerepe a mitózisban

Sejtciklus. Sejtciklus. Centriólum ciklus (centroszóma ciklus) A sejtosztódás mechanizmusa. Mikrotubulusok és motor fehérjék szerepe a mitózisban A sejtosztódás mechanizmusa Mikrotubulusok és motor fehérjék szerepe a mitózisban 2010.03.23. Az M fázis alatti események: mag osztódása (mitózis) mitotikus orsó: MT + MAP (pl. motorfehérjék) citoplazma

Részletesebben

Az élő sejt fizikai Biológiája:

Az élő sejt fizikai Biológiája: Az élő sejt fizikai Biológiája: Modellépítés, biológiai rendszerek skálázódása Kellermayer Miklós Fizikai biológia Ma már nem csak kvalitatív megfigyeléseket, hanem kvantitatív méréseket végzünk (biológiai

Részletesebben

Sejtmozgás és adhézió Molekuláris biológia kurzus 8. hét. Kun Lídia Genetikai, Sejt és Immunbiológiai Intézet

Sejtmozgás és adhézió Molekuláris biológia kurzus 8. hét. Kun Lídia Genetikai, Sejt és Immunbiológiai Intézet Sejtmozgás és adhézió Molekuláris biológia kurzus 8. hét Kun Lídia Genetikai, Sejt és Immunbiológiai Intézet Sejtmozgás -amőboid - csillós - kontrakció Sejt adhézió -sejt-ecm -sejt-sejt MOZGÁS A sejtmozgás

Részletesebben

A víz biofizikája O H H. Water. A vízmolekula szerkezete I.

A víz biofizikája O H H. Water. A vízmolekula szerkezete I. Újsághír Az Eagle Rock középiskola diákja nyerte el az első díjat az április 26-án megrendezett Idaho Falls középiskolai Tudományos Konferencián. Dolgozatával azt akarta bemutatni, mennyire ráhangolódtak

Részletesebben

BIOMECHANIKA 3 Erőhatások eredete és következményei biológiai rendszerekben

BIOMECHANIKA 3 Erőhatások eredete és következményei biológiai rendszerekben BIOMECHANIKA 3 Erőhatások eredete és következményei biológiai rendszerekben A MOZGÁS MOLEKULÁRIS MECHANIZMUSAI SZERVEZET SZINTŰ MOZGÁS AZ IZOMMŰKÖDÉS MOLEKULÁRIS MECHANIZMUSAI DR. BUGYI BEÁTA- BIOFIZIKA

Részletesebben

Makromolekulák. Fehérjetekeredé. rjetekeredés. Biopolimer. Polimerek

Makromolekulák. Fehérjetekeredé. rjetekeredés. Biopolimer. Polimerek Biopolimerek Makromolekulá Makromolekulák. Fehé Fehérjetekeredé rjetekeredés. Osztódó sejt magorsófonala 2011. November 16. Huber Tamá Tamás Dohány levél epidermális sejtjének aktin hálózata Bakteriofágból

Részletesebben

Speciális fluoreszcencia spektroszkópiai módszerek

Speciális fluoreszcencia spektroszkópiai módszerek Speciális fluoreszcencia spektroszkópiai módszerek Fluoreszcencia kioltás Fluoreszcencia Rezonancia Energia Transzfer (FRET), Lumineszcencia A molekuláknak azt a fényemisszióját, melyet a valamilyen módon

Részletesebben

Biofizika I 2013-2014 2014.12.03.

Biofizika I 2013-2014 2014.12.03. Biofizika I. -2014. 12. 02. 03. Dr. Bugyi Beáta PTE ÁOK Biofizikai Intézet A KERESZTHÍD CIKLUSHOZ KAPCSOLÓDÓ ERŐKIEJTÉS egy kereszthíd ciklus során a miozin II fej elmozdulása: í ~10 nm 10 10 egy kereszthíd

Részletesebben

Fizikai biológia. Modellépítés kiinduló szempontjai. Mitől élő az élő? Az élő sejt fizikai Biológiája

Fizikai biológia. Modellépítés kiinduló szempontjai. Mitől élő az élő? Az élő sejt fizikai Biológiája Fizikai biológia Az élő sejt fizikai Biológiája Kellermayer Miklós Ma már nem csak kvalitatív megfigyeléseket, hanem kvantitatív méréseket végzünk (biológiai adatok kvantitatív adatok). Kvantitatív adatokból

Részletesebben

A harántcsíkolt izom struktúrája általános felépítés

A harántcsíkolt izom struktúrája általános felépítés harántcsíkolt izom struktúrája általános felépítés LC-2 Izom LC1/3 Izom fasciculus LMM S-2 S-1 HMM rod Miozin molekula S-1 LMM HMM S-2 S-1 Izomrost H Band Z Disc csík I csík M Z-Szarkomér-Z Miofibrillum

Részletesebben

Motorfehérjék november 30.; Nyitrai

Motorfehérjék november 30.; Nyitrai Motorfehérjék 2011. november 30.; Nyitrai Molekuláris gépek A molekuláris mozgások alapját gyakran motor fehérjék biztosítják. Megértésük a biológia egyik súlyponti kérdése; Gépek a mikro/nano-világban

Részletesebben

Biopolimer 12/7/09. Makromolekulák szerkezete. Fehérje szerkezet, és tekeredés. DNS. Polimerek. Kardos Roland DNS elsődleges szerkezete

Biopolimer 12/7/09. Makromolekulák szerkezete. Fehérje szerkezet, és tekeredés. DNS. Polimerek. Kardos Roland DNS elsődleges szerkezete Biopolimerek Makromolekulák szerkezete. Fehérje szerkezet, és tekeredés. Osztódó sejt magorsófonala Kardos Roland 2009.10.29. Dohány levél epidermális sejtjének aktin hálózat Bakteriofágból kiszabaduló

Részletesebben

A citoszkeletális rendszer

A citoszkeletális rendszer A citoszkeletális rendszer A citoszkeletális filamentumok típusai, polimerizációja, jellemzıik, mechanikai tulajdonságaik. Asszociált fehérjék 2013.09.24. Citoszkeleton Fehérjékbıl felépülı, a sejt vázát

Részletesebben

A citoszkeleton. A citoszkeleton, a motorfehérjék, az izom és működésének szabályozása. A citoszkeleton. A citoszkeleton. Az aktin.

A citoszkeleton. A citoszkeleton, a motorfehérjék, az izom és működésének szabályozása. A citoszkeleton. A citoszkeleton. Az aktin. , a motorfehérjék, az izom és működésének szabályozása PTE ÁOK Biofizikai Intézet Ujfalusi Zoltán 2011. január-február Eukarióta sejtek dinamikus vázrendszere Három fő filamentum-osztály: 1. Intermedier

Részletesebben

A titin PEVK domén aktinkötő és mechanikai tulajdonságai

A titin PEVK domén aktinkötő és mechanikai tulajdonságai PhD értekezés A titin PEVK domén aktinkötő és mechanikai tulajdonságai Nagy Attila Pécsi Tudományegyetem Általános Orvostudományi Kar Biofizikai Intézet Pécs 2006 A program megnevezése: Programvezető:

Részletesebben

Biomolekulák mint polimerek. Milyen alakúak a biopolimerek? 4/22/2015. Biopolimerek osztályozása hajlékonyságuk alapján

Biomolekulák mint polimerek. Milyen alakúak a biopolimerek? 4/22/2015. Biopolimerek osztályozása hajlékonyságuk alapján 4/22/2015 Orvosi Biofizika II. Biomechanika Biomolekuláris és szöveti rugalmasság Mártonfalvi Zsolt Biomolekulák mint polimerek A biomolekulák polimerek. Közös bennük: Lineáris elsődleges szerkezet (fehérje,

Részletesebben

Orvosi Biofizika II. A Biomechanika története. Mechanikai alapok. Biomechanika: Biomolekuláris és szöveti rugalmasság

Orvosi Biofizika II. A Biomechanika története. Mechanikai alapok. Biomechanika: Biomolekuláris és szöveti rugalmasság Orvosi Biofizika II. Biomechanika: Biomolekuláris és szöveti rugalmasság 1. Történeti áttekintés 2. Mechanikai alapok 3. Celluláris biomechanika 4. Szöveti biomechanika 5. Molekuláris biomechanika Kellermayer

Részletesebben

Tubulin, mikrotubuláris rendszer és mikrotubulus asszociált fehérjék

Tubulin, mikrotubuláris rendszer és mikrotubulus asszociált fehérjék Tubulin, mikrotubuláris rendszer és mikrotubulus asszociált fehérjék Talián Csaba Gábor PTE ÁOK, Biofizika Intézet 2011. február 22. Transzmissziós elektronmikroszkópos felvétel egy Heliozoa axopódiumának

Részletesebben

2. AKTIN-KÖTŐ FEHÉRJÉK

2. AKTIN-KÖTŐ FEHÉRJÉK A CITOSZKELETÁLIS RENDSZER 2011. 02. 15. Bugyi Beáta PTE ÁOK, Biofizikai Intézet 2. AKTIN-KÖTŐ FEHÉRJÉK Citoszkeletális aktin HEp-2 sejtekben - rodamin-falloidin jelölés forrás: Nyitrai Miklós, Grama László,

Részletesebben

Biofizika szeminárium. Diffúzió, ozmózis

Biofizika szeminárium. Diffúzió, ozmózis Biofizika szeminárium Diffúzió, ozmózis I. DIFFÚZIÓ ORVOSI BIOFIZIKA tankönyv: III./2 fejezet Részecskék mozgása Brown-mozgás Robert Brown o kísérlet: pollenszuszpenzió mikroszkópos vizsgálata o megfigyelés:

Részletesebben

Biofizika I

Biofizika I ÁTTEKINTÉS AZ IZOM 9. A HARÁNTCSÍKOLT IZOM SZERKEZETE ÉS MECHANIKÁJA 10. AZ IZOMMŰKÖDÉS ÉS SZABÁLYOZÁS MOLEKULÁRIS ALAPJAI TÍPUSAI: SZERKEZET és FUNKCIÓ MŰKÖDÉSÉNEK MOLEKULÁRIS MECHANIZMUSAI MECHANIKAI

Részletesebben

MEDICINÁLIS ALAPISMERETEK BIOKÉMIA AZ IZOMMŰKÖDÉS 1. kulcsszó cím: A SZERVEZETBEN ELŐFORDULÓ IZOM- SZÖVETEK TÍPUSAI 1. képernyő cím: Sima izomszövet

MEDICINÁLIS ALAPISMERETEK BIOKÉMIA AZ IZOMMŰKÖDÉS 1. kulcsszó cím: A SZERVEZETBEN ELŐFORDULÓ IZOM- SZÖVETEK TÍPUSAI 1. képernyő cím: Sima izomszövet Modul cím: MEDICINÁLIS ALAPISMERETEK BIOKÉMIA AZ IZOMMŰKÖDÉS 1. kulcsszó cím: A SZERVEZETBEN ELŐFORDULÓ IZOM- SZÖVETEK TÍPUSAI 1. képernyő cím: Sima izomszövet G001 akaratunktól függetlenül működik; lassú,

Részletesebben

Orvosi Biofizika. Tematika. Biomolekuláris rendszerek mérettartománya. A tudományos igazság alapja Termodinamika. Komplexitás. Kellermayer Miklós

Orvosi Biofizika. Tematika. Biomolekuláris rendszerek mérettartománya. A tudományos igazság alapja Termodinamika. Komplexitás. Kellermayer Miklós Tematika Orvosi Biofizika Kellermayer Miklós Bevezetés. Az élő anyag szerkezete. Sugárzások. Lumineszcencia Röntgensugárzás Radioaktivitás, dozimetria. Hang, ultrahang. Biomolekuláris rendszerek vizsgálata.

Részletesebben

Tubulin, mikrotubuláris rendszer és mikrotubulus asszociált fehérjék

Tubulin, mikrotubuláris rendszer és mikrotubulus asszociált fehérjék Tubulin, mikrotubuláris rendszer és mikrotubulus asszociált fehérjék Talián Csaba Gábor PTE ÁOK, Biofizika Intézet 2012. február 21. Transzmissziós elektronmikroszkópos felvétel egy Heliozoa axopódiumának

Részletesebben

Makromolekulák. Biológiai makromolekulák. Peptidek és fehérjék. Biológiai polimerek. Nukleinsavak (DNS vagy RNS) Poliszacharidok. Peptidek és fehérjék

Makromolekulák. Biológiai makromolekulák. Peptidek és fehérjék. Biológiai polimerek. Nukleinsavak (DNS vagy RNS) Poliszacharidok. Peptidek és fehérjék Biológiai makromolekulák Makromolekulák A makromolekulák agyszámba ismétlődő, kovales kötéssel összekapcsolt kis egységekből (molekulából) felépülő egységek. Típusok: Szitetikus polimerek Pl. poly(viyl

Részletesebben

Víz. A víz biofizikája. A vízmolekula szerkezete. A vízmolekula dinamikája. Forgó-rezgő mozgás

Víz. A víz biofizikája. A vízmolekula szerkezete. A vízmolekula dinamikája. Forgó-rezgő mozgás Víz A víz biofizikája Inspiráció forrása (zene, festészet). Thales (Kr. e. 580):...a víz minden dolgok forrása... Henry Cavendish (1783): a víz H2O. Egyedüli vegyület, amely a természetben mindhárom halmazállapotban

Részletesebben

Fehérjeszerkezet, és tekeredés

Fehérjeszerkezet, és tekeredés Fehérjeszerkezet, és tekeredés Futó Kinga 2013.10.08. Polimerek Polimer: hasonló alegységekből (monomer) felépülő makromolekulák Alegységek száma: tipikusan 10 2-10 4 Titin: 3,435*10 4 aminosav C 132983

Részletesebben

Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET) Modern Biofizikai Kutatási Módszerek

Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET) Modern Biofizikai Kutatási Módszerek Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET) Modern Biofizikai Kutatási Módszerek 2012. 11. 08. Fotonok és molekulák ütközése Fény (foton) ütközése a molekulákkal fényszóródás abszorpció E=hν

Részletesebben

Bio-nanorendszerek. Vonderviszt Ferenc. Pannon Egyetem Nanotechnológia Tanszék

Bio-nanorendszerek. Vonderviszt Ferenc. Pannon Egyetem Nanotechnológia Tanszék Bio-nanorendszerek Vonderviszt Ferenc Pannon Egyetem Nanotechnológia Tanszék Technológia: képesség az anyag szerkezetének, az anyagot felépítő részecskék elrendeződésének befolyásolására. A technológiai

Részletesebben

Hemoglobin - myoglobin. Konzultációs e-tananyag Szikla Károly

Hemoglobin - myoglobin. Konzultációs e-tananyag Szikla Károly Hemoglobin - myoglobin Konzultációs e-tananyag Szikla Károly Myoglobin A váz- és szívizom oxigén tároló fehérjéje Mt.: 17.800 153 aminosavból épül fel A lánc kb 75 % a hélix 8 db hélix, köztük nem helikális

Részletesebben

A víz biofizikája. Víz. A vízmolekula szerkezete. Újsághír. Egy (1) tudta mindössze, hogy a vízről van szó...

A víz biofizikája. Víz. A vízmolekula szerkezete. Újsághír. Egy (1) tudta mindössze, hogy a vízről van szó... Újsághír Az Eagle Rock középiskola diákja nyerte el az első díjat az április 26-án megrendezett Idaho Falls középiskolai Tudományos Konferencián. Dolgozatával azt akarta bemutatni, mennyire ráhangolódtak

Részletesebben

Biokémiai kutatások ma

Biokémiai kutatások ma Nyitray László Biokémiai Tanszék Hb Biokémiai kutatások ma Makromolekulák szerkezet-funkció kutatása Molekuláris biológia minden szinten Redukcionista molekuláris biológia vs. holisztikus rendszerbiológia

Részletesebben

2011. október 11. Szabad János

2011. október 11. Szabad János 2011. október 11 Szabad János szabad@mdbio.szote.u-szeged.hu Egy állatsejt szervez dése - Export a sejtmagból a citoplazmába - Import a citoplazmából a sejtmagba - Import a sejtszervecskékbe - A szekréciós

Részletesebben

Evans-Searles fluktuációs tétel Crooks fluktuációs tétel Jarzynski egyenlőség

Evans-Searles fluktuációs tétel Crooks fluktuációs tétel Jarzynski egyenlőség Evans-Searles fluktuációs tétel Crooks fluktuációs tétel Jarzynski egyenlőség Osváth Szabolcs Evans-Searles fluktuációs tétel Denis J Evans, Ezechiel DG Cohen, Gary P Morriss (1993) Denis J Evans, Debra

Részletesebben

Tudjunk Egymásról Bugyi Beáta 22/11/2012

Tudjunk Egymásról Bugyi Beáta 22/11/2012 Listeria monocytogenes Loisel, Boujemaa et al. Nature 1999 Összetett aktin hálózatok Spire/formin szinergia Reymann et al. Nature Materials 1 ADF/aktin Bosch, Bugyi B et al. Molecular Cell 7 Reymann et

Részletesebben

Hajdú Angéla

Hajdú Angéla 2012.02.22 Varga Zsófia zsofiavarga81@gmail.com Hajdú Angéla angela.hajdu@net.sote.hu 2012.02.22 Mai kérdés: Azt tapasztaljuk, hogy egy bizonyos fajta molekulának elkészített oldata áteső napfényben színes.

Részletesebben

Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET)

Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET) Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET) Biofizika szeminárium PTE ÁOK Biofizikai Intézet Huber Tamás 2014. 02. 11-13. A gerjesztett állapotú elektron lecsengési lehetőségei Gerjesztés Fluoreszcencia

Részletesebben

összetevője változatlan marad, a falra merőleges összetevő iránya ellenkezőjére változik, miközben nagysága ugyanakkora marad.

összetevője változatlan marad, a falra merőleges összetevő iránya ellenkezőjére változik, miközben nagysága ugyanakkora marad. A termodinamika 2. főtétele kis rendszerekben Osváth Szabolcs Semmelweis Egyetem Statisztikus sokaságok Nyomás Nyomás: a tartály falával ütköző molekulák, a falra erőt fejtenek ki Az ütközésben a részecske

Részletesebben

Jellemzői: általában akaratunktól függően működik, gyors, nagy erőkifejtésre képes, fáradékony.

Jellemzői: általában akaratunktól függően működik, gyors, nagy erőkifejtésre képes, fáradékony. Izomszövetek Szerkesztette: Vizkievicz András A citoplazmára általában jellemző összehúzékonyság (kontraktilitás) az izomszövetekben különösen nagymértékben fejlődött ki. Ennek oka, hogy a citoplazma összehúzódásáért

Részletesebben

Anyagok az energetikában

Anyagok az energetikában Anyagok az energetikában BMEGEMTBEA1, 6 krp (3+0+2) Környezeti tényezők hatása, időfüggő mechanikai tulajdonságok Dr. Tamás-Bényei Péter 2018. szeptember 19. Ütemterv 2 / 20 Dátum 2018.09.05 2018.09.19

Részletesebben

Fémtechnológiák Fémek képlékeny alakítása 1. Mechanikai alapfogalmak, anyagszerkezeti változások

Fémtechnológiák Fémek képlékeny alakítása 1. Mechanikai alapfogalmak, anyagszerkezeti változások Miskolci Egyetem Műszaki Anyagtudományi Kar Anyagtudományi Intézet Fémtechnológiák Fémek képlékeny alakítása 1. Mechanikai alapfogalmak, anyagszerkezeti változások Dr.Krállics György krallics@eik.bme.hu

Részletesebben

Fluoreszcencia 2. (Kioltás, Anizotrópia, FRET)

Fluoreszcencia 2. (Kioltás, Anizotrópia, FRET) Fluoreszcencia 2. (Kioltás, Anizotrópia, FRET) Gerjesztés A gerjesztett állapotú elektron lecsengési lehetőségei Fluoreszcencia 10-9 s k f Foszforeszcencia 10-3 s k ph 10-15 s Fizika-Biofizika 2. Huber

Részletesebben

A diffúzió leírása az anyagmennyiség időbeli változásával A diffúzió leírása a koncentráció térbeli változásával

A diffúzió leírása az anyagmennyiség időbeli változásával A diffúzió leírása a koncentráció térbeli változásával Kapcsolódó irodalom: Kapcsolódó multimédiás anyag: Az előadás témakörei: 1.A diffúzió fogalma 2. A diffúzió biológiai jelentősége 3. A részecskék mozgása 3.1. A Brown mozgás 4. Mitől függ a diffúzió erőssége?

Részletesebben

Abszorpció, emlékeztetõ

Abszorpció, emlékeztetõ Hogyan készültek ezek a képek? PÉCI TUDMÁNYEGYETEM ÁLTALÁN RVTUDMÁNYI KAR Fluoreszcencia spektroszkópia (Nyitrai Miklós; február.) Lumineszcencia - elemi lépések Abszorpció, emlékeztetõ Energia elnyelése

Részletesebben

A sejtváz. Mikrotubulusok (25 nm átmérő) Mikrofilamentumok (7 nm átmérő) Intermedier filamentumok (8-12 nm átmérő)

A sejtváz. Mikrotubulusok (25 nm átmérő) Mikrofilamentumok (7 nm átmérő) Intermedier filamentumok (8-12 nm átmérő) A sejtváz A citoszkeleton, vagy sejtváz kötegek hálózatából felépülő struktúra, mely a sejt szilárdításán, alakjának biztosításán túl, a mozgásban, a szállításban is szerepet játszik. Három molekuláris

Részletesebben

Szívelektrofiziológiai alapjelenségek. Dr. Tóth András 2018

Szívelektrofiziológiai alapjelenségek. Dr. Tóth András 2018 Szívelektrofiziológiai alapjelenségek 1. Dr. Tóth András 2018 Témák Membrántranszport folyamatok Donnan egyensúly Nyugalmi potenciál 1 Transzmembrán transzport A membrántranszport-folyamatok típusai J:

Részletesebben

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció

Részletesebben

Vérkeringés. A szív munkája

Vérkeringés. A szív munkája Vérkeringés. A szív munkája 2014.11.04. Keringési Rendszer Szív + erek (artériák, kapillárisok, vénák) alkotta zárt rendszer. Funkció: vér pumpálása vér áramlása az erekben oxigén és tápanyag szállítása

Részletesebben

Flagellin alapú filamentáris nanoszerkezetek létrehozása

Flagellin alapú filamentáris nanoszerkezetek létrehozása Flagellin alapú filamentáris nanoszerkezetek létrehozása Vonderviszt Ferenc PE MÜKKI Bio-Nanorendszerek Laboratórium MTA Enzimológiai Intézete MTA MFA Bakteriális flagellumok Flagelláris filamentum: ~10

Részletesebben

Sejt. Aktin működés, dinamika plus / barbed end pozitív / szakállas vég 1. nukleáció 2. elongáció (hosszabbodás) 3. dinamikus egyensúly

Sejt. Aktin működés, dinamika plus / barbed end pozitív / szakállas vég 1. nukleáció 2. elongáció (hosszabbodás) 3. dinamikus egyensúly Biofizikai módszerek a citoszkeleton vizsgálatára I: Kinetikai és steady-state spektroszkópiai módszerek Sejt Citoszkeletális rendszerek Orbán József, 2014 április Institute of Biophysics Citoszkeleton:

Részletesebben

Diffúzió. Diffúzió sebessége: gáz > folyadék > szilárd (kötőerő)

Diffúzió. Diffúzió sebessége: gáz > folyadék > szilárd (kötőerő) Diffúzió Diffúzió - traszportfolyamat (fonon, elektron, atom, ion, hőmennyiség...) Elektromos vezetés (Ohm) töltés áram elektr. potenciál grad. Hővezetés (Fourier) energia áram hőmérséklet különbség Kémiai

Részletesebben

Komplex egyszerű Aktin alapú mikrofilamentum rsz. Hogyan vizsgálhatunk folyamatokat? Komplex egyszerű S E J T

Komplex egyszerű Aktin alapú mikrofilamentum rsz. Hogyan vizsgálhatunk folyamatokat? Komplex egyszerű S E J T Biofizikai módszerek a citoszkeleton vizsgálatára I. Kinetikai, steady-state módszerek, spektroszkópiai vizsgálatok Komplex egyszerű S E J T A citoszkeletális rendszer Orbán József, 213 Április Aktin citoszkeleton

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk

Részletesebben

SEMMELWEIS EGYETEM. Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatócsoport. Zrínyi Miklós

SEMMELWEIS EGYETEM. Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatócsoport. Zrínyi Miklós SEMMELWEIS EGYETEM Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatósoport Transzportjelenségek az élő szervezetben I. Zrínyi Miklós egyetemi tanár, az MTA levelező tagja mikloszrinyi@gmail.om RENDSZER

Részletesebben

2013. 09. 02. www.biofizika.aok.pte.hu Biofizika I. Kötelező tantárgy Tantárgyfelelős: Dr. Nyitrai Miklós Heti 2 óra előadás, 2 óra gyakorlat Félévközi számonkérés: Egy írásbeli dolgozat Félév végi vizsga:kollokvium

Részletesebben

Egy idegsejt működése. a. Nyugalmi potenciál b. Transzport proteinek c. Akciós potenciál

Egy idegsejt működése. a. Nyugalmi potenciál b. Transzport proteinek c. Akciós potenciál Egy idegsejt működése a. Nyugalmi potenciál b. Transzport proteinek c. Akciós potenciál Nyugalmi potenciál Az ionok vándorlása 5. Alacsonyabb koncentráció ioncsatorna membrán Passzív Aktív 3 tényező határozza

Részletesebben

a. Nyugalmi potenciál b. Transzport proteinek c. Akciós potenciál. Nyugalmi potenciál. 3 tényező határozza meg:

a. Nyugalmi potenciál b. Transzport proteinek c. Akciós potenciál. Nyugalmi potenciál. 3 tényező határozza meg: Egy idegsejt működése a. Nyugalmi potenciál b. Transzport proteinek c. Nyugalmi potenciál Az ionok vándorlása 5. Alacsonyabb koncentráció ioncsatorna membrán Passzív Aktív 3 tényező határozza meg: 1. Koncentráció

Részletesebben

1. AKTIN CITOSZKELETON

1. AKTIN CITOSZKELETON A CITOSZKELETÁLIS REDSZER 20. 02. 08.. AKTI CITOSZKELETO Citozeletáli atin HEp-2 ejteben - rodamin-falloidin jelölé forrá: yitrai Miló, Grama Lázló, PTE ÁOK, Biofiziai Intézet CITOSZKELETO CITO : ejt /

Részletesebben

Sejtmag, magvacska magmembrán

Sejtmag, magvacska magmembrán Sejtmag, magvacska magmembrán Láng Orsolya Semmelweis Egyetem, Genetikai, Sejt- és Immunbiológiai Intézet Kompartmentalizáció Prokaryóta Cytoplazma Eukaryóta Endomembrán Kromatin Plazma membrán Eredménye

Részletesebben

Izomműködés. Harántcsíkolt izom. Simaizom és simaizom-alapú szervek biofizikája.

Izomműködés. Harántcsíkolt izom. Simaizom és simaizom-alapú szervek biofizikája. Izomműködés. Harántcsíkolt izom. Simaizom és simaizom-alapú szervek biofizikája. Hirdetés D.R. Wilkie professzor előadására a londoni Villamosmérnöki Intézetben. A téma: izom. Kapható: LINEÁRIS MOTOR.

Részletesebben

AZ EMBERI TEST FELÉPÍTÉSE

AZ EMBERI TEST FELÉPÍTÉSE AZ EMBERI TEST FELÉPÍTÉSE Szalai Annamária ESZSZK GYITO Általános megfontolások anatómia-élettan: az egészséges emberi szervezet felépítésével és működésével foglalkozik emberi test fő jellemzői: kétoldali

Részletesebben

Mikrofluidika I. - Alapok

Mikrofluidika I. - Alapok Budapest Műszaki és Gazdaságtudományi Egyetem Mikro és nanotechnika Mikrofluidika I. - Alapok Elektronikus Eszközök Tanszéke www. Ender Ferenc ender@ 1. előadás Bevezetés Mikrofluidikai hatások, arányos

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata KLASSZIKUS FIZIKA LABORATÓRIUM 3. MÉRÉS Hangfrekvenciás mechanikai rezgések vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 23. Szerda délelőtti csoport 1. A

Részletesebben

MTA bemutatkozó előadás

MTA bemutatkozó előadás MTA bemutatkozó előadás Derényi Imre ELTE TTK, Biológiai Fizika Tanszék ELTE-MTA Lendület Biofizikai Kutatócsoport Kutatási terület: Biológiai fizika Célja: a biológia jelenségek fizikai hátterének megértése.

Részletesebben

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS

Részletesebben

Vezetők elektrosztatikus térben

Vezetők elektrosztatikus térben Vezetők elektrosztatikus térben Vezető: a töltések szabadon elmozdulhatnak Ha a vezető belsejében a térerősség nem lenne nulla akkor áram folyna. Ha a felületen a térerősségnek lenne tangenciális (párhuzamos)

Részletesebben