Tóth András. Kísérleti Fizika I.



Hasonló dokumentumok
. Vonatkoztatási rendszer z pálya

FIZIKA FELVÉTELI MINTA

A lecke célja: A tananyag felhasználója megismerje az anyagi pont mozgásának jellemzőit.

Elektromágneses hullámok

5. Szerkezetek méretezése

A Lorentz transzformáció néhány következménye

Mechanikai munka, energia, teljesítmény (Vázlat)

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika

Atomfizika előadás Szeptember 29. 5vös 5km szeptember óra

Egyenes vonalú mozgások - tesztek

A A. A hidrosztatikai nyomás a folyadék súlyából származik, a folyadék részecskéi nyomják egymást.

Bor Pál Fizikaverseny. 2015/2016-os tanév DÖNTŐ április évfolyam. Versenyző neve:...

Előszó. 1. Rendszertechnikai alapfogalmak.

Negyedik gyakorlat: Szöveges feladatok, Homogén fokszámú egyenletek Dierenciálegyenletek, Földtudomány és Környezettan BSc

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS

Merev test mozgása. A merev test kinematikájának alapjai

Felkészítő feladatok a 2. zárthelyire

a. Egyenes vonalú mozgás esetén az elmozdulás mindig megegyezik a megtett úttal.

) négydimenziós eseményekre felírt

Mechanika. Kinematika

Előadásvázlat Kertészmérnök BSc szak, levelező tagozat, okt. 3.

Bevezetés. Vizsgálati módszerének vázlata: kísérleti. fizika. fizikai mennyiségek MEGFIGYELÉS, KÍSÉRLET. ellenőrzés összefüggések

HARMONIKUS REZGŐMOZGÁS

Mit nevezünk nehézségi erőnek?

Fizika példák a döntőben

A sebességállapot ismert, ha meg tudjuk határozni bármely pont sebességét és bármely pont szögsebességét. Analógia: Erőrendszer

PÉLDÁK ERŐTÖRVÉNYEKRE

Térgörbék (R R 3 függvények) Síkgörbék (R R 2 függvények) Felületek (R 2 R 3 függvények)

Newton törvények, erők

Túlgerjesztés elleni védelmi funkció

1. Feladatok a dinamika tárgyköréből

Fizika I minimumkérdések:

FIZIKA. Elektromágneses indukció, váltakozó áram 2006 március előadás

Fizika A2E, 7. feladatsor megoldások

Mérések állítható hajlásszögű lejtőn

Módszertani megjegyzések a hitelintézetek összevont mérlegének alakulásáról szóló közleményhez

Acélszerkezeti mintapéldák az Eurocode szabványhoz,

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK február 13.

EGYENES VONALÚ MOZGÁSOK KINEMATIKAI ÉS DINAMIKAI LEÍRÁSA

GAZDASÁGI ÉS ÜZLETI STATISZTIKA jegyzet ÜZLETI ELŐREJELZÉSI MÓDSZEREK

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.

Képlet levezetése :F=m a = m Δv/Δt = ΔI/Δt

8. előadás Ultrarövid impulzusok mérése - autokorreláció

Speciális mozgásfajták

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel

DIFFÚZIÓ. BIOFIZIKA I Október 20. Bugyi Beáta

Intraspecifikus verseny

Atomfizika előadás 4. Elektromágneses sugárzás október 1.

EGY REMÉNYTELENNEK TÛNÔ VEZÉRLÉSI PROBLÉMA A KLASSZIKUS ÉS MODERN FIZIKA HATÁRÁN

Tömegpontok mozgása egyenes mentén, hajítások

3. Gyakorlat. A soros RLC áramkör tanulmányozása

5. Differenciálegyenlet rendszerek

Példák numerikus módszerekre.

Newton törvények, lendület, sűrűség

DINAMIKA ALAPJAI. Tömeg és az erő

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 7.

párhuzamosan kapcsolt tagok esetén az eredő az egyes átviteli függvények összegeként adódik.

2.3 Newton törvények, mozgás lejtőn, pontrendszerek

Hatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3

Mérés: Millikan olajcsepp-kísérlete

Ns/m, y0 3 mm, v0 0,18 m/s. Feladat: meghatározása. meghatározása. 4 2 k 1600 Ns 1. , rad/s, rad/s. 0,209 s.

Fizika A2E, 11. feladatsor

W = F s A munka származtatott, előjeles skalármennyiség.

5. HŐMÉRSÉKLETMÉRÉS 1. Hőmérséklet, hőmérők Termoelemek

Projektív ábrázoló geometria, centrálaxonometria

Síkalapok vizsgálata - az EC-7 bevezetése

MOZGÁSOK KINEMATIKAI LEÍRÁSA

Tiszta és kevert stratégiák

3. MÉRETEZÉS, ELLENŐRZÉS STATIKUS TERHELÉS ESETÉN

7. osztály, minimum követelmények fizikából

Járműelemek I. Tengelykötés kisfeladat (A típus) Szilárd illesztés

A T LED-ek "fehér könyve" Alapvetõ ismeretek a LED-ekrõl

A nagyobb tömegű Peti 1,5 m-re ült a forgástengelytől. Összesen: 9p

Komplex természettudomány 3.

Forogj! Az [ 1 ] munkában találtunk egy feladatot, ami beindította a HD - készítési folyamatokat. Eredményei alább olvashatók. 1.

A hőérzetről. A szubjektív érzés kialakulását döntően a következő hat paraméter befolyásolja:

Munka, energia Munkatétel, a mechanikai energia megmaradása

Legfontosabb farmakokinetikai paraméterek definíciói és számításuk. Farmakokinetikai paraméterek Számítási mód

Az éjszakai rovarok repüléséről

HÁZI FELADAT megoldási segédlet PONTSZERŐ TEST MOZGÁSA FORGÓ TÁRCSA HORNYÁBAN 2. Anyagi pont dinamikája neminerciarendszerben

A xilol gőz alsó robbanási határkoncentrációja 1,1 tf.%. Kérdés, hogy az előbbi térfogat ezt milyen mértékben közelíti meg.

21/2006. (V. 18.) IM rendelet. a cégbejegyzési eljárás és a cégnyilvántartás egyes kérdéseiről

Algoritmuselmélet. Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem. 6.

3. fizika előadás-dinamika. A tömeg nem azonos a súllyal!!! A súlytalanság állapotában is van tömegünk!

A mechanika alapjai. A pontszerű testek dinamikája

ELEKTRONIKAI ALAPISMERETEK

Növényi produkció mérése mikrometeorológiai módszerekkel. Ökotoxikológus MSc, április 21.

Mérnöki alapok 2. előadás

ELEKTRONIKAI ALAPISMERETEK

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS!

A feladatsorok összeállításánál felhasználtuk a Nemzeti Tankönyvkiadó RT. Gyakorló és érettségire felkészítő feladatgyűjtemény I III. példatárát.

3. feladatsor: Görbe ívhossza, görbementi integrál (megoldás)

Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ

Folyadékok és gázok mechanikája

STATIKA A minimum teszt kérdései a gépészmérnöki szak hallgatói részére (2003/2004 tavaszi félév)

Hidrosztatika. Folyadékok fizikai tulajdonságai

Fizika alapok. Az előadás témája

Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk

Fourier-sorok konvergenciájáról

Átírás:

Tóh András Kísérlei Fiika I 7

TÓTH A: Ponkinemaika (kibőíe óraála Beeeés Fiika: a só eredei görög alakjának jelenése "ermése", akkoriban a össes ermései jelenség isgálaá jelenee Később a isgálaok köre sűkül: éleelen ermése jelenségei anyagi minőség áloása nélkül (uóbbi a kémia "erülee" Ennek a sűkíe erülenek a jellegeességei: a jelenségek egyserűbben isgálhaók, maemaikailag könnyebben leírhaók (a fiika ún egak udomány a felár örények álalánosak, a jelenségek séles körében érényesek (pl kémia, biológia Ma nehé definiálni a isgálai erülee, de a feninél sokkal sélesebb: a modern fiika alapeően fonos serepe jásik a anyagáalakulással járó jelenségek leírásában (pl kémiai köés, együleképődés, magáalakulások, ső a bonyolulabb erméseudományokban, min a biológia és a orosudomány is (biofiika, a modern echnológiák megalapoásában köelenül rés es, aminek ársadalmi haásai is annak (mikroelekronika, aomenergia a Föld és a ilágegyeem egésének megéréséhe nélkülöheelen (pl "globális problémák" a fiika kísérleeő udomány, eér új, haékony mérési módsereke fejles ki, amelyeke más udományok és a echnika felhasnál Jobb egy olyan definíció, amely nem udományerülehe kapcsolja a fiiká, ilyen például a alábbi: a fiika a anyag rései kööi kölcsönhaások- és a ebből fakadó folyamaok isgálaáal és érelmeéséel, a anyag ulajdonságainak magyaráaáal és megáloaásáal, a ermései jelenségek magyaráaáal foglalkoik Visgálai módserének álaa: kísérlei fiika MEGFIGYELÉS, KÍSÉRLET fiikai mennyiségek ellenőrés össefüggések előrejelések, köekeeések elméle elmélei fiika

TÓTH A: Ponkinemaika (kibőíe óraála A fiika a jelenségek megérése és leírása érdekében modellekkel dolgoik, agyis nem a isgál objekumo agy jelensége próbálja a maga eljességében leírni, hanem egyserűsíéseke hasnál, elhanyagolja a jelenség lényegének megéréséhe nem okelenül sükséges résleeke, és a így kapo modell-objekumo, agy modell-jelensége isgálja A modell akkor jó, ha a belőle kapo eredményeke a apasala igaolja (ellenőrés Fonos segédeskö a maemaika, amelynek segíségéel a mennyiségek köö sámserű össefüggések írhaók fel: a örények kaniaíá eheők Hasnál mennyiségek ípusai: skaláris- (csak nagyság: pl ömeg, hőmérsékle, ölés ekoriális (irány is: pl elmodulás, sebesség, erő Sámunkra sükséges maemaikai alapok: a skalár- és ekormennyiségekkel ége műeleek, agyis a ekorsámíás-, oábbá a differenciál- és inegrálsámíás alapjai

TÓTH A: Ponkinemaika (kibőíe óraála 3 A mogás leírása, modellek a mechanikában A mogás alapeő jelenség a ilágban, ennek isgálaáal a mechanika foglalkoik A mogások nagyon sokfélék és bonyolulak lehenek A mogó es haladha, forogha, deformálódha, áramolha A leírásnál gyakran nem a alódi ese, hanem annak egyserűsíe "hasonmásá", modelljé hasnáljuk, mer pl: a álalános leírás nem megy, hiányos információk, hiányos fiikai ismereek agy hiányos maemaikai leheőségek mia, a álalános leírásra nincs is sükség, mer a mogás egyik agy másik formája sámunkra elhanyagolhaó A mechanikában hasnál modellek: anyagi pon agy ömegpon (kierjedése nincs, ehá csak haladó mogás ud égeni, de ömege an, ponrendser (kierjed, de önálló ponokból álló, nem "össefüggő es", mere es (alódi eshe köelálló kierjed es, amely forogha is, de nem deformálódik, deformálhaó es (a alódi eshe legköelebb áll, sajáos deformálhaó "esek" a folyadékok és a gáok A modell jóságá a leon köekeeések kísérlei isgálaáal ellenőrini kell A mogás leírásának ké lépcsőfoka: mogás leírása, anélkül, hogy a mogás jellegének oká kuanánk: e a kinemaika árgya annak isgálaa, hogy miér a megfigyel módon moognak a esek, milyen össefüggés an a es mogása és a külső haások köö: e isgálja a dinamika A árgyalás során a legegyserűbb modellől haladunk a bonyolulabbak felé

TÓTH A: Ponkinemaika (kibőíe óraála 4 Anyagi pon kinemaikája A legegyserűbb, legelonabb de ennek ellenére a gyakorlaban is hasnálhaó modell a anyagi pon agy ömegpon, amelynek kierjedése nincs, de ömege an Tárgyalása aér fonos, mer i könnyen beeeheők a mogás leírásáho sükséges alapfogalmak, a mogás egyserű leírásá esi leheőé, a modell alapján kapo fogalmak és eredmények a bonyolulabb modelleknél is hasnálhaók A oábbiakban álalában a ömegpon kifejeés hasnáljuk A kinemaika alapmennyiségei A kinemaika egyserűen leírja a es mogásá, anélkül, hogy a mogás körülményeiel foglalkona Ehhe sükség an egy olyan esköárra, amellyel a es mogásá sámserűen jellemeni lehe (hol an, hogyan moog Helyemegadás, helyeekor, pálya, ú, elmodulás A mogás leírásáho a ömegpon helyeé kell megadnunk a idő függényekén A ömegpon helyee megadhaó pl egy deréksögű r k koordináarendserben a ömegpon,y, koordinááial, i j y illee a ide muaó r(,y, helyeekor komponenseiel Ha beeejük a koordináaengelyek irányá megadó i, j, k egységekoroka, akkor a helyeekor így írhaó r i + yj + k Ha a ömegpon moog, akkor a helyeekor (és komponensei álonak, agyis r r( (, y y(, ( Eköben a ömegpon a helyeekor égponja álal leír pálya pályagörbén halad A pályagörbén egy önkényesen kiálaso nulla időponól a időponig befuo sakasnak a s s( hossá s( Δs a ömegpon álal mege únak neeik A és +Δ pillanaok köö mege Δs ú eserin: Δs s(+δ-s( A ömegpon helyeé a időpillanaban a r( helyeekor adja meg A, hogy a pályagörbe egy kisemel r( ponjából egy másik r(+δ ponjába aló ámene során a ömegpon milyen irányban, Δr s(+δ mekkora áolságra modul el, a kiindulóponból a égponba muaó O Δ( ( + Δ ( Δr ( r( + Δ r( Δy( y( + Δ y( Δ( ( + Δ ( ekorral jellemehejük E a elmodulásekor, amelynek komponensei is megaduk r( r(+δ

TÓTH A: Ponkinemaika (kibőíe óraála 5 Láhaó, hogy a elmodulás és a ú bár egységük ugyana ké lényegesen különböő mennyiség: a elmodulás ekor, a ú skalár, és álalában a nagyságuk is különböő A sebesség és a gyorsulás A elmodulás illee a pályán aló haladás "gyorsasága" a sokásos módon a áloás és a hoá sükséges idő hányadosáal jellemeheő Ha egy röid Δ idő ala a elmodulás Δr, akkor e a jellemő Δ r( r( + Δ r( ál Δ Δ alakban írhaó fel E a mennyiség a ömegponnak a (, +Δ időinerallumra onakoó álagos sebessége E nem nagyon ponos jellemése a elmodulás "üemének", mer álalában nagysága és iránya is függ a álaso időaram hossáól (éges időaramon belül a mogás üeme és iránya áloha Megado időpillanaban érényes, ponos jellemő kapunk, ha a időaram hossá égelenül kicsire csökkenjük és a Δr( dr( ( lim Δ Δ d haáréréke sámíjuk ki, aminek a jelölésére solgál a egyenle jobb oldalán álló differenciálhányados-simbólum A így kapo mennyiség a ömegpon pillananyi sebessége agy egyserűen a sebessége a időpillanaban A feni differenciálhányados elér a sokásos alakól, hisen i egy ekorra onakoik A maemaikában egy ekor differenciálhányadosán a a ekor érik, amelynek komponensei a ekor (skaláris komponenseinek a differenciálhányadosaial egyenlők: dr( d( dy( d( ( i + j + k d d d d Így a sebességekor komponensei: d( (, d dy( y (, d d( ( d A sebesség nagysága a ekorokra onakoó sabálynak megfelelően y + + A ábra alapján jól láhaó, hogy a elmodulás és a ú nagysága álalában nem aonos, de a is láhaó, hogy igen kis elmodulásoknál fennáll a Δr Δs össefüggés E felhasnála, a sebességre onakoóan újabb megállapíásoka eheünk Egyrés a sebesség nagyságára a dr( dr( ds( ( d d d kifejeés kaphajuk, másrés a is láhaó (ábra, hogy a Δs" IΔr"I Δ" érinő Δs' Δ' Δr' Δs Δr Δ O

TÓTH A: Ponkinemaika (kibőíe óraála 6 sebességekor a pálya érinőjének irányába mua Eér, beeee a érinőirányú u T egységekor, a sebességekor más alakban is felírhaó Ehhe a sebesség kifejeésé formálisan ds-sel osa és soroa, majd figyelembe ée, hogy dsdr írjuk á a alábbi módon: dr ds dr ds ds d dr d I a első ényeő a elmodulás illee a sebesség irányába muaó egységekor, ami egyúal a pálya érinőjének irányába mua ( u T, a második ényeő pedig a sebesség nagysága (, így a sebességekor a alábbi alakba írhaó: u T Megjegyések: A sebesség nagyságára onakoó feni össefüggés sigorúan ée csak a (pillananyi sebességre érényes, a álagos sebességre csak akkor, ha a sebesség időben állandó (köelíőleg érényes "igen röid" időaramra onakoó álagos sebességre is A sebesség nagyságából kisámíhaó a ömegpon álal ado idő ala mege ú is: s ( d A gyakorlaban álagsebességnek neeik egy ado időaram ala befuo ú s s hossának és a időnek a hányadosá: Egy mogó ömegpon sebessége áloha Eli és gyakorlai semponból is fonos sámserűen jellemeni a sebesség áloásának "üemé", ami ismé a áloás és a áloás időaramának hányadosa ad meg A köelíő jellemésre a álagos gyorsulás (ábra ( Δ( ( + Δ ( ( aál, Δ Δ r( Δ a ponos jellemésre a Δ( d( d r( r(+δ (+Δ a ( lim Δ Δ d d O pillananyi gyorsulás solgál A gyorsulásekor komponensei a sebességekor minájára: d( d ( a(, d d d ( y d y( ay(, d d A gyorsulás nagysága Példa a kinemaikai mennyiségek sámíására: Ha a r( függény a alábbi d( d ( a( d d y a a a a + a + a

TÓTH A: Ponkinemaika (kibőíe óraála 7, ( 3 ( 3 ( 3 y + + + akkor a sebesség:, ( ( 3 ( ( 9 ( ( d d d dy d d y + a gyorsulás pedig: ( ( ( ( 8 ( ( d d a d d a d d a y y A helyeekor kisámíása a gyorsulásból A alóságban a helyeekor időfüggésé öbbnyire nem ismerjük, hanem a gyorsulásra onakoóan annak ismereeink (eel a kérdéssel később résleesen foglalkounk a Newon-örények kapcsán A gyorsulás időfüggésének ismereében a sebesség kisámíhaó a differenciálás iner műelee, a inegrálás segíségéel Ha a mogás egy önkényesen álashaó időpillanaól isgáljuk, akkor a gyorsulás definíciójá felhasnála kapjuk: d a d d a d d a d d d d d y y,, ( ( ( ( a a A feni ekoregyenle komponens-egyenleeinek inegrálásáal megkaphajuk a sebességkomponensek + + + + + + y y y y y d a d a d a d a d a d a ( ( ( (, ( ( ( (, ( ( ( ( illee a sebességekor + + d d ( ( ( ( a a időfüggésé Jelölés: (, a időpillanaban érényes ún kedei sebesség

TÓTH A: Ponkinemaika (kibőíe óraála 8 Hasonlóan kaphaó a helyeekor időfüggése a sebesség inegrálásáal: ( ( ( (, ( ( ( (, ( ( ( ( + + + + + + y y d d d y d y y d d + + d d ( ( ( ( r r r I a kedei helyekorra a r( r jelölés alkalmauk A inegrálás haároalan jellegéből köekeik, hogy a helyeekor időfüggésének meghaároásáho a gyorsulás időfüggésének ismeree melle még 6 állandó pl a 3 kedei koordináá és a 3 kedei sebessége is ismerni kell Kinemaikai össefüggések konkré eseekben A feni egyenleek megoldásáho ismerni kell a inegrálandó függényeke, mindenek elő a gyorsulás a( időfüggésé A felada megoldása agyis a r( függény megkeresése aól függően könnyű agy nehé, hogy milyen a gyorsulásekor és annak időfüggése A mogások csoporosíásánál e a sempon fonos serepe jásik Mogás állandó gyorsulással Ha a állandó, akkor a gyorsulás y a,,a a komponensei is állandók, eér ( ( a d a + + Hasonlóan: ( ( ( ( a a y y y + + Ugyancsak inegrálással kaphaó a helyekor a sebességből:, ( a ( a ( d ( a d ( ( + + + + + agyis ( a ( ( + + Hasonlóan:

TÓTH A: Ponkinemaika (kibőíe óraála 9 ( ( ( ( ( ( a a y y y y + + + + Vekori alakban ugyaneek a össefüggések: ( ( ( ( ( + + + a r r a Ha a mogás isgálaá a időpillanaban kedjük, és a ömegpon ekkor a r origóban an, akkor a ismer egyserű össefüggéseke kapjuk: ( ( a r a + + Miel a kedősebességre és a gyorsulásra semmiféle kiköés nem eünk, a állandó gyorsulású mogás pályája álalában nem egyenes A legegyserűbb mogásho úgy juunk el, hogy újabb egyserűsíő feléeleke alkalmaunk Egyenes onalú mogás állandó gyorsulással A mogás akkor les egyenesonalú, ha a gyorsulás a sebesség irányá nem áloaja meg, agyis, ha a gyorsulásekor (a és a kedei sebesség ekor ( egyenese egymással párhuamos Ekkor ugyanis a egyik koordináaengely például a engely a kedei sebesség egyenesén felée: { },, { } (,, ( a a és { },, r Ebből köekeik, hogy a inegrálás uán a sebességekornak és a helyeekornak is csak a -komponense les nulláól különböő, agyis a mogás a -engelyen ajlik, és egyelen koordináa segíségéel írhaó le: { } { } { } (,, ( (,, ( (,, ( a r a A legegyserűbb ese a, ha a gyorsulás időben állandó Ilyen mogás pl a lejőn aló lecsúsás és a sabadesés A kinemaikai össefüggések ilyenkor: ( ( a a + + + Ha a es nyugalomból, a origóból indul, akkor, és Ha emelle még is fennáll, akkor a egyenleek: ( ( a a KÍSÉRLET: golyós köél ejése (függőleges köélre golyóka erősíünk, a padlóól rendre d, 4d, 9d, 6d, sb áolságra, majd a köele elengedjük A golyók a padlón egyenlő időköökben koppannak

TÓTH A: Ponkinemaika (kibőíe óraála KÍSÉRLET: Galilei lejő (lejőbe ágo csaornákban aonos magasságú helyről induló golyók újába a indulási helyől rendre d, 4d, 9d, 6d, sb áolságra csengőke helyeünk el, majd a golyóka egyserre elengedjük a lejőn A golyók egyenlő időköökben csendíik meg a csengőke Érelmeés: Ha a ké koppanás (csengeés köi idő, akkor a n-edik golyó koppanásának (csengeésének időponja: n n ( n,,3, és így a különböő golyók álal mege (aa különböő n érékekhe aroó uakra kapjuk: a n n n n ( d Ebből a golyók újaira alóban a feni sámsoroa adódik, a golyók egymás köi áolságára pedig a 3d, 5d, 7d, sámok adódnak Lejő segíségéel ponosabb isgálao is égeheünk KÍSÉRLET: Légpárnás lejőn lecsúsó es sebességé ( mérjük különböő helyeken, és ábráoljuk a befuo ú ( négyegyökének függényében (mer a a Ha a mér ponok egyenes adnak, akkor iga, hogy a mogás gyorsulása állandó, és a egyenes meredekségéből ( M a a gyorsulás megkaphaó: M e a n Ha a, akkor egyenlees is a mogás, és a egyenleek így egyserűsödnek: állandó ( + KÍSÉRLET: Mikola-cső: folyadékkal ölö, leár csőben buborék an A csöe ferdén ara a buborék egyenlees mogás ége Igaolás: meronómmal egyenlő időaramoka jelölünk ki, és minden időjelnél a üegcsöön megjelöljük a buborék helyé A jelek egyenlő áolságra lesnek egymásól d e Egyenes onalú mogás áloó gyorsulással, a harmonikus regőmogás Egyenes onalú, áloó gyorsulású mogás nagyon sokféle lehe A egyik legfonosabb ilyen mogás a regőmogás A egyenes menén regő ömegpon úgy moog, hogy ( mogásirányá időről-időre ellenkeőre A Asinω(+ áloaja A regőmogás speciális esee a harmonikus regőmogás, amikor a ponnak a egyenesen (pl a -engelyen elfoglal helyee időben sinus -A T (kosinus függény serin áloik (ábra

TÓTH A: Ponkinemaika (kibőíe óraála E a mogás aér fonos, mer (öbbé-keésbé ponosan a alóságban is léeik, és mer segíségéel bármilyen regőmogás leírhaó KÍSÉRLET: megpendíe acéllap égének regőmogásá alaa egyenleesen mogao kormoo üeglapra rajolajuk, és kieíjük Ha sikerül kis csillapíás elérni, akkor a kapo görbe alóban sinusos jellegű, ehá köelíőleg harmonikus regés (A alódi regés csillapío! Ha a mogás egyenese a -engely, akkor a ábrán láhaó eseben (ehá amikor a időmérés kedee nem egyeik aal a időpillanaal, amikor a pon a + irányban mooga áhalad a helyeen a harmonikus regés kiérése a idő függényében a ( A sinω ( + függénnyel irhaó le I A a legnagyobb kiérés, ami a regés ampliúdójának neenek, a mennyiséggel pedig a essük figyelembe, hogy a időpillanaban a kiérés nem nulla, hanem ( Asinω( A kifejeés oább alakíhaó, ha beeejük a ω δ jelölés: ( A sin( ω + δ A δ mennyiség a adja meg, hogy a ömegpon a regésének milyen fáisában an a időmérés kedeén (, eér δ- gyakran kedőfáisnak neeik Miel a időmérés kedee őlünk függ, δ éréke esőleges lehe, e a oka annak, hogy a harmonikus regés leírására a sin és a cos függény egyformán jól hasnálhaó (ha pl a feni kifejeésben a időmérés kedeé úgy álasjuk meg, hogy δω π/, akkor a sin helye kedőfáis nélküli cos függény kapunk Milyen a harmonikus regőmogás égő ömegpon sebessége és gyorsulása? A kiérés időfüggésé megadó ( Asin( ω + δ függényből a ömegpon sebessége és gyorsulása differenciálással kaphaó: d( ( Aω cos( ω + δ d d( d ( a( Aω sin( ω + δ ω ( d d Vagyis e egy olyan mogás, ahol a gyorsulás nagysága a kiéréssel arányos, iránya pedig aal ellenées Görbe onalú mogás állandó gyorsulással: Ilyen pl a hajíás, ahol a állandó nehéségi gyorsulás (g érényes Ha a gyorsulás állandó, akkor eseén: ( + a r( + a Álalában a( a,a y,a (, y, r (,y,

TÓTH A: Ponkinemaika (kibőíe óraála Egyserűsíés: álassuk ki a a és ekorok álal meghaároo síko, és együk fel a koordináarendserünke úgy, hogy pl a sík eel párhuamos legyen Ekkor a( a,, a (,, r (, y, Forgassuk úgy a rendser, hogy a -engely a gyorsulás irányába muasson, ekkor a(,, a (,, r (, y, Eek uán a koordináarendser addig oljuk a y-engely irányában, amíg y les, így ekkor a es kedei helyekora és kedei sebessége is a síkban an, és ( a,, a (,, r (,, A gyorsulás inegrálásáal kapjuk, hogy ( +, y( y, y ( y + a ( + + a A feni egyenleek írják le a hajíásoka, csak ekkor a a g éréke kell behelyeesíeni A egyenleekből lásik, hogy a mogás jellemő adaoknak csak és komponense les, agyis síkmogás jön lére A mogás jellege a kedősebesség-ekoról függ Nehéségi erőérben örénő mogás (hajíás eseén: álalában: ferde hajíás,, : ísines hajíás,, : függőleges hajíás, : sabadesés A koordinááka megadó egyenleekből a idő kiküsöböle megkapjuk a ( függény, aa a pálya egyenleé a ( +, ami a apasalanak megfelelően parabola Görbe onalú mogás áloó gyorsulással, a körmogás A sebesség a álalános definíció alapján: dr( (, d a gyorsulás pedig formálisan: d( a ( d

TÓTH A: Ponkinemaika (kibőíe óraála 3 Konkré kifejeések erméseesen csak akkor kaphaók, ha ismerjük a mogás Visgáljunk egy egyserű, de gyakorlailag fonos esee, a körmogás, amelynél a pálya kör alakú, és próbáljunk konkré kifejeés kapni a gyorsulásra A ábrán a pálya egy r sugarú kör, amelyen felüneünk egy kis elmodulás, és berajoluk a elmodulás ké égponján d N érényes sebességekorok különbségé A sebességekor (+d megáloásá bonsuk fel egy angenciális (érinő irányú d T dϕ dt - és egy arra merőleges d N és össeeőre Ha a ( elmodulás égelenül kicsi, akkor a d N össeeő r(+d ds merőleges a pályagörbére, e a össeeő normális dϕ r( össeeőnek neeik A ké össeeő nagysága: ϕ d dϕ illee d d N T A megfelelő gyorsulás-komponensek: dn dϕ dt d an illee at d d d d Így a gyorsulás a pályára merőleges, normális ( u N - és a pálya érinőjének irányába ( u T muaó, angenciális egységekorokkal kifejee: dϕ d a un + ut d d (miel a sebességáloás normális komponense a kör köépponja felé mua, a i beeee u N egységekor is ilyen irányú A ábrából láhaó, hogy ds dϕ ds dϕ aa r d r d r Így a gyorsulás d a u N + ut r d A normális gyorsuláskomponens nee cenripeális gyorsulás, amely a kör köépponja felé mua, és a sebesség irányáloásából sármaik, a érinőleges komponens pedig a pályameni gyorsulás, amely a sebesség nagyságának áloásából sármaik A mogás jellemeheő a ponho húo sugár és egy önkényesen álaso sugár (ábra kööi sög áloásáal is: ϕ ϕ( Beeee a sögelfordulás (ϕ üemé jellemő sögsebessége (ω: dϕ ω d a gyorsulásra a kapjuk, hogy d a ut + ωun d *************** ***************** ****************** A gyorsulás álalános kifejeésé köelenül a sebesség differenciálásáal is megkaphajuk Tudjuk, hogy a sebesség mindig a pálya érinőjének irányába mua, eér kifejeheő a sebesség nagyságáal és a pálya érinőjének irányába muaó (időben áloó irányú u T ( egységekorral is: ( ( ut ( Ebből a gyorsulás: d d( dut ( a ut ( + ( d d d

TÓTH A: Ponkinemaika (kibőíe óraála 4 Bebionyíhaó, hogy a érinő irányú egységekor idő serini differenciálhányadosa a pályára merőleges, a pálya homorú oldala felé muaó ekor dϕ (ábra, amelynek nagysága I dϕ a egységekor sögelfordulása d idő ala Eel a gyorsulás d d dϕ( a ut + un d d Ha a pálya kör, akkor dϕ egyben a helyekor sögelfordulásáal is egyenlő, eér a beeeéséel a a d d u T + ωu N dϕ ω d eredmény kapjuk *************** ***************** ****************** sögsebesség A sögsebesség áloási sebességének jellemésére beeeheő a söggyorsulás (β dω β, d és a sögjellemőkkel a sebesség és a gyorsulás is kifejeheő Ehhe elősör együk dϕ ds figyelembe, korábbi eredményünke: ω Másrés ennek d r d r d d alapján β ω (körmogásnál rállandó Így égül a kapjuk, hogy d r d rωut a rω un + rβut Vagyis: rω a T T a rβ a N T + a a N N rω ω r Miel a sögjellemők kööi össefüggések ponosan ugyanolyanok, min a koordináákkal korábban felír kinemaikai jellemők össefüggései, a o elmondoak i is alkalmahaók: ω( ω + ϕ( ϕ + β( d ω( d Állandó söggyorsulás (aa állandó pályameni gyorsulás eseén a inegrálás könnyen elégeheő, és a kapjuk, hogy ω( ω + β( ϕ( ϕ + ω ( + β( Vagyis a körmogás égő pon mogása ilyenkor a egyenes onalú, állandó gyorsulású mogással analóg módon írhaó le r( r(+d u N u T (+d du T u T ( dϕ

TÓTH A: Pondinamika (kibőíe óraála Anyagi pon dinamikája Mi a mogás oka? Arisoelés : a mogás fennarásáho külső haás kell (E a feleés a felülees megfigyelés aláámasja, hisen egy es mogásban arásáho álalában ényleg erő kell kifejeni Galilei : egyenes onalú egyenlees mogás és nyugalom külső haás nélkül ajlik, a mogásállapo megáloásáho kell külső haás (A résleesebb isgála során kiderül, hogy a esek megállásá külső haás okoa, amelynek csökkenésekor a es egyre hossabb ideig marad mogásban Ebből erapolálhaó, hogy ha nincs külső haás, akkor a es nem áll meg Alapkérdések: Hogyan jellemeheő sámserűen a külső haás? Milyen a külső haás és a mogásállapo megáloása köi kapcsola? Külső haás okoha alakáloás agy sebességáloás A külső haás nnek alapján mérheő Erő és ömeg, a dinamika alapörényei A erő és ömeg beeeésének a külső haás álal okoo áloások ípusa serin ké fő újá álashajuk, mos röiden áoljuk a ké leheősége Erő- és ömegdefiníció a külső haás alakáloaó képessége alapján Alakáloás alapján örénő mérésnél pl egy a haás és a ömegpon köé helyee ehá a haásnak kie rugalmas es (rugó megnyúlása lehe a haás méréke Elég kéenfekő, hogy a haásnak iránya an: különböő irányú haások eseén egy es különböő irányokban indul el A haás irányá a köbeikao rugó engelyének irányáal adhajuk meg Ahho, hogy a haás mérni udjuk, udnunk kell, hogy milyen össefüggés an a haás nagysága és a mérésre hasnál rugalmas es megnyúlása köö: e a ún skálaörény A skálaörény önkényesen álashajuk meg, de a sokásos (és célserű álasás a, hogy nem úl nagy haások eseén a haás nagyságá arányosnak ekinjük a álala okoo megnyúlással, agyis lineáris skálaörény hasnálunk Nulla érékűnek a a haás ekinjük, amely nem oko megnyúlás A haás egysége önkényesen álashaó (pl a nehéségi erőérben felfüggese, jól definiál es álal a felfüggeső esre kifeje haás, amihe a köbeikao rugalmas mérő es meghaároo kiérése aroik Euán minden olyan haás, amely a mérő esen ugyanekkora kiérés oko, egységnyi haásnak ekinünk A feni módon definiál, mérheő, iránnyal is rendelkeő mennyiség a erő, jelölése rendserin F Newon 3 II örénye A köekeő lépés a (mos már mérheő erő és a ömegpon gyorsulása kööi össefüggés kimérése A mérések serin földi körülmények köö jó köelíéssel ARISZTOTELÉSZ (ie384 ie3 görög filoófus Galileo GALILEI (564-64 olas fiikus, maemaikus, csillagás 3 Isaac NEWTON (643-77 angol erméseudós

TÓTH A: Pondinamika (kibőíe óraála érényes, hogy a erő álal lérehoo gyorsulás a erőel egyirányú, nagysága pedig arányos a erő nagyságáal: F ~ a Ebből köekeik, hogy ado es eseén a F/a hányados állandó, a es jellemője, gyorsíással sembeni ellenállásának, eheelenségének méréke E a eheelen ömeg, amelye m beűel sokás jelölni: F m a (Megjegyeük, hogy an egy másik ömeg is, a ún súlyos ömeg, ami a graiációs kölcsönhaásban aló réséel jellemi E, bár alapeően más jellemőnek űnik, a apasala serin mégis arányos a eheelen ömeggel Eel kapcsolaos émák: graiációs kölcsönhaás, Eöös-kísérle, álalános relaiiáselméle A erő és sebességáloás kapcsolaá megadó örény ehá (a Földön nyugó rendserben köelíőleg F ma alakba írhaó, ami Newon II örénye néen ismerünk A gyorsulás idő- és áolságmérés segíségéel haárohajuk meg, a erő mérése rugóal, a ömeg mérése a feni össefüggés alapján örénik A feni eljárás során elősör a erő mérési uasíásá aduk meg, és ennek segíségéel sármaauk a ömege, a egységeke aonban eddig nem rögíeük Miel a F ma össefüggésben ké új mennyiség serepel, a egyiknek a egységé önkényesen megálashajuk, a másik egység euán már a össefüggésből köekeik A gyakorlaban elősör a ömeg egységé rögíeék A ömeg egységekén l érfogaú 4 C-os isa í ömegé álasoák, és e kg-nak neeik Euán a erő egysége ami Newonról neeek el már sármaahaó: m erőegység kg Newon N Eserin a a erő N nagyságú, amely pl s kg ömegű ese m/s gyorsulással moga E a jeleni, hogy a erőmérő eskö (rugó skálájá ennek a egységnek a felhasnálásáal kell elkésíenünk A, hogy egy es gyorsíásáho erő kell, láányos, kaliaí kísérleekkel semléleheő KÍSÉRLETEK: Cérnasálra felfüggese fahenger a aljára erősíe cérnasál meghúásáal próbálunk gyorsíani Ha a alsó cérnasála hirelen, nagy erőel megránjuk, agyis a fahenger nagy gyorsulással akarjuk mogani, akkor a fahengerre kifejendő a alsó cérnasálban ébredő erő olyan nagy, hogy a alsó (gyorsíó cérnasál nem bírja ki, és elsakad Ha a alsó cérnasála lassan, egyre nagyobb erőel húuk (a henger kis gyorsulással akarjuk mogani, akkor a alsó cérnasálban fellépő erő kicsi, ison a henger aró cérna előbbuóbb elsakad, mer a rá áeődő erő (húóerő + a henger súlya nem bírja ki Neheebb árgya (pl pesgősüeg papírlapra helyeünk, majd a papírlapo lassan húni kedjük Ekkor a üeg a papírlappal együ moog Ha a papírlapo hirelen megránjuk, akkor a üeg nem köei, és a papírlapo ki udjuk húni a üeg alól Magyaráa: a gyors ránás eseén a üeg csak akkor udná köeni a papír, ha ugyanolyan gyorsulással moogna, ehhe aonban nagy erőre lenne sükség, ami a súrlódás nem képes biosíani Lassú indíásnál a súrlódási erő elegendő a üeg gyorsíásáho A kísérleek jól muaják, hogy a esek eheelenek, gyorsíásukho erő kell

TÓTH A: Pondinamika (kibőíe óraála 3 Newon III örénye Tapasalai ény, hogy ké egymással kölcsönhaásban álló (egymásra erő kifejő es mindegyike ugyanakkora nagyságú, ellenées irányú (aonos ámadásonalú erő fej ki a másikra (ábra: F F F F E Newon III örénye, amelynek lényeges fiikai aralma a, hogy a erőhaás mindig kölcsönhaás eredménye: nem udunk kifejeni semmilyen haás úgy, hogy ne lépne fel rajunk a ellenhaás Ha a esekre a egymásra haáson kíül semmilyen más erő nem ha, akkor a III örény és a II örény kombinációjából a kapjuk, hogy fennállnak a d d m a -m a, m m, d d össefüggések, illee a ömege állandónak ekine, a d ( m d( m d d össefüggés Ebből köekeik, hogy a m mennyiség áloása a kölcsönhaó eseken aonos nagyságú és ellenées irányú, agyis d ( m + m m + m állandó ( d Láhaó, hogy a m mennyiség i különleges serepe jásik: a kölcsönhaó esekre ennek a mennyiségnek a össege nem áloik, eér külön fiikai mennyiségkén eeék be A p m mennyiség a m ömegpon lendülee agy mogásmennyisége (gyakran a impulus elneeés is hasnálják Eel a feni eredmény így írhaó: p + p állandó, agyis, ha a ké es csak egymással áll kölcsönhaásban, akkor össes lendüleük (mogásmennyiségük nem áloik E a lendüle-megmaradás (mogásmennyiségmegmaradás, impulus-megmaradás örénye ké egymással kölcsönhaásban álló ömegpon eseén KÍSÉRLET_: Ké sembeállío, egymás felé gurulni képes sámolyon álló ké semély egy köél ké égé foga egymás el akarja húni Bármilyen módon húák egymás (csak a egyik hú, a másik csak arja a köele, csak a másik hú, a egyik csak arja a köele agy mindkeen húák a másika mindké sámoly elmodul, mégpedig nagyjából ugyanúgy A egyik es a másikra nem ud úgy erő kifejeni, hogy a másik ne fejene ki rá erő KÍSÉRLET_: Ké kiskocsi köé rugó helyeünk, ami össenyomunk, és a rugó össenyomo állapoban cérnasállal rögíjük A cérnasála elégee a rugó mindké kocsi meglöki Ha a egyik kocsi ömege lényegesen nagyobb, min a másiké, akkor e a kocsi lassabban indul (kisebb áolságra megy el Eredeileg a ké kocsi össes lendülee nulla ol, eér a cérnasál elégeése uán is nullának kell lennie Emia a ké kocsi lendüleáloása ellenkeő irányú (és ami i ponosan nem udunk igaolni aonos nagyságú

TÓTH A: Pondinamika (kibőíe óraála 4 KÍSÉRLET_3: Műanyag sinórra csúsahaó aróban rögíe sódaí-paron helyeünk, majd a paron erre solgáló űs esköel kisúrjuk A CO gá nagy sebességgel kiáramlik a paronból, a paron pedig ellenkeő irányban égigcsúsik a sinóron (rakéa Eredeileg nulla lendüleű rendserben belső kölcsönhaással lendülee lérehoa (gá kiáramlása, ellenkeő irányú lendülenek kell kelekenie (paron mogása A lendüleel Newon II örénye (a ömege állandónak ekine áírhaó még a d d( m dp F m d d d alakba is Ebből a felírásból láhaó, hogy ha egy ömegponra nem ha erő, akkor a lendülee megmarad (ami nyilánaló, hisen ilyenkor a sebessége állandó A erőhaások függelenségének ele (Newon IV örénye Newon II örényé eddig úgy fogalmauk meg, hogy a ömegponra egyelen erő ha Külön isgálandó a a ese, amikor a ömegpon nem egyelen erő haásának an kiée, hanem öbb es fej ki rá erő egyidejűleg A kísérleek a muaják, hogy ilyenkor a egyes erőkre külön-külön eljesül Newon II örénye, agyis a egyes erők egymásól függelenül fejik ki a haásuka a ömegponra E a erőhaások függelenségének ele (gyakran neeik Newon IV örényének is Ennek köekeménye, hogy ha pl egy ömegponra ké erő ha, akkor a egyik erő álal okoo gyorsulás F a, m függelenül aól, hogy működik-e másik erő, a másik erő álal okoo gyorsulás pedig F a m Miel a gyorsulás ekormennyiség, a pon eredő gyorsulása: F F F + F a a + a +, m m m agyis a ömegpon úgy moog, minha a rá haó erők ekori össege hana rá Több erő együes haása eseén ennek megfelelően Newon II örénye a erők ekori össegére, a ún eredő erőre érényes: F + F + + Fn ma + ma + ma n ma Feredő ma A ehá, hogy a erők egymásól függelenül fejik ki haásuka, aal egyenérékű, hogy a erők ekorkén iselkednek, ekorkén össegeheők, min a gyorsulások Ha ehá egy ömegponra öbb erő ha egyidejűleg, akkor a II Newon-örénnyel kapcsolaos össes feni megállapíásunk érényes marad, csak a ömegponra haó erők helyére a erők ekori össegé, a eredő erő kell beírni A IV örényből a is lásik, hogy egy eredeileg nyugó ömegpon nem csak akkor marad egyensúlyban (nyugalomban, ha nem ha rá erő, hanem akkor is, ha a rá haó erők eredője nulla A feni eseben a ömegpon helyén haó erők dinamikai semponból egymás haásá kiolják E gyakran úgy fogalmaák meg, hogy ebben a eseben a egy ponban haó erők egyensúlyban annak

TÓTH A: Pondinamika (kibőíe óraála 5 KÍSÉRLETEK: Ha a erő a öbbi haásól függelenül feji ki haásá egy ömegponra, akkor a különböő haásokra beköekeő mogások is egymásól függelenül mennek égbe Ké egyforma golyó egyiké ísinesen elhajía, a másika pedig ugyanakkor eleje, a ké golyó egyserre koppan a alajon A golyók függőleges irányú mogása ugyanúgy megy égbe, bár a egyik ísines irányban is moog Ugyane igaolja a a kísérle, amikor egy neheékkel elláo posó darabo elejünk, és ugyanakkor a posódarab eredei helye felé kilöünk egy nyila A nyíl mindig elalálja a posódarabo Könnyen beláhaó, hogy e csak úgy leheséges, hogy a nyíl ísines és függőleges mogása egymásól függelenül ajlik KÍSÉRLET: Ké aonos magasságban elhelyee csigán egy köele eünk á, és a köél egyik égére 3 egységnyi-, a másik égére 4 egységnyi-, a köepére pedig 5 egységnyi ömege erősíünk (ábra A súlyoka elengede, aok beállnak egy egyensúlyi helyebe, amelyben a ké csiga köi köélsakas a köépső súlynál megörik Bármilyen kedő állapoból hagyjuk magára a rendser, a ké csiga köi köélsakas ké rése egymással deréksöge ár be A függőlegesen lefelé muaó G (súly erő ehá a ado súlyok eseében a F és F erő csak akkor udja kompenálni, ha egymásra merőlegesek F F F 9 o 4 G 3 5 A merőleges beállás könnyen érelmehejük, ha feléeleük, hogy a erők ekorkén iselkednek A álaso súlyok (erők eseén fennáll a F F + F össefüggés (F 3 egység, F 4 egység, és F5 egység, ami a deréksögű beállás mia megfelel a ekorábrából kaphaó össefüggésnek E a jeleni, hogy a G súllyal alóban a ké másik erő ekori össege ar egyensúly F + F G A erők ehá ekorkén össegeheők Newon I örénye, a inerciarendser fogalma A dinamika alapörényei a Földhö képes nyugó onakoaási rendserekben ége kísérleek öbbékeésbé aláámasják Könnyen beláhaó aonban, hogy annak olyan onakoaási rendserek, amelyekben a örények biosan nem eljesülnek Ennek demonsrálására égeük el a alábbi gondolakísérlee Egy megfigyelő egy lefede kocsiban ül, amelyből a F a-a a A kísérle érelmeéséhe udni kell, hogy a esek súlya arányos a ömegükkel, oábbá, hogy a csigán áee köélre akaso súlyok a csiga másik oldalán is a súlyukkal aonos erő fejenek ki, amelynek iránya a köél irányáal egyeik

TÓTH A: Pondinamika (kibőíe óraála 6 környeeé nem lája (ábra A kocsiban an egy ísines, sima asallap, amelyen egy sima felüleű, gömb alakú golyó áll Ha a kocsi óaosan gyorsíjuk úgy, hogy a megfigyelő ne éree a gyorsulás akkor a megfigyelő a fogja apasalni, hogy a golyó gyorsul, és álló helyeből elindula a ölébe esik Newon II örénye serin, a megfigyelő e úgy érelmei, hogy a golyóra fellépe egy erő Ilyen erő aonban nem alál (a külső semlélő udja, hogy nincs is ilyen erő, eér nem éri, hogy a golyó miér gyorsul (A külső semlélő a állapíja meg, hogy hoá képes a golyó nem gyorsul, és helyben marad, a kocsiban ülő megfigyelő aér lája gyorsulni a golyó, mer a kocsi gyorsul, és kisalad a golyó alól Vagyis egy gyorsuló eshe rögíe onakoaási rendserben olyan eseke is gyorsulni láunk, amelyekre haó erők eredője nulla, ilyen rendserben ehá Newon II örénye (eredei formájában nem érényes Emia sükség an annak lerögíésére, hogy milyenek aok a onakoaási rendserek, ahol a Newon-örények hasnálhaók Amikor Newon I örénye (a eheelenség örénye a mondja ki, hogy minden es megarja nyugalmi állapoá agy egyenes onalú egyenlees mogásá, amíg alamilyen külső haás nem éri, lényegében a fogalmaa meg, hogy olyan rendserekkel foglalkounk, amelyekben a feni állíás, aa a eheelenség örénye iga A ilyen rendsereke eheelenségiagy inerciarendsereknek neeik A I örény ehá a fogalmaa meg, hogy inerciarendserek léenek, és a öbbi Newon-örények eredei formájukban inerciarendserekben érényesek A feniek alapján a inerciarendser kiálasásának módsere elileg abban áll, hogy megfigyelünk egy magára hagyo ese, és megnéük, hogy gyorsul-e agy nem A dolog, sajnos nem ilyen egyserű, ugyanis nem könnyű a megállapíani, hogy a megfigyel esre alóban nem ha semmilyen erő A Föld sigorúan ée nem inerciarendser (forog és kering, ehá bármely ponjának gyorsulása an, de különleges ponosságo igénylő eseekől elekine, köelíőleg annak ekinheő Erő- és ömegdefiníció a külső haás mogásállapo-áloaó képessége alapján A külső haás másik könnyen éslelheő eredménye a, hogy megáloaja a esek mogásállapoá (aa gyorsulás oko Ennek felhasnálásáal a ömeg definíciójá lehe egyserűbben megadni A eheelen ömeg beeeése Mogásállapo-áloás alapján a ömeg (és a erő definíciója úgy örénhe, hogy egymással kölcsönhaásban álló ké esnek a kölcsönhaás álal okoo sebességáloásá (Δ és Δ mérjük meg különböő eseekben A mérésekből kiderül, hogy a ké es sebességáloása mindig ellenkeő irányú, a áloások nagyságának aránya pedig ugyanaon ké es eseén mindig ugyanakkora, függelenül a ké es kedei sebességéől Δ Δ Δ KΔ, K állandó Δ Δ A üköésben a apasala serin mindig a "kisebb" ill "könnyebb" es sebességáloása nagyobb, ennek megfelelően a sebességáloás-arány nő, ha a es méreé nöeljük (pl üköő kocsik eseén a kocsira rako es mellé oábbi

TÓTH A: Pondinamika (kibőíe óraála 7 eseke helyeünk, és csökken, ha a es méreé nöeljük Durán sóla: a K mennyiség arányos a és esek "anyagmennyiségének" hányadosáal Ennek alapján beeeheünk egy mennyisége, ami a egyes eseknek a üköésben anúsío iselkedésé jellemi E a mennyisége a esek eheelen ömegének neeük, m-mel jelöljük, és úgy definiáljuk, hogy a ké kölcsönhaó es ömegének hányadosa a üköésben meghaárohaó K mennyiséggel egyenlő: Δ m K Δ m A üköéses kísérle alapján ehá csak a ké kölcsönhaó es ömegének arányá udjuk definiálni Ahho, hogy egy es ömegé meghaárouk, álasani kell egy ese, amelynek ömegé önkényesen egységnyinek ekinjük: m ömegegység Δ A ismerelen ömegű ese eel a esel üköee, megmérjük a K Δ m mennyisége, és ebből a ismerelen ömeg a K össefüggés alapján: m m Km K ömegegység A lendüle és a erő beeeése, a Newon-örények sármaaása A ömeg beeeése uán a üköésre onakoó apasalaainka a m Δ m Δ, m( m ( m + m m + m össefüggésekkel írhajuk le, ahol a essőlen sebességek a üköés elői, a essős sebességek a üköés uáni sebességeke jelenik A uolsó össefüggés a pm mennyiség megmaradásának éelé fejei ki E a mennyisége neeük mos is lendülenek A üköési kísérleben ké kölcsönhaásban álló es mogásá isgáluk Gyakran aonban csak a kölcsönhaó esek egyikének mogása érdekel bennünke, eér felmerül a kérdés, hogyan lehe egy es mogásállapo-áloásá meghaároni úgy, hogy a másik es jelenléé külső (erőhaásnak ekinjük Ehhe elősör a kell isáni, hogy milyen össefüggés an a es mogásállapo-áloása és a hékönapi érelemben rá gyakorol erő köö Ha egy ísines erepen lassan felénk gördülő kocsi meg akarunk állíani, és nem sámí, hogy e mennyi idő ala essük meg, akkor a cél isonylag kis erőfesíés árán elérhejük, ha a kocsial együ hárála hossabb idő ala lassíjuk le Ha aonban a megállíásra csak röid idő áll rendelkeésre (pl a kocsi ésesen köeledik a falho, akkor a megállíás nagy erőfesíés kíán Másrés a erőkifejés mindké eseben függ aól is, hogy mekkora a megállíandó kocsi ömege (kis ömegnél nyilán kisebb a sükséges erőfesíés Vagyis a mogásállapo-áloaásho sükséges erőfesíés egyrés a lendüleáloaás nagysága, másrés a áloaásra fordío idő sabja meg A erőfesíés nagysága a apasala serin arányos a d ( m lendüleáloaással és fordía arányos a áloaás idejéel, agyis a d hányadossal jellemeheő Ha egy m és egy M ömegű ömegpon kölcsönhaásá isgáljuk, akkor a feniek alapján a kölcsönhaás során fennáll a Δ m Δ( M ( m M

TÓTH A: Pondinamika (kibőíe óraála 8 össefüggés A egyenlee Δ-el osa, majd égelenül kicsi időaramra áére, a d( mm d( MM, d d illee d( pm d( pm d d össefüggés kapjuk E a jeleni, hogy a m ömeg lendüleáloásának sebessége, ami a áloásho sükséges "erőfesíés" adja meg, kifejeheő a M ömeg adaaial Eek alapján a m ömegre haó F m erő úgy definiálhajuk, hogy dp F M m d A erőnek e a definíciójá hasnála, a m ömegre felírhajuk a dpm dm F m m mam d d össefüggés, ami a fejei ki, hogy a ömegponra haó erő arányos a ömegpon gyorsulásáal E Newon II örénye Miel ké es kölcsönhaására a feniek serin mindig érényes, hogy d ( p d( p, d d a erő feni definíciója alapján eljesül a d( p d( p F F d d össefüggés, ami Newon III örénye Ha egy m ömegű ömegponal egyidejűleg öbb ömegpon (m, m, m 3, áll kölcsönhaásban, akkor a apasala serin a egyes kölcsönhaásokra oábbra is érényesek a ké ömegpon kölcsönhaására onakoó korábbi megállapíásaink, agyis a kölcsönhaások egymás nem befolyásolják Ha a egyes kölcsönhaásokra onakoó m( Δ i Δ( m i i egyenleeke össeadjuk, akkor megkapjuk a m ömegpon eljes sebességáloására onakoó össefüggés: m Δ Δ( i I ( Δ i a m ömegnek a i-edik ömeggel aló kölcsönhaásából sármaó sebességáloása, a eljes sebességáloás pedig eek ekori össege: Δ ( Δ i A feni egyenlee Δ-el osa, majd égelenül kicsi időaramra i áére, a d d( m ii m ma Fi d i d i egyenlee kapjuk, ahol F i a i-edik ömeg álal a m ömegre kifeje erő Vagyis a m ömegpon mogására Newon II örényé ilyenkor a ömegponra haó erők ekori össegéel kell felírni, ami Newon IV örénye A mogásegyenle és alkalmaásai Newon II örénye össefüggés ad a ömegponra haó erők és a ömegpon gyorsulása köö Miel e a össefüggés esi leheőé a mogás leírásá, mogásegyenlenek is neeik A mogásegyenlee ké célra hasnálhajuk fel m i i

TÓTH A: Pondinamika (kibőíe óraála 9 A legkéenfekőbb és leggyakoribb felhasnálás a, hogy a ömegponra haó erő(k ismereében a mogásegyenle segíségéel meghaárouk a mogó pon helyekorának időfüggésé, agyis maemaikailag leírjuk a mogás A mogásegyenle egy másik leheséges felhasnálása a, hogy ismer mogásho meghaárouk a a erő, amely a ado mogás lérehoa A erőhaások legfonosabb ípusai Ahho, hogy a mogásegyenlee megoldjuk, ismernünk kell a ömegponra haó erőke Mos röiden foglalkounk néhány fonos erőípussal, amelyeke a klassikus fiikai mogásproblémák megoldásánál gyakran hasnálnak Kénysererő A erőnek egy sajáos, konkré kölcsönhaási ípusól függelen és gyakran előforduló fajája lép fel akkor, ha egy es mogásá alamilyen külső kényseríő körülmény korláoa E örénik például akkor, amikor egy ese alamilyen külső haás olyan felülehe nyom, amelyen nem ud áhaolni A gyakorlaban előforduló ilyen ese, hogy a esre a nehéségi erő ha, és mogásá egy ísines sík felüle agy egy lejő jelenlée korláoa A ilyen felüle megakadályoa, hogy a es a felüle alá kerüljön, agyis a es nem modulha el a síkra merőlegesen lefelé (a ábra A ilyen mogás korláoó külső feléeleke kénysereknek neeük A kényser működésé a emlíe eseekben úgy foghajuk fel, hogy a esre egy F N aró erő lép fel, ami kénysererőnek neeünk A es mogásá ilyenkor úgy írhajuk le, hogy a kényser (a áhaolhaalan sík haásá a mogásegyenleben a F N kénysererőel essük figyelembe (b ábra Súrlódási erő Ha egy kénysernek kie esre a kényserfeléel álal megengede elmodulás irányában haó erő is működik, akkor fellép egy sajáos fékeő erő, a ún súrlódási erő Ennek köismer példája a a ese, amikor a F isgál ese egy külső haás egy felülehe N nyomja (pl a ábrán a G nehéségi erő, és F s (F F működik a felüleel párhuamos erő (F is Ilyenkor a felüle egy a elmodulás fékeő, súrlódási erő G fej ki Kis erőnél a es odaapad a felülehe, és -F N nem modul el, mer egy ún apadási erő (F kompenálja a külső erő (apadási súrlódás A apadási erőnek aonban an egy a érinkeő felüleek minőségéől függő maimális éréke ( F ma, eér ha ennél nagyobb erő fejünk ki, akkor a es csúsni ked A csúsás köben fellép egy állandó fékeő erő, a ún csúsási súrlódási erő (F s, amely mindig a mogásiránnyal ellenées (csúsási súrlódás A apadási erő maimális éréke és a csúsási súrlódási erő is köelíőleg arányos a ese a felülehe nyomó erőel (F N A álló es eseén fellépő maimális apadási erő a ma F μfn, a mogó es eseén fellépő csúsási súrlódási erő pedig a G G a F N G G b F N

TÓTH A: Pondinamika (kibőíe óraála Fs μ FN alakban írhajuk fel, ahol μ illee μ a felüleek minőségéől függő sám, a ún apadási- illee csúsási súrlódási együhaó A apasala serin μ >μ, agyis a apadási erő maimális éréke mindig nagyobb, min a csúsási súrlódási erő Graiációs kölcsönhaás, a súlyos ömeg A apasala serin bármely ké es köö fellép egy olyan kölcsönhaás, amelynél a esekre haó erő aonos anyagú és állapoú eseke feléelee a kölcsönhaó esek érfogaáal arányos E a kölcsönhaás graiációs kölcsönhaásnak neeik A Földön egy es súlyá a Föld és a es köö fellépő graiációs kölcsönhaás okoa Ha a ké es kölcsönhaás okoó anyagi ulajdonságá m s -gyel illee m s -el jelöljük, akkor ké ponserűnek ekinheő (aa a áolságukho képes elhanyagolhaó méreű es köö fellépő erő nagyságá a Newon álal megállapío örény serin a msms Fg γ r össefüggés adja meg, ahol r a ké ponserű es áolsága A erő onó, és a ké ese össeköő egyenes menén ha A m s ulajdonságo a kölcsönhaó es súlyos ömegének neeik A össefüggésben ké ismerelen mennyiség an: a m s súlyos ömeg és a γ arányossági ényeő, a ún graiációs állandó A örény iganak bionyul nem ponserű, de gömb alakú esekre is, ha áolságuka a cenrumuk áolságáal aonosnak ekinjük Ha önkényesen definiáljuk, hogy mennyi a m s súlyos ömeg egysége (pl a mondjuk, hogy lier í súlyos ömegé ekinjük egységnyinek, és e a egysége kg-nak neeük, akkor a egységnyi ömegek köö meghaároo áolságban fellépő erő megmére, kisámíhaó a γ arányossági ényeő egysége és nagysága (e a mérés elősör Caendish égee el A jelenleg hasnál kg-definíció eseén a mérések serin γ 6,67 Nm / kg A apasala serin a Föld felsínéhe köel a esekre haó graiációs erő jó köelíéssel F g G mg alakban adhaó meg, ahol g egy ado helyen minden esre ugyana a érék (Megjegyeük, hogy egy es ado helyen mér súlya nem ponosan a graiációs erőel egyenlő, mer a Föld forgása mia fellépő ún cenrifugális erő e kissé módosíja Eel később foglalkounk ******************* ********************** ******************** A F g G mg össefüggés a graiációs örénnyel össhangban an A Föld (M és a es (m köö fellépő erő a graiációs örény alapján (a Földe gömbnek ekine, és a ömegé a köépponban elképele Mm Fg γ, ( R + h ahol R a Föld sugara, h a esnek a Föld felsínéől mér magassága Ha a es a felsín köelében an, akkor R + h R, ehá a graiációs erő a F g γ M m R Henry CAVENDISH (73-8 angol fiikus, kémikus, csillagás

TÓTH A: Pondinamika (kibőíe óraála M alakba írhaó A g mennyisége eek serin köelíőleg a g γ össefüggés adja meg, ami csak a R Föld adaaiól és a graiációs állandóól függ (a adaok behelyeesíéséel 9,8 m/s éréke kapunk ******************** ********************** ******************* A esekre haó erő (F a eseke gyorsíja (a, és ennek alapján beeeük a F eheelen ömege a m össefüggéssel E a ömeg ado anyagú es eseén a sinén a érfogaal arányosnak muakoik Felmerül a kérdés, hogy a ké eljesen különböő módon beeee ömeg aonos agy különböő A köelíő isgála alapján a ké ömeg aonosnak lásik, ugyanis a apasala serin a Földön a graiációs erő álal gyorsío es gyorsulása (a g nem függ a es anyagáól és méreéől, és ugyana a g érék, min ami a esre haó graiációs erő méréséből kapunk: Fg msg illee Fg mag m g Ennek megfelelően ms msg m g m A kérdés aonban eli jelenőségű, eér ponos isgálanak is aláeeék A első komoly mérés eel kapcsolaban Eöös Loránd égee el, és nagy ponossággal megállapíoa a súlyos és eheelen ömeg aonosságá: a kéféle ömeg hányadosa a mérési hiba figyelembe éeléel csak a 9-edik iedes jegyben érhe el a -ől Elekrosaikus kölcsönhaás Egymásho képes nyugalomban léő, elekromosan ölö esek köö a ölésük mia fellép egy ún elekrosaikus kölcsönhaás, amelynek eredményekén a ké es köö onó agy asíó erő lép fel, aól függően, hogy ölésük ellenées- agy aonos előjelű A Coulomb álal megállapío örény serin ké ponserűnek ekinheő ölés köö fellépő erő nagysága: QQ Fels Ke, r ahol Q és Q a ölések nagysága, K e a ölés egységéől függő állandó, r pedig a ölések kööi áolság A örény formailag megegyeik a graiációs kölcsönhaás leíró örénnyel, eér a kéféle kölcsönhaás köö sámos analógia áll fenn A ölés 9 jelenleg hasnálaos egysége ( C As eseén a állandó 9 Nm / C A mogás leírása a erő ismereében Ha ismerjük a ömegponra haó erőke, akkor a mogásegyenle segíségéel meghaárohajuk a ömegpon gyorsulásá: Feredő ( a ( m A gyorsulásból a korábban megismer módon kisámíhajuk a ömegpon sebességének és helyekorának időfüggésé inegrálás inegrálás a( ( r( K e EÖTVÖS Loránd (848-99 magyar fiikus Charles Auguse COULOMB (736-86 francia fiikus, hadmérnök

TÓTH A: Pondinamika (kibőíe óraála E a eljárás a mogásegyenle megoldásának agy a mogásegyenle inegrálásának neeük, aminek során ha ismerjük a kedei feléeleke eljuunk a mogás eljes leírásáho Példakén isgáljunk meg, néhány mogás, amelye ismer erőhaás oko Eekben a eseekben a alóságban öbbnyire nem ponserű esek mogásáról an só Később láni fogjuk, hogy bionyos eseekben (haladó mogás a kierjed esek mogása is leírhaó a ömegponra onakoó össefüggésekkel A alábbiakban mindig a éeleük fel, hogy e a egyserűsíés alkalmahaó Mogás állandó erő haására F( F Ilyenkor F ( F állandó, ehá a ( a állandó, amiből a sebesség m m és a helyekor időfüggése a már ismer módon kaphaó meg Ilyen erő lép fel a Föld felsínéhe köeli esekre, amely függőlegesen lefelé ha, és nagysága G mg Mogás súrlódással A csúsó esek mogásá a feniek alapján egyserűen leírhajuk Miel a csúsási súrlódási erő mindig a esnek a felülehe isonyío sebességéel ellenées irányú, a -engely menén súrlóda mogó, m ömegű es mogásegyenlee F N nagyságú nyomóerő eseén F F μ FN ma I F a esre haó -irányú állandó erő (ábra Eserin F μfn a állandó, m amiből a sebesség és a helykoordináa időfüggése a már ismer módon megkaphaó A F N erő mindig a konkré körülmények haároák meg Gyakori ese, hogy érinkeési felülere merőleges komponense csak a nehéségi erőnek an, ilyenkor a nyomóerő éppen e a komponens les Vísines F érinkeési síknál (ábra eér F N mg, így a N mogás gyorsulás: F S F F a μg G m -F Lejőn mogó es eseén a helye annyial N bonyolulabb, hogy ekkor a felüleeke össenyomó erő nagysága nem aonos a nehéségi erőel (ábra A es y-irányban nem moog, ehá a F e eredő erő y-komponensére a mogásegyenle alapján fennáll, hogy Fey FN GN ma y, így y FN GN G cosα mg cosα F N A mogásegyenle -komponense pedig F s F e GT Fs ma agyis G G T N mg sinα F s ma α G Figyelembe ée a súrlódási erőre onakoó össefüggés és a nyomóerőre kapo kifejeés, a gyorsulás -komponense g(sinα μ cosα a

TÓTH A: Pondinamika (kibőíe óraála 3 Mogás köegellenállással Visgáljuk meg mos a, hogy egy leegőben köegellenállással mogó, sabadon eső es sebessége hogyan áloik a időben A köegellenállás nem úl nagy sebességeknél arányos a es sebességéel és aal ellenées irányú: Fke k A mogás függőleges egyenes menén ajlik, így a koordináarendserünk -engelyé függőlegesen lefelé irányía a mogásegyenle: ma mg k A egyenleből ilágosan lásik, hogy a es sebessége nem érhe el akármekkora éréke, hisen egy idő uán a nöekő sebesség mia a fékeő erő nagysága eléri a állandó nehéségi erő éréké Ekkor a eredő erő nulla les, a es nem gyorsul oább: a Ekkor a mogásegyenle a mg k alako öli, amiből a állandósul mg sebesség megkaphaó: áll (E a probléma ún asimpoikus megoldása k ******************* ************************ ********************* A mogásegyenle megoldásáal erméseesen nem csak a égsebesség, hanem a sebesség (illee a - koordináa időfüggése is megkaphaó Ehhe írjuk á a egyenlee a alábbi módon: d m mg k, d d k g, d m d d k g m E a egyenle (ami egy ún séálashaó differenciálegyenle a ké oldal inegrálásáal könnyen megoldhaó Sabadesés feléelee (, a égeredmény: mg k ( ep k m m mg A sebesség a >> eseben egy állandósul ( érékhe ar k k ******************* ******************* ******************* Mogás graiációs erő haása ala A graiációs kölcsönhaás ismereében leírhajuk egy ömegnek (m egy másik ömeg (M jelenléében örénő mogásá Ennek ipikus példája a bolygók Nap körüli mogása Miel a Nap ömege (M sokkal nagyobb, min a bolygóé (m, a probléma úgy árgyalhaó, minha a Nap nem moogna Ekkor a bolygó Napho isonyío helyé megadó r helyekorra felírhaó a d r Mm r m γ d r r mogásegyenle, amelyből a bolygó pályája, keringési ideje és a Kepler álal r megállapío örényserűségek leeeheők (i a Napól a bolygó felé muaó r egységekor

TÓTH A: Pondinamika (kibőíe óraála 4 A Föld felsínéhe köel a graiációs erő függőlegesen lefelé haó, állandó erő, amelynek nagyságá köelíőleg a ismer, Gmg össefüggés adja meg A mogásegyenle ilyenkor m a G Ha a koordináarendser úgy álasjuk meg, hogy a -engely függőlegesen lefelé mua, akkor a egyenleben sereplő erő-ekor komponensei: G (,, mg Így a gyorsulásra a a (,, g eredmény adódik, amiből a kedősebesség ismereében a már árgyal hajíások egyenleei kapjuk Ismer mogás lérehoó erő meghaároása a mogásegyenle alapján Előfordul, hogy a mogás magá már ismerjük (pl állandó gyorsulású mogás, körmogás, regőmogás, és kíáncsiak agyunk, hogy ilyen mogás lérehoásáho milyen erőre an sükség Állandó gyorsulású mogás Ha a gyorsulás állandó, akkor a Fe ma mogásegyenle alapján a eredő erőnek is időben állandónak kell lennie, agyis ilyen mogás F e állandó erő ho lére Körmogás d A körmogás eseén a pálya egy ado helyén egy érinő irányú a T u T és egy d cenrum felé muaó a N rω u N gyorsuláskomponens lép fel Gyorsuló körmogás lérehoásáho ehá a ömegponra a ado helyen egy érinő irányú d F T mat m ut és egy cenrum felé muaó FN ma N mrω u N d erőkomponens sükséges Uóbbi, a körpálya köépponja felé muaó erő cenripeális erőnek (F cp neeik Ennek nagysága Fcp FN mrω m Ha a r sebesség nagysága nem áloik (egyenlees körmogás, akkor a körmogás egyedül a állandó nagyságú (de áloó irányú! cenripeális erő haására alakul ki E a a erő, amely a körpályán aló haladásho sükséges irányáloás lérehoa Harmonikus regőmogás Egy egyenes (pl a -engely menén harmonikus regőmogás égő ömegponnál a helyekor időfüggése definíció serin: ( Acos( ω + α, amiből a gyorsulásra a kapjuk, hogy a ω A mogásegyenle alapján ehá ilyen mogás F ma mω D alakú erő ho lére (i beeeük a D mω jelölés E a erő a kiéréssel arányos és mindig aal ellenées irányú (ehá a egyensúlyi helye felé mua