A ÉVI EÖTVÖS-VERSENY FELADATA: A KEPLER-PROBLÉMA MÁGNESES TÉRBEN

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A 2004. ÉVI EÖTVÖS-VERSENY FELADATA: A KEPLER-PROBLÉMA MÁGNESES TÉRBEN"

Átírás

1 Debecen DEBRECENI EGYETEM Eléleti Fizika Tanszék (Saile Konél MTA oktoa) Izotópalkalazási Tanszék (Kónya József ké. tu. oktoa) KLTE ATOMKI Közös Tanszék (Kiss Ápá Zoltán fiz. tu. oktoa) Kíséleti Fizikai Tanszék (Pálinkás József akaéikus) Sziláestfizikai Tanszék (Beke Dezsô fiz. tu. oktoa) Biofizikai Intézet (Szöllôsi János biol. tu. oktoa) KUTATÓINTÉZETEK MTA AtoagkutatóIntézet (Lovas Rezsô akaéikus) MTA Csillagászati Kutatóintézet Napfizikai Obszevatóiua (Luány Anás fiz. tu. kaniátusa) Gyô SZÉCHENYI ISTVÁN EGYETEM Fizika Tanszék (Hováth Anás egy. ocens) Miskolc MISKOLCI EGYETEM Geofizikai Tanszék (Dobóka Mihály ûsz. tu. oktoa) Fizika Tanszék (Deeny Zoltán fiz. tu. kaniátusa) Fizikai Kéiai Tanszék (Kaptay Gyögy ûsz. tu. kaniátusa) Pécs PÉCSI TUDOMÁNYEGYETEM Biofizikai Intézet (Soogyi Béla egy. taná) Általános Fizika és Lézespektoszkópia Tanszék (Néet Béla egy. ocens) Eléleti Fizika Tanszék (Kopa Csaba egy. taná) Kíséleti Fizika Tanszék (Hebling János egy. ocens) Sopon NYUGAT-MAGYARORSZÁGI EGYETEM Faipai Ménöki Ka, Fizika Tanszék (Papp Gyögy) MÉK Mosonagyaóvá (Dóka Ottó egy. ocens) GEO Székesfehévá (Csoásné Maton Melina fôisk. tanásegé) ATIF Gyô (Zábái Antal fôisk. ajunktus) Szege SZEGEDI TUDOMÁNYEGYETEM Biofizikai Tanszék (Maóti Péte biol. tu. oktoa) Eléleti Fizikai Tanszék (Gyéánt Iván fiz. tu. oktoa) Kíséleti Fizika Tanszék (Szatái Sáno fiz. tu. oktoa) Optikai és Kvantuelektonikai Tanszék (Bo Zsolt akaéikus) MTA Lézefizikai Kutatócsopot (Bo Zsolt akaéikus) Szegei Csillagvizsgáló(Szatáy Káoly fiz. tu. kaniátusa) Általános Ovosi Ka, Ovosi Fizika Oktatási Csopot (Ringle Anás biol. tu. kaniátusa) Juhász Gyula Tanáképzô Fôiskola Ka, Fizika Tanszék (Nánai László fiz. tu. kaniátusa) KUTATÓINTÉZET SzBK Biofizikai Intézet (Oos Pál akaéikus) Veszpé VESZPRÉMI EGYETEM Fizika Tanszék (Szalai István egy. ocens) Fizikai Kéia Tanszék (Liszi János egy. taná) A FIZIKA TANÍTÁSA A. ÉVI EÖTVÖS-VERSENY FELADATA: A KEPLER-PROBLÉMA MÁGNESES TÉRBEN Pálfalvi László MTA PTE Nelineáis Optikai és Kvantuoptikai Kutatócsopot PTE, Kíséleti Fizika Tanszék A felaatok egolása soán sok esetben hasznos lehet olyan ószeek alkalazása, elyek túlutatnak a középiskolások eszköztáán. Ha egy pobléát általánosan kezelünk, az elei egolással egválaszolható kééseken túlutatókéések felvetésée és egválaszolásáa aóik lehetôség. Ezenkívül áutathatunk olyan általános évényû összefüggéseke, elyek a speciális esetbôl kiinulótágyalások soán ne keülnek 7 NEM ÉLHETÜNK FIZIKA NÉLKÜL FIZIKAI SZEMLE 5 /

2 felszíne. Még egy nagyon fontos szepont, hogy egy egzakt egolás segítség lehet eeényünk helyességének ellenôzéséhez is. A. évi Eötvös-veseny 3. felaata igen jópéla annak eonstálásáa, hogy az általános összefüggésekbôl hogyan juthatunk el az egyei esetekhez. A felaat így szólt: Elektonok ozgását vizsgáljuk hoogén ágneses tében, az eôvonalaka eôleges síkban. (Az elektont klasszikus töegpontnak tekintjük, elye csak elektoos és ágneses eôk hatnak.) a) Két, kezetben nyugvóelekton egyástól elég essze, távolsága helyezkeik el. Mekkoa azonos nagyságú, egyással ellentétes iányú sebességgel inítsuk el az elektonokat úgy, hogy távolságuk a ozgás soán ne változzék? b) Állanóaahat-e az távolság akko is, ha csak az egyik elektont lökjük eg? Milyen pályán ozog ekko a ensze töegközéppontja? Mekkoa az a iniális in távolság, aely ellett ilyen ozgás ég létejöhet? Ábázoljuk vázlatosan az elektonok pályáját ebben az esetben! Miko áll eg elôszö a eglökött elekton? Ha nincs jelen ágneses té, és a töltések ellentétes elôjelûek, akko a jól iset Keple-pobléa egolásáól van szó speciális kezôfeltételek ellett. Teészetesen ebben az esetben néhány alkéés ételetlenné válik. A szietikus inítás A felaat a) kéése ne túl nehéz, a szietia iatt a szituációkönnyen elképzelhetô, ai egy kis önbizalat a a késôbbiekhez. A egolás soán az e elei töltés alatt e = +,6 9 C-ot étünk. A kezetben távolságban lévô elektonok távolsága úgy aahat állanó, ha / sugaú köpályán ozognak a nyugaloban lévô töegközéppontjuk köül, azaz a ozgásegyenlet (. ába): ev B k e Innen kifejezve a kezôsebességet v = eb ± eb = v /. aóik, elybôl látszik, hogy inen > in = 8 k ke esetén két különbözô v esetén is létejöhet ugyanazon a köpályán töténô ozgás. = in esetén v = eb / aóik az inítási sebessége, < in esetén peig ne jöhet léte köozgás. B /3 () () v ev B ke /. ába. Az elektonokat azonos nagyságú, ellentétes iányú sebességgel inítjuk. Az általános egolás Most téjünk á a pobléa általános tágyalásáa! Jelöljük az elektonok helyvektoait -gyel, illetve -vel, sebességeiket peig v -gyel, illetve v -vel! A kezôfeltételek legyenek teljesen általánosak, csupán annyit kössünk ki, hogy inkét elekton sebessége eôleges legyen a ágneses tée! Mivel a ponttöltéseke hatóvalaennyi eô eôleges lesz a ágneses tée, biztosak lehetünk abban, hogy az elektonok a ágneses tée eôleges síkban fognak ozogni. Az elektonoka a ozgásegyenletek: ahol Vezessük be az = F c e v B, = F c e v B, F c = ke 3 ( ). = v atív helyvektot, illetve a töegközéppontba utató R = vektot int új változókat! A (3) és () egyenletekben az és ennyiségeket és a sebességeket kifejezve az és R új változókkal (5) és (6) felhasználásával, aj az egyenleteket összeava, a töegközéppont ozgásáa az R = e Ṙ B egyenlet aóik. Ez a ozgásegyenlet pontosan olyan, int egyetlen elekton ozgásegyenlete hoogén ágneses tében. Tehát a töegközéppont egyenletes köozgást fog végezni Ω = eb/ szögsebességgel. Fontos kieelni, hogy ez báy olyan kezôfeltétel ellett így van (ne csak olyanko, int ait a felaat b) észében kiónak), aiko is az elektonok kezôsebességei eôlegesek a ágneses tée. Az és R változókkal kifejezett (3) és () ozgásegyenleteket egyásból kivonva eljutunk a atív helyvekto ozgásegyenletéhez: (3) () (5) (6) (7) A FIZIKA TANÍTÁSA 75

3 = ke e ṙ B. 3 Láthattuk tehát, hogy a ozgásegyenletek szepaálónak a töegközépponti (7), illetve a atív (8) ozgás változói szeint. A (8) egyenlet egolásához nagy segítséget a a egaaóennyiségek iseete. Tujuk, hogy ágneses té hiányában a atív ozgáshoz tatozó enegia és az ε = µ ṙ N = µ ṙ U () ipulzusoentu egaa (ahol µ = / a eukált töeg). Vajon i a helyzet ágneses té jelenlétében? Ehhez a Lagange-függvény vizsgálatával juthatunk el legkönnyebben. A Lagange-függvény Minenekelôtt nézzük eg, hogy hoogén ágneses tében ozgó(egyetlen) elektonhoz ilyen Lagangefüggvény enelhetô! Általánosabb esetben, tetszôleges elektoágneses tében ozgóponttöltés Lagange-függvénye ne fejezhetô ki a ágneses inukcióval és az elektoos téeôsséggel, csak a potenciálokkal. Hoogén ágneses tében viszont találhatunk olyan B-vel kifejezhetô Lagange-függvényt, elybôl a helyes ozgásegyenlet száaztatható. A tée eôlegesen ozgó elekton esetén egy lehetséges Lagange-függvény az A = (x e y ) B (xy yx )= = e ṙ B ( ṙ ). x x, y y Eule Lagange-egyenletekbe behelyettesítve a (9)-ben egaott Lagange-függvényt, egkapjuk az x és y kooináta ozgásegyenleteit, elyek az = e ṙ B (8) (9) () () A töegközépponti (6) és atív (5) helyvektooka való áttééssel a ensze Lagange-függvénye: = TKP (3) töegközépponti és atív tag összegée szepaálóik, ahol és A atív ozgás TKP = Ṙ e B (R Ṙ ) = ṙ U() e B ( ṙ ). Az alábbiakban koncentáljunk a atív ozgása, hisz a töegközéppont ozgását á a (7) ozgásegyenlet alapján ételeztük! Mivel int koábban á elítettük az vekto síkozgást végez, éees bevezetni az és ϕ síkbeli polákooinátákat. Ezekkel a változókkal ṙ = ṙ ϕ, B ( ṙ) =B ϕ, illetve ivel a potenciál csak a két elekton távolságától függ U( )=U(). A atív ozgás Lagange-függvénye az és ϕ változókban A () kifejezést a = (ṙ ϕ ) U() egyenletbe behelyettesítve az egyenletée ϕ U ṙ eb ϕ. () (5) kooináta ozgás- ebϕ = (6) aóik. Mivel a () Lagange-függvény független a ϕ kooinátától, azaz /ϕ =, a ozgásegyenletnek a koponensegyenletei lesznek, tehát a egsejtett Lagange-függvény valóban helyes. Két elekton esetén, a Coulob-kölcsönhatást is figyelebe véve a Lagange-függvény ϕ egyenletbôl az következik, hogy az ϕ (7) = ṙ ṙ U ( ) e B ( ṙ ) e B ( ṙ ). () A = ϕ eb (8) ennyiség ozgásállanó. Eljutottunk tehát egy egaaóennyiséghez, ai nagyon fontos eeény a ké- 76 NEM ÉLHETÜNK FIZIKA NÉLKÜL FIZIKAI SZEMLE 5 /

4 Eszeint egy U eff ( ) effektív potenciálban töténô egyienziós ozgása sikeült eukálni a pobléát. A. ába vázlatosan utatja az effektív potenciált Ueff( ) U () =k e (3). ába. Az egyienziósa eukált ozgáshoz tatozó effektív potenciál int az elektonok távolságának a függvénye. sôbbiekhez. A Keple-pobléából iset, hogy ágneses té hiányában az N = ϕ ennyiség, a atív ozgáshoz tatozóipulzusoentu nagysága ozgásállanó. A (8) egyenletbôl látszik, hogy B esetén az ipulzusoentu kizáólag akko lesz ozgásállanó, ha kikötjük állanóságát, ai a felaat egyik feltétele. A (8) egyenletbôl az is következik, hogy állanóságaϕ állanóságát is aga után vonja, ai annyit jelent, hogy ha a atív ozgás köozgás, akko inenképp egyenletes is. A (7) egyenletben a eiválásokat elvégezve az ϕ ṙϕ ebṙ = (9) ozgásegyenlethez jutunk. Mivel a Loentz-eô unkája zéus, ezét váhatóan a atív ozgáshoz tatozó ε = ṙ ϕ U() enegia ozgásállanó, azaz ε =. () () A () kifejezést a () egyenletbe beíva, és felhasználva a (6) és (9) egyenleteket valóban az aóik, hogy a atív ozgás enegiája () ozgásállanó. Az enegiaegaaás vizsgálata évén is eljuthatunk aa a következtetése (), hogy ha = állanó( ṙ =), akko a ozgás egyenletes köozgás. A (8) egyenletbôl ϕ -t kifejezve, aj ()-ba beíva aóik, ahol ε = ε a kin ε a kin = ṙ és U eff () () Coulob-potenciál esetén. Figyelee éltó, hogy íg a Keple-pobléában (B =,U()= ke / ) csak ε < esetén lehet kolátos ozgás, ebben az esetben ne így van. A távolság állanóságának feltétele Kéés, hogy ekkoa felel eg a köozgásnak. Ekko, ahogy a. ábán is látszik azaz A 3 U eff () = =, e B 8 k e () (5) A (8) kifejezésben figyelebe véve, hogy =, ϕ = v /, aj A étékét beíva a (5) egyenletbe ev B k e =. aóik. Ez utóbbi egyenletbôl a atív sebessége = v (6) (7) v = eb ± eb ke =v aóik, ahol v á koábban () efiniált. Ebbôl az eeénybôl ugyanazt az feltételt kapjuk az állanótávolság egvalósíthatósági ta- toányáa, int a () egyenletbôl. A v =v eeény a felaat kéésénél általánosabb eseteke aja eg a választ: inen olyan kezôfeltétel esetén, aiko az elektonokat összekötô szakasza eôleges kezôsebességek olyanok, hogy a atív sebesség v a távolság állanóaa. Ez abban az esetben, iko az egyik elekton áll, nyilván azt jelenti, hogy a ásikat v sebességgel kell inítani. Ha tehát az elektonokat = in feltétel ellett az összekötô egyenese eôleges v és v (pl. ellentétes) sebességekkel inítjuk, > in = 8 k 3 B v = eb = v v. A atív ozgás szögsebessége: (8) U eff () = A eb U (). ω = ϕ = v = eb. (9) A FIZIKA TANÍTÁSA 77

5 y TKP etben álló, illetve a eglökött elekton pályáját. A göbe úgynevezett caioi vagy szívgöbe. Ilyen göbét í le egy ögzített koongon csúszásentesen göülô azonos sugaú koong egy keületi pontja. Az ábáól jól látható, hogy aíg a két elekton helyet cseél, aig a töegközéppont pontosan egysze köbejá. Újabb pobléák felvetése x 3. ába. Az elektonok helycseéje. A a kezetben elinított elekton (töö), az a kezetben álló(kitöltetlen). A töegközéppont szögsebessége peig: Ω = eb A töegközéppont V sebessége: =ω. V = Ω R = v v. (3) (3) A (8), (9), (3) és (3) összefüggéseket figyelebe véve a töegközéppont által leít köpálya sugaáa R = v v (3) aóik. A (3), (5) és (6) összefüggéseket felhasználva pélául a elekton helyvektoa (hasonlóképpen az elekton helye is) az iô függvényében egaható: (t) = v v cos(ω t), sin(ω t) cos(ω t), sin(ω t). (33) Most téjünk vissza a felaat szövegének egfelelôen aa az esete, aiko csak az egyik ( ) elektont lökjük eg (v =v )! Ekko a elekton sebességée v (t) =ṙ (t) = = Ω sin(ω t) sin(ω t), cos(ω t) cos(ω t) = = Ω sin Ω ω t, cos Ω ω t cos ω t (3) aóik. Az egyenletbôl látszik, hogy v akko lesz zéus, ha t = π ω =π eb = T, (35) azaz, aíg a töegközéppont egtesz egy teljes köt. A 3. ábán néhány nevezetes pontban feltüntettük a kez- Eigi eeényeinket felhasználhatjuk újabb pobléák felvetéséhez és egválaszolásához. Ahogy a Keplepobléa esetén is az egyik fô cél a pálya száaztatása, úgy ebben az esetben is lehetôség nyílik ee, noha az analitikus foában töténô egaás ne tiviális. A (8) egyenletbôl ϕ -ot, a () egyenletbôl ṙ -ot kifejezve, a (3) összefüggést felhasználva ϕ = ε A eb A eb (36) aóik. A (36) iffeenciálegyenletbôl az (ϕ) pályagöbe elvben száaztatható, hisz sikeült a pobléát kvaatúáa visszavezetni. Iset felaat annak kiszáítása, hogy egyástól távolsága elhelyezett ellentett ponttöltések (pl. elekton poziton pá) ennyi iô úlva találkoznak. A egolás különbözô intepetációi viszonylag közisetek. Újabb, éekes felaat lehet ennek a kéésnek a feltevése az Eötvös-veseny felaat köülényei között, azaz hoogén ágneses tében. Vegyük észe, hogy ez egint csak az általános pobléakö speciális esete ás kezôfeltételekkel. Ehhez a () egyenlet átenezett alakjából kapott = ε k e egyenletet kell egolani ε = U eff ( ) feltétel ellett. Összefoglalás A eb k e (37) Végezetül elonható, hogy a felaat összes kéésée válaszoltunk, ha ne is a feltevés soenjében, hane inkább ahogy a gonolatenet logikája azt egkívánta. A pobléakö általános tágyalása sok olyan éekesség eglátásáa aott lehetôséget, elyek egy elei egolás soán ne keülnek a felszíne. Ioalo HRASKÓ PÉTER: Eléleti echanika Egyetei tankönyv, PTE, 995. CSERTI JÓZSEF: A. évi Eötvös-veseny 3. felaata I.N. BRONSTEJN, K.A.SZEMENGYAJEV: Mateatikai zsebkönyv Mûszaki Kiaó, Buapest, NEM ÉLHETÜNK FIZIKA NÉLKÜL FIZIKAI SZEMLE 5 /

Mozgás centrális erőtérben

Mozgás centrális erőtérben Mozgás centális eőtében 1. A centális eő Válasszunk egy olyan potenciális enegia függvényt, amely csak az oigótól való távolságtól függ: V = V(). A tömegponta ható eő a potenciális enegiája gaiensének

Részletesebben

9. ábra. A 25B-7 feladathoz

9. ábra. A 25B-7 feladathoz . gyakolat.1. Feladat: (HN 5B-7) Egy d vastagságú lemezben egyenletes ρ téfogatmenti töltés van. A lemez a ±y és ±z iányokban gyakolatilag végtelen (9. ába); az x tengely zéuspontját úgy választottuk meg,

Részletesebben

X. MÁGNESES TÉR AZ ANYAGBAN

X. MÁGNESES TÉR AZ ANYAGBAN X. MÁGNESES TÉR AZ ANYAGBAN Bevezetés. Ha (a külső áaok által vákuuban létehozott) ágneses tébe anyagot helyezünk, a ágneses té egváltozik, és az anyag ágnesezettsége tesz szet. Az anyag ágnesezettségének

Részletesebben

Kinematikai alapfogalmak

Kinematikai alapfogalmak Kineatikai alapfogalak a ozgások leíásáal foglalkozik töegpont, onatkoztatási endsze, pálya, pályagöbe, elozdulás ekto a sebesség, a gyosulás Egyenes Vonalú Egyenletes Mozgás áll. 35 3 5 5 5 4 a s [] 5

Részletesebben

Segédlet a Tengely gördülő-csapágyazása feladathoz

Segédlet a Tengely gördülő-csapágyazása feladathoz Segélet a Tengely göülő-csaágyazása felaathoz Összeállította: ihai Zoltán egyetemi ajunktus Tengely göülő-csaágyazása Aott az. ábán egy csaágyazott tengely kinematikai vázlata. A ajz szeint az A jelű csaágy

Részletesebben

t [s] 4 pont Az út a grafikon alapján: ρ 10 Pa 1000 Pa 1400 Pa 1, 024 10 Pa Voldat = = 8,373 10 m, r h Vösszfolyadék = 7,326 10 m

t [s] 4 pont Az út a grafikon alapján: ρ 10 Pa 1000 Pa 1400 Pa 1, 024 10 Pa Voldat = = 8,373 10 m, r h Vösszfolyadék = 7,326 10 m XVIII. TORNYAI SÁNDOR ORSZÁGOS FIZIAI FELADATMEGOLDÓ VERSENY Hódezőásáhely, 04. ácius 8-0. 9. éfolya 9/. feladat: Adatok: a /s, t 6 s, a 0, t 5 s, a - /s, édések: s?, t?, átl?, a átl? [/s] 0 0 0 40 Az

Részletesebben

Síkbeli polárkoordináta-rendszerben a test helyvektora, sebessége és gyorsulása általános esetben: r = r er

Síkbeli polárkoordináta-rendszerben a test helyvektora, sebessége és gyorsulása általános esetben: r = r er Fizika Mechanika óai felaatok megolása 5. hét Síkbeli polákooináta-enszeben a test helyvektoa, sebessége és gyosulása általános esetben: = e Ha a test köpályán mozog, akko = konst., tehát sebessége : éintő

Részletesebben

EGYENÁRAM. 1. Mit mutat meg az áramerısség? 2. Mitıl függ egy vezeték ellenállása?

EGYENÁRAM. 1. Mit mutat meg az áramerısség? 2. Mitıl függ egy vezeték ellenállása? EGYENÁRAM 1. Mit utat eg az áraerısség? 2. Mitıl függ egy vezeték ellenállása? Ω 2 3. Mit jelent az, hogy a vas fajlagos ellenállása 0,04? 4. Írd le Oh törvényét! 5. Milyen félvezetı eszközöket isersz?

Részletesebben

Mágneses momentum, mágneses szuszceptibilitás

Mágneses momentum, mágneses szuszceptibilitás Mágneses oentu, ágneses szuszceptibilitás A olekuláknak (atooknak, ionoknak) elektronszerkezetüktől függően lehet állandóan eglévő, azaz peranens ágneses oentua (ha van bennük párosítatlan elektron, azaz

Részletesebben

A szállítócsigák néhány elméleti kérdése

A szállítócsigák néhány elméleti kérdése A szállítócsigák néhány eléleti kédése DR BEKŐJÁOS GATE Géptani Intézet Bevezetés A szállítócsigák néhány eléleti kédése A tanulány tágya az egyik legégebben alkalazott folyaatos üzeűanyagozgató gép a

Részletesebben

3.1. Példa: Szabad csillapítatlan rezgőrendszer. Adott: A 2a hosszúságú, súlytalan, merev

3.1. Példa: Szabad csillapítatlan rezgőrendszer. Adott: A 2a hosszúságú, súlytalan, merev SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK 3. MECHANIKA-REZGÉSTAN GYAKORLAT (iolgozta: Fehé Lajos tsz. ménö; Tanai Gábo ménö taná; Molná Zoltán egy. aj. D. Nagy Zoltán egy. aj.) Egy szabaságfoú

Részletesebben

Bé ni. Barna 5. Benc e. Boton d

Bé ni. Barna 5. Benc e. Boton d Egy asztalon háom halomban 009 db kavics van Egyet eldobok belőle, és a többit két kupacba osztom Ezután megint eldobok egyet az egyik halomból (amelyikben egynél több kavics van) és az egyik halmot ismét

Részletesebben

Kényszerrezgések, rezonancia

Kényszerrezgések, rezonancia TÓTH A: Rezgése/ (ibővített óavázlat 13 Kényszeezgése, ezonancia Gyaolatilag is igen fontos eset az, aio egy ezgése épes endsze ezgései valailyen ülső, peiodius hatás (énysze űödése özben zajlana le Az

Részletesebben

Ujfalussy Balázs Idegsejtek biofizikája

Ujfalussy Balázs Idegsejtek biofizikája M A TTA? Ujfalussy Balázs degsejtek biofizikája Második rész A nyugali potenciál A sorozat előző cikkében nekiláttunk egfejteni az idegrendszer alapjelenségeit. Az otivált bennünket, hogy a száítógépeink

Részletesebben

Egyenes és sík. Wettl Ferenc szeptember 29. Wettl Ferenc () Egyenes és sík szeptember / 15

Egyenes és sík. Wettl Ferenc szeptember 29. Wettl Ferenc () Egyenes és sík szeptember / 15 Egyenes és sík Wettl Ferenc 2006. szeptember 29. Wettl Ferenc () Egyenes és sík 2006. szeptember 29. 1 / 15 Tartalom 1 Egyenes és szakasz Egyenes Szakasz Egyenesvonalú egyenletes mozgás Egyenes és pont

Részletesebben

(Gauss-törvény), ebből következik, hogy ρössz = ɛ 0 div E (Gauss-Osztrogradszkij-tételből) r 3. (d 2 + ρ 2 ) 3/2

(Gauss-törvény), ebből következik, hogy ρössz = ɛ 0 div E (Gauss-Osztrogradszkij-tételből) r 3. (d 2 + ρ 2 ) 3/2 . Elektosztatika. Alapképletek (a) E a = össz (Gauss-tövény), ebből következik, hogy ρössz = ɛ 0 iv E (Gauss-Osztogaszkij-tételből) ɛ 0 (b) D = ɛ 0 E + P, P = p V, ez spec. esetben P = χɛ 0E. Tehát D =

Részletesebben

MUNKAANYAG. Szabó László. Áramlástani alaptörvények. A követelménymodul megnevezése:

MUNKAANYAG. Szabó László. Áramlástani alaptörvények. A követelménymodul megnevezése: Szabó László Áralástani alaptörények A köetelényodul egneezése: Kőolaj- és egyipari géprendszer üzeeltetője és egyipari technikus feladatok A köetelényodul száa: 07-06 A tartaloele azonosító száa és célcsoportja:

Részletesebben

Rugalmas megtámasztású merev test támaszreakcióinak meghatározása I. rész

Rugalmas megtámasztású merev test támaszreakcióinak meghatározása I. rész Rugalas egtáasztású erev test táaszreakióinak eghatározása I. rész Bevezetés A következő, több dolgozatban beutatott vizsgálataink tárgya a statikai / szilárdságtani szakirodalo egyik kedvene. Ugyanis

Részletesebben

5. Pontrendszerek mechanikája. A kontinuumok Euler-féle leírása. Tömegmérleg. Bernoulli-egyenlet. Hidrosztatika. Felhajtóerő és Arhimédesz törvénye.

5. Pontrendszerek mechanikája. A kontinuumok Euler-féle leírása. Tömegmérleg. Bernoulli-egyenlet. Hidrosztatika. Felhajtóerő és Arhimédesz törvénye. 5 Pontrenszerek echankája kontnuuok Euler-féle leírása Töegérleg Bernoull-egyenlet Hrosztatka Felhajtóerő és rhéesz törvénye Töegpontrenszerek Töegpontok eghatározott halaza, ng ugyanazok a pontok tartoznak

Részletesebben

13. Román-Magyar Előolimpiai Fizika Verseny Pécs Kísérleti forduló május 21. péntek MÉRÉS NAPELEMMEL (Szász János, PTE TTK Fizikai Intézet)

13. Román-Magyar Előolimpiai Fizika Verseny Pécs Kísérleti forduló május 21. péntek MÉRÉS NAPELEMMEL (Szász János, PTE TTK Fizikai Intézet) 3. oán-magyar Előolipiai Fizika Verseny Pécs Kísérleti forduló 2. ájus 2. péntek MÉÉ NAPELEMMEL (zász János, PE K Fizikai ntézet) Ha egy félvezető határrétegében nok nyelődnek el, akkor a keletkező elektron-lyuk

Részletesebben

Megoldási útmutató. Elektrosztatika

Megoldási útmutató. Elektrosztatika Megoás útutató Eektosztatka. Meghatáozzuk az E és E téeősség-ektook nagyságát küön-küön (függetenség e) az E = k képet aapján, és beajzojuk a egaott pontokba. Me nkét pontban két eentétes ányú ekto an,

Részletesebben

A 2004/2005 tanévi Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai f i z i k á b ó l III.

A 2004/2005 tanévi Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai f i z i k á b ó l III. A 004/005 tanévi Országos Középiskolai Tanulányi Verseny első forulójának felaatai és egolásai f i z i k á b ó l III kategória A olgozatok elkészítéséhez inen segéeszköz használható Megolanó az első háro

Részletesebben

AZ ÉGIG ÉRŐ PASZULY JACK AND THE BEANSTALK

AZ ÉGIG ÉRŐ PASZULY JACK AND THE BEANSTALK AZ ÉGIG ÉŐ PASZULY JAC AND HE BEANSAL Honyek Gyula ELE adnóti Miklós Gyakolóiskola ÖSSZEFOGLALÁS Csodálkoznunk kellene, a a Föld valaely pontján eglátnánk egy kötelet, aelynek az alja ajdne leé a talaja,

Részletesebben

Matematika III. harmadik előadás

Matematika III. harmadik előadás Matematika III. harmadik előadás Kézi Csaba Debreceni Egyetem, Műszaki Kar Debrecen, 2013/14 tanév, I. félév Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 1 / 13 tétel Az y (x)

Részletesebben

Q 1 D Q 2 (D x) 2 (1.1)

Q 1 D Q 2 (D x) 2 (1.1) . Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol

Részletesebben

3. 1 dimenziós mozgások, fázistér

3. 1 dimenziós mozgások, fázistér Drótos G.: Fejezetek az eléleti echanikából 3. rész 3. dienziós ozgások, fázistér 3.. Az dienziós ozgások leírása, a fázistér fogala dienziós ozgás alatt egy töegpont olyan ozgását értjük ebben a jegyzetben,

Részletesebben

Oktatási Hivatal. A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I. KATEGÓRIA. Javítási-értékelési útmutató

Oktatási Hivatal. A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I. KATEGÓRIA. Javítási-értékelési útmutató Oktatási Hivatal A 05/06. tanévi Országos Középiskolai Tanulányi Verseny ásodik forduló FIZIKA I. KATEGÓRIA Javítási-értékelési útutató. feladat: Vékony, nyújthatatlan fonálra M töegű, R sugarú karikát

Részletesebben

Az egyenes vonalú egyenletes mozgás

Az egyenes vonalú egyenletes mozgás Az egyenes vonalú egyenletes ozgás Az egyenes vonalú ozgások egy egyenes entén ennek végbe. (Ki hitte volna?) Ha a ozgás egyenesét választjuk az egyik koordináta- tengelynek, akkor a hely egadásához elég

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 08 ÉRESÉGI VIZSGA 008. ájus 4. FIZIKA KÖZÉPSZINŰ ÍRÁSBELI ÉRESÉGI VIZSGA JAVÍÁSI-ÉRÉKELÉSI ÚMUAÓ OKAÁSI ÉS KULURÁLIS MINISZÉRIUM A dolgozatokat az útutató utasításai szerint, jól követhetően

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások Megoldások 1. Oldd meg a következő exponenciális egyenletrendszereket! (Alaphalmaz: R) 5 3 x 2 2 y = 7 2 3 x + 2 y = 10 7 x+1 6 y+3 = 1 6 y+2 7 x = 5 (6 y + 1) c) 25 (5 x ) y = 1 3 y 27 x = 3 Megoldás:

Részletesebben

Műszaki folyamatok közgazdasági elemzése Előadásvázlat október 17. A technológia és a költségek dualitása

Műszaki folyamatok közgazdasági elemzése Előadásvázlat október 17. A technológia és a költségek dualitása Műszaki folyamatok közgazdasági elemzése Előadásvázlat 3 októbe 7 technológia és a költségek dualitása oábban beláttuk az alábbi összefüggéseket: a) Ha a munka hatáteméke nő akko a hatáköltség csökken

Részletesebben

Fizika A2E, 9. feladatsor

Fizika A2E, 9. feladatsor Fizika 2E, 9. feladatsor Vida György József vidagyorgy@gmail.com 1. feladat: hurokáramok módszerével határozzuk meg az ábrán látható kapcsolás ágaiban folyó áramokat! z áramkör két ablakból áll, így két

Részletesebben

1. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnök tanár) Trigonometria, vektoralgebra

1. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnök tanár) Trigonometria, vektoralgebra SZÉCHENYI ISTVÁN EGYETEM LKLMZOTT MECHNIK TNSZÉK. MECHNIK-STTIK GYKORLT (kidolgozta: Tiesz Péte eg. ts.; Tanai Gábo ménök taná) Tigonometia vektoalgeba Tigonometiai összefoglaló c a b b a sin = cos = c

Részletesebben

a) Az első esetben emelési és súrlódási munkát kell végeznünk: d A

a) Az első esetben emelési és súrlódási munkát kell végeznünk: d A A 37. Mikola Sándor Fizikaverseny feladatainak egoldása Döntő - Gináziu 0. osztály Pécs 08. feladat: a) Az első esetben eelési és súrlódási unkát kell végeznünk: d W = gd + μg cos sin + μgd, A B d d C

Részletesebben

Fizika I. Dr. Gugolya Zoltán egyetemi adjunktus. Pannon Egyetem Fizika Intézet N. ép. II. em. 239. szoba E-mail: gug006@almos.vein.

Fizika I. Dr. Gugolya Zoltán egyetemi adjunktus. Pannon Egyetem Fizika Intézet N. ép. II. em. 239. szoba E-mail: gug006@almos.vein. Fzka I. Dr. Gugolya Zoltán egyete adjunktus Pannon Egyete Fzka Intézet N. ép. II. e. 39. szoba E-al: gug006@alos.ven.hu Tel: 88/64-783 Fzka I. Ajánlott rodalo: Vondervszt-Néeth-Szala: Fzka I. Veszpré Egyete

Részletesebben

Bevezető fizika (infó), 3. feladatsor Dinamika 2. és Statika

Bevezető fizika (infó), 3. feladatsor Dinamika 2. és Statika Bevezető fizika (infó),. feladatsor Dinaika. és Statika 04. október 5., 4:50 A ai órához szükséges eléleti anyag: ipulzus, ipulzusegaradás forgatónyoaték egyensúly és feltétele Órai feladatok:.5. feladat:

Részletesebben

1.9. Feladatok megoldásai

1.9. Feladatok megoldásai Eektotechnikai aapiseetek Mágneses té 1.9. Feadatok egodásai 1. feadat: Mennyive vátozik eg a ágneses téeősség, az indukció és a ágneses fuxus, ha egy 1 beső átéőjű, 1 enetbő áó, 75 hosszú tekecstestbe

Részletesebben

Oktatási Hivatal. A döntő feladatai. 1. Feladat Egy kifejezést a következő képlettel definiálunk: ahol [ 2008;2008]

Oktatási Hivatal. A döntő feladatai. 1. Feladat Egy kifejezést a következő képlettel definiálunk: ahol [ 2008;2008] OKTV 7/8 A öntő felaatai. Felaat Egy kifejezést a következő képlettel efiniálunk: 3 x x 9x + 7 K = x 9 ahol [ 8;8] x és x Z. Mennyi a valószínűsége annak hogy K egész szám ha x eleget tesz a fenti feltételeknek?.

Részletesebben

Oktatási Hivatal. A döntő feladatainak megoldása. 1. Feladat Egy kifejezést a következő képlettel definiálunk: ahol [ 2008;2008]

Oktatási Hivatal. A döntő feladatainak megoldása. 1. Feladat Egy kifejezést a következő képlettel definiálunk: ahol [ 2008;2008] OKTV 7/8 A öntő felaatainak megolása. Felaat Egy kifejezést a következő képlettel efiniálunk: 3 x x 9x + 7 K = x 9 ahol [ 8;8] x és x Z. Mennyi a valószínűsége annak hogy K egész szám ha x eleget tesz

Részletesebben

Á Ó Ó Í Í Í Ú É Á Á Í Í Ú Ú Í Í Ő Í Í Í Ú Ú Ú Ú Ú Ű É ÉÉ É Í Í Í Í É Í Í Í É Á É Í Ú Í Í É Í É Í Í Ú Í É Ú Á Ú Ú Í Í Ő É Í Í Í Í Í Í Á Á É Í Ő Ő Ő Ő Í Í Í Í Í Ő Ő Í Í Í Í Í Ö Ú Ú Ú É Ű Í Í Ú Í Í Í Ú É

Részletesebben

Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )

Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) Trigonometria Megoldások Trigonometria - megoldások ) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) akkor a háromszög egyenlő szárú vagy derékszögű!

Részletesebben

A Maxwell-féle villamos feszültségtenzor

A Maxwell-féle villamos feszültségtenzor A Maxwell-féle villamos feszültségtenzo Veszely Octobe, Rétegezett síkkondenzátoban fellépő (mechanikai) feszültségek Figue : Keesztiányban étegezett síkkondenzáto Tekintsük a. ábán látható keesztiányban

Részletesebben

A Coulomb-törvény : ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) k 9 10 F Q. elektromos térerősség : ponttöltés tere :

A Coulomb-törvény : ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) k 9 10 F Q. elektromos térerősség : ponttöltés tere : Villamosságtan A Coulomb-tövény : F QQ 4 ahol, Q = coulomb = C = a vákuum pemittivitása (dielektomos álladója) 4 9 k 9 elektomos téeősség : E F Q ponttöltés tee : E Q 4 Az elektosztatika I. alaptövénye

Részletesebben

A brachistochron probléma megoldása

A brachistochron probléma megoldása A brachistochron probléma megoldása Adott a függőleges síkban két nem egy függőleges egyenesen fekvő P 0 és P 1 pont, amelyek közül a P 1 fekszik alacsonyabban. Azt a kérdést fogjuk vizsgálni. hogy van-e

Részletesebben

MEGOLDÁSOK ÉS PONTOZÁSI ÚTMUTATÓ

MEGOLDÁSOK ÉS PONTOZÁSI ÚTMUTATÓ MEGOLDÁSOK ÉS PONTOZÁSI ÚTMUTATÓ. Egy kerékpáro zakazonként egyene vonalú egyenlete ozgát végez. Megtett útjának elő k hatodát 6 nagyágú ebeéggel, útjának további kétötödét 6 nagyágú ebeéggel, az h útjának

Részletesebben

A Föld-Hold rendszer stabilitása

A Föld-Hold rendszer stabilitása A Föld-Hold endsze stabilitása Föhlich Geogina Tudoányos Diákköi Dolgozata Eötvös Loánd Tudoányegyete Teészettudoányi Ka Fizika, csillagász szak Téavezető : D. Édi Bálint tanszékvezető egyetei taná ELTE

Részletesebben

Ujfalussy Balázs Idegsejtek biofizikája Első rész

Ujfalussy Balázs Idegsejtek biofizikája Első rész Ujfalussy Balázs Idegsejtek biofizikája Első rész MI A TITA? Ez a négyrészes sorozat azt a célt szolgálja, hogy az idegsejtek űködéséről ateatikai, fizikai odellekkel alkossunk képet középiskolás iseretekre

Részletesebben

1. ábra. 24B-19 feladat

1. ábra. 24B-19 feladat . gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,

Részletesebben

- III. 1- Az energiakarakterisztikájú gépek őse a kalapács, melynek elve a 3.1 ábrán látható. A kalapácsot egy m tömegű, v

- III. 1- Az energiakarakterisztikájú gépek őse a kalapács, melynek elve a 3.1 ábrán látható. A kalapácsot egy m tömegű, v - III. 1- ALAKÍTÁSTECHNIKA Előadásjegyzet Prof Ziaja György III.rész. ALAKÍTÓ GÉPEK Az alakítási folyaatokhoz szükséges erőt és energiát az alakító gépek szolgáltatják. Az alakképzés többnyire az alakító

Részletesebben

Egészrészes feladatok

Egészrészes feladatok Kitűzött feladatok Egészrészes feladatok Győry Ákos Miskolc, Földes Ferenc Gimnázium 1. feladat. Oldjuk meg a valós számok halmazán a { } 3x 1 x+1 7 egyenletet!. feladat. Bizonyítsuk be, hogy tetszőleges

Részletesebben

Az atomok vonalas színképe

Az atomok vonalas színképe Az atomok vonalas színképe Színképelemzés, spektoszkópia R. Bunsen 8-899 G.R. Kichhoff 8-887 A legegyszebb (a legkönnyebb) atom a hidogén. A spektuma a láthatóban a következ A hidogén atom spektuma a látható

Részletesebben

Egyszerű áramkörök árama, feszültsége, teljesítménye

Egyszerű áramkörök árama, feszültsége, teljesítménye Egyszerű árakörök áraa, feszültsége, teljesíténye A szokásos előjelek Általában az ún fogyasztói pozitív irányokat használják, ezek szerint: - a ϕ fázisszög az ára helyzete a feszültség szinusz hullá szöghelyzetéhez

Részletesebben

A kémiai kötés eredete; viriál tétel 1

A kémiai kötés eredete; viriál tétel 1 A kémiai kötés ereete; viriál tétel 1 Probléma felvetés Ha egy molekula atommagjai közötti távolság csökken, akkor a közöttük fellép elektrosztatikus taszításhoz tartozó energia n. Ugyanez igaz az elektronokra

Részletesebben

Változó tömegű test dinamikája

Változó tömegű test dinamikája Dr. Cvetityanin Lívia Változó töegű test inaikája Bevezetés Az iőben változó paraéteres rezgésék eghatározásával sok tuós foglalkozott lás pl. Meshchersky Bessonov Cveticanin 34. A változó paraéteres rezgésék

Részletesebben

Rugalmas hullámok terjedése. A hullámegyenlet és speciális megoldásai

Rugalmas hullámok terjedése. A hullámegyenlet és speciális megoldásai Rugalmas hullámok tejedése. A hullámegyenlet és speciális megoldásai Milyen hullámok alakulhatnak ki ugalmas közegben? Gázokban és folyadékokban csak longitudinális hullámok tejedhetnek. Szilád közegben

Részletesebben

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra . Gyakorlat 4B-9 A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld. 4-6 ábra.). Számítsuk ki az E elektromos térerősséget a vonal irányában lévő, annak.. ábra. 4-6 ábra végpontjától

Részletesebben

1. gyakorlat. Egyenletes és egyenletesen változó mozgás. 1. példa

1. gyakorlat. Egyenletes és egyenletesen változó mozgás. 1. példa 1. gyakorlat Egyenletes és egyenletesen változó mozgás egyenletes mozgás egyenletesen változó mozgás gyorsulás a = 0 a(t) = a = állandó sebesség v(t) = v = állandó v(t) = v(0) + a t pályakoordináta s(t)

Részletesebben

ÜTKÖZÉSEK. v Ütközési normális:az ütközés

ÜTKÖZÉSEK. v Ütközési normális:az ütközés ÜTKÖZÉSK A egaadási tételek alkalazásának legjobb példái Definíciók ütközési sík n n Ütközési noális:az ütközés síkjáa eőleges Töegközépponti sebességek Centális ütközés: az ütközési noális átegy a két

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

Fogaskerekek II. fogaskerekek geometriai jellemzői. alaptulajdonságai és jellemzői

Fogaskerekek II. fogaskerekek geometriai jellemzői. alaptulajdonságai és jellemzői Fogaskeekek II. fogaskeekek geoetiai jellezői Az evolvensfogazat alaptulajdonságai és jellezői Fogpofilalakok Foggöbének inden olyan pofilgöbe használható, aelyeke évényes az előzőekben isetetett fogeőlegességől

Részletesebben

Hullámtan. A hullám fogalma. A hullámok osztályozása.

Hullámtan. A hullám fogalma. A hullámok osztályozása. Hullátan A hullá fogala. A hulláok osztályozása. Kísérletek Kis súlyokkal összekötött ingasor elején keltett rezgés átterjed a többi ingára is [0:6] Kifeszített guikötélen keltett zavar végig fut a kötélen

Részletesebben

ISMÉT FÖLDKÖZELBEN A MARS!

ISMÉT FÖLDKÖZELBEN A MARS! nikai Vállalat, Audió, EVIG Egyesült Villamosgépgyár, Kismotor- és Gépgyár, Szerszámgép Fejlesztési Intézet (Halásztelek), Pestvidéki Gépgyár (Szigethalom), Ikladi ûszeripari ûvek (II), Kôbányai Vas- és

Részletesebben

Mechanikai munka, energia, teljesítmény (Vázlat)

Mechanikai munka, energia, teljesítmény (Vázlat) Mechanikai unka, energia, eljesíény (Vázla). Mechanikai unka fogala. A echanikai unkavégzés fajái a) Eelési unka b) Nehézségi erő unkája c) Gyorsíási unka d) Súrlódási erő unkája e) Rugóerő unkája 3. Mechanikai

Részletesebben

Á Í Á Ó É ö á í á ő á á Á ő ő á ő á í á ő á á á á í ő ö í á á í á á ö ő á í ő áí á á ő á í í á ú ü ö á ú ö á í á á á ö á á ő á á á ő á ő á ú ü á ő á í ő ő ő áí á á ö ő á ő á á ő ő á í á ő á ő á á á ü ő

Részletesebben

A szinuszosan váltakozó feszültség és áram

A szinuszosan váltakozó feszültség és áram A szinszosan váltakozó feszültség és ára. A szinszos feszültség előállítása: Egy téglalap alakú vezető keretet egyenletesen forgatnk szögsebességgel egy hoogén B indkciójú ágneses térben úgy, hogy a keret

Részletesebben

MATEMATIKA ÉRETTSÉGI 2006. május 9. EMELT SZINT

MATEMATIKA ÉRETTSÉGI 2006. május 9. EMELT SZINT ) A PQRS négyszög csúcsai: MATEMATIKA ÉRETTSÉGI 006. május 9. EMELT SZINT P 3; I., Q ;3, R 6; és S 5; 5 Döntse el, hogy az alábbi három állítás közül melyik igaz és melyik hamis! Tegyen * jelet a táblázat

Részletesebben

M/D/13. Szorozzuk meg az egyenlet mindkét oldalát a közös nevezővel, 12-vel; így a következő egyenlethez jutunk: = 24

M/D/13. Szorozzuk meg az egyenlet mindkét oldalát a közös nevezővel, 12-vel; így a következő egyenlethez jutunk: = 24 OKTATÁSI MINISZTÉRIUM M/D/13 Dolgozók gimnáziuma Dolgozók szakközépiskolája Szakmunkások szakközépiskolája intenzív tagozat) 003. május ) Határozza meg a következő egyenlet racionális gyökét! 1 3 4 + 5

Részletesebben

A megnyúlás utáni végső hosszúság: - az anyagi minőségtől ( - lineáris hőtágulási együttható) l = l0 (1 + T)

A megnyúlás utáni végső hosszúság: - az anyagi minőségtől ( - lineáris hőtágulási együttható) l = l0 (1 + T) - 1 - FIZIKA - SEGÉDANYAG - 10. osztály I. HŐTAN 1. Lineáris és térfogati hőtágulás Alapjelenség: Ha szilárd vagy folyékony halazállapotú anyagot elegítünk, a hossza ill. a térfogata növekszik, hűtés hatására

Részletesebben

A 2004/2005 tanévi Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai f i z i k á b ó l. I.

A 2004/2005 tanévi Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai f i z i k á b ó l. I. A 004/005 tanévi Országos Középiskolai Tanulányi Verseny első forulójának felaatai és egolásai f i z i k á b ó l I kategória A olgozatok elkészítéséhez inen segéeszköz használható Megolanó az első háro

Részletesebben

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra 4. Gyakorlat 31B-9 A 31-15 ábrán látható, téglalap alakú vezetőhurok és a hosszúságú, egyenes vezető azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra. 31-15 ábra

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Abszolútértékes és gyökös kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Abszolútértékes és gyökös kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó Mechanika Kinematika A mechanika a fizika része mely a testek mozgásával és egyensúlyával foglalkozik. A klasszikus mechanika, mely a fénysebességnél sokkal kisebb sebességű testekre vonatkozik, feloszlik:

Részletesebben

Szélsőérték feladatok megoldása

Szélsőérték feladatok megoldása Szélsőérték feladatok megoldása A z = f (x,y) függvény lokális szélsőértékének meghatározása: A. Szükséges feltétel: f x (x,y) = 0 f y (x,y) = 0 egyenletrendszer megoldása, amire a továbbiakban az x =

Részletesebben

5 = nr. nrt V. p = p p T T. R p TISZTA FÁZISOK TERMODINAMIKAI FÜGGVÉNYEI IDEÁLIS GÁZOK. Állapotegyenletbl levezethet mennyiségek. Az állapotegyenlet:

5 = nr. nrt V. p = p p T T. R p TISZTA FÁZISOK TERMODINAMIKAI FÜGGVÉNYEI IDEÁLIS GÁZOK. Állapotegyenletbl levezethet mennyiségek. Az állapotegyenlet: IZA FÁZIOK ERMODINAMIKAI FÜGGÉNYEI IDEÁLI GÁZOK Állaotegyenletbl levezethet ennyiségek Az állaotegyenlet: Moláris térfogat egváltozása: R R R R eroinaikai függvények Bels energia onoatoos ieális gázra

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

1. Feladatok a dinamika tárgyköréből

1. Feladatok a dinamika tárgyköréből 1. Feladatok a dinamika tárgyköréből Newton három törvénye 1.1. Feladat: Három azonos m tömegű gyöngyszemet fonálra fűzünk, egymástól kis távolságokban a fonálhoz rögzítünk, és az elhanyagolható tömegű

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit

First Prev Next Last Go Back Full Screen Close Quit Többváltozós függvények (2) First Prev Next Last Go Back Full Screen Close Quit 1. Egyváltozós függvények esetén a differenciálhatóságból következett a folytonosság. Fontos tudni, hogy abból, hogy egy

Részletesebben

Ellipszis vezérgörbéjű ferde kúp felszínének meghatározásához

Ellipszis vezérgörbéjű ferde kúp felszínének meghatározásához 1 Ellipszis vezérgörbéjű ferde kúp felszínének meghatározásához Előző dolgozatunkkal melynek címe: A ferde körkúp palástfelszínének meghatározásához már mintegy megágyaztunk a jelen írásnak. Több mindent

Részletesebben

Exponenciális és logaritmikus kifejezések Megoldások

Exponenciális és logaritmikus kifejezések Megoldások Eponenciális és logaritmikus kifejezések - megoldások Eponenciális és logaritmikus kifejezések Megoldások ) Igazolja, hogy az alábbi négy egyenlet közül az a) és jelű egyenletnek pontosan egy megoldása

Részletesebben

Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz

Atomfizika. A hidrogén lámpa színképei. Elektronok H atom. Fényképlemez. emisszió H 2. gáz Atomfizika A hidrogén lámpa színképei - Elektronok H atom emisszió Fényképlemez V + H 2 gáz Az atom és kvantumfizika fejlődésének fontos szakasza volt a hidrogén lámpa színképeinek leírása, és a vonalas

Részletesebben

Bevezető fizika (vill), 4. feladatsor Munka, energia, teljesítmény

Bevezető fizika (vill), 4. feladatsor Munka, energia, teljesítmény Bevezető fizika (vill), 4. feladatsor Munka, energia, teljesítény 4. október 6., : A ai óráoz szükséges eléleti anyag: K unka W F s F s cos α skalárszorzat (száít az irány!). [W ] J F szakaszokra bontás,

Részletesebben

A mágneses kölcsönhatás

A mágneses kölcsönhatás TÓTH A.: Mágneses erőtér/1 (kibővített óravázlat) 1 A ágneses kölcsönhatás Azt a kölcsönhatást, aelyet később ágnesesnek neveztek el, először bizonyos ásványok darabjai között fellépő a gravitációs és

Részletesebben

462 Trigonometrikus egyenetek II. rész

462 Trigonometrikus egyenetek II. rész Tigonometikus egyenetek II ész - cosx N cosx Alakítsuk át az egyenletet a következô alakúa: + + N p O O Ebbôl kapjuk, hogy cos x $ p- Ennek az egyenletnek akko és csak akko van valós megoldása, ha 0 #

Részletesebben

Dobos Imre. Készletgazdálkodás és visszutas logisztika

Dobos Imre. Készletgazdálkodás és visszutas logisztika Dobo Ie Kézletgazálkoá é vizta logiztika Bapeti ovi Egyete Lektoálta: D. eei Józef Dobo Ie ISBN 978-963-503-5-0 (olie) Kiaó: Bapeti ovi Egyete Bapeti ovi Egyete Gazálkoátoáyi Ka Kézletgazálkoá é vizta

Részletesebben

Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek

Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek Kinematika 2014. szeptember 28. 1. Vonatkoztatási rendszerek, koordinátarendszerek 1.1. Vonatkoztatási rendszerek A test mozgásának leírása kezdetén ki kell választani azt a viszonyítási rendszert, amelyből

Részletesebben

Két naszád legkisebb távolsága. Az [ 1 ] gyűjteményben találtuk az alábbi feladatot és egy megoldását: 1. ábra.

Két naszád legkisebb távolsága. Az [ 1 ] gyűjteményben találtuk az alábbi feladatot és egy megoldását: 1. ábra. 1 Két naszád legkisebb távolsága Az [ 1 ] gyűjteményben találtuk az alábbi feladatot és egy megoldását: 1. ábra. 1. ábra A feladat Az A és B, egymástól l távolságra lévő kikötőből egyidejűleg indul két

Részletesebben

XV. Tornyai Sándor Országos Fizikai Feladatmegoldó Verseny a református középiskolák számára Hódmezővásárhely, 2011. április 1-3. 9.

XV. Tornyai Sándor Országos Fizikai Feladatmegoldó Verseny a református középiskolák számára Hódmezővásárhely, 2011. április 1-3. 9. A vesenydolgozatok megíásáa 3 óa áll a diákok endelkezésée, minden tágyi segédeszköz tesztek teljes és hibátlan megoldása 20 pontot é, a tesztfeladat esetén a választást meg kell indokolni. 1. 4 db játék

Részletesebben

Abszolútértékes egyenlôtlenségek

Abszolútértékes egyenlôtlenségek Abszolútértékes egyenlôtlenségek 575. a) $, $ ; b) < - vagy $, # - vagy > 4. 5 576. a) =, =- 6, 5 =, =-, 7 =, 4 = 5; b) nincs megoldás;! c), = - ; d) =-. Abszolútértékes egyenlôtlenségek 577. a) - # #,

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval

Részletesebben

Bevezetés az anyagtudományba II. előadás

Bevezetés az anyagtudományba II. előadás Bevezetés az anyagtudományba II. előadás 010. febuá 11. Boh-féle atommodell 1914 Niels Henik David BOHR 1885-196 Posztulátumai: 1) Az elekton a mag köül köpályán keing. ) Az elektonok számáa csak bizonyos

Részletesebben

Népességnövekedés Technikai haladás. 6. el adás. Solow-modell II. Kuncz Izabella. Makroökonómia Tanszék Budapesti Corvinus Egyetem.

Népességnövekedés Technikai haladás. 6. el adás. Solow-modell II. Kuncz Izabella. Makroökonómia Tanszék Budapesti Corvinus Egyetem. Solow-modell II. Makroökonómia Tanszék Budapesti Corvinus Egyetem Makroökonómia Jöv héten dolgozat!!! Reál GDP növekedési üteme (forrás: World Bank) Reál GDP növekedési üteme (forrás: World Bank) Mit tudunk

Részletesebben

Optika gyakorlat 3. Sugáregyenlet, fényterjedés parabolikus szálban, polarizáció, Jones-vektor. Hamilton-elv. Sugáregyenlet. (Euler-Lagrange egyenlet)

Optika gyakorlat 3. Sugáregyenlet, fényterjedés parabolikus szálban, polarizáció, Jones-vektor. Hamilton-elv. Sugáregyenlet. (Euler-Lagrange egyenlet) Optika gyakorlat 3. Sugáregyenlet, fényterjeés parabolikus szálban, polarizáció, Jones-vektor Hamilton-elv t2 t2 δ Lq k, q k, t) t δ T V ) t 0 t 1 t 1 t L L 0 q k q k Euler-Lagrange egyenlet) De mi az

Részletesebben

PLC VERSENY 2017 Intézmény Csapatnév Elmélet 1. techn. 2. techn. Összpont. Helyezés PLC típusa

PLC VERSENY 2017 Intézmény Csapatnév Elmélet 1. techn. 2. techn. Összpont. Helyezés PLC típusa PLC VERSENY 2017 Intézmény Csapatnév Elmélet 1. techn. 2. techn. Összpont. Helyezés PLC típusa PE MIK Pengine 30,5 0 0 30,5 1 Schneider Electric ÓE KVK AI Óbudai Mákvirágok 29,5 0 0 29,5 2 Wago SZTE TTIK

Részletesebben

Elektromágneses hullámok

Elektromágneses hullámok Bevezetés a modern fizika fejezeteibe 2. (a) Elektromágneses hullámok Utolsó módosítás: 2015. október 3. 1 A Maxwell-egyenletek (1) (2) (3) (4) E: elektromos térerősség D: elektromos eltolás H: mágneses

Részletesebben

Tornyai Sándor Fizikaverseny 2009. Megoldások 1

Tornyai Sándor Fizikaverseny 2009. Megoldások 1 Tornyai Sánor Fizikaerseny 9. Megolások. Aatok: á,34 m/s, s 6,44 km 644 m,,68 m/s,,447 m/s s Az első szakasz megtételéez szükséges iő: t 43 s. pont A másoik szakaszra fennáll, ogy s t pont s + s t + t

Részletesebben

FIZIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika eelt szint 171 ÉRETTSÉGI VIZSGA 017. október 7. FIZIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA A dolgozatokat az útutató utasításai szerint, jól

Részletesebben

Reakciókinetika és katalízis

Reakciókinetika és katalízis Reakciókinetika és katalízis 5. előadás: /22 : Elemi reakciók kapcsolódása. : Egy reaktánsból két külön folyamatban más végtermékek keletkeznek. Legyenek A k b A kc B C Írjuk fel az A fogyására vonatkozó

Részletesebben

FIZIKA II. Dr. Rácz Ervin. egyetemi docens

FIZIKA II. Dr. Rácz Ervin. egyetemi docens FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés

Részletesebben

Egyenes és sík. Wettl Ferenc Wettl Ferenc () Egyenes és sík / 16

Egyenes és sík. Wettl Ferenc Wettl Ferenc () Egyenes és sík / 16 Egyenes és sík Wettl Ferenc 2012-09-20 Wettl Ferenc () Egyenes és sík 2012-09-20 1 / 16 Tartalom 1 Egyenes és szakasz Egyenes Szakasz Egyenesvonalú egyenletes mozgás Egyenes és pont távolsága 2 Sík Sík

Részletesebben

Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások

Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások ) Egyenletek, egyenletrendszerek, egyenlőtlenségek - megoldások Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások a) Oldja meg a valós számok halmazán az alábbi egyenletet! = 6 (5 pont) b) Oldja

Részletesebben