A 2004/2005 tanévi Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai f i z i k á b ó l III.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A 2004/2005 tanévi Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai f i z i k á b ó l III."

Átírás

1 A 004/005 tanévi Országos Középiskolai Tanulányi Verseny első forulójának felaatai és egolásai f i z i k á b ó l III kategória A olgozatok elkészítéséhez inen segéeszköz használható Megolanó az első háro felaat és a 4/A és 4/B sorszáú felaatok közül egy szabaon választott Csak 4 egolásra aható pont Ha valaki 5 egolást kül be a több pontot érő egolást vesszük figyelebe felaat Két egyfora kicsiny fégolyó elyek érete a távolságukhoz képest elhanyagolható egyástól 0 -re van A golyóknak különböző töltést ava azok N erővel vonzzák egyást Ha hagyjuk hogy összeérjenek akkor az érintkezés után szétrepülnek és azt tapasztaljuk hogy aikor távolságuk isét 0 a köztük levő taszítóerő éppen akkora int a kezeti vonzóerő volt Mekkora töltést kaptak a golyók kezetben? Megolás Jelöljük a két kis golyó ereeti töltését értékét -gyel és -vel! (A felaat szövegéből következik hogy az egyik töltés pozitív a ásik peig negatív) Írjuk fel összeérintés előtt és szétrepülés után pl azt az erőt aelyet az -es test fejt kis a -esre! Összeérés előtt a vonzóerő: F k () (Itt valójában az ábra szerinti erővektor koorinátáját írtuk fel) F I I I Ix Összeérintés után a golyók töltése egyenlő lesz: + () Szétlökőés után ugyanolyan távolságban az -es golyó által a -esre kifejtett erő koorinátája: F F F I k Felhasználva az () és () összefüggéseket: I I k Ix ( + ) k k 4 Innen: ( + ) 4 Négyzetre eelés után: A ásofokú egyenlet -re való egolásával egkapjuk hogy ekkora a két töltés aránya enezés után: Az egyenlet egolása: ±

2 kieelése és renezés után: ( ± 8 3) 6 ± 3 6 ± ± 8 (3) értékeit ()-be helyettesítve a két töltésre (szietrikusan) négy-négy értéket kapunk attól függően hogy a két négyzetgyök előtti előjeleket hogyan párosítjuk össze: F N 004 ( 8 3) N ( ) ± ± k ± ± 8 3 C ui a kezetben ható F erő koorinátája negatív! Ezzel -re a következő négy lehetőséget kapjuk: C és C a nevezőben pozitív négyzetgyökkel száolva ill C és C a nevezőben negatív négyzetgyökkel száolva A ásik töltés peig (3) alapján: ( 3) ill ( 8 3) C C és C és ( 8 3) ill ( 8 3) C C és C C ( ) C felaat Egy kg töegű acélgolyót ráejtünk egy M töegű acéltöbre aely egy D 435 N/ irekciós erejű alátáasztott csavarrugón nyugszik A csavarrugó tengelye invégig függőleges a) Milyen agasról ejtsük az acélgolyót hogy az acéltöbbel kétszer ugyanott ütközzön? b) Maxiálisan ilyen élyre süllye az acéltöb? (A rugó töege elhanyagolható az ütközés abszolút rugalas és pillanatszerű) M D h Megolás a) Vegyük fel a koorinátarenszer tengelyét függőlegesen felfelé Ekkor a leérkezés sebessége: v gh A golyó visszapattanás utáni kezősebessége: v M M M u c v v v gh gh + M + M + M + M Figyelebe véve a töegarányokat: u gh 3 A létrejövő függőleges hajítás ieje: u h T haj g 3 g Ennek eg kell egyeznie az M töegű test fél rezgésiejével: ( )

3 M T/ π D h M π 3 g D Minkét olal négyzetre eelése után: 4 h M π 9 g D Innen a keresett ejtési agasság: 9 M 9 kg h gπ 98 π 8 D 8 s N 435 (Ha g 0 /s akkor h 05 ) 0500 b) Kineatikai egolás Meghatározzuk a rugón fekvő test axiális (kezeti) sebességét (A koorinátarenszer tengelyét itt célszerű függőlegesen lefelé irányítani) gh + 0 u c v 0 gh s s A sebesség-aplitúóban szereplő kitérés-aplitúó a keresett süllyeési élység: u vax Aω ahonnan vax vax kg A vax c ω D D s N 435 Energetikai egolás Felírjuk a rugón nyugvó testre a unkatételt: W neh + W rug E { Dl0 + D( l0 + A) } ga A 0 u (Az előfeszített rugó által végzett unkát az ozgás elején és végén felvett erők szátani közepével száíthatjuk) g Itt az egyensúlyi helyzetig történő eforáció nagysága l 0 ahol M a rugóra D helyezett test töege Ezt beírva kapjuk: g D + DA ga D A u enezés után: DA u ahol a u a töegű test közvetlen ütközés utáni kezősebessége Ez az ütközés képletéből kapható: gh + 0 u ( k + ) c kv 0 gh 3 3 A keresett aplitúó: kg gh 4 A u s gh 04 D 3 D 3 D 3 N 435 kin

4 3 felaat Két függőleges fal távolsága 5 Az egyik fal teljesen sia a ásik éres Egy hoogén ruat betáasztunk a falak közé A rú és az éres fal közti tapaási súrlóási együttható 098 Mekkora az a leghosszabb rú ai a falak közé beszorul és ne csúszik le? Megolás Belátható hogy a rú felső pontját a súrlóásentes falhoz kell táasztani ellenkező esetben a rú azonnal leesik Az egyensúly feltétele F 0 és M 0 Az erők egyensúlyát vízszintes és függőleges koponensekre (azok koorinátáira) írjuk fel: F x F F 0 Iα x G F x y 0 Itt F a sia fal által kifejtett F az éres fal által kifejtett teljes erő Az éres fal síkjában ható erő axiális értéke µf x lehet vagyis F µ F y x A forgatónyoatékok egyensúlyát a rú töegközéppontjára felírva: L L F xlsinα F y cosα µ F x cosα (A bal olalon a vízszintes erők alkotta erőpár forgatónyoatéka szerepel) Miután F x F x azzal és a rúhosszal egyszerűsítve: sin α tgα µ cosα µ 098 α arctg arctg 6 A beszoruló rú axiális hossza tehát: 5 Lax 67 cosα cos 6 4/A felaat Egyszer télen aikor a hőérséklet élyen a fagypont alatt volt Taás két azonos típusú és éretű ételobozba egyenlő töegű vízből és egyenlő töegű jégből készített jég-víz keveréket tett aelyeket egy-egy azonos fűtőszállal elegíteni kezett Megérte hogy ha egy 8 V-os akkuulátorral fűtötte az ellenálláshuzalt akkor 5 perc alatt olvat eg a jég e eglepetéssel tapasztalta hogy 9 V-os akkuulátor használata esetén 30 percre volt szükség ugyanannyi jég egolvasztásához Most ár igazán kíváncsi lett hogy 45 V-os tápfeszültség esetén i fog történni Aja eg a választ Taás helyett! (Az akkuulátorok belső ellenállása elhanyagolható) Megolás Iseretes hogy az elektroos ára teljesíténye /-rel arányos A erülőforraló használata iatt feltételezhetjük hogy ez a teljesítény teljes egészében a jég víz keveréknek aóik át Így 8 V valaint 9 V esetén a feltételezés iatt azt várjuk hogy ivel a feszültségek aránya a teljesítények aránya 4 ezért 9 V esetén négyszer hosszabb iőre lenne szükség a jég egolvasztásához Ez viszont perc alatt azért ne sikerült ert inkét tartályból energia-isszipáció is történt Jelöljük a környezetnek iőegység alatt leaott energiáját P veszteség gel! Az olvaékával érintkező jég és az igen alacsony hőérsékletű környezet közötti hőérsékletkülönbség inen pillanatban azonos így ez az érték állanó független a egolvat jég ennyiségétől A fűtőszál által leaott és a G I F x F y

5 környezetbe szétszóróott energia együttesen felelős a jég egolvasztásáért Mivel Taás ugyanakkora töegű jeget használt inkét esetben felírható hogy P veszteség t Pveszteség t ahol t és t a jég egolvasztásához szükséges iőtartaot jelöli Fejezzük ki a teljesítényveszteséget! t t Pveszteségt Pveszteségt Innen: t t Pveszteség( t t ) A teljesítényveszteség: t t 8V 0 in 34 V 5 in 34 V P veszteség ( t t ) ( 30 in 5 in) Ereényünk azt utatja hogy a jég csak akkor olvahat eg ha a fűtőfeszültségként olyat használunk aelynek négyzete 34 V nél nagyobb ahonnan a fűtőfeszültség f f 34 V 3 4 V 57 V Mivel a 45 V-os telep feszültsége ennél kisebb használatakor több a hieg környezetnek leaott energia int aennyit a fűtőszál szolgáltat a keveréknek ezért a jég ne olva eg hane a víz előbb utóbb kifagy aj a tiszta jég lehűl 4/B felaat Ha egy félvezető ióára feszültség esik akkor a ióán átfolyó ára erőssége a feszültség függvényében az alábbi táblázat szerinti értékeket veszi fel: (V) I (A) Az előzőekben jellezett ióát árakörbe kapcsoljuk a ellékelt ábra szerint 00 Ω Határozzuk eg a körben folyó ára erősségét ha a telep feszültsége a) o 8 V; b) o 4 V; c) 0 07 V (A egolás során grafikus ill nuerikus ószerek alkalazhatók) 0 Megolás A körben folyó ára erőssége Kirchhoff huroktörvénye szerint az 0 I 0 egyenletből határozható eg: I 0 Ez egy lineáris függvény aely könnyen ábrázolható I 0

6 Másrészt van egy I() függvényünk táblázatosan egava A kör áraának erőssége azonos a ióán átfolyó ára erősségével tehát a kétféle képen egaott függvény közös értékei aják a keresett áraerőséget ill a hozzá tartozó feszültséget A ellékelt ábra a háro egaott 0 tápfeszültség esetén utatja a ióára eső feszültség áraerősség függvényt és ugyanakkor a ióán átfolyó ára erősségét a rá eső feszültség függvényében I(A) V V V (V) A etszéspontok a körben folyó ára erősségét illetve a ióára eső feszültséget aják a) 0 8 V esetén I 73 A és 068 V b) 0 4 V esetén I 33 A és 066 V c) 0 07 V esetén I A és 056 V

7 Értékelési javaslat Minegyik felaat teljes egolásáért 0 pont jár A tanár javítsa ki a olgozatokat és állapítsa eg a pontszáot Terészetesen a közölttől eltérő gonolatenetet is el kell fogani ha helyes Hiányosságok iatt tört pontszáot kell levonni Abban az esetben ha a gonolatenet jó urva nuerikus hibáért axiálisan 5 pont vonható le A tanár a olgozatra írja rá hogy inegyik felaat egolását hány pontra értékeli A olgozat pontszáa a négy felaatra aott pontszáok összege axiálisan 80 pont gyanazon felaat ásoik vagy haraik óon történt egolásáért ne aható külön pont Bekülenők inazok a olgozatok aelyek összpontszáa 40 vagy több Csak 4 felaat pontértéke száíthat be az összpontszába! JAVASOLT ÉSZPONTSZÁMOK III kategória felaat A Coulob-törvény felírása pont A golyók összeérintés utáni töltésének helyes felírása 4 pont Az erők nagyságának egyenlőségét felhasználva a ásofokú egyenlet helyes felírása 5 pont Az ereeti töltések arányának eghatározása 3 pont Az egyik töltés általános kifejezése az ereeti aatokkal: 3 pont A négy lehetséges töltéspár kiszáítása 4 pont felaat a) A leeső golyó visszapattanási sebességének eghatározása 5 pont Annak feliserése hogy akkor ütköznek ásoszor ugyanott ha az így keletkező függőleges hajítás teljes ieje az acéltöb rezgésiejének felével egyenlő 3 pont A hajítási iőt és rezgésiőt összehasonlító egyenlet felírása pont Az ejtés agasságának eghatározása 3 pont b) A hasáb kező- (axiális) sebességének eghatározása 4 pont A rezgés aplitúójának eghatározása 4 pont 3 felaat A rúra ható erők helyes felrajzolása 4 pont Az erők egyensúlyának helyes felírása 3 pont A forgatónyoatékok egyensúlyának helyes felírása 4 pont A rú vízszintessel (függőlegessel) bezárt szögének kifejezése a súrlóási együtthatóval 4 pont A szög nuerikus eghatározása 3 pont A rú axiális hosszának kifejezése és nuerikus eghatározása pont 4/A Taás eglepetésének értelezése 4 pont Az energiaveszteség szerepének feliserése 4 pont A jég két esetben való felolvasztásához szükséges befektetett energiák egyenlőségének helyes felírása a teljesítényveszteséggel 4 pont A teljesítényveszteség helyes kifejezése a feszültségekkel és az iőkkel 4 pont Annak feliserése hogy annál nagyobb fűtőfeszültségre van szükség int aekkorával a erülőforraló csak a teljesítényveszteséget feezi pont A iniális fűtőfeszültség kiszáítása pont Annak egválaszolása hogy i fog történni (a víz-jég keverék kifagy és lehűl) pont 4/B A huroktörvény helyes felírása 3 pont Az áraerősség kifejezése pont A táblázatban aott összefüggés helyes ábrázolása 5 pont Az áraerősség feszültség lineáris függvényeinek ábrázolása a hároféle forrásfeszültség esetén 4 pont A etszéspontok helyes leolvasása és értelezése 6 pont

A 2004/2005 tanévi Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai f i z i k á b ó l. I.

A 2004/2005 tanévi Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai f i z i k á b ó l. I. A 004/005 tanévi Országos Középiskolai Tanulányi Verseny első forulójának felaatai és egolásai f i z i k á b ó l I kategória A olgozatok elkészítéséhez inen segéeszköz használható Megolanó az első háro

Részletesebben

a) Az első esetben emelési és súrlódási munkát kell végeznünk: d A

a) Az első esetben emelési és súrlódási munkát kell végeznünk: d A A 37. Mikola Sándor Fizikaverseny feladatainak egoldása Döntő - Gináziu 0. osztály Pécs 08. feladat: a) Az első esetben eelési és súrlódási unkát kell végeznünk: d W = gd + μg cos sin + μgd, A B d d C

Részletesebben

A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai és megoldásai fizikából. II.

A 2010/2011. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai és megoldásai fizikából. II. Oktatási Hivatal A 010/011. tanévi FIZIKA Országos Középiskolai Tanulányi Verseny első fordulójának feladatai és egoldásai fizikából II. kategória A dolgozatok elkészítéséhez inden segédeszköz használható.

Részletesebben

M13/II. javítási-értékelési útmutatója. Fizika II. kategóriában. A 2006/2007. tanévi. Országos Középiskolai Tanulmányi Verseny

M13/II. javítási-értékelési útmutatója. Fizika II. kategóriában. A 2006/2007. tanévi. Országos Középiskolai Tanulmányi Verseny M3/II. A 006/007. tanévi Országos Középiskolai Tanulányi Verseny első (iskolai) fordulójának javítási-értékelési útutatója Fizika II. kategóriában A 006/007. tanévi Országos Középiskolai Tanulányi Verseny

Részletesebben

Oktatási Hivatal. A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I. KATEGÓRIA. Javítási-értékelési útmutató

Oktatási Hivatal. A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I. KATEGÓRIA. Javítási-értékelési útmutató Oktatási Hivatal A 05/06. tanévi Országos Középiskolai Tanulányi Verseny ásodik forduló FIZIKA I. KATEGÓRIA Javítási-értékelési útutató. feladat: Vékony, nyújthatatlan fonálra M töegű, R sugarú karikát

Részletesebben

Oktatási Hivatal. A 2007/2008. tanévi. Országos Középiskolai Tanulmányi Verseny. első (iskolai) fordulójának. javítási-értékelési útmutatója

Oktatási Hivatal. A 2007/2008. tanévi. Országos Középiskolai Tanulmányi Verseny. első (iskolai) fordulójának. javítási-értékelési útmutatója Oktatási Hivatal A 007/008. tanévi Országos özépiskolai Tanulányi Verseny első (iskolai) fordulójának javítási-értékelési útutatója FIZIÁBÓ I. kategóriában A 007/008. tanévi Országos özépiskolai Tanulányi

Részletesebben

Bevezető fizika (infó), 3. feladatsor Dinamika 2. és Statika

Bevezető fizika (infó), 3. feladatsor Dinamika 2. és Statika Bevezető fizika (infó),. feladatsor Dinaika. és Statika 04. október 5., 4:50 A ai órához szükséges eléleti anyag: ipulzus, ipulzusegaradás forgatónyoaték egyensúly és feltétele Órai feladatok:.5. feladat:

Részletesebben

13. Román-Magyar Előolimpiai Fizika Verseny Pécs Kísérleti forduló május 21. péntek MÉRÉS NAPELEMMEL (Szász János, PTE TTK Fizikai Intézet)

13. Román-Magyar Előolimpiai Fizika Verseny Pécs Kísérleti forduló május 21. péntek MÉRÉS NAPELEMMEL (Szász János, PTE TTK Fizikai Intézet) 3. oán-magyar Előolipiai Fizika Verseny Pécs Kísérleti forduló 2. ájus 2. péntek MÉÉ NAPELEMMEL (zász János, PE K Fizikai ntézet) Ha egy félvezető határrétegében nok nyelődnek el, akkor a keletkező elektron-lyuk

Részletesebben

körsugár kapcsolata: 4 s R 8 m. Az egyenletből a B test pályakörének sugara:

körsugár kapcsolata: 4 s R 8 m. Az egyenletből a B test pályakörének sugara: 8 évi Mikola forduló egoldásai: 9 gináziu ) Megoldás Mivel azonos és állandó nagyságú sebességgel történik a ozgás a egtett utak egyenlők: sa sb vat vbt 4 π s 4π 57 s Ha a B testnek ne nulla a gyorsulása

Részletesebben

3. Egy repülőgép tömege 60 tonna. Induláskor 20 s alatt gyorsul fel 225 km/h sebességre. Mekkora eredő erő hat rá? N

3. Egy repülőgép tömege 60 tonna. Induláskor 20 s alatt gyorsul fel 225 km/h sebességre. Mekkora eredő erő hat rá? N Dinaika feladatok Dinaika alapegyenlete 1. Mekkora eredő erő hat a 2,5 kg töegű testre, ha az indulástól száított 1,5 úton 3 /s sebességet ér el? 2. Mekkora állandó erő hat a 2 kg töegű testre, ha 5 s

Részletesebben

Hatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3

Hatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3 Hatvani István fizikaverseny 016-17. 1. kategória 1..1.a) Két eltérő méretű golyó - azonos magasságból - ugyanakkora végsebességgel ér a talajra. Mert a földfelszín közelében minden szabadon eső test ugyanúgy

Részletesebben

M13/III. javítási-értékelési útmutatója. Fizika III. kategóriában. A 2006/2007. tanévi. Országos Középiskolai Tanulmányi Verseny

M13/III. javítási-értékelési útmutatója. Fizika III. kategóriában. A 2006/2007. tanévi. Országos Középiskolai Tanulmányi Verseny M/III A 006/007 tanévi Országos Középiskolai Tanulányi Verseny első (iskolai) fordulójának javítási-értékelési útutatója Fizika III kategóriában A 006/007 tanévi Országos Középiskolai Tanulányi Verseny

Részletesebben

A szinuszosan váltakozó feszültség és áram

A szinuszosan váltakozó feszültség és áram A szinszosan váltakozó feszültség és ára. A szinszos feszültség előállítása: Egy téglalap alakú vezető keretet egyenletesen forgatnk szögsebességgel egy hoogén B indkciójú ágneses térben úgy, hogy a keret

Részletesebben

2012 február 7. (EZ CSAK A VERSENY UTÁN LEGYEN LETÖLTHETŐ!!!)

2012 február 7. (EZ CSAK A VERSENY UTÁN LEGYEN LETÖLTHETŐ!!!) 1 A XXII. Öveges József fizika tanulányi verseny első fordulójának feladatai és azok egoldásának pontozása 2012 február 7. (EZ CSAK A VERSENY UTÁN LEGYEN LETÖLTHETŐ!!!) 1. Egy odellvasút ozdonya egyenletesen

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 4 ÉRETTSÉGI VIZSGA 04. október 7. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA A dolgozatokat az útutató utasításai szerint,

Részletesebben

U = 24 V I = 4,8 A. Mind a két mellékágban az ellenállás külön-külön 6 Ω, ezért az áramerősség mindkét mellékágban egyenlő, azaz :...

U = 24 V I = 4,8 A. Mind a két mellékágban az ellenállás külön-külön 6 Ω, ezért az áramerősség mindkét mellékágban egyenlő, azaz :... Jedlik Ányos Fizikaverseny regionális forduló Öveges korcsoport 08. A feladatok megoldása során végig századpontossággal kerekített értékekkel számolj! Jó munkát! :). A kapcsolási rajz adatai felhasználásával

Részletesebben

36. Mikola verseny 2. fordulójának megoldásai I. kategória, Gimnázium 9. évfolyam

36. Mikola verseny 2. fordulójának megoldásai I. kategória, Gimnázium 9. évfolyam 6 Mikola verseny fordulójának egoldásai I kategória Gináziu 9 évfolya ) Adatok: = 45 L = 5 r = M = 00 kg a) Vizsgáljuk a axiális fordulatszáú esetet! r F L f g R Az egyenletes körozgás dinaikai alapegyenletét

Részletesebben

A 2008/2009. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai és megoldásai. II. kategória

A 2008/2009. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának. feladatai és megoldásai. II. kategória Oktatási Hivatal A 008/009. tanévi IZIKA Országos Középiskolai Tanulányi Verseny első fordulójának feladatai és egoldásai II. kategória A dolgozatok elkészítéséez inden segédeszköz asználató. Megoldandó

Részletesebben

EGYENÁRAM. 1. Mit mutat meg az áramerısség? 2. Mitıl függ egy vezeték ellenállása?

EGYENÁRAM. 1. Mit mutat meg az áramerısség? 2. Mitıl függ egy vezeték ellenállása? EGYENÁRAM 1. Mit utat eg az áraerısség? 2. Mitıl függ egy vezeték ellenállása? Ω 2 3. Mit jelent az, hogy a vas fajlagos ellenállása 0,04? 4. Írd le Oh törvényét! 5. Milyen félvezetı eszközöket isersz?

Részletesebben

Oktatási Hivatal FIZIKA I. KATEGÓRIA. A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny második forduló. Javítási-értékelési útmutató

Oktatási Hivatal FIZIKA I. KATEGÓRIA. A 2013/2014. tanévi Országos Középiskolai Tanulmányi Verseny második forduló. Javítási-értékelési útmutató Oktatási Hivatal A 13/14. tanévi Országos Középiskolai Tanulányi Verseny ásodik forduló FIZIKA I. KATEGÓRIA Javítási-értékelési útutató 1.) Hőszigetelt tartályban légüres tér (vákuu) van, a tartályon kívüli

Részletesebben

A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I. KATEGÓRIA. Javítási-értékelési útmutató

A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I. KATEGÓRIA. Javítási-értékelési útmutató Oktatási Hivatal A 06/07 tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I KATEGÓRIA Javítási-értékelési útmutató feladat Három azonos méretű, pontszerűnek tekinthető, m, m, m tömegű

Részletesebben

XXIII. ÖVEGES JÓZSEF KÁRPÁT-MEDENCEI FIZIKAVERSENY 2013. M E G O L D Á S A I ELSŐ FORDULÓ. A TESZTFELADATOK MEGOLDÁSAI (64 pont) 1. H I I I 2.

XXIII. ÖVEGES JÓZSEF KÁRPÁT-MEDENCEI FIZIKAVERSENY 2013. M E G O L D Á S A I ELSŐ FORDULÓ. A TESZTFELADATOK MEGOLDÁSAI (64 pont) 1. H I I I 2. XXIII. ÖVEGES JÓZSEF KÁRPÁT-MEDENCEI FIZIKAVERSENY 01. ELSŐ FORDULÓ M E G O L D Á S A I A TESZTFELADATOK MEGOLDÁSAI (64 pont) 1. H I I I. H H I H. H I H 4. I H H 5. H I I 6. H I H 7. I I I I 8. I I I 9.

Részletesebben

Felvételi, 2017 július -Alapképzés, fizika vizsga-

Felvételi, 2017 július -Alapképzés, fizika vizsga- Sapientia Erdélyi Magyar Tudományegyetem Marosvásárhelyi Kar Felvételi, 2017 július -Alapképzés, fizika vizsga- Minden tétel kötelező. Hivatalból 10 pont jár. Munkaidő 3 óra. I. Az alábbi kérdésekre adott

Részletesebben

Bevezető fizika (vill), 4. feladatsor Munka, energia, teljesítmény

Bevezető fizika (vill), 4. feladatsor Munka, energia, teljesítmény Bevezető fizika (vill), 4. feladatsor Munka, energia, teljesítény 4. október 6., : A ai óráoz szükséges eléleti anyag: K unka W F s F s cos α skalárszorzat (száít az irány!). [W ] J F szakaszokra bontás,

Részletesebben

1. Feladatok a dinamika tárgyköréből

1. Feladatok a dinamika tárgyköréből 1. Feladatok a dinamika tárgyköréből Newton három törvénye 1.1. Feladat: Három azonos m tömegű gyöngyszemet fonálra fűzünk, egymástól kis távolságokban a fonálhoz rögzítünk, és az elhanyagolható tömegű

Részletesebben

Oktatási Hivatal. A döntő feladatai. 1. Feladat Egy kifejezést a következő képlettel definiálunk: ahol [ 2008;2008]

Oktatási Hivatal. A döntő feladatai. 1. Feladat Egy kifejezést a következő képlettel definiálunk: ahol [ 2008;2008] OKTV 7/8 A öntő felaatai. Felaat Egy kifejezést a következő képlettel efiniálunk: 3 x x 9x + 7 K = x 9 ahol [ 8;8] x és x Z. Mennyi a valószínűsége annak hogy K egész szám ha x eleget tesz a fenti feltételeknek?.

Részletesebben

Oktatási Hivatal. A döntő feladatainak megoldása. 1. Feladat Egy kifejezést a következő képlettel definiálunk: ahol [ 2008;2008]

Oktatási Hivatal. A döntő feladatainak megoldása. 1. Feladat Egy kifejezést a következő képlettel definiálunk: ahol [ 2008;2008] OKTV 7/8 A öntő felaatainak megolása. Felaat Egy kifejezést a következő képlettel efiniálunk: 3 x x 9x + 7 K = x 9 ahol [ 8;8] x és x Z. Mennyi a valószínűsége annak hogy K egész szám ha x eleget tesz

Részletesebben

Általános Kémia. Dr. Csonka Gábor 1. Gázok. Gázok. 2-1 Gáznyomás. Barométer. 6-2 Egyszerű gáztörvények. Manométer

Általános Kémia. Dr. Csonka Gábor 1. Gázok. Gázok. 2-1 Gáznyomás. Barométer. 6-2 Egyszerű gáztörvények. Manométer Gázok -1 Gáznyoás - Egyszerű gáztörvények -3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet -4 tökéletes gáz egyenlet alkalazása -5 Gáz halazállapotú reakciók -6 Gázkeverékek

Részletesebben

= 163, 63V. Felírható az R 2 ellenállásra, hogy: 163,63V. blokk sorosan van kapcsolva a baloldali R 1 -gyel, és tudjuk, hogy

= 163, 63V. Felírható az R 2 ellenállásra, hogy: 163,63V. blokk sorosan van kapcsolva a baloldali R 1 -gyel, és tudjuk, hogy Határozzuk meg és ellenállások értékét, ha =00V, = 00, az ampermérő 88mA áramot, a voltmérő,v feszültséget jelez! Az ampermérő ellenállását elhanyagolhatóan kicsinek, a voltmérőét végtelen nagynak tekinthetjük

Részletesebben

2. Rugalmas állandók mérése

2. Rugalmas állandók mérése . Rugalas állandók érése PÁPICS PÉTER ISTVÁN csillagász, 3. évfolya 00.10.7. Beadva: 00.1.1. 1. A -ES, AZAZ AZ ABLAK FELLI MÉRHELYEN MÉRTEM. Ezen a laboron a férudak Young-oduluszát értük, pontosabban

Részletesebben

Mechanikai munka, energia, teljesítmény (Vázlat)

Mechanikai munka, energia, teljesítmény (Vázlat) Mechanikai unka, energia, eljesíény (Vázla). Mechanikai unka fogala. A echanikai unkavégzés fajái a) Eelési unka b) Nehézségi erő unkája c) Gyorsíási unka d) Súrlódási erő unkája e) Rugóerő unkája 3. Mechanikai

Részletesebben

Változó tömegű test dinamikája

Változó tömegű test dinamikája Dr. Cvetityanin Lívia Változó töegű test inaikája Bevezetés Az iőben változó paraéteres rezgésék eghatározásával sok tuós foglalkozott lás pl. Meshchersky Bessonov Cveticanin 34. A változó paraéteres rezgésék

Részletesebben

Fizika A2E, 9. feladatsor

Fizika A2E, 9. feladatsor Fizika 2E, 9. feladatsor Vida György József vidagyorgy@gmail.com 1. feladat: hurokáramok módszerével határozzuk meg az ábrán látható kapcsolás ágaiban folyó áramokat! z áramkör két ablakból áll, így két

Részletesebben

5. Pontrendszerek mechanikája. A kontinuumok Euler-féle leírása. Tömegmérleg. Bernoulli-egyenlet. Hidrosztatika. Felhajtóerő és Arhimédesz törvénye.

5. Pontrendszerek mechanikája. A kontinuumok Euler-féle leírása. Tömegmérleg. Bernoulli-egyenlet. Hidrosztatika. Felhajtóerő és Arhimédesz törvénye. 5 Pontrenszerek echankája kontnuuok Euler-féle leírása Töegérleg Bernoull-egyenlet Hrosztatka Felhajtóerő és rhéesz törvénye Töegpontrenszerek Töegpontok eghatározott halaza, ng ugyanazok a pontok tartoznak

Részletesebben

Egyszerű áramkörök árama, feszültsége, teljesítménye

Egyszerű áramkörök árama, feszültsége, teljesítménye Egyszerű árakörök áraa, feszültsége, teljesíténye A szokásos előjelek Általában az ún fogyasztói pozitív irányokat használják, ezek szerint: - a ϕ fázisszög az ára helyzete a feszültség szinusz hullá szöghelyzetéhez

Részletesebben

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS!

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! 1. példa Vasúti kocsinak a 6. ábrán látható ütközőjébe épített tekercsrugóban 44,5 kn előfeszítő erő ébred. A rugó állandója 0,18

Részletesebben

Néhány mozgás kvantummechanikai tárgyalása

Néhány mozgás kvantummechanikai tárgyalása Néhány ozgás kvantuechanikai tárgyalása Mozzanatok: A Schrödinger-egyenlet felírása ĤΨ EΨ Hailton-operátor egállapítása a kinetikus energiaoperátor felírása, vagy 3 dienziós ozgásra, Descartes-féle koordinátarendszerben

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 81 ÉRETTSÉGI VIZSGA 9. ájus 1. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM A dolgozatokat az útutató utasításai szerint,

Részletesebben

Oktatási Hivatal FIZIKA. I. kategória. A 2017/2018. tanévi Országos Középiskolai Tanulmányi Verseny 1. forduló. Javítási-értékelési útmutató

Oktatási Hivatal FIZIKA. I. kategória. A 2017/2018. tanévi Országos Középiskolai Tanulmányi Verseny 1. forduló. Javítási-értékelési útmutató Oktatási Hivatal A 2017/2018. tanévi Országos Középiskolai Tanulmányi Verseny 1. forduló FIZIKA I. kategória Javítási-értékelési útmutató 1. feladat. Kosárlabdázásról szóló m sorban hangzik el, hogy a

Részletesebben

FIZIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika eelt szint 74 ÉESÉGI VIZSGA 07. ájus. FIZIKA EMEL SZINŰ ÍÁSBELI VIZSGA JAVÍÁSI-ÉÉKELÉSI ÚMUAÓ EMBEI EŐFOÁSOK MINISZÉIUMA A dolgozatokat az útutató utasításai szerint, jól követhetően kell javítani

Részletesebben

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont)

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont) 1. 2. 3. Mondat E1 E2 Gépészmérnöki alapszak, Mérnöki fizika ZH, 2017. október 10.. CHFMAX NÉV: Neptun kód: Aláírás: g=10 m/s 2 Előadó: Márkus / Varga Feladatok (maximum 3x6 pont=18 pont) 1) Az l hosszúságú

Részletesebben

Tornyai Sándor Fizikaverseny 2009. Megoldások 1

Tornyai Sándor Fizikaverseny 2009. Megoldások 1 Tornyai Sánor Fizikaerseny 9. Megolások. Aatok: á,34 m/s, s 6,44 km 644 m,,68 m/s,,447 m/s s Az első szakasz megtételéez szükséges iő: t 43 s. pont A másoik szakaszra fennáll, ogy s t pont s + s t + t

Részletesebben

= Φ B(t = t) Φ B (t = 0) t

= Φ B(t = t) Φ B (t = 0) t 4. Gyakorlat 32B-3 Egy ellenállású, r sugarú köralakú huzalhurok a B homogén mágneses erőtér irányára merőleges felületen fekszik. A hurkot gyorsan, t idő alatt 180 o -kal átforditjuk. Számitsuk ki, hogy

Részletesebben

Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )

Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) Trigonometria Megoldások Trigonometria - megoldások ) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) akkor a háromszög egyenlő szárú vagy derékszögű!

Részletesebben

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK február 13.

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK február 13. Fizika Nyitray Gergely (PhD) PTE PMMIK 017. február 13. A lejtő mint kényszer A lejtő egy ún. egyszerű gép. A következő problémában először a lejtőt rögzítjük, és egy m tömegű test súrlódás nélkül lecsúszik

Részletesebben

Bor Pál Fizikaverseny 2016/17. tanév DÖNTŐ április évfolyam. Versenyző neve:...

Bor Pál Fizikaverseny 2016/17. tanév DÖNTŐ április évfolyam. Versenyző neve:... Bor Pál Fizikaverseny 2016/17. tanév DÖNTŐ 2017. április 22. 8. évfolya Versenyző neve:... Figyelj arra, hogy ezen kívül ég a további lapokon is fel kell írnod a neved! Iskola:... Felkészítő tanár neve:...

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 08 ÉRESÉGI VIZSGA 008. ájus 4. FIZIKA KÖZÉPSZINŰ ÍRÁSBELI ÉRESÉGI VIZSGA JAVÍÁSI-ÉRÉKELÉSI ÚMUAÓ OKAÁSI ÉS KULURÁLIS MINISZÉRIUM A dolgozatokat az útutató utasításai szerint, jól követhetően

Részletesebben

Szélsőérték feladatok megoldása

Szélsőérték feladatok megoldása Szélsőérték feladatok megoldása A z = f (x,y) függvény lokális szélsőértékének meghatározása: A. Szükséges feltétel: f x (x,y) = 0 f y (x,y) = 0 egyenletrendszer megoldása, amire a továbbiakban az x =

Részletesebben

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel 1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel Munkavégzés, teljesítmény 1.1. Feladat: (HN 6B-8) Egy rúgót nyugalmi állapotból 4 J munka árán 10 cm-rel nyújthatunk meg. Mekkora

Részletesebben

Szemcsés szilárd anyag porozitásának mérése. A sűrűség ismert definíciója szerint meghatározásához az anyag tömegét és térfogatát kell ismernünk:

Szemcsés szilárd anyag porozitásának mérése. A sűrűség ismert definíciója szerint meghatározásához az anyag tömegét és térfogatát kell ismernünk: Szecsés szilárd anyag porozitásának érése. Eléleti háttér A vegyipar alapanyagainak és terékeinek több int fele szilárd szecsés, ún. ölesztett anyag. Alapanyag pl. a szén, szilikonok, szees terények stb.,

Részletesebben

Mérések állítható hajlásszögű lejtőn

Mérések állítható hajlásszögű lejtőn A mérés célkitűzései: A lejtőn lévő testek egyensúlyának vizsgálata, erők komponensekre bontása. Eszközszükséglet: állítható hajlásszögű lejtő különböző fahasábok kiskocsi erőmérő 20 g-os súlyok 1. ábra

Részletesebben

Tömegpontok mozgása egyenes mentén, hajítások

Tömegpontok mozgása egyenes mentén, hajítások 2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:

9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás: 9. Trigonometria I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! x = cos 150 ; y = sin 5 ; z = tg ( 60 ) (A) z < x < y (B) x < y < z (C) y < x < z (D) z < y

Részletesebben

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra 4. Gyakorlat 31B-9 A 31-15 ábrán látható, téglalap alakú vezetőhurok és a hosszúságú, egyenes vezető azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra. 31-15 ábra

Részletesebben

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1) 3. Gyakorlat 29A-34 Egy C kapacitású kondenzátort R ellenálláson keresztül sütünk ki. Mennyi idő alatt csökken a kondenzátor töltése a kezdeti érték 1/e 2 ed részére? Kirchhoff 2. törvénye (huroktörvény)

Részletesebben

A 2011/2012. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából. II.

A 2011/2012. tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából. II. Oktatási Hivatal A 0/0 tanévi FIZIKA Országos Középiskolai Tanulmányi Verseny első fordulójának feladatai és megoldásai fizikából II kategória A dolgozatok elkészítéséhez minden segédeszköz használható

Részletesebben

Felvételi, 2018 szeptember - Alapképzés, fizika vizsga -

Felvételi, 2018 szeptember - Alapképzés, fizika vizsga - Sapientia Erdélyi Magyar Tudományegyetem Marosvásárhelyi Kar Felvételi, 2018 szeptember - Alapképzés, fizika vizsga - Minden tétel kötelező Hivatalból 10 pont jár Munkaidő 3 óra I Az alábbi kérdésekre

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika eelt szint 0803 ÉRETTSÉGI VIZSGA 008. noveber 3. FIZIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM A dolgozatokat az útutató utasításai

Részletesebben

Tömegmérés stopperrel és mérőszalaggal

Tömegmérés stopperrel és mérőszalaggal Tömegmérés stopperrel és mérőszalaggal 1. Általános tudnivalók Mérőhelyén egy játékpisztolyt, négy lövedéket, valamint egy jól csapágyazott, fatalpra erősített fémlemezt talál. A lentebb közölt utasítások

Részletesebben

1. ábra. 24B-19 feladat

1. ábra. 24B-19 feladat . gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika eelt szint Javítási-értékelési útutató 063 ÉRETTSÉGI VIZSGA 006. ájus 5. FIZIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fizika eelt szint Javítási-értékelési

Részletesebben

Munka, energia Munkatétel, a mechanikai energia megmaradása

Munka, energia Munkatétel, a mechanikai energia megmaradása Munka, energia Munkatétel, a mechanikai energia megmaradása Munkavégzés történik ha: felemelek egy könyvet kihúzom az expandert A munka Fizikai értelemben munkavégzésről akkor beszélünk, ha egy test erő

Részletesebben

Gyakorlat 34A-25. kapcsolunk. Mekkora a fűtőtest teljesítménye? I o = U o R = 156 V = 1, 56 A (3.1) ezekkel a pillanatnyi értékek:

Gyakorlat 34A-25. kapcsolunk. Mekkora a fűtőtest teljesítménye? I o = U o R = 156 V = 1, 56 A (3.1) ezekkel a pillanatnyi értékek: 3. Gyakorlat 34-5 Egy Ω ellenállású elektromos fűtőtestre 56 V amplitúdójú váltakozó feszültséget kapcsolunk. Mekkora a fűtőtest teljesítménye? Jelölések: R = Ω, U o = 56 V fűtőtestben folyó áram amplitudója

Részletesebben

FIZIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika eelt szint 171 ÉRETTSÉGI VIZSGA 017. október 7. FIZIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA A dolgozatokat az útutató utasításai szerint, jól

Részletesebben

Exponenciális és logaritmikus kifejezések Megoldások

Exponenciális és logaritmikus kifejezések Megoldások Eponenciális és logaritmikus kifejezések - megoldások Eponenciális és logaritmikus kifejezések Megoldások ) Igazolja, hogy az alábbi négy egyenlet közül az a) és jelű egyenletnek pontosan egy megoldása

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval

Részletesebben

Mechanika - Versenyfeladatok

Mechanika - Versenyfeladatok Mechanika - Versenyfeladatok 1. A mellékelt ábrán látható egy jobbmenetű csavar és egy villáskulcs. A kulcsra ható F erővektor nyomatékot fejt ki a csavar forgatása céljából. Az erő támadópontja és az

Részletesebben

A megnyúlás utáni végső hosszúság: - az anyagi minőségtől ( - lineáris hőtágulási együttható) l = l0 (1 + T)

A megnyúlás utáni végső hosszúság: - az anyagi minőségtől ( - lineáris hőtágulási együttható) l = l0 (1 + T) - 1 - FIZIKA - SEGÉDANYAG - 10. osztály I. HŐTAN 1. Lineáris és térfogati hőtágulás Alapjelenség: Ha szilárd vagy folyékony halazállapotú anyagot elegítünk, a hossza ill. a térfogata növekszik, hűtés hatására

Részletesebben

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra . Gyakorlat 4B-9 A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld. 4-6 ábra.). Számítsuk ki az E elektromos térerősséget a vonal irányában lévő, annak.. ábra. 4-6 ábra végpontjától

Részletesebben

A rezgések dinamikai vizsgálata, a rezgések kialakulásának feltételei

A rezgések dinamikai vizsgálata, a rezgések kialakulásának feltételei A rezgések dinaikai vizsgálata a rezgések kialakulásának feltételei F e F Rezgés kialakulásához szükséges: Mozgásegyenlet: & F( & t kezdeti feltételek: ( v t & v( t & ( t Ha F F( akkor az erőtér konzervatív.

Részletesebben

Bevezető fizika (infó), 8. feladatsor Egyenáram, egyenáramú áramkörök 2.

Bevezető fizika (infó), 8. feladatsor Egyenáram, egyenáramú áramkörök 2. evezető fizika (infó), 8 feladatsor Egyenáram, egyenáramú áramkörök 04 november, 3:9 mai órához szükséges elméleti anyag: Kirchhoff törvényei: I Minden csomópontban a befolyó és kifolyó áramok előjeles

Részletesebben

Abszolútértékes és gyökös kifejezések Megoldások

Abszolútértékes és gyökös kifejezések Megoldások Abszolútértékes és gyökös kifejezések Megoldások ) Igazolja, hogy az alábbi négy egyenlet közül az a) és b) jelű egyenletnek pontosan egy megoldása van, a c) és d) jelű egyenletnek viszont nincs megoldása

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos

Részletesebben

1. Feladatok merev testek fizikájának tárgyköréből

1. Feladatok merev testek fizikájának tárgyköréből 1. Feladatok merev testek fizikájának tárgyköréből Forgatónyomaték, impulzusmomentum, impulzusmomentum tétel 1.1. Feladat: (HN 13B-7) Homogén tömör henger csúszás nélkül gördül le az α szög alatt hajló

Részletesebben

Másodfokú egyenletek, egyenlőtlenségek

Másodfokú egyenletek, egyenlőtlenségek Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x + 1x + 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x + 1x + 16 = 0.

Részletesebben

Statikai egyensúlyi egyenletek síkon: Szinusztétel az CB pontok távolságának meghatározására: rcb

Statikai egyensúlyi egyenletek síkon: Szinusztétel az CB pontok távolságának meghatározására: rcb MECHNIK-STTIK (ehér Lajos) 1.1. Példa: Tehergépkocsi a c b S C y x G d képen látható tehergépkocsi az adott pozícióban tartja a rakományt. dott: 3, 7, a 3 mm, b mm, c 8 mm, d 5 mm, G 1 j kn eladat: a)

Részletesebben

71. A lineáris és térfogati hőtágulási tényező közötti összefüggés:

71. A lineáris és térfogati hőtágulási tényező közötti összefüggés: Összefüggések: 69. Lineáris hőtágulás: Hosszváltozás l = α l 0 T Lineáris hőtágulási Kezdeti hossz Hőmérsékletváltozás 70. Térfogati hőtágulás: Térfogatváltozás V = β V 0 T Hőmérsékletváltozás Térfogati

Részletesebben

Harmonikus rezgőmozgás

Harmonikus rezgőmozgás Haronikus rezgőozgás (Vázat). A rezgőozgás fogaa. Rezgőozgás eírását segítő ennyiségek 3. Kapcsoat az egyenetes körozgás és a haronikus rezgőozgás között 4. A haronikus rezgőozgás kineatikai egyenetei

Részletesebben

Algoritmus a csigahajtások f7paramétereinek meghatározására. Dr. Antal Tibor Sándor, Dr. Antal Béla. Kolozsvári Mszaki Egyetem.

Algoritmus a csigahajtások f7paramétereinek meghatározására. Dr. Antal Tibor Sándor, Dr. Antal Béla. Kolozsvári Mszaki Egyetem. Algoritus a csigahajtások f7paraétereinek eghatározására Dr. Antal ibor Sánor, Dr. Antal Béla Kolozsvári Mszaki Egyete Abstract he gear esign can be achieve in several ways accoring to the publishe ethos

Részletesebben

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II. 8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az

Részletesebben

35. Mikola Sándor Országos Tehetségkutató Fizikaverseny. III. forduló május 1. Gyöngyös, 9. évfolyam. Szakközépiskola

35. Mikola Sándor Országos Tehetségkutató Fizikaverseny. III. forduló május 1. Gyöngyös, 9. évfolyam. Szakközépiskola 5 Mikola Sándor Országos Tehetségkutató Fizikaerseny III forduló 06 ájus Gyöngyös, 9 éfolya Szakközépiskola feladat Soa, aikor a d = 50 széles folyón a partra erőlegesen eez, akkor d/ táolsággal sodródik

Részletesebben

Egyfázisú aszinkron motor

Egyfázisú aszinkron motor AGISYS Ipari Keverés- és Hajtástecnika Kft. Egyfázisú aszinkron otor 1 Egy- és árofázisú otorok főbb jellegzetességei 1.1 Forgórész A kalickás aszinkron otorok a forgórész orony alakjának kialakításától

Részletesebben

Függvények Megoldások

Függvények Megoldások Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény

Részletesebben

1.feladat. Megoldás: r r az O és P pontok közötti helyvektor, r pedig a helyvektor hosszának harmadik hatványa. 0,03 0,04.

1.feladat. Megoldás: r r az O és P pontok közötti helyvektor, r pedig a helyvektor hosszának harmadik hatványa. 0,03 0,04. .feladat A derékszögű koordinátarendszer origójába elhelyezünk egy q töltést. Mekkora ennek a töltésnek a 4,32 0 nagysága, ha a töltés a koordinátarendszer P(0,03;0,04)[m] pontjában E(r ) = 5,76 0 nagyságú

Részletesebben

a) A logaritmus értelmezése alapján: x 8 0 ( x 2 2 vagy x 2 2) (1 pont) Egy szorzat értéke pontosan akkor 0, ha valamelyik szorzótényező 0.

a) A logaritmus értelmezése alapján: x 8 0 ( x 2 2 vagy x 2 2) (1 pont) Egy szorzat értéke pontosan akkor 0, ha valamelyik szorzótényező 0. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

VEGYIPARI ALAPISMERETEK

VEGYIPARI ALAPISMERETEK Vegyipari alapiseretek eelt szint 08 ÉRETTSÉGI VIZSGA 008. ájus 6. VEGYIPARI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos

Részletesebben

a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus.

a térerősség mindig az üreg falára merőleges, ezért a tér ott nem gömbszimmetrikus. 2. Gyakorlat 25A-0 Tekintsünk egy l0 cm sugarú üreges fémgömböt, amelyen +0 µc töltés van. Legyen a gömb középpontja a koordinátarendszer origójában. A gömb belsejében az x = 5 cm pontban legyen egy 3

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

1. A hőszigetelés elmélete

1. A hőszigetelés elmélete . A hőszigetelés elélete.. A hővezetés... A hővezetés alapjai A hővezetési száítások előtt bizonyos előfeltételeket el kell fogadnunk. Feltételezzük, hogy a hőt vezető test két oldalán fellépő hőfokkülönbség

Részletesebben

MEGOLDÁSOK ÉS PONTOZÁSI ÚTMUTATÓ

MEGOLDÁSOK ÉS PONTOZÁSI ÚTMUTATÓ MEGOLDÁSOK ÉS PONTOZÁSI ÚTMUTATÓ. Egy kerékpáro zakazonként egyene vonalú egyenlete ozgát végez. Megtett útjának elő k hatodát 6 nagyágú ebeéggel, útjának további kétötödét 6 nagyágú ebeéggel, az h útjának

Részletesebben

Németh László Matematikaverseny április 16. A osztályosok feladatainak javítókulcsa

Németh László Matematikaverseny április 16. A osztályosok feladatainak javítókulcsa Németh László Matematikaverseny 007. április 16. A 9-10. osztályosok feladatainak javítókulcsa Feladatok csak 9. osztályosoknak 1. feladat a) Vegyük észre, hogy 7 + 5 felírható 1 + 3 + 6 + alakban, így

Részletesebben

Másodfokú egyenletek, egyenlőtlenségek

Másodfokú egyenletek, egyenlőtlenségek Másodfokú egyenletek, egyenlőtlenségek A másodfokú egyenlet grafikus megoldása Példa1. Ábrázold az f(x) = x 1x 16 függvényt, majd olvasd le az ábráról az alábbi egyenlet megoldását: x 1x 16 =. 1. lépés:

Részletesebben

Gépészmérnöki alapszak Mérnöki fizika ZH NÉV: október 18. Neptun kód:...

Gépészmérnöki alapszak Mérnöki fizika ZH NÉV: október 18. Neptun kód:... 1. 2. 3. Mondat E1 E2 Össz Gépészmérnöki alapszak Mérnöki fizika ZH NÉV:.. 2018. október 18. Neptun kód:... g=10 m/s 2 Előadó: Márkus/Varga Az eredményeket a bekeretezett részbe be kell írni! 1. Egy m=3

Részletesebben

Mérési útmutató Az önindukciós és kölcsönös indukciós tényező meghatározása Az Elektrotechnika c. tárgy 7. sz. laboratóriumi gyakorlatához

Mérési útmutató Az önindukciós és kölcsönös indukciós tényező meghatározása Az Elektrotechnika c. tárgy 7. sz. laboratóriumi gyakorlatához BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR VILLAMOS ENERGETIKA TANSZÉK Mérési útutató Az önindukciós és kölcsönös indukciós tényező eghatározása Az Elektrotechnika

Részletesebben

A 32. Mikola Sándor Fizikaverseny feladatainak megoldása Döntı - Gimnázium 10. osztály Pécs 2013. 1 pont

A 32. Mikola Sándor Fizikaverseny feladatainak megoldása Döntı - Gimnázium 10. osztály Pécs 2013. 1 pont A Mikola Sándor Fizikavereny feladatainak egoldáa Döntı - Gináziu oztály Péc feladat: a) Az elı eetben a koci é a ágne azono a lauláát a dinaika alaegyenlete felhaználáával záolhatjuk: Ma Dy Dy a 6 M ont

Részletesebben

ő í í ü í ö ú í ö ú ö í ú ő í Ó ő ü í Í ö ö Í í í í í Í í ű ő ö í ő ö ö íá í íí í ő ö ő Í ö Ó ö ö ü ö ö ö ő É í í Í ő ő ő ő ő ő ő ő ö ú ő ú ú ő ö ö ú ú ö ú í ő Ó ö ő Í í ü í ö ú ő ö ő ú ő í ő ö ü Í í ö

Részletesebben

V. Békés Megyei Középiskolai Matematikaverseny 2012/2013 Megoldások 12. évfolyam

V. Békés Megyei Középiskolai Matematikaverseny 2012/2013 Megoldások 12. évfolyam 01/01 1. évfolyam 1. Egy röplabda bajnokságban minden csapat pontosan egyszer játszik a többi csapat mindegyikével. A bajnokságból még két forduló van hátra és eddig 104 mérkőzést játszottak le. Hány csapat

Részletesebben

A 2004. ÉVI EÖTVÖS-VERSENY FELADATA: A KEPLER-PROBLÉMA MÁGNESES TÉRBEN

A 2004. ÉVI EÖTVÖS-VERSENY FELADATA: A KEPLER-PROBLÉMA MÁGNESES TÉRBEN Debecen DEBRECENI EGYETEM Eléleti Fizika Tanszék (Saile Konél MTA oktoa) Izotópalkalazási Tanszék (Kónya József ké. tu. oktoa) KLTE ATOMKI Közös Tanszék (Kiss Ápá Zoltán fiz. tu. oktoa) Kíséleti Fizikai

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai Az Országos Középiskolai Tanulmányi Verseny 006-007. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Melyek azok a pozitív egészek, amelyeknek pontosan négy pozitív

Részletesebben