A Föld-Hold rendszer stabilitása

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A Föld-Hold rendszer stabilitása"

Átírás

1 A Föld-Hold endsze stabilitása Föhlich Geogina Tudoányos Diákköi Dolgozata Eötvös Loánd Tudoányegyete Teészettudoányi Ka Fizika, csillagász szak Téavezető : D. Édi Bálint tanszékvezető egyetei taná ELTE TTK Csillagászati tanszék

2 Tatalo Bevezetés Az általános háotest-pobléa A sziuláció Nueikus eedények Konklúzió Felhasznált iodalo Melléklet (a felhasznált poga)

3 Bevezetés Égi kíséőnk, a Hold ozgásának stabilitása endkívüli jelentőségű a Földe kifejtett hatása iatt. Ha a Hold ne létezne, ne adna világosságot éjszakánként, ne lenne olyan nagy az áapály-effektus, ne lenne Hold- és Napfogyatkozás, és ai a legfontosabb, az Ekliptika és az Egyenlítő dőlésszöge (ely a állandó : 6 ) a 0-85 tatoányban nagy kaotikus változásokat szenvedne (50 -ot is változhatna néhány illió év alatt), s ennek beláthatatlan következényei lennének a földi éghajlat alakulásáa. A Hold ugyanis fontos stabilizáló szeepet tölt be : a luniszoláis pecessziós fekvenciát távol tatja a planetáis pecesszió fekvenciáival való ezonanciáktól. Mindezek iatt édees a Hold-ozgás stabilitásával foglalkoznunk. A Hold ozgásának eghatáozása az egyik legnehezebb égi echanikai pobléa. Ennek egyik oka az, hogy a Hold ozgásában fellépő petubációk kb. egy nagyságenddel nagyobbak, int ás pobléákban (pl. a bolygóozgások esetén), kiszáításuk így különösen nehéz. A legjelentősebb petubációkat a Nap okozza. A Hold ozgásának első dinaikai elélete Newton nevéhez fűződik, aki a Pincipia -ban levezette a Hold ozgásának fő petubációit (687.). 75-ban adta ki a Pétevái Akadéia L. Eule első Hold-eléletét, elynek függeléke az állandók vaiálásának ódszeét tatalazta, ajd 77-ben egjelent a ásodik is, ebben elsőként alkalazta a hatáozatlan együtthatójú tigonoetikus sook ódszeét. Laplace Holda vonatkozó unkái a Taité de Mécanique Céleste lll. kötetében (80.) találhatók. C. Delaunay kanonikus egyenletek alkalazásával dolgozta ki eléletét (860., 867.). Gyakolati szepontból a legjelentősebb P. A. Hansen (857.) elélete volt, elynek segítségével előszö sikeült a Hold ozgását a egfigyelésekkel összhangban leíni. Egy ásik kieelkedő fontosságú elélet G. W. Hill és E. W. Bown unkásságának eedénye. Alapjait az 870-es években Hill akta le Eule ásodik Hold-eléletéből kiindulva, a észletes kidolgozás pedig Bown édee. A Hill-Bown-elélet pontossága felülúlta a koabeli egfigyelések pontosságát. Azonban a egfigyelések pontossága egye növekedett, ezét W. J. Ecket és unkatásai tovább pontosították a Hill-Bown-eléletet (966.). Azóta is többen foglalkoztak a Hold ozgásának pobléájával : H. F. Sith, A. Depit, J. Henad, A. Ro, S. Belleshei, M. Chapont-Touze, D. S. Schidt, A. Gutzwille, D. Standaet, P. Betagnon és V. A. Bubeg. Dolgozatoban a Hold ozgásának stabilitását vizsgálo eg nueikus sziuláció segítségével.

4 4 Az általános háotest-pobléa A Hold ozgását az általános háotest-pobléa segítségével odellezte (hiszen a Hold-pályát legjobban a Nap petubálja). A ozgásegyenletek a Nap-Föld-Hold endszee a következő alakban íhatók fel : és ahol M a Nap, a Föld, a Hold töege, v a Föld, v a Hold sebessége, a Föld, a Hold Naptól ét távolsága, R a Föld-Hold távolság, pedig a gavitációs állandó (étéke :, ).,, R R M dt dv R R M dt dv + + = + =,, v dt d v dt d = =

5 A sziuláció Az előbbi egyenleteket nueikus integálással oldotta eg a különböző kezdeti paaéteeke. A kifejlesztett Pascal-poga (ait a dolgozathoz ellékelek) általános n-test pobléáa készült (a ozgásegyenletek indexesen szeepelnek benne). Alapja egy negyedendű Runge-Kutta-eljáás, ely a beít ozgásegyenleteket a sofejtés negyedik tagjáig egoldja. Ezen kívül be van építve egy időosztás-finoítás is : ha az egy lépés alatti enegia-változás nagyobb, int 0-6 égiechanikai étékegységekben -, akko nyolcadáa csökkenti a beállított lépésközt (ugyanis a endsze összenegiája első közelítésben állandó). Így nagy sebességek esetén is (aiko két égitest nagyon közel keül egyáshoz) kellően pontos a száítás. A pogaban be lehet állítani az integálás lépésközét, az egyes égitestek töegét, kezdeti hely- és sebesség-koodinátáit (illetve a Nap helyzete és sebessége ögzített : 0). Ezek után a poga ábázolja a háo égitest ozgását (a Nap van a középpontban), s a haadik test fázisteét is. Ee azét van szükség, et jelentősen egkönnyíti eldönteni, hogy a haadik égitest elszökött-e a endszeből. 5

6 Nueikus eedények A stabilitási tatoány szekezetét a szekciók ódszeével téképezte fel. Rögzítette a kezdeti y hely- és v x sebesség-koodinátákat, és változtatta x és v y koodinátákat. Sík odellben vizsgálta a pobléát, ezét z, v z =0. A felhasznált paaéteek : a Nap-Föld távolság : d N-F = k= cs.e., a Föld-Hold távolság : d F-H = k, a Hold peiódusa : P H =9,5 középnap, a Föld töege : F =0,00000 M Nap, a Hold töege : H =0, M Nap, a Föld keingési sebessége : v F =0,07 cs.e./középnap, x =,0067 cs.e. (ez a Hold valódi helyzete, ez a kiindulási éték), y =0 cs.e., v x =0 cs.e., v y =0, cs.e. (ez a Hold valódi sebessége, ez a kiindulási éték). A lehetséges ozgásokat hat szekcióa osztotta : i, stabil pályák a Hold ne hagyja el a Föld gavitációs vonzásközetét ; ii, ütköző pályák a Hold a Földbe zuhan ; iii, a Hold a Napba zuhan ; iv, a Hold végleg eltávozik a Napendszeből ; v, a Hold a Földpályánál kisebb sugaú pályáa áll a Nap köül ; vi, a Hold a Földpályánál nagyobb sugaú pályáa áll a Nap köül. A Hold-pálya stabilitási tatoányának szekezete : 6

7 A Föld közelében lévő ész kinagyítva : Az ábákon a tengelyeken a kezdeti x hely-, és a v y sebesség-koodináták vannak csillagászati egység, és csillagászati egység/középnap egységekben. A Föld az x = cs.e., v y =0,07 cs.e./középnap, a Hold az x =,0067 cs.e., v y =0, cs.e./középnap koodinátájú helyen van a valóságban. 7

8 Konklúzió Nueikus sziuláció segítségével egvizsgálta a Föld-Hold endsze stabilitását, feltéképezte a Hold-pálya stabilitási tatoányának topológiáját a kezdeti étékek fázisteében. Egy endkívül koplex fázisté adódott, elyben a szekciók hatáán olyan különleges ozgások is előfodulhatnak, int például : a Hold egy keingés után egelőzi a Földet, s a Földhöz képest külső pályáa áll a Nap köül, ajd egy idő után szoosan egközelítik egyást a Földdel, ely agához képest belső pályáa ántja a Holdat (ely ezen a pályán stabilan keing tovább) x =,0067 cs.e., v y =0,0805 cs.e./középnap. Az ábázolt tatoány éetée jellező, hogy a Vénusz x 0,7 cs.e., a Mas x,5 cs.e.-nél lenne ajta. Végeedényben a Hold jelenlegi pályája endkívül stabilnak utatkozott a sziuláció soán kiváltképp a helykoodináta tekintetében (a stabil tatoány szélessége 0,0 cs.e.). 8

9 Felhasznált iodalo : E. W. Bown : 99., Tables of the Motion of the Moon, London A. Causi, E. Pozzi, G. B. Valsecchi : 979., Dynaics of the Sola Syste, D. Reidel, Dodecht, 85. W. J. Ecket, R. Jones, H. K. Clak : 954., Ipoved Luna Epheeis , U.S. Govenent Pinting Office, Washington Édi Bálint : 00., A Napendsze dinaikája, ELTE Eötvös Kiadó, Budapest Édi Bálint : 996., Égi echanika, Nezeti Tankönyvkiadó, Budapest L. Eule : 75., Theoia otus Lunae exhibens ones ejus inaequalitates etc, Pétevá P. A. Hansen : 857., Tables de la Lune, London G. W. Hill : 878., Reseaches in the Luna Theoy, Ae. Joun. Of Math. C. Machal : The thee-body poble, Elsevie, Studies in Astonautics, 990. F. R. Moulton : 94., An intoduction to Celestial Mechanics, The Macillan Copany, New Yok C. Ronan : 998., Megagyaázzuk a Világegyeteet, Helikon Kiadó Szebehely Győző : 967., Theoy of Obits, Acadeic Pess, New Yok 9

Kinematikai alapfogalmak

Kinematikai alapfogalmak Kineatikai alapfogalak a ozgások leíásáal foglalkozik töegpont, onatkoztatási endsze, pálya, pályagöbe, elozdulás ekto a sebesség, a gyosulás Egyenes Vonalú Egyenletes Mozgás áll. 35 3 5 5 5 4 a s [] 5

Részletesebben

Fizikai Szemle MAGYAR FIZIKAI FOLYÓIRAT

Fizikai Szemle MAGYAR FIZIKAI FOLYÓIRAT Fizikai zele MAGYAR FIZIKAI FOLYÓIRAT A Matheatikai és Teészettudoányi Étesítõt az Akadéia 88-ben indította A Matheatikai és Physikai Lapokat ötvös Loánd 89-ben alapította LXII évfolya 4 szá 0 ápilis A

Részletesebben

A 2004. ÉVI EÖTVÖS-VERSENY FELADATA: A KEPLER-PROBLÉMA MÁGNESES TÉRBEN

A 2004. ÉVI EÖTVÖS-VERSENY FELADATA: A KEPLER-PROBLÉMA MÁGNESES TÉRBEN Debecen DEBRECENI EGYETEM Eléleti Fizika Tanszék (Saile Konél MTA oktoa) Izotópalkalazási Tanszék (Kónya József ké. tu. oktoa) KLTE ATOMKI Közös Tanszék (Kiss Ápá Zoltán fiz. tu. oktoa) Kíséleti Fizikai

Részletesebben

AZ ÉGIG ÉRŐ PASZULY JACK AND THE BEANSTALK

AZ ÉGIG ÉRŐ PASZULY JACK AND THE BEANSTALK AZ ÉGIG ÉŐ PASZULY JAC AND HE BEANSAL Honyek Gyula ELE adnóti Miklós Gyakolóiskola ÖSSZEFOGLALÁS Csodálkoznunk kellene, a a Föld valaely pontján eglátnánk egy kötelet, aelynek az alja ajdne leé a talaja,

Részletesebben

A BEFOGÁS STABILITÁSA A KORLÁTOZOTT HÁROMTEST- PROBLÉMÁBAN

A BEFOGÁS STABILITÁSA A KORLÁTOZOTT HÁROMTEST- PROBLÉMÁBAN A BEFOGÁS STABILITÁSA A KORLÁTOZOTT HÁROMTEST- PROBLÉMÁBAN FRÖHLICH GEORGINA Eötvös Loánd Tudományegyetem Temészettudományi Ka Fizika, Csillagász szak Témavezető: D. Édi Bálint tanszékvezető egyetemi taná

Részletesebben

Az atomok vonalas színképe

Az atomok vonalas színképe Az atomok vonalas színképe Színképelemzés, spektoszkópia R. Bunsen 8-899 G.R. Kichhoff 8-887 A legegyszebb (a legkönnyebb) atom a hidogén. A spektuma a láthatóban a következ A hidogén atom spektuma a látható

Részletesebben

A szállítócsigák néhány elméleti kérdése

A szállítócsigák néhány elméleti kérdése A szállítócsigák néhány eléleti kédése DR BEKŐJÁOS GATE Géptani Intézet Bevezetés A szállítócsigák néhány eléleti kédése A tanulány tágya az egyik legégebben alkalazott folyaatos üzeűanyagozgató gép a

Részletesebben

Mozgás centrális erőtérben

Mozgás centrális erőtérben Mozgás centális eőtében 1. A centális eő Válasszunk egy olyan potenciális enegia függvényt, amely csak az oigótól való távolságtól függ: V = V(). A tömegponta ható eő a potenciális enegiája gaiensének

Részletesebben

ψ m Az állórész fluxus Park-vektorának összetevői

ψ m Az állórész fluxus Park-vektorának összetevői 5. ASZINKRON MOTOROS HAJTÁSOK (. ész) Közvetlen nyoatékszabályozás Közvetlen nyoatékszabályozásnál a feszültséginvete egfelelő állapotának kiválasztásával közvetlenül az állóész fluxust és a nyoatékot

Részletesebben

GEGET057N DIAGNOSZTIKA ÉS KARBANTARTÁS. MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR GÉPELEMEK TANSZÉKE 3515 Miskolc-Egyetemváros

GEGET057N DIAGNOSZTIKA ÉS KARBANTARTÁS. MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR GÉPELEMEK TANSZÉKE 3515 Miskolc-Egyetemváros MSKOC EGYETEM GÉÉSZMÉRÖK ÉS FORMTK KR GÉEEMEK TSZÉKE 355 Miskolc-Egyeteváos TTÁRGY DOSSZÉ GEGET57 DGOSZTK ÉS KRBTRTÁS Tágyfelelős Saka Feenc Előadó Saka Feenc Gyakolatvezető Miskolc, 7. szeptebe GEGET57

Részletesebben

X. MÁGNESES TÉR AZ ANYAGBAN

X. MÁGNESES TÉR AZ ANYAGBAN X. MÁGNESES TÉR AZ ANYAGBAN Bevezetés. Ha (a külső áaok által vákuuban létehozott) ágneses tébe anyagot helyezünk, a ágneses té egváltozik, és az anyag ágnesezettsége tesz szet. Az anyag ágnesezettségének

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 08 ÉRESÉGI VIZSGA 008. ájus 4. FIZIKA KÖZÉPSZINŰ ÍRÁSBELI ÉRESÉGI VIZSGA JAVÍÁSI-ÉRÉKELÉSI ÚMUAÓ OKAÁSI ÉS KULURÁLIS MINISZÉRIUM A dolgozatokat az útutató utasításai szerint, jól követhetően

Részletesebben

Bolygómozgás. Számítógépes szimulációk fn1n4i11/1. Csabai István, Stéger József

Bolygómozgás. Számítógépes szimulációk fn1n4i11/1. Csabai István, Stéger József Bolygómozgás Számítógépes szimulációk fn1n4i11/1 Csabai István, Stéger József ELTE Komplex Rendszerek Fizikája Tanszék Email: csabai@complex.elte.hu, steger@complex.elte.hu Bevezetés Egy Nap körül kering

Részletesebben

3. 1 dimenziós mozgások, fázistér

3. 1 dimenziós mozgások, fázistér Drótos G.: Fejezetek az eléleti echanikából 3. rész 3. dienziós ozgások, fázistér 3.. Az dienziós ozgások leírása, a fázistér fogala dienziós ozgás alatt egy töegpont olyan ozgását értjük ebben a jegyzetben,

Részletesebben

Fogaskerekek II. fogaskerekek geometriai jellemzői. alaptulajdonságai és jellemzői

Fogaskerekek II. fogaskerekek geometriai jellemzői. alaptulajdonságai és jellemzői Fogaskeekek II. fogaskeekek geoetiai jellezői Az evolvensfogazat alaptulajdonságai és jellezői Fogpofilalakok Foggöbének inden olyan pofilgöbe használható, aelyeke évényes az előzőekben isetetett fogeőlegességől

Részletesebben

é á ó ó é é ó é é é á é é é á ó á á á é á ó é í é ó é á ó é é é é é é ó ó é ó é á ó á á é é á ó á ó é ó é á é é é á óé é é á ó á é é é í é ééé ó á áé é é é é á á á ó á á ó é á á í á ó é á ó é í é á ó é

Részletesebben

9. ábra. A 25B-7 feladathoz

9. ábra. A 25B-7 feladathoz . gyakolat.1. Feladat: (HN 5B-7) Egy d vastagságú lemezben egyenletes ρ téfogatmenti töltés van. A lemez a ±y és ±z iányokban gyakolatilag végtelen (9. ába); az x tengely zéuspontját úgy választottuk meg,

Részletesebben

Az előadás vázlata:

Az előadás vázlata: 18..19. Az előadás vázlata: I. eokéiai egyenletek. A eakcióhő teodinaikai definíciója. II. A standad állapot. Standad képződési entalpia. III. ess-tétel. IV. Reakcióentalpia száítása képződési entalpia

Részletesebben

2. Rugalmas állandók mérése

2. Rugalmas állandók mérése . Rugalas állandók érése PÁPICS PÉTER ISTVÁN csillagász, 3. évfolya 00.10.7. Beadva: 00.1.1. 1. A -ES, AZAZ AZ ABLAK FELLI MÉRHELYEN MÉRTEM. Ezen a laboron a férudak Young-oduluszát értük, pontosabban

Részletesebben

Hajtástechnika. F=kv. Határozza meg a kocsi sebességének v(t) idıfüggvényét, ha a motorra u(t)=5 1(t) [V] kapocsfeszültséget kapcsolunk!

Hajtástechnika. F=kv. Határozza meg a kocsi sebességének v(t) idıfüggvényét, ha a motorra u(t)=5 1(t) [V] kapocsfeszültséget kapcsolunk! Hajtástechnika Példa Az ábán egy nyotató odellje látható, ely két azonos szíjtácsából, alaint töegő kocsiból áll. A szíj tökéletesen hajlékony, nyújthatatlan és elhanyagolható töegő. A kocsia sebességaányos

Részletesebben

A FÖLD PRECESSZIÓS MOZGÁSA

A FÖLD PRECESSZIÓS MOZGÁSA A ÖLD PRECEZIÓ MOZGÁA Völgyesi Lajos BME Általános- és elsőgeodézia Tanszék A öld bonyolult fogási jelenségeinek megismeéséhez pontos fizikai alapismeetek szükségesek. A fogalmak nem egységes és hibás

Részletesebben

Mobilis robotok irányítása

Mobilis robotok irányítása Mobiis obotok iánítása. A gakoat céja Mobiis obotok kinematikai modeezése Matab/Simuink könezetben. Mobiis obotok Ponttó Pontig (PTP) iánításának teezése és megaósítása.. Eméeti beezet Mobiis obotok heátoztatása

Részletesebben

2010. március 27. Megoldások 1/6. 1. A jégtömb tömege: kg. = m 10 m = 8,56 10 kg. 4 pont m. tengervíz

2010. március 27. Megoldások 1/6. 1. A jégtömb tömege: kg. = m 10 m = 8,56 10 kg. 4 pont m. tengervíz 00. ácius 7. Megoldások /6.. jégtöb töege: kg 6 6 jég = ρ jég jég jég = 90 9000 0 0 = 8,56 0 kg. Kiszoított víz téfogata: 6 jég 8,56 0 kg Vk = = = 8, 5 0. ρ kg tengevíz 07,4 Vízszint-eelkedés: Vk 8, 5

Részletesebben

állórész forgórész Háromfázisú, négypólusú csúszógyűrűs aszinkron motor metszetvázlatai

állórész forgórész Háromfázisú, négypólusú csúszógyűrűs aszinkron motor metszetvázlatai 5 AZINKON OTOO HAJTÁOK (1 ész) A villaos hajtások közel /3 észe aszinkon otoos hajtás Az egyszeű kivitelű, kalickás fogóészű aszinkon otook eltejedésének okai: - közvetlenül csatlakoztathatók háo fázisú

Részletesebben

A queueing model for Spectrum Renting and handover calls in Mobile Cellular Networks

A queueing model for Spectrum Renting and handover calls in Mobile Cellular Networks Mobil hálózatok véges foású modellezése spectum enting és handove hívások használatával A queueing model fo Spectum Renting and handove calls in Mobile Cellula Netwoks Tamás Béczes a, János Sztik a, Jinting

Részletesebben

A közlegelı problémájának dinamikája Lotka - Volterra egyenletek felhasználásával

A közlegelı problémájának dinamikája Lotka - Volterra egyenletek felhasználásával A közlegelı poblémájának dinamikája Lotka - Voltea egyenletek felhasználásával Bessenyei István Pécsi Tudományegyetem, Közgazdaságtudományi Ka A gazdaság világszete és különösen hazánkban tapasztalható

Részletesebben

rnök k informatikusoknak 1. FBNxE-1

rnök k informatikusoknak 1. FBNxE-1 A MECHANIKA téakö egajánló dolgozat:. októbe., péntek 8: Helszín: TIK Kongesszusi tee izika én nök k infoatikusoknak. BNE- Mechanika 3. előadás D. Geetovszk Zsolt. szeptebe. Isétl tlés Kineatikai alapfogalak

Részletesebben

ÜTKÖZÉSEK. v Ütközési normális:az ütközés

ÜTKÖZÉSEK. v Ütközési normális:az ütközés ÜTKÖZÉSK A egaadási tételek alkalazásának legjobb példái Definíciók ütközési sík n n Ütközési noális:az ütközés síkjáa eőleges Töegközépponti sebességek Centális ütközés: az ütközési noális átegy a két

Részletesebben

A rezgések dinamikai vizsgálata, a rezgések kialakulásának feltételei

A rezgések dinamikai vizsgálata, a rezgések kialakulásának feltételei A rezgések dinaikai vizsgálata a rezgések kialakulásának feltételei F e F Rezgés kialakulásához szükséges: Mozgásegyenlet: & F( & t kezdeti feltételek: ( v t & v( t & ( t Ha F F( akkor az erőtér konzervatív.

Részletesebben

A csillagképek története és látnivalói február 14. Bevezetés: Az alapvető égi mozgások

A csillagképek története és látnivalói február 14. Bevezetés: Az alapvető égi mozgások A csillagképek története és látnivalói 2018. február 14. Bevezetés: Az alapvető égi mozgások A csillagok látszólagos mozgása A Föld kb. 24 óra alatt megfordul a tengelye körül a földi megfigyelő számára

Részletesebben

Rugalmas megtámasztású merev test támaszreakcióinak meghatározása I. rész

Rugalmas megtámasztású merev test támaszreakcióinak meghatározása I. rész Rugalas egtáasztású erev test táaszreakióinak eghatározása I. rész Bevezetés A következő, több dolgozatban beutatott vizsgálataink tárgya a statikai / szilárdságtani szakirodalo egyik kedvene. Ugyanis

Részletesebben

Klasszikus Fizika Laboratórium V.mérés. Fajhő mérése. Mérést végezte: Vanó Lilla VALTAAT.ELTE. Mérés időpontja:

Klasszikus Fizika Laboratórium V.mérés. Fajhő mérése. Mérést végezte: Vanó Lilla VALTAAT.ELTE. Mérés időpontja: Klasszikus Fizika Laboratóriu V.érés Fajhő érése Mérést égezte: Vanó Lilla VALTAAT.ELTE Mérés időpontja: 2012.10.11. 1. Mérés röid leírása A érés során egy inta fajhőjét kellett eghatározno. Ezt legkönnyebben

Részletesebben

JUICE: navigáció a Jupiternél, rádiótávcsövekkel

JUICE: navigáció a Jupiternél, rádiótávcsövekkel JUICE: navigáció a Jupiternél, rádiótávcsövekkel Frey Sándor MTA Csillagászati és Földtudományi Kutatóközpont Konkoly Thege Miklós Csillagászati Intézet Budapest frey.sandor@csfk.mta.hu ESA GISOpen 2019

Részletesebben

A hajlított fagerenda törőnyomatékának számításáról II. rész

A hajlított fagerenda törőnyomatékának számításáról II. rész A ajlított fagerenda törőoatékának száításáról II. rész Bevezetés Az I. részben egbeszéltük a úzásra ideálisan rugalas, oásra ideálisan rugalas - tökéletesen képléke aag - odell alapján álló törőoaték

Részletesebben

Atomok (molekulák) fotoionizációja során jelentkező rezonanciahatások Resonance Effects in the Photoionization of Atoms (Molecules)

Atomok (molekulák) fotoionizációja során jelentkező rezonanciahatások Resonance Effects in the Photoionization of Atoms (Molecules) Atomok (molekulák) fotoionizációja soán jelentkező ezonanciahatások Resonance Effects in the Photoionization of Atoms (Molecules) BORBÉLY Sándo, NAGY László Babeş-Bolyai Tudományegyetem, Fizika ka, 484

Részletesebben

Kényszerrezgések, rezonancia

Kényszerrezgések, rezonancia TÓTH A: Rezgése/ (ibővített óavázlat 13 Kényszeezgése, ezonancia Gyaolatilag is igen fontos eset az, aio egy ezgése épes endsze ezgései valailyen ülső, peiodius hatás (énysze űödése özben zajlana le Az

Részletesebben

4. ASZINKRON MOTOROS HAJTÁSOK A villamos hajtások 2/3 része aszinkron motoros hajtás. Az aszinkron motorok elterjedésének

4. ASZINKRON MOTOROS HAJTÁSOK A villamos hajtások 2/3 része aszinkron motoros hajtás. Az aszinkron motorok elterjedésének Villaos hajtások AZNKON OTOO HAJTÁOK 4. AZNKON OTOO HAJTÁOK A villaos hajtások /3 észe aszinkon otoos hajtás. Az aszinkon otook eltejedésének okai: - közvetlenül csatlakoztathatók háo fázisú táphálózata,

Részletesebben

A Föld helye a Világegyetemben. A Naprendszer

A Föld helye a Világegyetemben. A Naprendszer A Föld helye a Világegyetemben A Naprendszer Mértékegységek: Fényév: az a távolság, amelyet a fény egy év alatt tesz meg. (A fény terjedési sebessége: 300.000 km.s -1.) Egy év alatt: 60.60.24.365.300 000

Részletesebben

Égi mechanika tesztkérdések. A hallgatók javaslatai 2008

Égi mechanika tesztkérdések. A hallgatók javaslatai 2008 Égi mechanika tesztkérdések A hallgatók javaslatai 2008 1 1 Albert hajnalka 1. A tömegközéppont körüli mozgást leíró m 1 s1 = k 2 m 1m 2 r,m s r 2 r 2 2 = k 2 m 1m 2 r r 2 r mozgásegyenletek ekvivalensek

Részletesebben

Mágneses momentum, mágneses szuszceptibilitás

Mágneses momentum, mágneses szuszceptibilitás Mágneses oentu, ágneses szuszceptibilitás A olekuláknak (atooknak, ionoknak) elektronszerkezetüktől függően lehet állandóan eglévő, azaz peranens ágneses oentua (ha van bennük párosítatlan elektron, azaz

Részletesebben

Kiberfizikai rendszerek

Kiberfizikai rendszerek Kibefizikai endszeek A fizikai vonatkozásokól 2016. novembe 15. 1 Real-time változók (RT entities): állapotváltozók, mint pl. folyadék áam, szabályozó alapjele, szabályozó szelep kívánt pozíciója. Vannak

Részletesebben

ó ó ú ú ó ó ó ü ó ü Á Á ü É ó ü ü ü ú ü ó ó ü ó ü ó ó ú ú ú ü Ü ú ú ó ó ü ó ü ü Ü ü ú ó Ü ü ű ű ü ó ü ű ü ó ú ó ú ú ú ó ú ü ü ű ó ú ó ó ü ó ó ó ó ú ó ü ó ó ü ü ó ü ü Ü ü ó ü ü ü ó Ü ó ű ü ó ü ü ü ú ó ü

Részletesebben

Á ű ő ö Í é é ő Ö Ö é ő Ö ő ö é é Ö ü é ó Ő é é ó é ó é é é é Ö ó ó ő é Ü é ó ö ó ö é é Ő ú é é é é ő Ú é ó Ő ö Ő é é é é ű ö é Ö é é ó ű ö é ő é é é é é é é é é Ö é Ö ü é é é é ö ü é ó é ó ó é ü ó é é

Részletesebben

:.::-r:,: DlMENZI0l szoc!0toolnl ránsnnat0m A HELYI,:.:l:. * [:inln.itri lú.6lrl ri:rnl:iilki t*kill[mnt.ml Kilírirlrln K!.,,o,.r*,u, é é é ő é é é ő é ő ő ú í í é é é ő é í é ű é é ő ő é ü é é é í é ő

Részletesebben

Ü Ö Á Á Á Á Á É ű Ü Ú ű ű Á É ű Ú Ü ű Ü Ü Ü Ü Ü Ü Ü Ü Ü Á Ü Ü Ü Ö Ö Ú Ö Ü Ö ű ű ű ű ű Á ű Ú ű ű ű ű ű É Á Ö Ö Ö ű ű ű Á ű ű ű ű ű ű ű ű ű ű Ü Ü Ü Ü ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű ű ű ű Ü Ö Ü Ó Ö ű ű ű

Részletesebben

Ü Éü É ü í í Í ö Ü Ú ú Ó í ő í Ö ű ö Ó ú Ű ü í Ó ö Ó Ü Ó Ó í í ú í Ü Ü ő Ú Ó Ó í ú É ÉÉ É Á Ü Ü Ü Ú ő í Ő Ó Ü ő ö ü ő ü ö ú ő ő ő ü ö ő ű ö ő ü ő ő ü ú ü ő ü ü Í ü Í Á Ö Í É Ú ö Í Á Ö í É ö í ő ő í ö ü

Részletesebben

Ö Ó ú É ű É Ö Ö Ö Ü Ó Ú É ú É Ü Ú ú Ü ű ú Ü Ö Ö ú ű Ú ű ű ú Ö Ö Ö Ö É ú ú Ő Ö ú Ü Ó ú Ú Ü Ö ű ű ű Ö ű ú Ó ű Ö Ü ű ú ú ú ú É ú Ö ú ú Ü ú Ó ú ú ú ú ú ú ű ű ú ű ú ú ű Ö ú ú ú ű Ö ú ű ú ű Ü Ö Ü ű Ü Ö ú ú Ü

Részletesebben

ű Ő ű Ü Ü Ü ű ű Ú ű ű ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű Ú Ü Ő ű Ö ű Ü ű Ö ű Ú ű ű Ű É É ű ű ű ű ű ű ű Ü ű ű ű ű ű ű ű Ú ű ű ű É Ű É Ü Ü Ú É É ű ű ű Ü ű É É Ű É ű ű ű ű ű ű ű Ö Ó ű ű ű ű ű ű Ö É Ó É É É Ü

Részletesebben

ú Ú Ö É ú ü í í ü í í í í ü Ú í ű í ú ü ü í í ü ü í ü ü ú Í í ű í ü ü Ü í í ü í ú ű ú ú í í ü ú í ü É ü Ö í í ü ú ű í í ü í ű í í Í Ö í í ü Ö ú É Í í í í ü ű ü ű ü ü ü ü í í í í ú í ü í ú É ü ü ü ü í ü

Részletesebben

Á Á Ó É ö ó ó ó ő ő ó ö ő ő ű ó ú ö ó ó ő ó ü ó ó ő ó ó ő ó ü ó ő ő ő ó ő ő ö ó ó ó ö ö ü ö Á Á Ó ü ó ö ó ő ó ő ő Á É Á Ó ű ü ö ó ő ó ú ÉÉ ó ú ő ö ó ó ó ó ó ö ö ő ü ó ö ö ü ó ű ö ó ó ó ó ú ó ü ó ó ö ó

Részletesebben

É É É ü É ó ó É ű ó ÉÉ ó É ó É É ó É ü ó ó Ó ű ó ó ó ó ü É ü ű ó É É É É ü ü ó ó ó ü É ó É ó É ó ó ó ü ü ü ü ó ü ü ü ü ó ű ű É Í Ó Ü Ö ó ó ó Ó ó ü ü ü ű ó ü ü ű ü ü ó ü ű ü ó ü ó ó ó ó ó ó ó ü ó ó ó ű

Részletesebben

Í ÍÍÍ Í Í Í Ö Ö Ö Ö Ö Ö Ö Ö Ú É Í Ö Á Á É Ö É Ö É É Á Á Ö Ú Ö Ö Í Á É É Í Á É Í Ö Ö Á Á É Í Ö Ö Ö Ö Ö Ö Á É Ö É É Ö É Ö Í Á É É Ö Ö É Ö Í Í Í Í Ö Ö Ö Í Ö É Ö É É Ö Ö Í É Ö Í É É Ö Í É Á É É Ű Ö Í É É Ö

Részletesebben

ú ő ü ö ő ő ö ő ú ö ó Ö ő ó ó ó ó ú Ö ő ü ö ő ű ö ö ű ú Ú ó É ő ő ú ö ö ö ó Ö Ĺ ö ó Ö ó ö Í ö ő ó ó ö ő Ĺ ó ö ö ť ö Ĺ ö ó ü ó ö ó ó ú ó ü ó ű ó ő ű ő ö ö ó ő ó Ĺ ó ó ó ó ö ö Ĺ ő ö ő Ĺ ö ö ö ú ő ű ö ő ő

Részletesebben

Az éggömb. Csillagászat

Az éggömb. Csillagászat Az éggömb A csillagászati koordináta-rendszerek típusai topocentrikus geocentrikus heliocentrikus baricentrikus galaktocentrikus alapsík, kiindulási pont, körüljárási irány (ábra forrása: Marik Miklós:

Részletesebben

Hogyan lehet meghatározni az égitestek távolságát?

Hogyan lehet meghatározni az égitestek távolságát? Hogyan lehet meghatározni az égitestek távolságát? Először egy régóta használt, praktikus módszerről lesz szó, amelyet a térképészetben is alkalmaznak. Ez a geometriai háromszögelésen alapul, trigonometriai

Részletesebben

Földünk a világegyetemben

Földünk a világegyetemben Földünk a világegyetemben A Tejútrendszer a Lokális Galaxiscsoport egyik küllős spirálgalaxisa, melyben a Naprendszer és ezen belül Földünk található. 200-400 milliárd csillag található benne, átmérője

Részletesebben

Az aszinkron gépek modellezése

Az aszinkron gépek modellezése Az asznkon gépek odellezése Az asznkon gép felépítése Az állóész 3 fázsú szetkus p póluspá száú tekecsendszee a a tébel felhaonkusokat elhanyagolva a légésben sznuszos ezőeloszlást feltételezve e- p chanka

Részletesebben

Elektromos polarizáció: Szokás bevezetni a tömegközéppont analógiájára a töltésközéppontot. Ennek definíciója: Qr. i i

Elektromos polarizáció: Szokás bevezetni a tömegközéppont analógiájára a töltésközéppontot. Ennek definíciója: Qr. i i 0. Elektoos polaizáció, polaizáció vekto, elektoos indukció vekto. Elektoos fluxus. z elektoos ező foástövénye. Töltéseloszlások. Hatáfeltételek az elektosztatikában. Elektoos polaizáció: Szokás bevezetni

Részletesebben

FIZIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika eelt szint 74 ÉESÉGI VIZSGA 07. ájus. FIZIKA EMEL SZINŰ ÍÁSBELI VIZSGA JAVÍÁSI-ÉÉKELÉSI ÚMUAÓ EMBEI EŐFOÁSOK MINISZÉIUMA A dolgozatokat az útutató utasításai szerint, jól követhetően kell javítani

Részletesebben

Naprendszer mozgásai

Naprendszer mozgásai Bevezetés a csillagászatba 2. Muraközy Judit Debreceni Egyetem, TTK 2017. 09. 28. Bevezetés a csillagászatba- Naprendszer mozgásai 2017. szeptember 28. 1 / 33 Kitekintés Miről lesz szó a mai órán? Naprendszer

Részletesebben

Rugalmas hullámok terjedése. A hullámegyenlet és speciális megoldásai

Rugalmas hullámok terjedése. A hullámegyenlet és speciális megoldásai Rugalmas hullámok tejedése. A hullámegyenlet és speciális megoldásai Milyen hullámok alakulhatnak ki ugalmas közegben? Gázokban és folyadékokban csak longitudinális hullámok tejedhetnek. Szilád közegben

Részletesebben

t [s] 4 pont Az út a grafikon alapján: ρ 10 Pa 1000 Pa 1400 Pa 1, 024 10 Pa Voldat = = 8,373 10 m, r h Vösszfolyadék = 7,326 10 m

t [s] 4 pont Az út a grafikon alapján: ρ 10 Pa 1000 Pa 1400 Pa 1, 024 10 Pa Voldat = = 8,373 10 m, r h Vösszfolyadék = 7,326 10 m XVIII. TORNYAI SÁNDOR ORSZÁGOS FIZIAI FELADATMEGOLDÓ VERSENY Hódezőásáhely, 04. ácius 8-0. 9. éfolya 9/. feladat: Adatok: a /s, t 6 s, a 0, t 5 s, a - /s, édések: s?, t?, átl?, a átl? [/s] 0 0 0 40 Az

Részletesebben

di dt A newtoni klasszikus mechanikában a mozgó test tömege időben állandó, így:

di dt A newtoni klasszikus mechanikában a mozgó test tömege időben állandó, így: IMPULZUS, MUNKA, ENERGIA A ozgáok leíáa, a jelenégek ételezée zepontjából fonto fogalak. Ipulzu ( lendület), ipulzu egaadá Az ipulzu definíciója: I Az ipulzu ektoennyiég, a ebeég iányába utat. Newton II.

Részletesebben

Az aszinkron gépek modellezése

Az aszinkron gépek modellezése Az asznkon gépek odellezése Az asznkon gép felépítése Az állóész fázsú szetkus p póluspá száú tekecsendsze a a tébel felha onkusokat elhanyagolva a légésben sznuszos ezőeloszlást feltételezve echanka szögsebességgel

Részletesebben

Bevezető fizika (infó), 3. feladatsor Dinamika 2. és Statika

Bevezető fizika (infó), 3. feladatsor Dinamika 2. és Statika Bevezető fizika (infó),. feladatsor Dinaika. és Statika 04. október 5., 4:50 A ai órához szükséges eléleti anyag: ipulzus, ipulzusegaradás forgatónyoaték egyensúly és feltétele Órai feladatok:.5. feladat:

Részletesebben

Oktatási Hivatal. A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I. KATEGÓRIA. Javítási-értékelési útmutató

Oktatási Hivatal. A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I. KATEGÓRIA. Javítási-értékelési útmutató Oktatási Hivatal A 05/06. tanévi Országos Középiskolai Tanulányi Verseny ásodik forduló FIZIKA I. KATEGÓRIA Javítási-értékelési útutató. feladat: Vékony, nyújthatatlan fonálra M töegű, R sugarú karikát

Részletesebben

ü É Í ü ü ü Í ü ű ü ü ü ű ü ű ű ű ü ü ü ű ü Í ü ű ü ü ü Ű Í É É Á Ő Á Ó Á Á Á Á É Á Á Á Á É Á Í Á Á Í Í ű Á É É Á Á Ö Í Á Á Á Á Á É Á Á Ó ű Í ü ü ü ű ű ü ü ű ü Á ü ű ü Í Í Í ü Í Í ű ű ü ü ü ü ű ü ű ü ü

Részletesebben

Í Á Á É ö ö ö ö ö ű ü ö ű ű ű ö ö ö ü ö ü í ü í í í ü í ü Á ü ö ö ü ö ü ö ö ü ö í ö ö ü ö ü í ö ü ű ö ü ö ü í ö í ö ű ű ö ö ú ö ü ö ű ű ű í ö ű í ű ö ű ü ö í ű í í ö í ö ö Ó Í ö ű ű ű ű í í ű ű í í Ü ö

Részletesebben

Ű Í ó Ü Ö Á Á Ó Ö Ü Ü Ü Ü Á Í Ü Á Á Ü Ü Ü Ü Ü Ü Ö Ü Í Ü Ü Ü Ü Ü Ü Ü Ü Ü Ü Á Í Ü Í Í Á Í Í Ü Í Í Ü Á Ü Ü Ü Ü Ü Ü Ü Ü Ő Ö Á ÁÍ Á Ü Ü Á Í Ü Í Á Ü Á Í ó Í Í Ü Ü ő Í Ü Ű Ü Ü Ü Ü Í Ü Ü Ü Ü Ü Ü Ü Í Ü Á Ü Ö Á

Részletesebben

ű í ú ü Á ü ü ü ü ü É É É Ü í ü Á í í ű í ú É É É Ü Í í í í Á í í Á í Á Í É Ő Ú ú Ú í í í íí í ú í í Í í Í Í É í í Í Í í ú í ü Ó í Í ú Í Í ű í ű í í í Í É Ü ű í ü ű í ú É É É Ü ű í í í í ü í Í í Ú Í í

Részletesebben

Hadronzápor hatáskeresztmetszetek nagy pontosságú számítása

Hadronzápor hatáskeresztmetszetek nagy pontosságú számítása Hadronzápor hatáskeresztetszetek nagy pontosságú száítása Szőr Zoltán Fizikus MSc II. évf. Téavezető: prof. Trócsányi Zoltán Tavaszi TDK konferencia 204 áj. 6. Kérdésfelvetés Kérdésfelvetés Tudunk-e eléleti

Részletesebben

5. Pontrendszerek mechanikája. A kontinuumok Euler-féle leírása. Tömegmérleg. Bernoulli-egyenlet. Hidrosztatika. Felhajtóerő és Arhimédesz törvénye.

5. Pontrendszerek mechanikája. A kontinuumok Euler-féle leírása. Tömegmérleg. Bernoulli-egyenlet. Hidrosztatika. Felhajtóerő és Arhimédesz törvénye. 5 Pontrenszerek echankája kontnuuok Euler-féle leírása Töegérleg Bernoull-egyenlet Hrosztatka Felhajtóerő és rhéesz törvénye Töegpontrenszerek Töegpontok eghatározott halaza, ng ugyanazok a pontok tartoznak

Részletesebben

Egyszerű számítási módszer bolygók és kisbolygók oályáj ának meghatározására

Egyszerű számítási módszer bolygók és kisbolygók oályáj ának meghatározására Egyszerű számítási módszer bolygók és kisbolygók oályáj ának meghatározására A bolygók és kisbolygók pályájának analitikus meghatározása rendszerint több éves egyetemi előtanulmányokat igényel. Ennek oka

Részletesebben

Áramlástan Tanszék Méréselőkészítő óra I. Előadók: Nagy László Balogh Miklós

Áramlástan Tanszék Méréselőkészítő óra I. Előadók: Nagy László Balogh Miklós 0. Buaesti Műszaki és Gazaságtuoái Egyete Áalástan Tanszék óa I. Előaók: Nagy László nagy@aa.be.hu Balogh Miklós balogh@aa.be.hu M M M3 M M4 M0 M5 M3 M7 M8 M9 M Czáe Káoly czae@aa.be.hu Hoáth Csaba hoath@aa.be.hu

Részletesebben

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg

Részletesebben

Rezonáns égi mechanikai rendszerek vizsgálata

Rezonáns égi mechanikai rendszerek vizsgálata Pintérné Rajnai Renáta Rezonáns égi mechanikai rendszerek vizsgálata Doktori Értekezés Tézisei ELTE, Fizika Doktori Iskola Vezető: Dr. Palla László Részecskefizika és csillagászat program Vezető: Dr. Palla

Részletesebben

Segédlet a Tengely gördülő-csapágyazása feladathoz

Segédlet a Tengely gördülő-csapágyazása feladathoz Segélet a Tengely göülő-csaágyazása felaathoz Összeállította: ihai Zoltán egyetemi ajunktus Tengely göülő-csaágyazása Aott az. ábán egy csaágyazott tengely kinematikai vázlata. A ajz szeint az A jelű csaágy

Részletesebben

Néhány mozgás kvantummechanikai tárgyalása

Néhány mozgás kvantummechanikai tárgyalása Néhány ozgás kvantuechanikai tárgyalása Mozzanatok: A Schrödinger-egyenlet felírása ĤΨ EΨ Hailton-operátor egállapítása a kinetikus energiaoperátor felírása, vagy 3 dienziós ozgásra, Descartes-féle koordinátarendszerben

Részletesebben

51. Bérrendszerek és bérformák (Mt ) 521. Éjszakai munka pótléka (Mt.142. )

51. Bérrendszerek és bérformák (Mt ) 521. Éjszakai munka pótléka (Mt.142. ) A Tüke Busz Zt-né űködő FDSZ poinens tagjai, a napokban azt kezdték e tejeszteni a tásaság unkaváaói köében, hogy Veszpében a V-Busz Kft-né, a unkavégzéshez nincs déutáni, éjszakai, hétvégi stb., póték

Részletesebben

Az egyenes vonalú egyenletes mozgás

Az egyenes vonalú egyenletes mozgás Az egyenes vonalú egyenletes ozgás Az egyenes vonalú ozgások egy egyenes entén ennek végbe. (Ki hitte volna?) Ha a ozgás egyenesét választjuk az egyik koordináta- tengelynek, akkor a hely egadásához elég

Részletesebben

INHOMOGÉN RUGALMAS ANYAGÚ KÚPOK STATIKAI VIZSGÁLATA STATIC ANALYSIS OF NONHOMOGENEOUS ELASTIC CONICAL BODIES

INHOMOGÉN RUGALMAS ANYAGÚ KÚPOK STATIKAI VIZSGÁLATA STATIC ANALYSIS OF NONHOMOGENEOUS ELASTIC CONICAL BODIES INHOMOGÉN RUGALMAS ANYAGÚ KÚPOK STATIKAI VIZSGÁLATA STATIC ANALYSIS OF NONHOMOGENEOUS ELASTIC CONICAL BODIES Ecsedi István, Pofesso Emeitus, Miskolci Egyetem, Műszaki Mechanikai Intézet; Baksa Attila,

Részletesebben

Változó tömegű test dinamikája

Változó tömegű test dinamikája Dr. Cvetityanin Lívia Változó töegű test inaikája Bevezetés Az iőben változó paraéteres rezgésék eghatározásával sok tuós foglalkozott lás pl. Meshchersky Bessonov Cveticanin 34. A változó paraéteres rezgésék

Részletesebben

a) Az első esetben emelési és súrlódási munkát kell végeznünk: d A

a) Az első esetben emelési és súrlódási munkát kell végeznünk: d A A 37. Mikola Sándor Fizikaverseny feladatainak egoldása Döntő - Gináziu 0. osztály Pécs 08. feladat: a) Az első esetben eelési és súrlódási unkát kell végeznünk: d W = gd + μg cos sin + μgd, A B d d C

Részletesebben

Képlet levezetése :F=m a = m Δv/Δt = ΔI/Δt

Képlet levezetése :F=m a = m Δv/Δt = ΔI/Δt Lendület, lendületmegmaradás Ugyanakkora sebességgel mozgó test, tárgy nagyobb erőhatást fejt ki ütközéskor, és csak nagyobb erővel fékezhető, ha nagyobb a tömege. A tömeg és a sebesség együtt jellemezheti

Részletesebben

AZ IPARI BETONPADLÓK MÉRETEZÉSE MEGBÍZHATÓSÁGI ELJÁRÁS ALAPJÁN

AZ IPARI BETONPADLÓK MÉRETEZÉSE MEGBÍZHATÓSÁGI ELJÁRÁS ALAPJÁN AZ IPARI BETONPADLÓK MÉRETEZÉSE MEGBÍZHATÓSÁGI ELJÁRÁS ALAPJÁN Huszár Zsolt - Szalai Kálán RÖVID KIVONAT A ipari betonpadlókat jelenleg az évszázados últtal rendelkező, egengedett feszültségek alapján

Részletesebben

Fluidizált halmaz jellemzőinek mérése

Fluidizált halmaz jellemzőinek mérése 1. Gyakorlat célja Fluidizált halaz jellezőinek érése A szecsés halaz tulajdonságainak eghatározása, a légsebesség-nyoásesés görbe és a luidizációs határsebesseg eghatározása. A érésekböl eghatározott

Részletesebben

2012 február 7. (EZ CSAK A VERSENY UTÁN LEGYEN LETÖLTHETŐ!!!)

2012 február 7. (EZ CSAK A VERSENY UTÁN LEGYEN LETÖLTHETŐ!!!) 1 A XXII. Öveges József fizika tanulányi verseny első fordulójának feladatai és azok egoldásának pontozása 2012 február 7. (EZ CSAK A VERSENY UTÁN LEGYEN LETÖLTHETŐ!!!) 1. Egy odellvasút ozdonya egyenletesen

Részletesebben

GEOTERMÁLIS ENERGIÁVAL MŰKÖDTETETT ABSZORPCIÓS HŰTŐGÉP ÉS HŐELLÁTÓ VEZETÉKÉNEK ENERGETIKAI ELEMZÉSE A HŐFORRÁS HŐMÉRSÉKLETÉNEK SZEMPONTJÁBÓL

GEOTERMÁLIS ENERGIÁVAL MŰKÖDTETETT ABSZORPCIÓS HŰTŐGÉP ÉS HŐELLÁTÓ VEZETÉKÉNEK ENERGETIKAI ELEMZÉSE A HŐFORRÁS HŐMÉRSÉKLETÉNEK SZEMPONTJÁBÓL 7 th Building Seices Mechanical and Building Industy ays Intenational Coneence 3-4 Octobe 0 ebecen Hungay GEOEMÁLIS ENEGIÁVAL MŰKÖEE ABSZOPCIÓS HŰŐGÉP ÉS HŐELLÁÓ VEZEÉKÉNEK ENEGEIKAI ELEMZÉSE A HŐFOÁS

Részletesebben

4. Előadás A mátrixoptika elemei

4. Előadás A mátrixoptika elemei 4. Előadás A mátixoptika elemei Amiko optikai endszeek elemeinek pozicionálását tevezzük, a paaxiális optika eszközeie támaszkodunk. Fénysugaak esetében ez az optikai tengelyhez közeli, azzal kis (< 5º)

Részletesebben

BBS-INFO Kiadó, 2016.

BBS-INFO Kiadó, 2016. BBS-INFO Kiadó, 2016. 2 Amatőr csillagászat számítógépen és okostelefonon Minden jog fenntartva! A könyv vagy annak oldalainak másolása, sokszorosítása csak a kiadó írásbeli hozzájárulásával történhet.

Részletesebben

ÜZEMELTETÉSI FOLYAMAT GRÁFMODELLEZÉSE 2 1. BEVEZETÉS

ÜZEMELTETÉSI FOLYAMAT GRÁFMODELLEZÉSE 2 1. BEVEZETÉS okorádi László ÜZEMELTETÉSI FOLYAMAT GRÁFMODELLEZÉSE 2 Technikai eszközök üzeeltetési rendszerei, folyaatai ateatikai szepontból irányított gráfokkal írhatóak le. A űszaki tudoányokban a hálózatokat, gráfokat

Részletesebben

SZAKMAI BESZÁMOLÓ A TISZAZUGI FÖLDRAJZI MÚZEUM ÉVI MÚZEUMOK ÉJSZAKÁJA PROGRAM MEGVALÓSÍTÁSÁRÓL

SZAKMAI BESZÁMOLÓ A TISZAZUGI FÖLDRAJZI MÚZEUM ÉVI MÚZEUMOK ÉJSZAKÁJA PROGRAM MEGVALÓSÍTÁSÁRÓL SZAKMAI BESZÁMOLÓ A TISZAZUGI FÖLDRAJZI MÚZEUM 2016. ÉVI MÚZEUMOK ÉJSZAKÁJA PROGRAM MEGVALÓSÍTÁSÁRÓL A program címe: Iránya a csillagos ég! - Éjszaka a Tiszazugban Dr. Róka András, főiskolai docens (Kémiai

Részletesebben

Vályogos homoktalaj terepprofil mérése

Vályogos homoktalaj terepprofil mérése Vályogos hooktalaj terepprofl érése Pllnger György Szent István Egyete, Gépészérnök Kar Folyaatérnök Intézet, Járűtechnka Tanszék PhD hallgató, pllnger.gyorgy@gek.sze.hu Összefoglalás A terepen haladó

Részletesebben

Magdi meg tudja vásárolni a jegyet, mert t Kati - t Magdi = 3 perc > 2 perc. 1 6

Magdi meg tudja vásárolni a jegyet, mert t Kati - t Magdi = 3 perc > 2 perc. 1 6 JEDLIK korcoport Azonoító kód: Jedlik Ányo Fizikavereny. (orzágo) forduló 7. o. 0. A feladatlap. feladat Kati é Magdi egyzerre indulnak otthonról, a vaútálloára ietnek. Úgy tervezik, hogy Magdi váárolja

Részletesebben

GPS technikák A GPS. TRANSIT-DOPPLER rendszer. A DOPPLER rendszer hibái. 2. A NAVSTAR-GPS rendszer. Navigation Satellite System) NNSS (Navy( módszerek

GPS technikák A GPS. TRANSIT-DOPPLER rendszer. A DOPPLER rendszer hibái. 2. A NAVSTAR-GPS rendszer. Navigation Satellite System) NNSS (Navy( módszerek A GPS GPS technikák. A NAVSTAR-GPS endsze űholdk és s kontoll állomások Összeállított: Szűcs LászlL szló GPS: Globl Positioning System (=Globális lis Helymeghtáoz ozó Rendsze) - Globális: lis: helyzet

Részletesebben

(kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus)

(kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus) Széchenyi István Egyetem Műszaki Tudományi Kar Alkalmazott Mechanika Tanszék GÉPEK DINAMIKÁJA 2.gyak.hét 1. és 2. Feladat (kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus) Gépek dinamikája - 2. gyakorlat

Részletesebben

3. jegyz könyv: Bolygómozgás

3. jegyz könyv: Bolygómozgás 3. jegyz könyv: Bolygómozgás Harangozó Szilveszter Miklós, HASPABT.ELTE 21. április 6. 1. Bevezetés Mostani feladatunk a bolygók mozgásának modellezése. Mint mindig a program forráskódját a honlapon [1]

Részletesebben

A világegyetem szerkezete és fejlődése. Összeállította: Kiss László

A világegyetem szerkezete és fejlődése. Összeállította: Kiss László A világegyetem szerkezete és fejlődése Összeállította: Kiss László Szerkezeti felépítés A világegyetem galaxisokból és galaxis halmazokból áll. A galaxis halmaz, gravitációsan kötött objektumok halmaza.

Részletesebben