Fizikai Szemle MAGYAR FIZIKAI FOLYÓIRAT

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Fizikai Szemle MAGYAR FIZIKAI FOLYÓIRAT"

Átírás

1 Fizikai zele MAGYAR FIZIKAI FOLYÓIRAT A Matheatikai és Teészettudoányi Étesítõt az Akadéia 88-ben indította A Matheatikai és Physikai Lapokat ötvös Loánd 89-ben alapította LXII évfolya 4 szá 0 ápilis A LORNTZ-INGA Loentz kédése az I olvay-konfeencia észtvevôihez 863-ban a 5 éves nst olvay belga vegyész kidolgozta az ipai szódagyátás technológiáját és hatalas vagyona tett szet De ne csak a szóda édekelte Loentz szeint Belgiunak ez a legneeslelkûbb állapolgáa élyen eg volt óla gyôzôdve, hogy a teészet és a tásadalo tövényszeûségeinek alaposabb egiseése az ebeiség boldogulását segíti elô olvay jelentôs összegeket áldozott a tudoánya Többek között pszichológiai, szociológiai, kéiai intézeteket alapított 9-ben W H Nenst javaslatáa Büsszelben összehívta az I Nezetközi olvay-konfeenciát, aelyen a ko legnevesebb fizikusa (közöttük H Poincaé, M Planck, W Wien, A oefeld, Ruthefod, A instein) vett észt, és a további olvay-kongesszusok szevezését illió fank alaptôkével létehozott Nezetközi Fizikai Intézete bízta 9 aa az idôszaka esett, aiko a fizika élységes de int késôbb kideült, endkívül teékeny válságban volt Loentz, a konfeencia elnöke, bevezetôjében azt ona, hogy a essze vagyunk a szellei kielégültségnek attól az állapotától, aelyet a fizikai elélet húsz, vagy aká csak tíz évvel ezelôtt nyújtani tudott Ne szabadulhatunk attól a gondolattól, hogy zsákutcába keültünk: a égi eléletek egye kevésbé képesek eloszlatni a hoályt, aely inden oldalól köülvesz Majd így folytatta: Planck esszéje az enegiakvantuokól»valóságos fénysugá«ebben a ködben, és ost az a feladat, hogy olyan echanikát dolgozzunk ki, aelybôl Planck felfedezése következényként adódik Mint jól tudjuk, Planck úgy tua egagyaázni a fekete sugázás spektuát, ha feltételezte, hogy a haonikus lineáis oszcilláto enegiája csak a h ν h ω kvantu egész száú többszööse lehet Planck a Kichhoff-tételnek abból a következényébôl indult ki, hogy a hôésékleti sugázás spektua független az üeg falának anyagi inôségétôl, ezét legegyszeûbb lehetôségként a falat inden fekvencián egy-egy elektoosan töltött haonikus oszcillátoal helyettesítette Haskó Péte PT léleti Fizika Tanszék A lineáis haonikus oszcilláto egyik legegyszeûbb példája a ateatikai inga Loentznek ez szöget ütött a fejébe és a következô kédéssel fodult a konfeencia észtvevôihez: A ateatikai inga köfekvenciája Planck szeint az enegiája csak h ω egész száú több- szööse lehet, vagyis n h ω-val egyenlô n 0,, ellett Máost, ha az inga fonalát a két ujjunkkal összecsippentve az inga hosszát folyaatosan csökkentjük, akko az ω köfekvencia folyaatosan nô Hogyan képzelhetô el, hogy eközben az enegiája állandóan h ω egész száú többszööse aad? instein, aki isete P henfest idevágó unkáit, kapásból válaszolt Loentz kédésée: a echanika tövényei szeint a hossz lassú növelésével vagy csökkentésével az enegia úgy változik, hogy az /ω hányados közben állandó aadjon; a folyaat soán tehát Planck képlete folyaatosan évényes lesz ugyanazzal az n étékkel Loentz ezekkel a szavakkal nyugtázta instein agyaázatát: z a endkívül eglepô eedény egoldja az általa felvetett pobléát Általában is az enegiakvantuok hipotézise édekes kédésekhez vezet inden olyan esetben, aiko a fekvencia önkényesen változtatható A konfeencia jegyzôkönyve szeint senki se vetette fel, i van akko, ha ω-t gyosan változtatjuk: indenkit lenyûgözött az a tény, hogy a klasszikus echanika a lassú változás esetében ilyen csodálatos haóniában van az enegiakvantu-hipotézissel Mai iseeteink fényében instein válasza a kvantuechanika a is évényes fontos tételének elsô egfogalazása: aiko egy fizikai endsze hatáozott kvantuállapotban van és közben lassan változtatjuk egy vagy több paaéteét, a endsze folyaatosan egaad az ugyanazokkal a kvantuszáokkal jellezett állapotában Ha a paaéteek az eedeti étéküke állnak vissza, a endsze is visszakeül eedeti állapotába: a köfolyaat soán nincs unkavégzés ω g l HRAKÓ PÉTR: A LORNTZ-INGA 09

2 Aiko azonban a változás gyos, a endsze közben gejed Ha például eedetileg alapállapotban volt, akko hiába állítjuk vissza a paaéteek koábbi étékét, bizonyos valószínûséggel gejesztett állapotban aad vissza Az /ω állandóságának igazolása Az /ω állandóságának igazolásához azt kell egutatnunk, hogy ezen aány idôdeiváltja nullával egyenlô Az olyan echanikai endszeek esetében, aelyek enegiája a K kinetikus és az U potenciális enegia összegével egyenlô, és csak U tatalazza a változó paaétet, az idôdeiváltja az U () képlet alapján száítható ki A bal oldalon teljes deivált áll, et száításba kell venni inden okot a koodináták és a sebességek egváltozását csakúgy, int a külsô köülényekét ai az enegia étékét egváltoztathatja A teljes idôdeiváltat a szokásoknak egfelelôen gyakan fogjuk ponttal jelölni A jobb oldalon a paciális idôdeivált jelzi, hogy itt csak az eplicit idôfüggés (vagyis a köülények idôbeli változása) veendô figyelebe Az () agában foglalja az enegiaegaadás tételét, aely azt ondja ki, hogy aiko a köülények idôben állandók, a endsze enegiája ne változik gy szabadsági fok esetében, aiko U(), az () igazolása különösen egyszeû: et ezét U U U U F U Lineáis haonikus oszcillátoa U D, D, U, () ahol D a diekciós állandó, aely ost függ az idôtôl Ha ez a függés olyan gyenge, hogy a ezgés T peiódusa alatt a D egváltozása elhanyagolhatóan kicsi, akko a () egyenletet a t idôpont köül átlagolhatjuk az éppen aktuális T(t) peiódusidôe Az ezalatt egy teljes peiódust változik, és a négyzetének az átlaga a ozgás t-beli A(t) aplitúdó négyzetének felével egyenlô: A Az átlagolás után ezét () a (t) 4 D(t) A (t) (3) képletbe egy át, aelyben (t) az enegia átlaga a t pillanat köüli egy peiódusnyi idôintevallua Miko a D változása olyan lassú, hogy egy peiódus alatt eltekinthetünk tôle, (t) ugyanúgy függ A (t)-tôl, int aiko a D konstans: (t) D(t) A (t) Mivel D ω, ezét konstans -nél a köfekvencia is gyengén függ az idôtôl, és így D ωω, valaint A D ω zt a két képletet (3)-ba íva az ω ω összefüggése jutunk, aely az / ω állandóságát kifejezô d ω 0 aány idôbeli képlettel ekvivalens Az I / ω aányt henfest instein javaslatáa adiabatikus invaiánsnak nevezte el zt a teinológiát (és az I jelölést) használjuk általában a dinaikai ennyiségekbôl képzett olyan kifejezéseke, aelyek a endsze paaéteeinek lassú változtatásako egtatják állandó étéküket A ateatikai ingáa áttéve azt látjuk, hogy az inga φ gφ (4) lengési enegiájának indkét tagja függ az inga hoszszától, aely a feladat lassan változó paaétee, és így ( φ gφ) φ φ gφ A ozgásegyenlet ost L K, ahol L φ a pedület (ipulzusnyoaték), K gsinφ gφ pedig a fogatónyoaték A φ -t szozó záó- jele a ozgásegyenletbôl ost ne nullát, hane az φ gφ φ képletet kapjuk nnek következtében φ gφ (5) 0 FIZIKAI ZML 0 / 4

3 A gondolatenet további észe ugyanolyan, int a lineáis haonikus oszcillátoé Ha a lengés aplitúdója Φ, akko az enegiája gφ Az egy peiódusa töténô átlagolás eedénye pedig A feltevés szeint az ebe olyan lassan húzza (vagy engedi) a kötelet, hogy teljesül az adiabatikusság feltétele: az inga egy lengési peiódusa alatt a kötélhossz változása elhanyagolhatóan kicsi A kötéleô egy peiódusa töténô átlagolását (9) alapján könnyen elvégezhetjük, et a jobb oldalon fellépô átlagokat a (6)- ban á kiszáítottuk szeint következésképpen g, (0) φ Φ g és φ ω Φ, (6) dw gd d () et, int tudjuk, ω Mindezt behelyettesítve az átlagolt (5) foulába, az képlete jutunk, aely alakba íható át és az szozat adiabatikus inva- ianciáját fejezi ki A (7) alapján az adiabatikus állandósága azonban egyenétékû az / ω hányados adiabatikus invaianciájával zt kellett igazolnunk d g 0 (7) Az adiabatikus invaiáns és az enegiaegaadás Képzeljünk el egy fonálingát, aely a ennyezetôl lóg le, és a szál egy lyukon keesztül felegy a padlása, ahol egy ebe tatja Tegyük fel, hogy az ebe elkezdi nagyon lassan felfelé húzni (vagy lefelé engedni) az ingát Mekkoa ΔW unkát végez, iközben az inga fonálhossza -ôl -e változik? Aiko az inga hossza -ôl ( +d)-e változik, az ebe által végzett unka dw d (8) -el egyenlô Az a kötéleô nagysága, pozitív szá Mivel az inga lengésben van, a kötéleôhöz az gcosφ súlyeôn kívül az φ centifugális eô is jáulékot ad: φ gcosφ g φ gφ (9) A ΔW kiszáításához ezt a képletet kell integálni - tôl -ig A lengés egy peiódusa átlagolt enegiája azonban függ -tôl, ezét az integáláshoz isenünk kell az () függvényt Adiabatikus esetben az szozat állandósága az integálást valójában tiviálissá teszi A () ekko ugyanis dw gd d alakban íható, aelynek integálja Δ W g Az a folyaat soán ne változik, ezét helyettesíthetjük aká Aiko / -vel szozódik az elsô, aiko pedig vel, aká gyel / -gyel, a ásodik lehetôséget választjuk Így Δ W g z a képlet biztosan koekt, et az enegiaegaadást fejezi ki az ingából és a kötelet húzó ebebôl álló endszee a Föld nehézségi eôteében zzel deonstáltuk, hogy a ateatikai ingánál adiabatikus invaianciája összhangban van ezzel a tétellel A csigainga A csigainga olyan állócsiga, aelynek kötélvégei fonálingává vannak kiképezve ( ába) z egy háo szabadsági fokú endsze, aelynek a helyzetét a két inga α, α kitéése, valaint a csiga ϕ elfodulási szöge jellezi z utóbbi helyett azonban célszeûbb a ξ () A csigainga észletes ateatikai elélete a Kettôs adiabatikus inga cíû dolgozatoban található eg a honlapoon (hasko co/pete) Koábban ezt az édekes objektuot tudoáso szeint ég ne tanulányozták HRAKÓ PÉTR: A LORNTZ-INGA

4 Aiko az adiabatikusság teljesül, a endsze integálhatóvá válik z az enegiaképlet alapján látható be A csigainga enegiája háo tagot tatalaz: a két inga lengése, valaint az ingadozás enegiáját (a potenciális enegiával ne kell töôdnünk, et konstans: g( + )g 0 ): R α α g α (α << ) (4) g α (α << ) (5) a a K ξ Θϕ L 0 ξ, (6) ahol Θ a csiga tehetetlenségi nyoatéka, és ába A csigainga változó használata, aellyel, így fejezhetô ki: 0 ( 0 ( ξ), ξ) (3) Az 0 az és az félösszege, aely állandó éték A ϕ és a ξ között a ϕ 0 R ξ Adiabatikus közelítésben azonban L I I I / 0 ξ I / 0 ξ Θ R I ξ I ξ, (7) (8) képlet adja eg a kapcsolatot, aely a nyilvánvaló d d Rdϕ következénye A endsze ne integálható, egyetlen ozgásintegálja az enegia, ezét aa kell száítanunk, hogy a ozgása kaotikus Csak annyit lehet óla ondani, hogy a nyugali állapota közöbös egyensúlyi helyzet: a legkisebb lökése a kötél leszalad a csigáól Tegyük fel azonban, hogy bizonyos kezdôfeltételekhez tatozó ozgás soán a csiga fogása olyan lassú ( ξ olyan kicsi), az ingák lengése pedig olyan gyos, hogy az, fonálhosszak változása adiabatikusnak tekinthetô bben az esetben a ξ ingadozni fog egy iniális és aiális éték között z abból következik, hogy az I zekben a képletekben az I, I ennyiségek konstansok, aelyeket a kezdôfeltételek hatáoznak eg A endsze enegiájáa ebben a közelítésben tehát az K ξ + (ξ) képletet nyejük, aely egy -szabadsági fokú objektu ozgását íja le az (ξ) effektív potenciálban ( ába) ába Az ingadozás effektív potenciálja I ξ I ξ (9) adiabatikus invaiáns állandósága iatt (6) következtében a centifugális eô annál kisebb, inél hoszszabb a szál: Aiko például nô, akko az ingáa ható centifu- gális eô csökken, a ingáa ható pedig nô, és ez a tendencia a csiga fogásiányának egfodulásához vezethet kko az ingák lengése stabilizálja a endszet φ I 3/ * FIZIKAI ZML 0 / 4

5 0,65 0,60 0,04 0,605 0,600 0, ,03 0,0 0,590 0,585 0,0 3 ába A ξ ingadozása (ω /ω ) Az ilyen típusú feladatok indig egoldhatók A függôleges tengely pontján keesztül páhuzaost ajzolunk a vízszintes tengellyel z a ξ in és a ξ a pontokban etszi az (ξ) göbét nnek következtében az adott enegián az ingadozás a ξ in ξ ξ a tatoányban fog töténni Az ingadozás peiódusidejének felét úgy száíthatjuk ki, hogy az L 0 képletet egoldjuk -e és integáljuk az ingadozás tatoányáa: T L 0 ξ a ξ in dξ (0) Mint látjuk, az ingadozás annál lohább, inél nagyobb az L paaéte, aelyet eiatt a endsze lohaságának nevezhetünk Az adiabatikus közelítés annál jobb, inél lassúbb az ingadozás, vagyis inél nagyobb az L A lengések köfekvenciája az ingadozás következtében folyaatosan nô és csökken valailyen konstans ω és ω éték köül zeket az étékeket is a kezdôfeltételek hatáozzák eg Az adiabatikussághoz az kell, hogy ezek sokkal nagyobbak legyenek, int az ingadozás Ω π T dξ (ξ) köfekvenciája Aiko az adiabatikusság feltételei teljesülnek, az inga valóban peiodikus ingadozásokat végez a (0) által eghatáozott peiódusidôvel A 3 ábán 3 a folytonos göbe a pontos ozgásegyenlet alapján töténô száítás eedénye, aelye szoosan illeszkednek az adiabatikus közelítés pontjai A vízszintes tengelyen s ω 0 t a dienziótlanított idô (ω 0 (g / 0 ) / ) Mint látható, az ingadozás tényleg peiodikus és a peiódus egegyezik a (0)-ból száítható étékkel A göbe csipkézettsége az ingák lengésének következénye Az adiabatikus közelítés ezt kisiítja Azt 3 zt és a következô gafikonokat a lábjegyzetben idézett dolgozatoból vette át 0, ába A ξ ingadozása (ω /ω ) vánánk, hogy az ingadozás szigoú peiodikussága, aely egy közelítô eljáás, az adiabatikus appoiáció következénye, az idô elôehalaával fokozatosan elolik, de a pontos ozgásegyenletek nueikus egoldásában ennek sei jele Választhatók azonban olyan kezdôfeltételek, aelyeknél szintén elváható volna az adiabatikusság teljesülése, a pontos ozgásegyenletek egoldása égse peiodikus Ilyen esete vonatkozik a 4 ába, aelyen szintén a folytonos göbe a pontos egoldás, a pontok pedig az adiabatikus közelítés A agyaázat valószínûleg az ω /ω aányban keesendô A 4 ába esetében ez az aány -gyel egyenlô és ez azt sugallja, hogy ezonáns kölcsönhatás léphet fel a két inga között, aely elontja az ingák I, I adiabatikus invaiánsainak idôbeli állandóságát A észletesebb analízis azt bizonyítja, hogy ebben az esetben az ingadozásnak egfelelô idôskálán lassú lebegés jön léte a két invaiáns között (lásd az 5 ábá t, aelyek dienziótlanított invaiánsoka vonatkoznak) Aiko ω /ω, az ingák kölcsönhatása úgy látszik ne vezet az adiabatikus invaiánsok sziszteatikus változásához Összefoglalva egállapíthatjuk, hogy az inga ozgása, az elôzetes váakozással ellentétben, ne indig kaotikus, et adott paaéteek ellett a kezdôfeltételek bizonyos tatoányában a két adiabatikus invaiáns két új ozgásállandó szeepét tölti be az enegia ellett Noha ezek bizonyos ételeben csak közelítôen ozgásállandók, ezt a funkciójukat a váhatónál sokkal sikeesebben teljesítik Édekes lenne eghatáozni e tatoány hatáait a fázistében 0,75 0,50 0,5 0,00 0,5 0,50 0,75 5 ába Az adiabatikus invaiánsok lebegése (ω /ω ) I I HRAKÓ PÉTR: A LORNTZ-INGA 3

A Föld-Hold rendszer stabilitása

A Föld-Hold rendszer stabilitása A Föld-Hold endsze stabilitása Föhlich Geogina Tudoányos Diákköi Dolgozata Eötvös Loánd Tudoányegyete Teészettudoányi Ka Fizika, csillagász szak Téavezető : D. Édi Bálint tanszékvezető egyetei taná ELTE

Részletesebben

Rugalmas hullámok terjedése. A hullámegyenlet és speciális megoldásai

Rugalmas hullámok terjedése. A hullámegyenlet és speciális megoldásai Rugalmas hullámok tejedése. A hullámegyenlet és speciális megoldásai Milyen hullámok alakulhatnak ki ugalmas közegben? Gázokban és folyadékokban csak longitudinális hullámok tejedhetnek. Szilád közegben

Részletesebben

Kinematikai alapfogalmak

Kinematikai alapfogalmak Kineatikai alapfogalak a ozgások leíásáal foglalkozik töegpont, onatkoztatási endsze, pálya, pályagöbe, elozdulás ekto a sebesség, a gyosulás Egyenes Vonalú Egyenletes Mozgás áll. 35 3 5 5 5 4 a s [] 5

Részletesebben

A szállítócsigák néhány elméleti kérdése

A szállítócsigák néhány elméleti kérdése A szállítócsigák néhány eléleti kédése DR BEKŐJÁOS GATE Géptani Intézet Bevezetés A szállítócsigák néhány eléleti kédése A tanulány tágya az egyik legégebben alkalazott folyaatos üzeűanyagozgató gép a

Részletesebben

Kényszerrezgések, rezonancia

Kényszerrezgések, rezonancia TÓTH A: Rezgése/ (ibővített óavázlat 13 Kényszeezgése, ezonancia Gyaolatilag is igen fontos eset az, aio egy ezgése épes endsze ezgései valailyen ülső, peiodius hatás (énysze űödése özben zajlana le Az

Részletesebben

X. MÁGNESES TÉR AZ ANYAGBAN

X. MÁGNESES TÉR AZ ANYAGBAN X. MÁGNESES TÉR AZ ANYAGBAN Bevezetés. Ha (a külső áaok által vákuuban létehozott) ágneses tébe anyagot helyezünk, a ágneses té egváltozik, és az anyag ágnesezettsége tesz szet. Az anyag ágnesezettségének

Részletesebben

Műszaki folyamatok közgazdasági elemzése Előadásvázlat október 17. A technológia és a költségek dualitása

Műszaki folyamatok közgazdasági elemzése Előadásvázlat október 17. A technológia és a költségek dualitása Műszaki folyamatok közgazdasági elemzése Előadásvázlat 3 októbe 7 technológia és a költségek dualitása oábban beláttuk az alábbi összefüggéseket: a) Ha a munka hatáteméke nő akko a hatáköltség csökken

Részletesebben

q=h(termékek) H(Kiindulási anyagok) (állandó p-n) q=u(termékek) U(Kiindulási anyagok) (állandó V-n)

q=h(termékek) H(Kiindulási anyagok) (állandó p-n) q=u(termékek) U(Kiindulási anyagok) (állandó V-n) ERMOKÉMIA A vzsgált általános folyaatok és teodnaka jellezésük agyjuk egy pllanata az egysze D- endszeeket, s tekntsük azokat a változásokat, elyeket kísé entalpa- (ll. bels enega-) változásokkal á koább

Részletesebben

9. ábra. A 25B-7 feladathoz

9. ábra. A 25B-7 feladathoz . gyakolat.1. Feladat: (HN 5B-7) Egy d vastagságú lemezben egyenletes ρ téfogatmenti töltés van. A lemez a ±y és ±z iányokban gyakolatilag végtelen (9. ába); az x tengely zéuspontját úgy választottuk meg,

Részletesebben

A 2004. ÉVI EÖTVÖS-VERSENY FELADATA: A KEPLER-PROBLÉMA MÁGNESES TÉRBEN

A 2004. ÉVI EÖTVÖS-VERSENY FELADATA: A KEPLER-PROBLÉMA MÁGNESES TÉRBEN Debecen DEBRECENI EGYETEM Eléleti Fizika Tanszék (Saile Konél MTA oktoa) Izotópalkalazási Tanszék (Kónya József ké. tu. oktoa) KLTE ATOMKI Közös Tanszék (Kiss Ápá Zoltán fiz. tu. oktoa) Kíséleti Fizikai

Részletesebben

ψ m Az állórész fluxus Park-vektorának összetevői

ψ m Az állórész fluxus Park-vektorának összetevői 5. ASZINKRON MOTOROS HAJTÁSOK (. ész) Közvetlen nyoatékszabályozás Közvetlen nyoatékszabályozásnál a feszültséginvete egfelelő állapotának kiválasztásával közvetlenül az állóész fluxust és a nyoatékot

Részletesebben

A rezgések dinamikai vizsgálata, a rezgések kialakulásának feltételei

A rezgések dinamikai vizsgálata, a rezgések kialakulásának feltételei A rezgések dinaikai vizsgálata a rezgések kialakulásának feltételei F e F Rezgés kialakulásához szükséges: Mozgásegyenlet: & F( & t kezdeti feltételek: ( v t & v( t & ( t Ha F F( akkor az erőtér konzervatív.

Részletesebben

Mozgás centrális erőtérben

Mozgás centrális erőtérben Mozgás centális eőtében 1. A centális eő Válasszunk egy olyan potenciális enegia függvényt, amely csak az oigótól való távolságtól függ: V = V(). A tömegponta ható eő a potenciális enegiája gaiensének

Részletesebben

Az előadás vázlata:

Az előadás vázlata: 18..19. Az előadás vázlata: I. eokéiai egyenletek. A eakcióhő teodinaikai definíciója. II. A standad állapot. Standad képződési entalpia. III. ess-tétel. IV. Reakcióentalpia száítása képződési entalpia

Részletesebben

3. 1 dimenziós mozgások, fázistér

3. 1 dimenziós mozgások, fázistér Drótos G.: Fejezetek az eléleti echanikából 3. rész 3. dienziós ozgások, fázistér 3.. Az dienziós ozgások leírása, a fázistér fogala dienziós ozgás alatt egy töegpont olyan ozgását értjük ebben a jegyzetben,

Részletesebben

6. Kérdés A kormányzati kiadások növelése hosszú távon az alábbi folyamaton keresztül vezet a kamat változásához: (a)

6. Kérdés A kormányzati kiadások növelése hosszú távon az alábbi folyamaton keresztül vezet a kamat változásához: (a) Feleletválasztós kédések 1. Hosszú távú modell 02 Olvassa el figyelmesen az alábbi állításokat és kaikázza be a helyes válasz előtt álló betűjelet. 1. Kédés Egy zát gazdaság áupiacán akko van egyensúly,

Részletesebben

t [s] 4 pont Az út a grafikon alapján: ρ 10 Pa 1000 Pa 1400 Pa 1, 024 10 Pa Voldat = = 8,373 10 m, r h Vösszfolyadék = 7,326 10 m

t [s] 4 pont Az út a grafikon alapján: ρ 10 Pa 1000 Pa 1400 Pa 1, 024 10 Pa Voldat = = 8,373 10 m, r h Vösszfolyadék = 7,326 10 m XVIII. TORNYAI SÁNDOR ORSZÁGOS FIZIAI FELADATMEGOLDÓ VERSENY Hódezőásáhely, 04. ácius 8-0. 9. éfolya 9/. feladat: Adatok: a /s, t 6 s, a 0, t 5 s, a - /s, édések: s?, t?, átl?, a átl? [/s] 0 0 0 40 Az

Részletesebben

A Maxwell-féle villamos feszültségtenzor

A Maxwell-féle villamos feszültségtenzor A Maxwell-féle villamos feszültségtenzo Veszely Octobe, Rétegezett síkkondenzátoban fellépő (mechanikai) feszültségek Figue : Keesztiányban étegezett síkkondenzáto Tekintsük a. ábán látható keesztiányban

Részletesebben

állórész forgórész Háromfázisú, négypólusú csúszógyűrűs aszinkron motor metszetvázlatai

állórész forgórész Háromfázisú, négypólusú csúszógyűrűs aszinkron motor metszetvázlatai 5 AZINKON OTOO HAJTÁOK (1 ész) A villaos hajtások közel /3 észe aszinkon otoos hajtás Az egyszeű kivitelű, kalickás fogóészű aszinkon otook eltejedésének okai: - közvetlenül csatlakoztathatók háo fázisú

Részletesebben

Olvassa el figyelmesen a következő kérdéseket, állításokat, s karikázza be a helyesnek vélt választ.

Olvassa el figyelmesen a következő kérdéseket, állításokat, s karikázza be a helyesnek vélt választ. Feleletválasztós kédések 1. Hosszú távú modell Pénz Olvassa el figyelmesen a következő kédéseket, állításokat, s kaikázza be a helyesnek vélt választ. 1. Kédés A pénz olyan pénzügyi eszköz, amely betölti

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 08 ÉRESÉGI VIZSGA 008. ájus 4. FIZIKA KÖZÉPSZINŰ ÍRÁSBELI ÉRESÉGI VIZSGA JAVÍÁSI-ÉRÉKELÉSI ÚMUAÓ OKAÁSI ÉS KULURÁLIS MINISZÉRIUM A dolgozatokat az útutató utasításai szerint, jól követhetően

Részletesebben

III. Differenciálszámítás

III. Differenciálszámítás III. Diffeenciálszámítás A diffeenciálszámítás számunka elsősoban aa való hogy megállaítsuk hogyan változnak a (fizikai) kémiában nagy számban előfoló (többváltozós) függvények. A diffeenciálszámítás megadja

Részletesebben

Bé ni. Barna 5. Benc e. Boton d

Bé ni. Barna 5. Benc e. Boton d Egy asztalon háom halomban 009 db kavics van Egyet eldobok belőle, és a többit két kupacba osztom Ezután megint eldobok egyet az egyik halomból (amelyikben egynél több kavics van) és az egyik halmot ismét

Részletesebben

Elektromos polarizáció: Szokás bevezetni a tömegközéppont analógiájára a töltésközéppontot. Ennek definíciója: Qr. i i

Elektromos polarizáció: Szokás bevezetni a tömegközéppont analógiájára a töltésközéppontot. Ennek definíciója: Qr. i i 0. Elektoos polaizáció, polaizáció vekto, elektoos indukció vekto. Elektoos fluxus. z elektoos ező foástövénye. Töltéseloszlások. Hatáfeltételek az elektosztatikában. Elektoos polaizáció: Szokás bevezetni

Részletesebben

Hajtástechnika. F=kv. Határozza meg a kocsi sebességének v(t) idıfüggvényét, ha a motorra u(t)=5 1(t) [V] kapocsfeszültséget kapcsolunk!

Hajtástechnika. F=kv. Határozza meg a kocsi sebességének v(t) idıfüggvényét, ha a motorra u(t)=5 1(t) [V] kapocsfeszültséget kapcsolunk! Hajtástechnika Példa Az ábán egy nyotató odellje látható, ely két azonos szíjtácsából, alaint töegő kocsiból áll. A szíj tökéletesen hajlékony, nyújthatatlan és elhanyagolható töegő. A kocsia sebességaányos

Részletesebben

2. Rugalmas állandók mérése

2. Rugalmas állandók mérése . Rugalas állandók érése PÁPICS PÉTER ISTVÁN csillagász, 3. évfolya 00.10.7. Beadva: 00.1.1. 1. A -ES, AZAZ AZ ABLAK FELLI MÉRHELYEN MÉRTEM. Ezen a laboron a férudak Young-oduluszát értük, pontosabban

Részletesebben

Néhány mozgás kvantummechanikai tárgyalása

Néhány mozgás kvantummechanikai tárgyalása Néhány ozgás kvantuechanikai tárgyalása Mozzanatok: A Schrödinger-egyenlet felírása ĤΨ EΨ Hailton-operátor egállapítása a kinetikus energiaoperátor felírása, vagy 3 dienziós ozgásra, Descartes-féle koordinátarendszerben

Részletesebben

Oktatási Hivatal. A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I. KATEGÓRIA. Javítási-értékelési útmutató

Oktatási Hivatal. A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I. KATEGÓRIA. Javítási-értékelési útmutató Oktatási Hivatal A 05/06. tanévi Országos Középiskolai Tanulányi Verseny ásodik forduló FIZIKA I. KATEGÓRIA Javítási-értékelési útutató. feladat: Vékony, nyújthatatlan fonálra M töegű, R sugarú karikát

Részletesebben

A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása.

A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása. A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása. Eszközszükséglet: Bunsen állvány lombik fogóval 50 g-os vasból készült súlyok fonál mérőszalag,

Részletesebben

Rugalmas megtámasztású merev test támaszreakcióinak meghatározása I. rész

Rugalmas megtámasztású merev test támaszreakcióinak meghatározása I. rész Rugalas egtáasztású erev test táaszreakióinak eghatározása I. rész Bevezetés A következő, több dolgozatban beutatott vizsgálataink tárgya a statikai / szilárdságtani szakirodalo egyik kedvene. Ugyanis

Részletesebben

1. ábra. r v. 2. ábra A soros RL-kör fázorábrái (feszültség-, impedancia- és teljesítmény-) =tg ϕ. Ez a meredekség. r

1. ábra. r v. 2. ábra A soros RL-kör fázorábrái (feszültség-, impedancia- és teljesítmény-) =tg ϕ. Ez a meredekség. r A VAÓÁO TEKE É A VAÓÁO KONDENÁTO A JÓÁ A soos -modell vizsgálata A veszteséges tekecs egy tiszta induktivitással, valamint a veszteségi teljesítményből számaztatható ellenállással modellezhető. Ez utóbbi

Részletesebben

Mechanikai munka, energia, teljesítmény (Vázlat)

Mechanikai munka, energia, teljesítmény (Vázlat) Mechanikai unka, energia, eljesíény (Vázla). Mechanikai unka fogala. A echanikai unkavégzés fajái a) Eelési unka b) Nehézségi erő unkája c) Gyorsíási unka d) Súrlódási erő unkája e) Rugóerő unkája 3. Mechanikai

Részletesebben

Modulációk. Modulációk. Modulációk fajtái.

Modulációk. Modulációk. Modulációk fajtái. Modulációk Ebben a éésben a háo alapvető odulációs eljáással isekedünk eg. A éés célja a koábban egiset jelalakoknak és egy gyakolatban egvalósított áakönek a vizsgálata. A valósághoz hasonló köülényeket

Részletesebben

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás SZÉHENYI ISTVÁN EGYETE GÉPSZERKEZETTN ÉS EHNIK TNSZÉK 6. EHNIK-STTIK GYKORLT Kidolgozta: Tiesz Péte egy. ts. Négy eő egyensúlya ulmann-szekesztés Ritte-számítás 6.. Példa Egy létát egy veembe letámasztunk

Részletesebben

1.9. Feladatok megoldásai

1.9. Feladatok megoldásai Eektotechnikai aapiseetek Mágneses té 1.9. Feadatok egodásai 1. feadat: Mennyive vátozik eg a ágneses téeősség, az indukció és a ágneses fuxus, ha egy 1 beső átéőjű, 1 enetbő áó, 75 hosszú tekecstestbe

Részletesebben

Elektrokémia 03. (Biologia BSc )

Elektrokémia 03. (Biologia BSc ) lektokéma 03. (Bologa BSc ) Cellaeakcó potencálja, elektódeakcó potencálja, Nenst-egyenlet Láng Győző Kéma Intézet, Fzka Kéma Tanszék ötvös Loánd Tudományegyetem Budapest Cellaeakcó Közvetlenül nem méhető

Részletesebben

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg

Részletesebben

Sugárzás és szórás. ahol az amplitúdófüggvény. d 3 x J(x )e ikˆxx. 1. Számoljuk ki a szórási hatáskeresztmetszetet egy

Sugárzás és szórás. ahol az amplitúdófüggvény. d 3 x J(x )e ikˆxx. 1. Számoljuk ki a szórási hatáskeresztmetszetet egy Sugázás és szóás I SZÓRÁSOK A Szóás dielektomos gömbön Számoljuk ki a szóási hatáskeesztmetszetet egy ε elatív dielektomos állandójú gömb esetén amennyiben a gömb R sugaa jóval kisebb mint a beeső fény

Részletesebben

Az aszinkron gépek modellezése

Az aszinkron gépek modellezése Az asznkon gépek odellezése Az asznkon gép felépítése Az állóész fázsú szetkus p póluspá száú tekecsendsze a a tébel felha onkusokat elhanyagolva a légésben sznuszos ezőeloszlást feltételezve echanka szögsebességgel

Részletesebben

a) Az első esetben emelési és súrlódási munkát kell végeznünk: d A

a) Az első esetben emelési és súrlódási munkát kell végeznünk: d A A 37. Mikola Sándor Fizikaverseny feladatainak egoldása Döntő - Gináziu 0. osztály Pécs 08. feladat: a) Az első esetben eelési és súrlódási unkát kell végeznünk: d W = gd + μg cos sin + μgd, A B d d C

Részletesebben

Nehézségi gyorsulás mérése megfordítható ingával

Nehézségi gyorsulás mérése megfordítható ingával Nehézségi gyorsulás mérése megfordítható ingával (Mérési jegyzőkönyv) Hagymási Imre 2007. április 21. (hétfő délelőtti csoport) 1. A mérés elmélete A nehézségi gyorsulás mérésének egy klasszikus módja

Részletesebben

Tiszta anyagok fázisátmenetei

Tiszta anyagok fázisátmenetei Tiszta anyagok fázisátenetei Fizikai kéia előadások 4. Turányi Taás ELTE Kéiai Intézet Fázisok DEF egy rendszer hoogén, ha () nincsenek benne akroszkoikus határfelülettel elválasztott részek és () az intenzív

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 4 ÉRETTSÉGI VIZSGA 04. október 7. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA A dolgozatokat az útutató utasításai szerint,

Részletesebben

Kémiai egyensúly. Fizikai kémia előadások 6. Turányi Tamás ELTE Kémiai Intézet. ν j sztöchiometriai együttható

Kémiai egyensúly. Fizikai kémia előadások 6. Turányi Tamás ELTE Kémiai Intézet. ν j sztöchiometriai együttható émiai egyensúly Fizikai kémia előadások 6. Tuányi Tamás ELTE émiai Intézet Sztöchiometiai együttható ν sztöchiometiai együttható általános kémiai eakció: (a temokémiában használtuk előszö) ν A 0 ν A eaktánsa

Részletesebben

Az aszinkron gépek modellezése

Az aszinkron gépek modellezése Az asznkon gépek odellezése Az asznkon gép felépítése Az állóész 3 fázsú szetkus p póluspá száú tekecsendszee a a tébel felhaonkusokat elhanyagolva a légésben sznuszos ezőeloszlást feltételezve e- p chanka

Részletesebben

Hullámtan. A hullám fogalma. A hullámok osztályozása.

Hullámtan. A hullám fogalma. A hullámok osztályozása. Hullátan A hullá fogala. A hulláok osztályozása. Kísérletek Kis súlyokkal összekötött ingasor elején keltett rezgés átterjed a többi ingára is [0:6] Kifeszített guikötélen keltett zavar végig fut a kötélen

Részletesebben

A BEFOGÁS STABILITÁSA A KORLÁTOZOTT HÁROMTEST- PROBLÉMÁBAN

A BEFOGÁS STABILITÁSA A KORLÁTOZOTT HÁROMTEST- PROBLÉMÁBAN A BEFOGÁS STABILITÁSA A KORLÁTOZOTT HÁROMTEST- PROBLÉMÁBAN FRÖHLICH GEORGINA Eötvös Loánd Tudományegyetem Temészettudományi Ka Fizika, Csillagász szak Témavezető: D. Édi Bálint tanszékvezető egyetemi taná

Részletesebben

Ujfalussy Balázs Idegsejtek biofizikája

Ujfalussy Balázs Idegsejtek biofizikája M A TTA? Ujfalussy Balázs degsejtek biofizikája Második rész A nyugali potenciál A sorozat előző cikkében nekiláttunk egfejteni az idegrendszer alapjelenségeit. Az otivált bennünket, hogy a száítógépeink

Részletesebben

AZ ÉGIG ÉRŐ PASZULY JACK AND THE BEANSTALK

AZ ÉGIG ÉRŐ PASZULY JACK AND THE BEANSTALK AZ ÉGIG ÉŐ PASZULY JAC AND HE BEANSAL Honyek Gyula ELE adnóti Miklós Gyakolóiskola ÖSSZEFOGLALÁS Csodálkoznunk kellene, a a Föld valaely pontján eglátnánk egy kötelet, aelynek az alja ajdne leé a talaja,

Részletesebben

A termodinamika I. főtétele

A termodinamika I. főtétele A temodinamika I. főtétele Fizikai kémia előadások. uányi amás ELE Kémiai Intézet A temodinamika A temodinamika egy fucsa tudomány. Amiko az embe előszö tanula, egyáltalán nem éti. Amiko második alkalommal

Részletesebben

ÜTKÖZÉSEK. v Ütközési normális:az ütközés

ÜTKÖZÉSEK. v Ütközési normális:az ütközés ÜTKÖZÉSK A egaadási tételek alkalazásának legjobb példái Definíciók ütközési sík n n Ütközési noális:az ütközés síkjáa eőleges Töegközépponti sebességek Centális ütközés: az ütközési noális átegy a két

Részletesebben

Mit nevezünk nehézségi erőnek?

Mit nevezünk nehézségi erőnek? Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt

Részletesebben

Egy érdekes statikai - geometriai feladat

Egy érdekes statikai - geometriai feladat 1 Egy érdekes statikai - geometriai feladat Előző dolgozatunkban melynek címe: Egy érdekes geometriai feladat egy olyan feladatot oldottunk meg, ami az itteni előtanulmányának is tekinthető. Az ottani

Részletesebben

IV x. 2,18 km magasan van a hôlégballon.

IV x. 2,18 km magasan van a hôlégballon. 8 Hegyesszögû tigonometiai alapfeladatok 8 9 8,8 km magasan van a hôlégballon Egyészt = tg és = tg 0, másészt a Pitagoasz-tételt alkalmazva kapjuk, hogy a b a + b = Ezen egyenletendszebôl meghatáozhatjuk

Részletesebben

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések 1. Melyek a rezgőmozgást jellemző fizikai mennyiségek?. Egy rezgés során mely helyzetekben maximális a sebesség, és mikor a gyorsulás? 3. Milyen

Részletesebben

3 1, ( ) sorozat általános tagjának képletét, ha

3 1, ( ) sorozat általános tagjának képletét, ha Gyakolatok és feladatok. Hatáozd eg a kvetkező, ekuzíva ételezett soozatok általáos tagját: a), = = " ³, ; (felvételi feladat,99., Teesvá), b),, =, = " ³ ; (felvételi feladat, 99., Teesvá) c) =, = 4 =

Részletesebben

Fizika és 3. Előadás

Fizika és 3. Előadás Fizika. és 3. Előadás Az anyagi pont dinamikája Kinematika: a mozgás leíásaa kezdeti feltételek(kezdőpont és kezdősebesség) és a gyosulás ismeetében, de vajon mi az oka a mozgásnak?? Megfigyelés kísélet???

Részletesebben

5. IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR

5. IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR 5 IDŐBEN VÁLTOZÓ ELEKTROMÁGNESES TÉR A koábbiakban külön, egymástól függetlenül vizsgáltuk a nyugvó töltések elektomos teét és az időben állandó áam elektomos és mágneses teét Az elektomágneses té pontosabb

Részletesebben

Az elliptikus hengerre írt csavarvonalról

Az elliptikus hengerre írt csavarvonalról 1 Az elliptikus hengerre írt csavarvonalról Erről viszonylag ritkán olvashatunk, ezért most erről lesz szó. Az [ 1 ] munkában találtuk az alábbi részt 1. ábra. 1. ábra Itt a ( c ) feladat és annak megoldása

Részletesebben

Bevezető fizika (infó), 3. feladatsor Dinamika 2. és Statika

Bevezető fizika (infó), 3. feladatsor Dinamika 2. és Statika Bevezető fizika (infó),. feladatsor Dinaika. és Statika 04. október 5., 4:50 A ai órához szükséges eléleti anyag: ipulzus, ipulzusegaradás forgatónyoaték egyensúly és feltétele Órai feladatok:.5. feladat:

Részletesebben

2, = 5221 K (7.2)

2, = 5221 K (7.2) 7. Gyakorlat 4A-7 Az emberi szem kb. 555 nm hullámhossznál a Iegnagyobb érzékenységű. Adjuk meg annak a fekete testnek a hőmérsékletét, amely sugárzásának a spektrális teljesitménye ezen a hullámhosszon

Részletesebben

Az előadás vázlata:

Az előadás vázlata: Az előadás vázlata: I. emokémiai egyenletek. A eakcióhő temodinamikai definíciója. II. A standad állapot. Standad képződési entalpia. III. Hess-tétel. IV. Reakcióentalpia számítása képződési entalpia (képződéshő)

Részletesebben

1. Feladatok a dinamika tárgyköréből

1. Feladatok a dinamika tárgyköréből 1. Feladatok a dinamika tárgyköréből Newton három törvénye 1.1. Feladat: Három azonos m tömegű gyöngyszemet fonálra fűzünk, egymástól kis távolságokban a fonálhoz rögzítünk, és az elhanyagolható tömegű

Részletesebben

1.4. Mintapéldák. Vs r. (Használhatjuk azt a közelítő egyenlőséget, hogy 8π 25.)

1.4. Mintapéldák. Vs r. (Használhatjuk azt a közelítő egyenlőséget, hogy 8π 25.) Elektotechnikai alapismeetek Mágneses té 14 Mintapéldák 1 feladat: Az ába szeinti homogén anyagú zát állandó keesztmetszetű köben hatáozzuk meg a Φ B és étékét! Ismet adatok: a = 11 cm A = 4 cm μ = 8 I

Részletesebben

FIZIKA II. Dr. Rácz Ervin. egyetemi docens

FIZIKA II. Dr. Rácz Ervin. egyetemi docens FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés

Részletesebben

Rezgések. x(t) x(t) TÓTH A.: Rezgések/1 (kibővített óravázlat) 1

Rezgések. x(t) x(t) TÓTH A.: Rezgések/1 (kibővített óravázlat) 1 TÓTH A.: Rezgések/1 (kibővített óravázlat) 1 Rezgések A rezgés általános érteleben valailyen ennyiség értékének bizonyos határok közötti periodikus vagy ne periodikus ingadozását jelenti. Mivel az ilyen

Részletesebben

2010. március 27. Megoldások 1/6. 1. A jégtömb tömege: kg. = m 10 m = 8,56 10 kg. 4 pont m. tengervíz

2010. március 27. Megoldások 1/6. 1. A jégtömb tömege: kg. = m 10 m = 8,56 10 kg. 4 pont m. tengervíz 00. ácius 7. Megoldások /6.. jégtöb töege: kg 6 6 jég = ρ jég jég jég = 90 9000 0 0 = 8,56 0 kg. Kiszoított víz téfogata: 6 jég 8,56 0 kg Vk = = = 8, 5 0. ρ kg tengevíz 07,4 Vízszint-eelkedés: Vk 8, 5

Részletesebben

4. ASZINKRON MOTOROS HAJTÁSOK A villamos hajtások 2/3 része aszinkron motoros hajtás. Az aszinkron motorok elterjedésének

4. ASZINKRON MOTOROS HAJTÁSOK A villamos hajtások 2/3 része aszinkron motoros hajtás. Az aszinkron motorok elterjedésének Villaos hajtások AZNKON OTOO HAJTÁOK 4. AZNKON OTOO HAJTÁOK A villaos hajtások /3 észe aszinkon otoos hajtás. Az aszinkon otook eltejedésének okai: - közvetlenül csatlakoztathatók háo fázisú táphálózata,

Részletesebben

Az elméleti mechanika alapjai

Az elméleti mechanika alapjai Az elméleti mechanika alapjai Tömegpont, a továbbiakban részecske. A jelenségeket a háromdimenziós térben és időben játszódnak le: r helyzetvektor v dr dt ṙ, a dr dt r a részecske sebessége illetve gyorsulása.

Részletesebben

Klasszikus Fizika Laboratórium V.mérés. Fajhő mérése. Mérést végezte: Vanó Lilla VALTAAT.ELTE. Mérés időpontja:

Klasszikus Fizika Laboratórium V.mérés. Fajhő mérése. Mérést végezte: Vanó Lilla VALTAAT.ELTE. Mérés időpontja: Klasszikus Fizika Laboratóriu V.érés Fajhő érése Mérést égezte: Vanó Lilla VALTAAT.ELTE Mérés időpontja: 2012.10.11. 1. Mérés röid leírása A érés során egy inta fajhőjét kellett eghatározno. Ezt legkönnyebben

Részletesebben

A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a

A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a a Matematika mérnököknek I. című tárgyhoz Függvények. Függvények A Föld középpontja felé szabadon eső test sebessége növekszik, azaz, a szabadon eső test sebessége az idő függvénye. Konstans hőmérsékleten

Részletesebben

A termodinamika I. főtétele

A termodinamika I. főtétele A temodinamika I. főtétele Fizikai kémia előadások biológusoknak 1. uányi amás ELE Kémiai Intézet A temodinamika tanulása elé: A temodinamika Ó-Egyiptom: közéthető módszeek téglalap és kö alakú földek

Részletesebben

Fogaskerekek II. fogaskerekek geometriai jellemzői. alaptulajdonságai és jellemzői

Fogaskerekek II. fogaskerekek geometriai jellemzői. alaptulajdonságai és jellemzői Fogaskeekek II. fogaskeekek geoetiai jellezői Az evolvensfogazat alaptulajdonságai és jellezői Fogpofilalakok Foggöbének inden olyan pofilgöbe használható, aelyeke évényes az előzőekben isetetett fogeőlegességől

Részletesebben

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II. 8 Egyenletek, egyenlőtlenségek, egyenletrendszerek II Elméleti összefoglaló Az a + b+ c, a egyenletet másodfokú egyenletnek nevezzük A D b ac kifejezést az egyenlet diszkriminánsának nevezzük Ha D >, az

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika eelt szint 0803 ÉRETTSÉGI VIZSGA 008. noveber 3. FIZIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM A dolgozatokat az útutató utasításai

Részletesebben

Geometriai vagy kinematikai természetű feltételek: kötések vagy. kényszerek. 1. Egy apró korong egy mozdulatlan lejtőn vagy egy gömb belső

Geometriai vagy kinematikai természetű feltételek: kötések vagy. kényszerek. 1. Egy apró korong egy mozdulatlan lejtőn vagy egy gömb belső Kényszerek Geometriai vagy kinematikai természetű feltételek: kötések vagy kényszerek. Példák: 1. Egy apró korong egy mozdulatlan lejtőn vagy egy gömb belső felületén mozog. Kényszerek Geometriai vagy

Részletesebben

ε v ε c Sávszerkezet EMLÉKEZTETŐ Teljesen betöltött sáv: félvezető Hol van a kémiai potenciál? Fermi-Dirac statisztika exponenciális lecsengés

ε v ε c Sávszerkezet EMLÉKEZTETŐ Teljesen betöltött sáv: félvezető Hol van a kémiai potenciál? Fermi-Dirac statisztika exponenciális lecsengés Sászeezet iltott sáo a gejesztési setuba: MLÉKZŐ egatí eetí töeg: lyu t 3-iezió: eetí töeg tezo Cu t s egegeett eegiaállaoto π a eleto π a Si eljese betöltött sá: élezető állaotsűűség g iszeziós eláió

Részletesebben

1. Feladatok merev testek fizikájának tárgyköréből

1. Feladatok merev testek fizikájának tárgyköréből 1. Feladatok merev testek fizikájának tárgyköréből Forgatónyomaték, impulzusmomentum, impulzusmomentum tétel 1.1. Feladat: (HN 13B-7) Homogén tömör henger csúszás nélkül gördül le az α szög alatt hajló

Részletesebben

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus. Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza

Részletesebben

Az összefüggések egyszerűsítése érdekében az egyes parciális derivált jelölések helyett ú jelöléseket vezetünk be az alábbi módon:

Az összefüggések egyszerűsítése érdekében az egyes parciális derivált jelölések helyett ú jelöléseket vezetünk be az alábbi módon: Konzevatív eőteek A fizikában kiemelt szeepet játszanak az úgynevezett konzevatív eőteek. Ezek a klasszikus mechanikában fontosak, bá ott inkább csak kivételt képeznek. iszont az elektomágnesesség, illetve

Részletesebben

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel 1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel Munkavégzés, teljesítmény 1.1. Feladat: (HN 6B-8) Egy rúgót nyugalmi állapotból 4 J munka árán 10 cm-rel nyújthatunk meg. Mekkora

Részletesebben

A Hamilton-Jacobi-egyenlet

A Hamilton-Jacobi-egyenlet A Hamilton-Jacobi-egyenlet Ha sikerül olyan kanonikus transzformációt találnunk, amely a Hamilton-függvényt zérusra transzformálja akkor valamennyi új koordináta és impulzus állandó lesz: H 0 Q k = H P

Részletesebben

7.2 Az infláció okozta jóléti veszteség

7.2 Az infláció okozta jóléti veszteség 7.2 Az infláció okozta jóléti veszteség Elemezésünk kiindulópontja a pénzügytanból jól ismet Fishe-tétel, amelynek ételmében a nominális kamatláb () megközelítőleg egyenlő a eálkamatláb ( ) és az inflációs

Részletesebben

17. tétel A kör és részei, kör és egyenes kölcsönös helyzete (elemi geometriai tárgyalásban). Kerületi szög, középponti szög, látószög.

17. tétel A kör és részei, kör és egyenes kölcsönös helyzete (elemi geometriai tárgyalásban). Kerületi szög, középponti szög, látószög. 17. tétel kö és észei, kö és egyenes kölcsönös helyzete (elemi geometiai tágyalásban). Keületi szög, középponti szög, látószög. Def: Kö: egy adott ponttól egyenlő távolsága levő pontok halmaza a síkon.

Részletesebben

Mechanika. Kinematika

Mechanika. Kinematika Mechanika Kinematika Alapfogalmak Anyagi pont Vonatkoztatási és koordináta rendszer Pálya, út, elmozdulás, Vektormennyiségek: elmozdulásvektor Helyvektor fogalma Sebesség Mozgások csoportosítása A mozgásokat

Részletesebben

A szabályos sokszögek közelítő szerkesztéséhez

A szabályos sokszögek közelítő szerkesztéséhez 1 A szabályos sokszögek közelítő szerkesztéséhez A síkmértani szerkesztések között van egy kedvencünk: a szabályos n - szög közelítő szerkesztése. Azért vívta ki nálunk ezt az előkelő helyet, mert nagyon

Részletesebben

Egy mozgástani feladat

Egy mozgástani feladat 1 Egy mozgástani feladat Előző dolgozatunk melynek jele és címe: ED ~ Ismét az ellipszis egyenleteiről folytatásának tekinthető ez az írás. Leválasztottuk róla, mert bár szorosan kapcsolódnak, más a céljuk.

Részletesebben

Az atomok vonalas színképe

Az atomok vonalas színképe Az atomok vonalas színképe Színképelemzés, spektoszkópia R. Bunsen 8-899 G.R. Kichhoff 8-887 A legegyszebb (a legkönnyebb) atom a hidogén. A spektuma a láthatóban a következ A hidogén atom spektuma a látható

Részletesebben

FIZIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika eelt szint 74 ÉESÉGI VIZSGA 07. ájus. FIZIKA EMEL SZINŰ ÍÁSBELI VIZSGA JAVÍÁSI-ÉÉKELÉSI ÚMUAÓ EMBEI EŐFOÁSOK MINISZÉIUMA A dolgozatokat az útutató utasításai szerint, jól követhetően kell javítani

Részletesebben

Fiók ferde betolása. A hűtőszekrényünk ajtajának és kihúzott fiókjának érintkezése ihlette az alábbi feladatot. Ehhez tekintsük az 1. ábrát!

Fiók ferde betolása. A hűtőszekrényünk ajtajának és kihúzott fiókjának érintkezése ihlette az alábbi feladatot. Ehhez tekintsük az 1. ábrát! 1 Fiók ferde betolása A hűtőszekrényünk ajtajának és kihúzott fiókjának érintkezése ihlette az alábbi feladatot. Ehhez tekintsük az 1. ábrát! 1. ábra Itt azt látjuk, hogy egy a x b méretű kis kék téglalapot

Részletesebben

5. Pontrendszerek mechanikája. A kontinuumok Euler-féle leírása. Tömegmérleg. Bernoulli-egyenlet. Hidrosztatika. Felhajtóerő és Arhimédesz törvénye.

5. Pontrendszerek mechanikája. A kontinuumok Euler-féle leírása. Tömegmérleg. Bernoulli-egyenlet. Hidrosztatika. Felhajtóerő és Arhimédesz törvénye. 5 Pontrenszerek echankája kontnuuok Euler-féle leírása Töegérleg Bernoull-egyenlet Hrosztatka Felhajtóerő és rhéesz törvénye Töegpontrenszerek Töegpontok eghatározott halaza, ng ugyanazok a pontok tartoznak

Részletesebben

A rugalmassággal kapcsolatos gondolatmenetek

A rugalmassággal kapcsolatos gondolatmenetek A ugalmassággal kapcsolatos gondolatmenetek Az igen szeteágazó, ugókkal kapcsolatos ezgési és sztatikus poblémák közül néhányat tágyalunk gondolkodás módszetani szempontok bemutatásáa. A ugó poblémák az

Részletesebben

Ujfalussy Balázs Idegsejtek biofizikája Első rész

Ujfalussy Balázs Idegsejtek biofizikája Első rész Ujfalussy Balázs Idegsejtek biofizikája Első rész MI A TITA? Ez a négyrészes sorozat azt a célt szolgálja, hogy az idegsejtek űködéséről ateatikai, fizikai odellekkel alkossunk képet középiskolás iseretekre

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva 6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási

Részletesebben

A szinuszosan váltakozó feszültség és áram

A szinuszosan váltakozó feszültség és áram A szinszosan váltakozó feszültség és ára. A szinszos feszültség előállítása: Egy téglalap alakú vezető keretet egyenletesen forgatnk szögsebességgel egy hoogén B indkciójú ágneses térben úgy, hogy a keret

Részletesebben

Vízműtani számítás. A vízműtani számítás készítése során az alábbi összefüggéseket használtuk fel: A csapadék intenzitása: i = a t [l/s ha]

Vízműtani számítás. A vízműtani számítás készítése során az alábbi összefüggéseket használtuk fel: A csapadék intenzitása: i = a t [l/s ha] Vízűtani száítás A vízűtani száítás készítése során az alábbi összefüggéseket használtuk fel: A csapadék intenzitása: i = a t [l/s ha] ahol ip a p visszatérési csapadék intenzitása, /h a a 10 perces időtartaú

Részletesebben

Egy érdekes statikai feladat. Az interneten találtuk az [ 1 ] művet, benne az alábbi feladattal.

Egy érdekes statikai feladat. Az interneten találtuk az [ 1 ] művet, benne az alábbi feladattal. 1 Egy érdekes statikai feladat Az interneten találtuk az [ 1 ] művet, benne az alábbi feladattal. A feladat A szabályos n - szög alakú, A, B, C, csúcsú lap az A csúcsán egy sima függőleges fal - hoz támaszkodik,

Részletesebben

Mágneses momentum, mágneses szuszceptibilitás

Mágneses momentum, mágneses szuszceptibilitás Mágneses oentu, ágneses szuszceptibilitás A olekuláknak (atooknak, ionoknak) elektronszerkezetüktől függően lehet állandóan eglévő, azaz peranens ágneses oentua (ha van bennük párosítatlan elektron, azaz

Részletesebben

Térbeli polárkoordináták alkalmazása egy pont helyének, sebességének és gyorsulásának leírására

Térbeli polárkoordináták alkalmazása egy pont helyének, sebességének és gyorsulásának leírására Tébeli polákoodináták alkalmazása egy pont helyének sebességének és gyosulásának leíásáa A címbeli feladat a kinematikával foglalkozó tankönyvek egyik alapfeladata: elmagyaázni levezetni az idevágó összefüggéseket

Részletesebben