A HELIKOPTER FÜGGÉSI ÉS FÜGGŐLEGES EMELKEDÉSI ÜZEMMÓDJÁNAK VIZSGÁLATA
|
|
- Marika Siposné
- 7 évvel ezelőtt
- Látták:
Átírás
1 Szolnoki Tudomános Közlemének XIII. Szolnok, 009. Dr. BÉKÉSI LÁSZLÓ 1 A HELIKOPTER VONÓEREJÉNEK CSÖKKENÉSE A SÁRKÁNYSZERKEZET MEGFÚVÁSA MIATT A helikopter repülésekor a függés és a függőleges emelkedés fontos üzemmódok. A helikopter aerodinamikai számításainál általában a sárkánszerkezet káros ellenállását nem eszik figelembe, pedig ez az érték a helikopter felszálló súlának akár 10%-a is lehet. A forgószárn által létrehozott indukált sebesség tengeliránú leáramlásában léő sárkánszerkezeti elemek aerodinamikai ellenállással rendelkeznek. A cikkben a szerző az említett ellenállás értékének kiszámításáal foglalkozik, alkalmaza a helikopter forgószárnon keletkező onóerő kiszámításához a lapelem-elméletet. A HELIKOPTER FÜGGÉSI ÉS FÜGGŐLEGES EMELKEDÉSI ÜZEMMÓDJÁNAK VIZSGÁLATA A helikopter repülési üzemmódjai közül a függés és a függőleges emelkedés eg sor fontos repüléstechnikai jellemzőt határoz meg, például: adott üzemeltetési körülmének között a maimális repülési súlt; a statikus repülési csúcsmagasságot; az egenletes függőleges, maimális emelkedési sebességet. A forgószárn által létrehozott indukált sebesség tengeliránú leáramlásában léő sárkánszerkezeti elemek aerodinamikai ellenállással rendelkeznek. Íg a forgószárn szükséges onóerejét (egúttal a hajtóműek teljesítménét) meg kell nöelni, pontosan annial, amenni a sárkánszerkezet elemeinek aerodinamikai ellenállása. A helikopter aerodinamikai számításainál az esetek többségében a forgószárn által megfúott sárkánszerkezet káros ellenállásától eltekintenek, azaz nem eszik figelembe. Uganakkor ez az érték a helikopter felszálló súlának akár 10%-a is lehet. 1 ZMNE, BJKMK Repülő és légédelmi Intézet, bekesi.laszlo@zmne.hu Szaklektorált cikk. Leada: 009. szeptember 15. Elfogada: 009. december 10. 1
2 A [;3] irodalmakban a sárkánszerkezet függőleges megfúásának figelembeételéhez eg úgneezett ekialens lemezt ettek, amel függőleges állandó sebességű megfúásban an. Függési illete egenletes sebességű függőleges emelkedési üzemmódra leírható: ( T), G = T T = T 1 (1) G a helikopter súlereje; T a forgószárn onóereje; T = T a függőleges megfúás miatt, a forgószárn onóerő iszonított értéke. T Általános esetben eg-forgószárnas helikopterre: T = F = F + F F, () káros törzs + szárn stabilizátor F törzs a helikopter törzsének káros ellenállása; F szárn a helikopter szárnának káros ellenállása; F stabilizátor a helikopter stabilizátorának káros ellenállása. T F stabilizátor F törzs G F szárn 1.ábra. A helikopter függési üzemmódján a forgószárn hatása a sárkán szerkezeti elemeire
3 A forgószárn onóerő eszteség számítása során feltételezzük, hog a teljes nomás az indukált sebességű tengeliránú leáramlásban nem áltozik, azaz a Bernoulli egenlettel felírható: ρ p + = const., (3) p az indukált sebességű leáramlás tetszőleges pontjában a statikus nomás; az indukált sebesség nagsága; Miel a függőleges leáramlásban az indukált sebesség nem túl nag, azaz a Mach-szám M = < 0,4 és a leegő sűrűsége állandó, azaz a zaartalan áramlás sűrűségéel azonosnak a ehető íg: ρ df p c da = +, (4) p = p a p f az adott da elemi felület alsó és felső részén léő statikus nomások különbsége; c a kiálasztott elem ellenállási erőténezője. A helikopter sárkánszerkezetének ékon felületein (mint a szárn és a stabilizátor), amelek kicsi iszonított astagsággal rendelkeznek, a nomásokat az alsó és felső felületeken egenlő nagságúaknak ehetjük, azaz p a = pf. A sárkán más elemeinél, ahol a iszonított astagság jelentős értékű, az alsó és felső felületek nomásait egük körnezeti nomás értékűnek. Ekkor az adott elem astagságának figelembeételéel kapjuk: ( ρ ρ ) p = K, (5) a K a forgószárn által megfúott sárkánszerkezeti elem formáját és astagságát figelembe eő egüttható; Indukált sebesség i Y ω f A forgószárn forgási síkja 0 i A sárkán sematizált modellje X H t df da Z. ábra. A helikopter sárkánszerkezetének a számításhoz szükséges körüláramlása függéskor 3
4 A K egüttható értéke nullától (a ékon testeknél) egészen egig (a nagon astag testeknél) 0 K 1 áltozhat ( ) A leáramlás szabálos részén a statikus nomás egenlő a körnezeti nomással íg a (4) egenlet az (5) figelembeételéel a köetkező alakot eszi fel: = i 1 ρ df = c da + K, (6) c kétszeres indukált sebesség. Általában a helikopter sárkánszerkezet elemei a forgószárn forgássíkjától H t táolságra H t helezkednek el, amelnek mértékegség nélküli iszonított értéke H t = = 0,...0, 3. R A helikopter sárkánszerkezet elemeinek ellenállási erőténezői ( c ) azok geometriai formájától és a Renolds-számtól függenek. Gakorlatilag az ellenállási erőténező értéke ( c ) áltozhat 0,4-től (azok az elemek, amelek formája a hengerhez közeli, illete hasonló) egészen 1 1,-ig (stabilizátor, szárn). A égrehajtott számítások azt mutatják, hog (6) kifejezés szögletes zárójelben léő része 0,9-től 1,15-ig áltozik, azaz közel an az eghez. Íg ennek figelembeételéel az elemi ellenállási erő számítására alkalmas képlet a köetkező alakot eszi fel: ρ df = da c (7) A teljes ellenállás kiszámításához integrálnunk kell az előző egenletet. A forgószárn által létrehozott indukált sebesség meghatározásához a éges számú lapáttal rendelkező forgószárn örénelméletét kell alkalmazni. A forgószárnon keletkező aerodinamikai erőket és nomatékokat a lapelem-elmélet segítségéel határozzuk meg. A kiálasztott lapelemre elemi aerodinamikai erők hatnak, meleket a köetkezőképpen határozhatunk meg: ρ w df = h c, ρ w df = h c, (8) c és c A forgószárn lapát-elem aerodinamikai felhajtóerő és ellenállási erő ténezői. 4
5 ω 0 df w ψ r df dr h 3. ábra. A forgószárn lapátelemre ható aerodinamikai erők A izsgált lapátelem aerodinamikai erőténezői ( és ) ( M) és a Renolds-számtól ( R ) e függenek. c az állásszögtől, a Mach-számtól c Az elemi onóerő és elemi kerületi erőt az ismert összefüggések segítségéel határozhatjuk meg. df dt df R ϕ α r ω W =r ω+ α = β df dq 4. ábra. A forgószán lapelem-elmélete A 4. ábrából: dt = df cosβ df sinβ, dq = df cos β + df sin β. (9) 5
6 A forgószárn alatt az indukált sebesség mértékegség nélküli iszonított értékét a köetkező összefüggés segítségée határozhatjuk meg: ( r u) 4 u ϑ = +, (10) iszonított függőleges emelkedési sebesség (függési üzemmódban egenlő zérussal); r az adott lapelem iszonított sugara; u az indukált sebesség tangenciális összeteője. Az indukált sebesség tangenciális összeteőjét a forgószárn örénelméleténél alkalmazott Biot Saart összefüggés segítségéel tudjuk kiszámítani: u z d Γ l () r = I ( ρ, β) d ρ r d ρ z l a forgószárn lapátok száma; ρ iszonított sugár; Γ az r keresztmetszetben a mértékegség nélküli cirkuláció., (11) A (11) egenletben leírt integrál kiszámítására a [4,5] irodalmakban található megoldás. A forgószárn által megfúott sárkánszerkezet miatti onoerőcsökkenés konkrét számítására a [7, 8] irodalmakban találunk példát. Alapul eg KT-11 tipusú helikoptert ettek, 900 kg. felszálló tömeggel. A sárkánszerkezetet az 5. ábra szerint modellezték. A gakorlati számítások alapján [6] lehetőség adódott eg empirikus képlet felállítására, amel segítségéel a sárkánszerkezet megfúása miatti forgószárn-onóerő eszteség számítható. T = δ 1 (1) Ahol: δ gakorlati ténező, amel figelembe eszi a helikopter függésekor a onóerő csökkenést amiatt, hog a sárkánszerkezet megfúásba kerül a forgószárn által.; Eg háromlapátos forgószárnat ée, amel σ = 0,04475 kitöltési ténezőel rendelkezik, a az előbbi ténező értéke δ = 1,09, azaz a forgószárn iszonított onóerő esztesége,9%. 6
7 A helikopter sárkánszerkezetének etülete a ízszintes síkra - 1,0-0, 8-0,6-0,4-0, 0,0 0, 0,4 0,6 0,8 r -0,05-0,05-0,075 V ind., m/sec - A forgószárn indukált sebessége -A sárkánszerkezet körüláramlási sebessége 5. ábra. A KT11 helikopter számítási rajza és a tengeliránú sebességeloszlás 6. ábra. A KT11 helikopter 7
8 FELHASZNÁLT IRODALOM [1] FAIL R.A and Ere R.C.W., Downwash measurements behind a 1-ft diameter helicopter rotor in int he 4-ft wind tunnel// R & M, N. 810 [] ПЕЙН П.Р. Динамика и аэродинамика вертолета. - М.: Оборонгиз, с. [3] ВИЛЬДГРУБЕ Л.С. Вертолеты. Расчет интегральных аэродинамических характеристик и летно-технических данных. - М.: Машиностроение, с. [4] МАЙКОПАР Г.И., Лепелкин А.М., Халезов Д.В. Аэродинамический расчет винтов по лопастной теории// Труды ЦАГИ.- М.: ЦАГИ, Вып.59. -С [5] КОВАЛЕВ Е. Д., Удовенко В.А. Расчет аэродинамических характеристик воздушных винтов численными методами// Авиация общего назначения. - X.: НАКУ "ХАИ", С [6] СПЕРАНСКИЙ С.Д. Взаимное влияние несущего винта и фюзеляжа одновинтового вертолета на режиме висения// Технические отчеты ЦАГИ. - М.: ЦАГИ, Вып С [7] ДЖОГАН О.В. "Ангел"- изделие 11// Авиация общего назначения. - X.: НАКУ "ХАИ", С [8] НАЗАРЕНКО А.И. В Украине "Ангелы" летают// Авиация общего назначения. - X.: НАКУ "ХАИ", С DECREASE OF HELICOPTER ROTOR THRUST CAUSED BY THE ROTOR GENERATED AIRFLOW AROUND THE AIRFRAME Hoer and ertical ascend is important mode of helicopter fling. At the aerodnamic calculations the parasite drag of airframe is usuall not taken into consideration although it can be as much as 10 % of the maimum take-off load. Elements of airframe structure, touched b rotor downwind from the induced elocit, hae aerodnamic drag. In this paper the author deal with the calculation of aboe mentioned drag using the blade element theor to calculate the rotor thrust. 8
A MULTIMÉDIA ALKALMAZÁSA AZ AERODINAMIKA ÉS REPÜLÉSMECHANIKA TANTÁRGYAK OKTATÁSÁBAN
A MULTIMÉDIA ALKALMAZÁSA AZ AERODINAMIKA ÉS REPÜLÉSMECHANIKA TANTÁRGYAK OKTATÁSÁBAN Békési László Zrínyi Miklós Nemzetvédelmi Egyetem Bolyai János Katonai Műszaki Főiskolai Kar Repülőgép sárkány-hajtómű
Szabadsugár. A fenti feltételekkel a folyadék áramlását leíró mozgásegyenlet és a kontinuitási egyenlet az alábbi egyszerű alakú: (1) .
Szabadsugár Tekintsük az alábbi ábrán látható b magasságú résből kiáramló U sebességű sugarat. A résből kiáramló és a függőleges fal melletti térben lévő foladék azonos. A rajz síkjára merőleges iránban
Gyakorló feladatok a 2. zárthelyihez. Kidolgozott feladatok
Gakorló feladatok a. zárthelihez Kidolgozott feladatok. a) Határozzuk meg a függesztőrúd négzetkeresztmetszetének a oldalhosszát cm-re kerekítve úg, hog a függesztőrúdban ébredő normálfeszültség ne érje
Tételjegyzék Áramlástan, MMF3A5G-N, es tanév, őszi félév, gépészmérnöki szak, nappali tagozat
Tételjegyzék Áramlástan, MMF3A5G-N, 006 007-es tané, őszi félé, géészmérnöki szak, naali tagozat. A folyaékok és gázok jellemzése: nyomás, sűrűség, fajtérfogat. Az ieális folyaék.. A hirosztatikai nyomás.
Statika gyakorló teszt I.
Statika gakorló teszt I. Készítette: Gönczi Dávid Témakörök: (I) közös ponton támadó erőrendszerek síkbeli és térbeli feladatai (1.1-1.6) (II) merev testre ható síkbeli és térbeli erőrendszerek (1.7-1.13)
AZ EGY-FORGÓSZÁRNYAS FAROK-LÉGCSAVAROS HELIKOPTEREK IRÁNYÍTHATATLAN FORGÁSA FÜGGÉSKOR, AZ ELFORDULÁS SZÖGSEBESSÉGÉNEK HATÁRÉRTÉKEI BEVEZETÉS
Dr. Békési László 1 AZ EGY-FORGÓSZÁRNYAS FAROK-LÉGCSAVAROS HELIKOPTEREK IRÁNYÍTHATATLAN FORGÁSA FÜGGÉSKOR, AZ ELFORDULÁS SZÖGSEBESSÉGÉNEK HATÁRÉRTÉKEI BEVEZETÉS Az egy-forgószárnyas farok-légcsavaros helikopterek
László István, Fizika A2 (Budapest, 2013) Előadás
László István, Fizika A (Budapest, 13) 1 14.A Maxwell-egenletek. Az elektromágneses hullámok Tartalmi kiemelés 1.Maxwell általánosította Ampère törvénét bevezetve az eltolási áramot. szerint ha a térben
Kétváltozós függvények ábrázolása síkmetszetek képzése által
Kétváltozós függvének ábrázolása síkmetszetek képzése által ) Ábrázoljuk a z + felületet! Az [,] síkkal párhuzamos síkokkal z c) képzett metszetek körök: + c, tehát a felület z tengelű forgásfelület; Az
Y 10. S x. 1. ábra. A rúd keresztmetszete.
zilárdságtan mintafeladatok: tehetetlenségi tenzor meghatározása, a tehetetlenségi tenzor főtengelproblémájának megoldása két mintafeladaton keresztül Először is oldjuk meg a gakorlatokon is elhangzott
Mechanika. II. előadás március 4. Mechanika II. előadás március 4. 1 / 31
Mechanika II. előadás 219. március 4. Mechanika II. előadás 219. március 4. 1 / 31 4. Merev test megtámasztásai, statikai feladatok megtámasztás: testek érintkezése útján jön létre, az érintkezés során
Határérték. Wettl Ferenc el adása alapján és Wettl Ferenc el adása alapján Határérték és
2015.09.28. és 2015.09.30. 2015.09.28. és 2015.09.30. 1 / Tartalom 1 A valós függvén fogalma 2 A határérték fogalma a végtelenben véges pontban Végtelen határértékek 3 A határértékek kiszámítása A rend
MEREVSZÁRNYÚ REPÜLŐGÉPEK VEZÉRSÍK-RENDSZEREINEK KIALAKÍTÁSA 3 REPÜLŐKÉPESSÉG
Dr. Óvári Gula 1 - Dr. Urbán István 2 MEREVSZÁRNYÚ REPÜLŐGÉPEK VEZÉRSÍK-RENDSZEREINEK KILKÍTÁS 3 cikk(soroatban)ben a merev sárnú repülőgépek veérsík rendserinek terveését és építését követheti nomon lépésről
Matematika OKTV I. kategória 2017/2018 második forduló szakgimnázium-szakközépiskola
O k t a t á s i H i v a t a l A 017/018. tanévi Országos Középiskolai Tanulmáni Versen második forduló MATEMATIKA I. KATEGÓRIA (SZAKGIMNÁZIUM, SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató 1. Adja meg
Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)
3. Gyakorlat 29A-34 Egy C kapacitású kondenzátort R ellenálláson keresztül sütünk ki. Mennyi idő alatt csökken a kondenzátor töltése a kezdeti érték 1/e 2 ed részére? Kirchhoff 2. törvénye (huroktörvény)
SZÁMÍTÁSI FELADATOK I.
SZÁMÍTÁSI FELADATOK I. A feladatokat figyelmesen olvassa el! A válaszokat a feladatban előírt módon adja meg! A számítást igénylő feladatoknál minden esetben először írja fel a megfelelő összefüggést (képletet),
Felületi feszültség: cseppfolyós-gáz határfelületen a vonzerő kiegyensúlyozatlan: rugalmas hártyaként viselkedik.
Felületi feszültség: cseppfolyós-gáz határfelületen a vonzerő kiegyensúlyozatlan: rugalmas hártyaként viselkedik. Mérése: L huzalkeret folyadékhártya mozgatható huzal F F = L σ két oldala van a hártyának
MAGYARÁZAT A MATEMATIKA NULLADIK ZÁRTHELYI MINTAFELADATSOR FELADATAIHOZ 2010.
MAGYARÁZAT A MATEMATIKA NULLADIK ZÁRTHELYI MINTAFELADATSOR FELADATAIHOZ 00.. Tetszőleges, nem negatív szám esetén, Göktelenítsük a nevezőt: (B). Menni a 0 kifejezés értéke? (D) 0 0 0 0 0000 400 0. 5 Felhasznált
A MIG-15 REPÜLŐGÉP GEOMETRIAI, REPÜLÉSI ÉS AERODINAMIKAI JELLEMZŐI BEVEZETÉS ÁLTALÁNOS JELLEMZÉS
Dr. Békési László A MIG-15 REPÜLŐGÉP GEOMETRIAI, REPÜLÉSI ÉS AERODINAMIKAI JELLEMZŐI BEVEZETÉS A Véget ért a MIG-korszak a konferencia címéhez kapcsolódva a Magyarországon elsőként repült és gázturbinás
A kardáncsukló tengelyei szögelfordulása közötti összefüggés ábrázolása. Az 1. ábrán mutatjuk be a végeredményt, egy körülfordulásra.
A kardáncsukló tengelei szögelfordulása közötti összefüggés ábrázolása Az 1. ábrán mutatjuk be a végeredmént, eg körülfordulásra. 3 330 270 2 210 1 150 A kardáncsukló hajtott tengelének szögelfordulása
a.) b.) c.) d.) e.) össz. 4 pont 2 pont 4 pont 2 pont 3 pont 15 pont
1. Az alábbi feladatok egszerűek, akár fejben is kiszámíthatóak, de a piszkozatpapíron is gondolkodhat. A megoldásokat azonban erre a papírra írja! a.) A 2x 2 5x 3 0 egenlet megoldása nélkül határozza
JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika emelt szint 051 ÉRETTSÉGI VIZSGA 005.október 5. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot
4. MECHANIKA-MECHANIZMUSOK ELŐADÁS (kidolgozta: Szüle Veronika, egy. ts.)
SZÉHNYI ISTVÁN YTM LKLMZOTT MHNIK TNSZÉK. MHNIK-MHNIZMUSOK LŐÁS (kidolgozta: Szüle Veronika, egy. ts.) yalugép sebességábrája: F. ábra: yalugép kulisszás mechanizmusának onalas ázlata dott: az ábrán látható
7. Kétváltozós függvények
Matematika segédanag 7. Kétváltozós függvének 7.. Alapfogalmak Az A és B halmazok A B-vel jelölt Descartes-szorzatán azt a halmazt értjük, melnek elemei mindazon a, b) rendezett párok, amelekre a A és
HIDROSZTATIKA, HIDRODINAMIKA
HIDROSZTATIKA, HIDRODINAMIKA Hidrosztatika a nyugvó folyadékok fizikájával foglalkozik. Hidrodinamika az áramló folyadékok fizikájával foglalkozik. Folyadékmodell Önálló alakkal nem rendelkeznek. Térfogatuk
Diszkrét Matematika. zöld könyv ): XIII. fejezet: 1583, 1587, 1588, 1590, Matematikai feladatgyűjtemény II. (
FELADATOK A LEKÉPEZÉSEK, PERMUTÁCIÓK TÉMAKÖRHÖZ Diszkrét Matematika 4. LEKÉPEZÉSEK Értelmezési tartomány és értékkészlet meghatározása : Összefoglaló feladatgyűjtemény matematikából ( zöld könyv ): XIII.
A statika és dinamika alapjai 11,0
FA Házi feladatok (A. gakorlat) Adottak az alábbi vektorok: a=[ 2,0 6,0,2] [ 5,2,b= 8,5 3,9] [ 4,2,c= 0,9 4,8] [,0 ],d= 3,0 5,2 Számítsa ki az alábbi vektorokat! e=a+b+d, f =b+c d Számítsa ki az e f vektort
Tájékoztató. Értékelés Összesen: 60 pont
A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
3. MÉRETEZÉS, ELLENŐRZÉS STATIKUS TERHELÉS ESETÉN
ÉRETEZÉS ELLENŐRZÉS STATIUS TERHELÉS ESETÉN A méreteés ellenőrés célkitűése: Annak elérése hog a serkeet rendeltetésserű hasnálat esetén előírt ideig és előírt bitonsággal elviselje a adott terhelést anélkül
ACÉLSZERKEZETÛ TERMÉNYTÁROLÓ SILÓK MÉRETEZÉSE
ÉPÍTÉSÜGY ÁGAZAT MÛSZAK RÁNYELV M 04.84 78 ACÉLSZERKEZETÛ TERMÉNYTÁROLÓ SLÓK MÉRETEZÉSE ÉPÍTÉSÜGY TÁJÉKOZATÁS KÖZPONT BUDAPEST, 978 Készült az ÉVM Mûszaki Fejlesztési Fõosztál megbízásából Kidolgozta DR.
Kettős és többes integrálok
Kettős és többes integrálok ) f,) + + kettős integrálja az, tartománon Megoldás: + + dd 6 + 6 + 8 + 9 + ] + + ] d 8 + 8 + ) f,) sin + ) integrálja a, tartománon Megoldás: ] d + 9 + d + + 68 8 7,5 + sin
FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Fizika közészint ÉRETTSÉGI VIZSGA 0. május 7. FIZIKA KÖZÉPSZITŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMZETI ERŐFORRÁS MIISZTÉRIUM A dolgozatokat az útmutató utasításai szerint, jól köethetően
Propeller és axiális keverő működési elve
Propeller és axiális keverő működési elve A propeller egy axiális átömlésű járókerék, amit tolóerő létesítésére használnak repülőgépek, hajók hajtására. A propeller nyugvó folyadékban halad előre, a propellerhez
Hidraulika. 1.előadás A hidraulika alapjai. Szilágyi Attila, NYE, 2018.
Hidraulika 1.előadás A hidraulika alapjai Szilágyi Attila, NYE, 018. Folyadékok mechanikája Ideális folyadék: homogén, súrlódásmentes, kitölti a rendelkezésre álló teret, nincs nyírófeszültség. Folyadékok
Fa rudak forgatása II.
Fa rudak forgatása II. Dolgozatunk I. részében egy speciális esetre oldottuk meg a kitűzött feladatokat. Most egy általánosabb elrendezés vizsgálatát végezzük el. A számítás a korábbi úton halad, ügyelve
A 2007/2008. tanévi Országos Középiskolai Tanulmányi Verseny második fordulójának feladatai és megoldásai fizikából
Oktatási Hiatal A 7/8 tanéi Országos Középiskolai Tanulmányi Verseny második fordulójának feladatai és megoldásai fizikából I kategória A dolgozatok elkészítéséhez minden segédeszköz használható Megoldandó
Egy szép és jó ábra csodákra képes. Az alábbi 1. ábrát [ 1 ] - ben találtuk; talán már máskor is hivatkoztunk rá.
Egy szép és jó ábr csodákr képes Az lábbi. ábrát [ ] - ben tláltuk; tlán már máskor is hivtkoztunk rá.. ábr Az különlegessége, hogy vlki nem volt rest megcsinál(tt)ni, még h sok is volt vele munk. Ennek
HÍDTARTÓK ELLENÁLLÁSTÉNYEZŐJE
HÍDTARTÓK ELLENÁLLÁSTÉNYEZŐJE Csécs Ákos * - Dr. Lajos Tamás ** RÖVID KIVONAT A Budapesti Műszaki és Gazdaságtudományi Egyetem Hidak és Szerkezetek Tanszéke megbízta a BME Áramlástan Tanszékét az M8-as
KOAXIÁLIS ROTOROK AERODINAMIKAI ÉS DINAMIKAI MODELLEZÉSE A MODELL
KOAXIÁLIS ROTOROK AERODINAMIKAI ÉS DINAMIKAI MODELLEZÉSE Célkitűzésem, hogy létrehozzak egy aerodinamikai-dinamikai-aeroelasztikus viselkedés leírására alkalmas műszaki-matematikai-modellt, mely tetszőleges,
GBN304G Alkalmazott kartográfia II. gyakorlat
GBN304G Alkalmazott kartográfia II. gyakorlat TEREPI FELMÉRÉSI FELADATOK Unger János unger@geo.u @geo.u-szeged.hu www.sci.u-szeged.hu/eghajlattan szeged.hu/eghajlattan Földtudományi BSc (Geográfus, Földrajz
Statika gyakorló teszt II.
Statika gakorló teszt II. Készítette: Gönczi Dávid Témakörök: (I) Egszerű szerkezetek síkbeli statikai feladatai (II) Megoszló terhelésekkel kapcsolatos számítások (III) Összetett szerkezetek síkbeli statikai
Országos Középiskolai Tanulmányi Verseny 2012/2013 Matematika I. kategória (SZAKKÖZÉPISKOLA) Döntő Megoldások
Országos Középiskolai Tanulmáni Versen / Matematika I kategória (SZAKKÖZÉPISKOLA) Döntő Megoldások Eg papírlapra felírtuk a pozitív egész számokat n -től n -ig Azt vettük észre hog a felírt páros számok
0,00 0,01 0,02 0,03 0,04 0,05 0,06 Q
1. Az ábrában látható kapcsolási vázlat szerinti berendezés két üzemállapotban működhet. A maximális vízszint esetében a T jelű tolózár nyitott helyzetben van, míg a minimális vízszint esetén az automatikus
Fizika 1 Elektrodinamika beugró/kis kérdések
Fizika 1 Elektrodinamika beugró/kis kérdések 1.) Írja fel a 4 Maxwell-egyenletet lokális (differenciális) alakban! rot = j+ D rot = B div B=0 div D=ρ : elektromos térerősség : mágneses térerősség D : elektromos
Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)
2. Gyakorlat 30B-14 Az Egyenlítőnél, a földfelszín közelében a mágneses fluxussűrűség iránya északi, nagysága kb. 50µ T,az elektromos térerősség iránya lefelé mutat, nagysága; kb. 100 N/C. Számítsuk ki,
Vontatás III. A feladat
Vontatás III Ebben a részben ázoljuk a ontatási feladat egy lehetséges numerikus megoldási módját Ezt az I részben ismertetett alapegyenletre építjük fel Itt az egy ontatott kerékpár esetét izsgáljuk feladat
45. HÉT/ 1. foglalkozás 3 óra STABILITÁS
1/6 45. HÉT/ 1. foglalkozás 3 óra 081 04 00 00 STABILITÁS 081 04 01 00 Egyensúlyi feltételek stabilizált vízszintes repülésben 081 04 01 01 A statikus stabilitás előfeltételei 081 04 01 02 A nyomatékok
Az SI rendszer alapmennyiségei. Síkszög, térszög. Prefixumok. Mértékegységek átváltása.
Az SI rendszer alapmenniségei. Síkszög, térszög. Prefixumok. Mértékegségek átváltása. Fizika K1A zh1 anag 014 Adatok: fénsebesség, Föld sugara, Nap-Föld távolság, Föld-Hold távolság, a Föld és a Hold keringési
VASBETON LEMEZEK. Oktatási segédlet v1.0. Összeállította: Dr. Bódi István - Dr. Farkas György. Budapest, 2001. május hó
BUDAPEST MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Építőmérnöki Kar Hidak és Szerkezetek Tanszéke VASBETON LEMEZEK Oktatási segédlet v1.0 Összeállította: Dr. Bódi István - Dr. Farkas Görg Budapest, 001. május
Szökőkút - feladat. 1. ábra. A fotók forrása:
Szökőkút - feladat Nemrégen Gyulán jártunk, ahol sok szép szökőkutat láttunk. Az egyik különösen megtetszett, ezért elhatároztam, hogy megpróbálom elemi módon leírni a ízsugarak, illete az általuk leírt
A fő - másodrendű nyomatékok meghatározása feltételes szélsőérték - feladatként
A fő - másodrendű nomatékok meghatározása feltételes szélsőérték - feladatként A Keresztmetszeti jellemzők című mappa első lakója eg ritkábban látható levezetést mutat be amel talán segít helesen elrendezni
Keresztmetszet másodrendű nyomatékainak meghatározása
BUDAPEST MŰSZAK ÉS GAZDASÁGTUDOMÁNY EGYETEM Keresztmetszet másodrendű nyomatékainak meghatározása Segédlet a Szilárdságtan c tárgy házi feladatához Készítette: Lehotzky Dávid Budapest, 205 február 28 ábra
Elektromágneses hullámok
KÁLMÁN P.-TÓT.: ullámok/4 5 5..5. (kibőíe óraála) lekromágneses hullámok elekromágneses elenségek árgalásánál láuk, hog áloó mágneses erőér elekromos erőere (elekromágneses inukció), áloó elekromos erőér
1 2. Az anyagi pont kinematikája
1. Az anyagi pont kinematikája 1. Ha egy P anyagi pont egyenes vonalú mozgását az x = 1t +t) egyenlet írja le x a megtett út hossza m-ben), határozzuk meg a pont sebességét és gyorsulását az indulás utáni
18. előadás ÁLLANDÓ KÖLTSÉGEK ÉS A KÖLTSÉGGÖRBÉK
18. előadás ÁLLANDÓ KÖLTSÉGEK ÉS A KÖLTSÉGGÖRBÉK Kertesi Gábor Világi Balázs Varian 21. fejezete átdolgozva 18.1 Bevezető A vállalati technológiák sajátosságainak vizsgálatát eg igen fontos elemzési eszköz,
5. ROBOTOK IRÁNYÍTÓ RENDSZERE. 5.1. Robotok belső adatfeldolgozásának struktúrája
TARTALOM 5. ROBOTOK IRÁNYÍTÓ RENDSZERE... 7 5.. Robotok belső adatfeldolgozásának struktúrája... 7 5.. Koordináta transzformációk... 5... Forgatás... 5... R-P-Y szögek... 5... Homogén transzformációk...
5 j függvény írja le,
Fizika 1 Mechanika órai eladatok megoldása. hét /1. Eg tömegpont helektora az időtől a köetkezőképpen ügg: r(t) = (at+b) i + (at b) j + ( ct +4at+5b) k, ahol a = 3 m/s, b = 1 m, c = 5 m/s. a) Milen táol
ÁRAMLÁSTAN ALAPJAI. minimum tételek szóbeli vizsgához. Powered by Beecy
ÁRAMLÁSTAN ALAPJAI minimum tételek sóbeli isgáho Powered b Beec Minimum tételek sóbeli isgáho 1. tétel. Írja fel a foltonossági tétel integrál alakját, és magaráa el, milen fiikai alapelet feje ki. Hogan
10.3. A MÁSODFOKÚ EGYENLET
.. A MÁSODFOKÚ EGYENLET A másodfokú egenlet és függvén megoldások w9 a) ( ) + ; b) ( ) + ; c) ( + ) ; d) ( 6) ; e) ( + 8) 6; f) ( ) 9; g) (,),; h) ( +,),; i) ( ) + ; j) ( ) ; k) ( + ) + 7; l) ( ) + 9.
3. Lokális approximáció elve, végeselem diszkretizáció egydimenziós feladatra
SZÉCHENYI ISÁN EGYEEM AAMAZO MECHANIA ANSZÉ 6. MECHANIA-ÉGESEEM MÓDSZER EŐADÁS (kidolgozta: Szüle eronika, eg. ts.) I. előadás. okális aroimáció elve, végeselem diszkretizáció egdimenziós feladatra.. Csomóonti
Hőmérsékleti sugárzás
Ideális fekete test sugárzása Hőmérsékleti sugárzás Elméleti háttér Egy ideális fekete test leírható egy egyenletes hőmérsékletű falú üreggel. A fala nemcsak kibocsát, hanem el is nyel energiát, és spektrális
GYAKORLATI SZÁMÍTÁSI MÓDSZEREK A FORGÓSZÁRNYAK AERODINAMIKÁJÁBAN BEVEZETÉS
Gausz Zsanna - Gausz Tamás GYAKORLATI SZÁMÍTÁSI MÓSZEREK A FORGÓSZÁRNYAK AEROINAMIKÁJÁBAN A cikk a forgó szárnyak számításában elért, néhány, fontos, az impulzus tétel és a lapelem elmélet egyesítésére
Hatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3
Hatvani István fizikaverseny 016-17. 1. kategória 1..1.a) Két eltérő méretű golyó - azonos magasságból - ugyanakkora végsebességgel ér a talajra. Mert a földfelszín közelében minden szabadon eső test ugyanúgy
Gyakorló feladatok síkalakváltozás alkalmazására forgásszimmetrikus esetben térfogati terhelés nélkül és térfogati terheléssel.
Alkalmazások síkalakváltozásra: Gakorló feladatok síkalakváltozás alkalmazására forgásszimmetrikus esetben térfogati terhelés nélkül és térfogati terheléssel. SAF1. Az ábrán vázolt zárt vastagfal csövet
A differenciálegyenlet általános megoldása az összes megoldást tartalmazó halmaz.
Differenciálegenletek Bevezetés Differenciálegenletnek olan egenletet nevezünk, amelben az ismeretlen eg függvén és az egenlet tartalmazza az ismeretlen függvén (valahánad rendű) deriváltját. Például:
Az anyagi pont mozgástörvénye az x,y,z vonatkoztatási rendszerben
Mozgástörény összefüggései Az anyagi pont mozgástörénye az,y,z onatkoztatási rendszerben u w r = at i + bt j + ct k Határozzuk meg a pont pillanatnyi - helyzetét, sebességét és gyorsulását tetszőleges
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egyenletek, egyenletrendszerek
1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egenletek, egenletrendszerek A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
A bifiláris felfüggesztésű rúd mozgásáról
1 A bifiláris felfüggesztésű rúd mozgásáról A végein fonállal felfüggesztett egyenes rúd részleges erőtani vizsgálatát mutattuk be egy korábbi dolgozatunkban, melynek címe: Forgatónyomaték mérése - I.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egyenletek, egyenletrendszerek
1) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Egenletek, egenletrendszerek A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
4. feladat Géprajz-Gépelemek (GEGET224B) c. tárgyból a Műszaki Anyagtudományi Kar, nappali tagozatos hallgatói számára
4. feladat Géprajz-Gépelemek (GEGET4B) c. tárgyból a űszaki Anyagtudományi Kar, nappali tagozatos hallgatói számára TOKOS TENGELYKAPCSOLÓ méretezése és szerkesztése útmutató segítségével 1. Villamos motorról
MateFIZIKA: Pörgés, forgás, csavarodás (Vektorok és axiálvektorok a fizikában)
MateFIZIKA: Pörgés, forgás, csavarodás (Vektorok és axiálvektorok a fizikában) Tasnádi Tamás 1 2015. április 17. 1 BME, Mat. Int., Analízis Tsz. Tartalom Vektorok és axiálvektorok Forgómozgás, pörgettyűk
Geometriai adatok. réteghatárok magassági helyzete földkiemelési szintek geotechnikai szerkezet méretei
24. terepmagasság térszín hajlása vízszintek Geometriai adatok réteghatárok magassági helyzete földkiemelési szintek geotechnikai szerkezet méretei a d =a nom + a a: az egyes konkrét szerkezetekre vonatkozó
Acél tartószerkezetek
Acél tartószerkezetek laborvizsgálatok összefoglalója 217 szept 28 Az Acél tartószerkezetek tárg keretében laborvizsgálatokat végeztünk melek során a hallgatók tapasztalatokat szerezhettek az acélszerkezetek
Rönk mozgatása rámpán kötelekkel
Rönk mozgatása rámpán kötelekkel Az interneten találtuk az alábbi feladatot. ábra..3. Тяжелое бревно втягивают вверх по наклонной плоскости с помощью двух параллельных канатов, закрепленных, как указано
Felső végükön egymásra támaszkodó szarugerendák egyensúlya
1 Felső végükön egymásra támaszkodó szarugerendák egyensúlya Az [ 1 ] példatárban találtunk egy érdekes feladatot, melynek egy változatát vizsgáljuk meg itt. A feladat Ehhez tekintsük az 1. ábrát! 1. ábra
A REPÜLÉSELMÉLET TANTÁRGY MULTIMÉDIÁS FELDOLGOZÁSA A HAJÓZÓ ÉS MŰSZAKI HALLGATÓI ÁLLOMÁNY SZÁMÁRA
A REPÜLÉSELMÉLET TANTÁRGY MULTIMÉDIÁS FELDOLGOZÁSA A HAJÓZÓ ÉS MŰSZAKI HALLGATÓI ÁLLOMÁNY SZÁMÁRA A MH Légierő Parancsnokság Repülő Felkészítő Osztály felügyeli a kanadai hajózó kiképzésre kijelölt hívatásos
alkalmazott hő-h szimuláci
Buderus Rosenberg sakmai napok Visegrád, 008.május.6-7. A légtechnikai l fejlestések sek során alkalmaott hő-h és áramlástani simuláci ciós s eljárások Sekeres GáborG Okl.gépésmérnök Beeetés Numerikus
Egy mozgástani feladat
1 Egy mozgástani feladat Előző dolgozatunk melynek jele és címe: ED ~ Ismét az ellipszis egyenleteiről folytatásának tekinthető ez az írás. Leválasztottuk róla, mert bár szorosan kapcsolódnak, más a céljuk.
1. Feladatok a dinamika tárgyköréből
1. Feladatok a dinamika tárgyköréből Newton három törvénye 1.1. Feladat: Három azonos m tömegű gyöngyszemet fonálra fűzünk, egymástól kis távolságokban a fonálhoz rögzítünk, és az elhanyagolható tömegű
BI/1 feladat megoldása Meghatározzuk a hőátbocsátási tényezőt 3 különböző szigetelés vastagság (0, 3 és 6 cm) mellett.
BI/1 feladat megoldása Meghatározzuk a hőátbocsátási tényezőt 3 különböző szigetelés vastagság (0, 3 és 6 cm) mellett. 1 1 2 U6 cm = = = 0,4387 W/ m K 1 d 1 1 0,015 0,06 0,3 0,015 1 + + + + + + + α λ α
Mérnöki alapok 2. előadás
Mérnöki alapok. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
Hatvani István fizikaverseny forduló megoldások. 1. kategória a) A méz sűrűségét a víztartalma és a hőmérséklete befolyásolja.
1. kategória 1.2.1. a) A méz sűrűségét a íztartalma és a hőmérséklete befolyásolja. b) A méz sűrűsége 20 %-os íztartalom mellett. 1.2.2. Adatok: I. A hatszög alapú hasáb térfogata: A nektár tömege: A méhsejtbe
A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA II. KATEGÓRIA. Javítási-értékelési útmutató
Oktatási Hiatal A 215/216. tanéi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA II. KATEGÓRIA Jaítási-értékelési útmutató 1. feladat. Az ábrán látható ék tömege M = 3 kg, a rá helyezett
hajlító nyomaték és a T nyíróerő között ugyanolyan összefüggés van, mint az egyenes rudaknál.
5 RÚDELADATOK 51 íkgörbe rudk Grhof 1 -féle elmélete íkgörbe rúd: rúd köépvonl ( ponti ál) íkgörbe e P n e t Jelöléek: A köépvonl mentén pontokt ívkoordinátávl onoítjuk Pl P pont A P pontbn (P pontho trtoó
Cél: elsőrendű feladatukat ellássák (védelem a természeti hatások ellen) erőhatásokat biztonsággal viseljék gazdaságosak legenek Eges szerk. elemek an
MECHNIK I. /Statika/ 1. előadás SZIE-YMM 1. Bevezetés épületek, építmének fizikai hatások, köztük erőhatások részleges vag teljes tönkremenetel használhatatlanná válás anagi kár, emberáldozat 1 Cél: elsőrendű
Cikloisgörbék ábrázolása. Az ábrázoló program számára el kell készítenünk az ábrázolandó függvényt. Ehhez tekintsük az 1. ábrát is!
Cikloisgörbék ábrázolása Bevezetés A forgó főmozgású szerszám ( pl. galukés, marószerszám ) élének pontjai rendszerint hurkolt cikloisgörbéket írnak le, a munkadarabhoz képest. Ez eg igen fontos tén, mert
LÉGCSAVAROK AERODINAMIKAI SZÁMÍTÁSÁNAK GYAKORLATI MÓDSZEREI
LÉGCSAVAROK AEROINAMIKAI SZÁMÍTÁSÁNAK GYAKORLATI MÓSZEREI 1. BEVEZETÉS r. Gausz Tamás r. Gausz Zsanna BME Repülgépek és Hajók tanszék Ez a cikk a légcsavarok impulzus és lapelem elmélet valamint az örvény-elmélet
Kalkulus II., harmadik házi feladat
Név: Neptun: Web: http://mawell.sze.hu/~ungert Kalkulus II., harmadik házi feladat.,5 pont) Határozzuk meg a következ határértékeket: ahol a) A =, ), b) A =, ), c) A =, ).,) A Az egszer bb kezelhet ség
10. OPTIMÁLÁSI LEHETŐSÉGEK A MŰVELET-ELEMEK TERVEZÉSEKOR
10. OPIMÁLÁSI LEHEŐSÉGEK A MŰVELE-ELEMEK ERVEZÉSEKOR A technológiai terezés ezen szintén a fő feladatok a köetkezők: a forgácsolási paraméterek meghatározása, a szerszám mozgásciklusok (üresárati, munkautak)
2. mérés Áramlási veszteségek mérése
. mérés Áramlási veszteségek mérése A mérésről készült rövid videó az itt látható QR-kód segítségével: vagy az alábbi linken érhető el: http://www.uni-miskolc.hu/gepelemek/tantargyaink/00b_gepeszmernoki_alapismeretek/.meres.mp4
Egyszabadságfokú grejesztett csillapított lengõrendszer vizsgálata
Egyszabadságfokú grejesztett csillapított lengõrendszer vizsgálata Referencia egyenlet x D Α x Α x x 0 Α sin Ω t req t,t x t D Α t x t Α x t x 0 Α Sin Ω t Α x t D Α x t x t Α Sin t Ω x 0 Homogén rész megoldása
10. KINEMATIKA, KINETIKA
KINEMTIK, KINETIK Kinematika: z anagi pontok és a merev testek mozgásának leírása Kinetika: z anagi pontokra és a merev testekre ható erők, nomatékok és a mozgás kapcsolatának tisztázása mozgás okainak
Teljes függvényvizsgálat példafeladatok
Teljes függvénvizsgálat példafeladatok Végezz teljes függvénvizsgálatot az alábbi függvéneken! Az esetenként vázlatos megoldásokat a következő oldalakon találod, de javaslom, hog először önállóan láss
2. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnök tanár) Erők eredője, fölbontása
SZÉCHENYI ISTVÁN EGYETEM LKLMZOTT MECHNIK TNSZÉK. MECHNIK-STTIK GYKORLT (kidolgozt: Triesz Péter, eg. ts.; Trni Gábor, mérnök tnár) Erők eredője, fölbontás.1. Péld dott eg erő és eg egenes irán-egségvektor:
Á É Á É Ü É é í ü ü ü é é ö é é é é ö é ó ó é é í ó é é é é ü é ó ó éó ó ó é é é é é é é í ó Ü ö ö ű é ű í é ó é ó é ü é í ü é ü ü é é í ö ö é ü é í ü ü é é é ü ö é ó ó ö í ó é é ü ö é ö í é é é é ü é
Acélszerkezetek tervezése tűzhatásra Analízis és méretezés
Előadás /6 2015. március 11., szerda, 9 50-11 30, B-2 terem Acélszerkezetek tervezése tűzhatásra Analízis és méretezés Detroit Marseille előadó: Dr. habil Papp Ferenc eg. docens Szabvánok MSZ EN 1990:2005
3.1. ábra ábra
3. Gyakorlat 28C-41 A 28-15 ábrán két, azonos anyagból gyártott ellenállás látható. A véglapokat vezető 3.1. ábra. 28-15 ábra réteggel vonták be. Tételezzük fel, hogy az ellenállások belsejében az áramsűrűség
Adatok: fénysebesség, Föld sugara, Nap Föld távolság, Föld Hold távolság, a Föld és a Hold keringési és forgási ideje.
FOGALMAK, DEFINÍCIÓK Az SI rendszer alapmenniségei. Síkszög, térszög. Prefixumok. Adatok: fénsebesség, Föld sugara, Nap Föld távolság, Föld Hold távolság, a Föld és a Hold keringési és forgási ideje. Fogalmak,
1. fejezet. Gyakorlat C-41
1. fejezet Gyakorlat 3 1.1. 28C-41 A 1.1 ábrán két, azonos anyagból gyártott ellenállás látható. A véglapokat vezető réteggel vonták be. Tételezzük fel, hogy az ellenállások belsejében az áramsűrűség bármely,
Szakács Jenő Megyei Fizika Verseny, az I. forduló feladatainak megoldása 1
Szakác enő Megyei Fizika Vereny, az I. forduló feladatainak megoldáa. t perc, az A fiú ebeége, a B fiú ebeége, b 6 a buz ebeége. t? A rajz alapján: t + t + b t t t + t + 6 t t 7 t t t 7t 4 perc. Így A
Oktatási Hivatal FIZIKA I. KATEGÓRIA. A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FELADATOK
Oktatási Hivatal A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló FIZIKA I. KATEGÓRIA FELADATOK Bimetal motor tulajdonságainak vizsgálata A mérőberendezés leírása: A vizsgálandó