Összetett hálózatok vizsgálata
|
|
- Fanni Patakiné
- 8 évvel ezelőtt
- Látták:
Átírás
1 Összetett hálózato vizsgálata az Internet és a csomagfügg ségi hálózat példáján Horváth Árpád <horvath.arpad@are.uni-obuda.hu> 013. április 18. Összetett hálózato Nagyobb gráfo összetett tulajdonságoal. csúcs él 5 foszámú csúcs csomópont (nagy foszám) Összetett hálózato (complex networs) Hálózato gráfo, vagy azo id ben változó sorozata Összetett hálózato: szerezetü nem írható le egyszer en. Átmér Útvonal hossza, a benne szerepl éle száma. Az út hossza. Két csúcs távolsága: a özöttü vezet legrövidebb út hossza. d(1, 3) = mert van özöttü három hosszúságú út, de rövidebb nincsen Deníció Hálózat átmér je Példá hálózatora hálózat csúcso él van ha... ir. ismeretségi h. személye találozta Világháló weboldala van öztü lin Internet routere van vezeté özöttü cie h. cie hivatozi a másira fehérjeh. fehérjé özös ölcsönhatásban részt veszne szava h. szava ha szerepelne együtt a szinonímaszótárban színésze h. színésze szerepelte özös lmben 1
2 Határozzu meg az összes csúcspár esetén a öztü lév távolságot. Ezene a távolságona a maximuma a hálózat átmér je. D = max d(i, j) i j Átmér D 1 =. Bármelyi ett távolsága legfeljebb 4, és az alsó és fels özött pontosan annyi. 1. A foszámeloszlás D =. Bármelyi ett özött mehetün a özépen lév n eresztül ett hosszúságún, de egy hosszúságú út nincsen például az alsó és a fels özött. A foszám 1. deníció. A hálózat egy csúcsána foszáma (degree) alatt a hozzá csatlaozó éle számát értem. Ha nem engede meg többszörös éleet és a iinduló csúcsba visszatér huroéleet, aor ez a szomszédo számát is megadja. Irányított hálózato esetén ülön értelmezhetün befoszámot (a nyila hegyét számolju meg), és ifoszámot a nyila ezd pontját számolju meg be,7 = i,7 = 7 = Kapcsolat a hálózato alapvet tulajdonságai özött Az élene ép végpontja van, tehát minden egyes él ett csúcs foszámát növeli meg. Az átlagos foszám: Be-foszám esetén az átlagos foszám: Ki-foszám esetén szintén. Példá = M N be = M N
3 Meora az ábrán látható hálózatban az átlagfoszám, az átlagos ifoszám és az átlagos befoszám, a maximális és minimális foszám, 3 4 a maximális befoszám és maximális ifoszám? 1.1. Hálózatmodelle és foszámeloszlásu Erd s Pál és Rényi Alfréd Véletlen hálózato Véletlen hálózato Erd s Pál és Rényi Alfréd vizsgálta 1959-t l. Véletlen hálózatonál adott egy N csúcsszám és egy p valószín ség. Végigmegye az összes csúcspáron és p valószín séggel élt húzo özéjü. Éle száma és átlagfoszám a véletlen hálózatoban Ha a hálózat teljes hálózat lenne, benne M teljes = N(N 1) él lenne. (Minden csúcsból N 1 él, de aor mindet étszer számoltam.) Éle várható száma a véletlen hálózatban: E(M v ) = p N(N 1) p N ha N nagy 3
4 Az átlagfoszám várható értée: E( ) = p(n 1) p N ha N nagy Az utóbbi összefüggés étféleéppen is származtatható. Az egyszer bb módszer, hogy megnézzü hány él futhatna i maximálisan egy csúcsból: ha teljes lenne a hálózat, aor egy csúcs az összes többi N 1 csúccsal össze lenne ötve. Ha p valószín séggel választju i az éleet, aor nyilván p(n 1) fog eze özül létezni átlagosan, így az átlagfoszám ennyi lesz. A mási lehet ség, ha az átlagfoszám iszámításána = M/N épletébe behelyettesítem a várható értéét az éle számána a véletlen hálózatban. A foszámeloszlás. deníció. A p() foszámeloszlás (degree distribution) egy olyan függvény, amely az egyes foszámohoz hozzárendeli anna a valószín ségét, hogy egy véletlenszer en iválasztott csúcs foszámú, azaz p() = P rob(véletlen csúcs foszáma = ) Példá Megoldás a végén. Az ábrán látható hálózat foszámeloszlása: N p() Két hálózatmodell eloszlása (darabszám) Két eltérő modellből származó hálózat foszámeloszlása Barabási-Albert modell (m=3) Erdős-Rényi modell (p=0,006) p() valószínűség csúcso száma átlagos foszám b foszám 4
5 A valódi hálózatonál általában nem az Erd srényi modell foszámeloszlását tapasztaltá. Az eloszlás fontos lehet a hálózaton történ folyamato (vírusterjedés, meghibásodás, célzott támadás, híre terjedése) és hatásai szempontjából. Vajon hogyan jön létre egy hálózat? A hálózato ialaulása 1. A hálózat növeszi.. Népszer ségi csatlaozás: a nagyobb foszámú csúcshoz nagyobb valószín séggel csatlaozna. A BarabásiAlbert modell szerint egy tetsz leges ezd hálózatból indulun i. Minden lépésben egy új csúcs eletezi, és adott m számú éllel apcsolódi a régi csúcsohoz. A apcsolódás valószín sége arányos a foszámmal. Barabási Albert-László, a Behálózva cím önyve és Albert Réa Az éle száma a BA-modellben A BarabásiAlbert-modellben az éle száma minden lépésben m-mel növeszi. Ha ezdetben N 0 csúcs volt, és M 0 él, aor N N 0 lépést ellett végrehajtani, amiben (N N 0 )m él jött létre, tehát az éle száma M = M 0 + (N N 0 )m Ha a végén a csúcso száma jóval nagyobb, mint ezdetben, aor jó özelít értéet aphatun az épletb l. M m N Tehát az átlagos foszám = M N m Ez nem meglep, hiszen minden lépésben m élvég jön létre. 5
6 1.. Az összegzett foszámeloszlás Az összegzett foszámeloszlás 3. deníció. A P () összegzett foszámeloszlás (cumulative degree distribution) egy olyan függvény, amely az egyes foszámohoz hozzárendeli anna a valószín ségét, hogy egy véletlenszer en iválasztott csúcs foszáma nagyobb vagy egyenl mint, azaz Kevésbé ugrál nagy foszámonál. P () = P rob(véletlen csúcs foszáma ) Ha az eredeti p() hatványfüggvény, aor a P () is az lesz. A itev eggyel isebb abszolútérté lesz. A hatványfüggvény étszer logaritmius sálán egyenes. Néhány hálózat összegzett foszámeloszlása (a) matematiai együttmûödése (b) hivatozáso (c) World Wide Web (d) Internet (e) eletromos hálózat Az el z oldalon a övetez szerepelne. Matematiuso együttm ödése (özös cie), cie hivatozásai, Világháló, Internet, eletromos hálózat, fehérjeölcsönhatáso. A fentie özül csa az eletromos hálózat nem sálafüggetlen. (Lineáris sála a vizszintes tengelyen.) Sálafüggetlen hálózato (f) fehérje ölcsönhatáso 4. deníció. Sálafüggetlen hálózatona nevezzü azoat a hálózatoat, melyene a foszámeloszlása hatványfüggvényt övet nagy foszámo esetén: p() γ P () (γ 1) A hatványfüggvényre igaz egyedül: f(c 1 x) = c f(x) c 1, c R 6
7 Ellenállóépesség 1. Véletlen meghibásodás: Ha véletlenszer en vesze el csúcsoat (pl. az Internet routereine véletlen meghibásodása) a sálafüggetlen hálózato soáig egyben maradna, nem esne szét omponenseere, például az Internet érzéetlen a véletlen routermeghibásodásoal szemben. A véletlen hálózato hamarabb esne szét.. Célzott támadás: Ha célzottan a legnagyobb foszámú csúcsoat törlöm i a sálafüggetlen hálózat hamar és rövid id alatt esi szét nagyon icsi darabora. A véletlen hálózato tovább egyben maradna. Egyi hatással szemben az egyi, másial szemben a mási ellenállóbb. Egyi sem töéletes.. Ubuntu szoftvercsomagjai omponense Az Ubuntu szoftvercsomagjai Az Ubuntu a GNU/Linux operációs rendszer egyi disztribúciója A Debianból származó deb szoftvercsomagoat használ A deb fájlo optiai diszr l vagy Internetes tárolóból érhet e el. Legtöbb csomag másiatól függ, tehát irányított hálózatot alotna. apt csomagezel rendszer: telepítés függ ségeel együtt, eltávolítás, frissítés, eresés A csomagfügg ségi hálózat egy részlete vim-latexsuite vim-vimoutliner vim vim-common python.5 vim-runtime libgpmg1 libncurses5 libc6 7
8 Csomago, amit l so mási függ (nagy be-foszám in ) Átlagos be-foszám: éle száma/csúcso száma = 5,077. in csomagnév megjegyzés libc6 C standard önyvtár 330 libgcc1 C-fordító önyvtárai 3109 libstdc++6 C++ standard önyvtár 696 libx11-6 A graus felület önyvtára 1985 libglib.0-0 A GLIB önyvtár 1940 zlib1g Tömörít önyvtár 199 perl Perl programnyelv 1865 libxext6 A graus felület iterjesztései 1381 libgt.0-0 A GTK graus felület önyvtárai 196 python A Python nyelv :-) Er sen összefügg omponense (a másodi legnagyobb) libmono-posix.0-cil libmono-system.0-cil libmono-security.0-cil libmono-corlib.0-cil mono-runtime mono-.0-gac mono-gac 8
9 xserver-xorg-input-all Mindegyib l mindegyibe el lehet jutni nyila irányába. xserver-xorg-input-wacom xserver-xorg-input-evdev xserver-xorg-video-r18 xserver-xorg-video-mach64 xserver-xorg-video-vmware xserver-xorg xserver-xorg-input-synaptics xserver-xorg-video-geode xserver-xorg-video-s3 xserver-xorg-video-ati xserver-xorg-video-radeon xserver-xorg-video-i18 xserver-xorg-video-rendition xserver-xorg-video-siliconmotion xserver-xorg-video-sisusb xserver-xorg-video-chips xserver-xorg-video-tdfx xserver-xorg-core xserver-xorg-video-all xserver-xorg-video-trident xserver-xorg-video-openchrome xserver-xorg-video-mga xserver-xorg-video-nouveau xserver-xorg-video-s3virge xserver-xorg-video-fbdev xserver-xorg-video-vesa xserver-xorg-video-savage xserver-xorg-video-voodoo xserver-xorg-video-neomagic xserver-xorg-video-nv xserver-xorg-video-ar xserver-xorg-video-sis xserver-xorg-video-tseng xserver-xorg-video-i740 xserver-xorg-video-apm xserver-xorg-video-intel xserver-xorg-video-cirrus 3. Csoporter sségi együttható Csoporter sségi együttható Legtöbb valódi hálózatban egy csúcs szomszédjai nagyobb valószín séggel össze vanna ötve, mint tetsz leges ett. Szociológiai példa: ét ismer söm nagyobb valószín séggel ismeri egymást, mint tesz leges ét ember. Hogyan számszer síthet ez? Állítás Ha egy irányítatlan egyszer hálózatban az i. csúcs i szomszédja özött legfeljebb futhat. él Egyszer hálózat: nincs többszörös él, és a csúcsot önmagával összeöt huroél. Csoporter sségi együttható: példa Z-ne 5 ismer se van. Folytonos vonal (él): ismeri egymást. 9
10 Cili Bob Z Alice Dani Egon Z ismer sei özött lehetséges élb l létezi. Z csoporter sségi együtthatója. Csoporter sségi együttható Deníció Egy 1-nél nagyobb foszámú csúcs C i csoporter sségi együtthatója (angolul clustering coecient) C i = E i i ( i 1), ahol E i a csúcs szomszédjai özötti éle tényleges száma. A hálózat C csoporter sségi együtthatója eze átlaga. együtthatóját átlagolju.) (Csa az 1-nél nagyobb foszámú csúcso Példa C 1 = C 3 = C = 3 4 C 7 = C =? (otthon) Valódi hálózato csoporter ssége A szaggatott vonal mindenhol a 1-es itev ne felel meg. (a) (b) C() 10 1 C() a) Színésze, szerint szerepelte özös lmben (N = ) b) angol szava, Merriam Webster szótár szerint szinonímá (N = ) 10
11 Hierarchius hálózato 5. deníció. Egy hálózatot hierarchiusna nevezün, ha benne a csúcso csoporter sségi együtthatója a foszámmal nagyjából fordítottan arányos. C() 1 Valódi hálózato csoporter ssége (c) (d) C() 10 C() (c) Világháló (N = 35 79) (d) Internet tartomány-szinten, van-e özöttü router (N = 65 50) Valódi hálózato csoporter ssége (a) (b) 10 1 C() 10 C() (a) Internet router-szinten (N = ) 1 10 (b) Eletromos hálózat (N = 4941) Nem hierarchius Mindett földrajzilag meghatározott. Távolia özött a apcsolat iépítése öltségesebb. 11
12 A hierarcius modell, Ravasz E.Barabási A-L., 00 (a) n=0, N=5 (b) n=1, N=5 (c) n=, N=15 A hierarchius modell ( ) és a BarabásiAlbert modell ( ) összevetése (a) (b) (c) P() C() C(N) N 4. Megoldáso Az ábrán látható hálózat p() foszámeloszlása: N p() 0 1 0, ,1 0, 3 3 0, ,
13 p()
Összetett hálózatok a híradástechnikában
Összetett hálózatok a híradástechnikában Horváth Árpád 03. december 4.. Híradástechnikai példák. példa: A telefonhálózat El ször minden telefont összekötöttek. Kés bb
A feladatok megoldása
A feladato megoldása A hivatozáso C jelölései a i egyenleteire utalna.. feladat A beérezési léps felszíne fölött M magasságban indul a mozgás, esési ideje t = M/g. Ezalatt a labda vízszintesen ut utat,
Véletlen gráfok. Backhausz Ágnes Eötvös Loránd Tudományegyetem és MTA Rényi Alfréd Matematikai Kutatóintézet december 2.
Véletlen gráfok Backhausz Ágnes Eötvös Loránd Tudományegyetem és MTA Rényi Alfréd Matematikai Kutatóintézet agnes@cs.elte.hu 2015. december 2. Nagy hálózatok Példák valós hálózatokra társadalmi hálózatok
Véletlen gráfok, hálózatok
Véletlen gráfok, hálózatok Véletlen gráfok, hálózatok Csirik András 2018.04.25 Erdős-Rényi modell Watts-Strogatz modell Barabási-Albert modell Hálózatok a mindennapokban Hálózatok a világ minden területén
Statisztikai módszerek a skálafüggetlen hálózatok
Statisztikai módszerek a skálafüggetlen hálózatok vizsgálatára Gyenge Ádám1 1 Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Számítástudományi és Információelméleti
1. tétel - Gráfok alapfogalmai
1. tétel - Gráfok alapfogalmai 1. irányítatlan gráf fogalma A G (irányítatlan) gráf egy (Φ, E, V) hátmas, ahol E az élek halmaza, V a csúcsok (pontok) halmaza, Φ: E {V-beli rendezetlen párok} illeszkedési
A Barabási-Albert-féle gráfmodell
A Barabási-Albert-féle gráfmodell és egyéb véletlen gráfok Papp Pál András Gráfok, hálózatok modelljei Rengeteg gráfokkal modellezhető terület: Pl: Internet, kapcsolati hálók, elektromos hálózatok, stb.
Digitális Fourier-analizátorok (DFT - FFT)
6 Digitális Fourier-analizátoro (DFT - FFT) Eze az analizátoro digitális műödésűe és a Fourier-transzformálás elvén alapulna. A digitális Fourier analizátoro a folytonos időfüggvény mintavételezett jeleit
Tizenegyedik gyakorlat: Parciális dierenciálegyenletek Dierenciálegyenletek, Földtudomány és Környezettan BSc
Tizenegyedi gyaorlat: Parciális dierenciálegyenlete Dierenciálegyenlete, Földtudomány és Környezettan BSc A parciális dierenciálegyenlete elmélete még a özönséges egyenleteénél is jóval tágabb, így a félévben
Doktori disszertáció. szerkezete
Doktori disszertáció tézisfüzet Komplex hálózatok szerkezete Szabó Gábor Témavezető Dr. Kertész János Elméleti Fizika Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 2005 Bevezetés A tudományos
Komplex hálózatok: alapfogalmak, modellek, módszerek
Komplex hálózatok: alapfogalmak, modellek, módszerek London András, Németh Tamás 2015. április 13. Motiváció Alapfogalmak Centralitás mértékek Néhány gráfmodell Hálózatok mindenhol! ábra 1: Facebook kapcsolati
Véletlen bolyongás. Márkus László március 17. Márkus László Véletlen bolyongás március / 31
Márkus László Véletlen bolyongás 2015. március 17. 1 / 31 Véletlen bolyongás Márkus László 2015. március 17. Modell Deníció Márkus László Véletlen bolyongás 2015. március 17. 2 / 31 Modell: Egy egyenesen
A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA
A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projet eretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszéén az ELTE Közgazdaságtudományi
Legfontosabb bizonyítandó tételek
Legfontosabb bizonyítandó tétele 1. A binomiális tétel Tetszőleges éttagú ifejezés (binom) bármely nem negatív itevőj ű hatványa polinommá alaítható a övetez ő módon: Az nem más, mint egy olyan n tényezős
Betekintés a komplex hálózatok világába
Betekintés a komplex hálózatok világába Dr. Varga Imre Debreceni Egyetem Informatikai Kar EFOP-3.6.1-16-2016-00022 Egyszerű hálózatok Grafit kristály Árpád házi uralkodók családfája LAN hálózat Komplex
Lineáris egyenletrendszerek
Lineáris egyenletrendszerek 1 Alapfogalmak 1 Deníció Egy m egyenletb l álló, n-ismeretlenes lineáris egyenletrendszer általános alakja: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a
1. Kombinatorikai bevezetés példákkal, (színes golyók):
1. Kombinatoriai bevezetés példáal, (színes golyó: (a ismétlés nélüli permutáció (sorba rendezés: n ülönböz szín golyót hányféleépp állíthatun sorba? 10-et? n! 10! (b ismétléses permutáció: n 1 piros,
Valószínűségszámítás feladatok
Valószínűségszámítás feladato A FELADATOK MEGOLDÁSAI A 0. FELADAT UTÁN TALÁLHATÓK.. Egyszerre dobun fel három érmét. Mi anna a valószínűsége, hogy mindegyine ugyanaz az oldala erül felülre?. Két dobóocát
Drótos G.: Fejezetek az elméleti mechanikából 4. rész 1
Drótos G.: Fejezete az elméleti mechaniából 4. rész 4. Kis rezgése 4.. gyensúlyi pont, stabilitás gyensúlyi pontna az olyan r pontoat nevezzü valamely oordináta-rendszerben, ahol a vizsgált tömegpont gyorsulása
A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2018/
Operációkutatás I. 2018/2019-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c
3. előadás Reaktorfizika szakmérnököknek TARTALOMJEGYZÉK. Az a bomlás:
beütésszám. előadás TARTALOMJEGYZÉK Az alfa-bomlás Az exponenciális bomlástörvény Felezési idő és ativitás Poisson-eloszlás Bomlási sémá értelmezése Bomlási soro, radioatív egyensúly Az a bomlás: A Z X
1. Komplex szám rendje
1. Komplex szám redje A hatváyo periódiusa ismétlőde. Tétel Legye 0 z C. Ha z egységgyö, aor hatváyai periódiusa ismétlőde. Ha z em egységgyö, aor bármely ét, egész itevőjű hatváya ülöböző. Tegyü föl,
Csima Judit BME, SZIT február 18.
1 Véletlen gráfok és valós hálózatok Csima Judit BME, SZIT 2011. február 18. Tartalom 2 1. Motiváció: miért pont véletlen gráfok? Tartalom 2 1. Motiváció: miért pont véletlen gráfok? 2. A klasszikus modell:
Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek
Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37 Az el adás vázlata Determináns Determináns
A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c
EGY KERESZTPOLARIZÁCIÓS JELENSÉG BEMUTATÁSA FIZIKAI HALLGATÓI LABORATÓRIUMBAN
Fiia Modern fiia GY KRSZTPOLARIZÁCIÓS JLNSÉG BMUTATÁSA FIZIKAI HALLGATÓI LABORATÓRIUMBAN DMONSTRATION OF AN OPTICAL CROSS- POLARIZATION FFCT IN A STUDNT LABORATORY Kőhái-Kis Ambrus, Nag Péter 1 Kecseméti
Online algoritmusok. Algoritmusok és bonyolultságuk. Horváth Bálint március 30. Horváth Bálint Online algoritmusok március 30.
Online algoritmusok Algoritmusok és bonyolultságuk Horváth Bálint 2018. március 30. Horváth Bálint Online algoritmusok 2018. március 30. 1 / 28 Motiváció Gyakran el fordul, hogy a bemenetet csak részenként
Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.
Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza
Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok
Kiegészítő részelőadás. Algebrai és transzcendens számo, nevezetes onstanso Dr. Kallós Gábor 04 05 A valós számo ategorizálása Eml. (óori felismerés): nem minden szám írható fel törtszámént (racionálisént)
Valószínőségszámítás feladatok A FELADATOK MEGOLDÁSAI A 21. FELADAT UTÁN TALÁLHATÓK.
Valószínőségszámítás feladato A FELADATOK MEGOLDÁSAI A 2. FELADAT UTÁN TALÁLHATÓK.. Egyszerre dobun fel három érmét. Mi anna a valószínősége, hogy mindegyine ugyanaz az oldala erül felülre? 2. Két teljesen
MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész
MATEMATIKA PRÓBAÉRETTSÉGI 203 I. rész. Oldja meg a következő egyenletet: x 2 25. Az egyenlet megoldása: 2. Egy vállalat 280 000 Ft-ért vásárol egy számítógépet. A számítógép évente 5%-ot veszít az értékéből.
Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ)
Optika gyakorlat 6. Interferencia Interferencia Az interferencia az a jelenség, amikor kett vagy több hullám fázishelyes szuperpozíciója révén a térben állóhullám kép alakul ki. Ez elektromágneses hullámok
Függvényhatárérték és folytonosság
8. fejezet Függvényhatárérték és folytonosság Valós függvények és szemléltetésük D 8. n-változós valós függvényen (n N + ) olyan f függvényt értünk amelynek értelmezési tartománya (Dom f ) az R n halmaznak
Dr. Tóth László, Kombinatorika (PTE TTK, 2007)
A Fibonacci-sorozat általános tagjára vontozó éplet máséppen is levezethető A 149 Feladatbeli eljárás alalmas az x n+1 ax n + bx, n 1 másodrendű állandó együtthatós lineáris reurzióal adott sorozato n-edi
3. el adás: Determinánsok
3. el adás: Determinánsok Wettl Ferenc 2015. február 27. Wettl Ferenc 3. el adás: Determinánsok 2015. február 27. 1 / 19 Tartalom 1 Motiváció 2 A determináns mint sorvektorainak függvénye 3 A determináns
Exponenciális és logaritmusos kifejezések, egyenletek
Gyaorló feladato Eponenciális és logaritmusos ifejezése, egyenlete. Hatványozási azonosságo. Számítsd i a övetező hatványo pontos értéét! g) b) c) d) 7 e) f) 9 0, 9 h) 0, 6 i) 0,7 j), 6 ), l). A övetező
Képfeldolgozás. 1. el adás. A képfeldolgozás m veletei. Mechatronikai mérnök szak BME, 2008
Képfeldolgozás 1. el adás. A képfeldolgozás m veletei Mechatronikai mérnök szak BME, 2008 1 / 61 Alapfogalmak transzformációk Deníció Deníció Geometriai korrekciókra akkor van szükség, ha a képr l valódi
1. feladat Az egyensúly algoritmus viselkedése: Tekintsük a kétdimenziós Euklideszi teret, mint metrikus teret. A pontok
1. feladat Az egyensúly algoritmus viselkedése: Tekintsük a kétdimenziós Euklideszi teret, mint metrikus teret. A pontok (x, y) valós számpárokból állnak, két (a, b) és (c, d) pontnak a távolsága (a c)
TÁVÉRZÉKELÉS (EG527-ABBAB) 1. feladat: Egyszerő mérések és számolások digitális légifényképeken
Nyugat-magyarországi Egyetem Erdımérnöi Kar Geomatiai, Erdıfeltárási és Vízgazdálodási Intézet Földmérési és Távérzéelési Tanszé TÁVÉRZÉKELÉS (EG527-ABBAB) 1. feladat: Egyszerő mérése és számoláso digitális
Sorozatok és Sorozatok és / 18
Sorozatok 2015.11.30. és 2015.12.02. Sorozatok 2015.11.30. és 2015.12.02. 1 / 18 Tartalom 1 Sorozatok alapfogalmai 2 Sorozatok jellemz i 3 Sorozatok határértéke 4 Konvergencia és korlátosság 5 Cauchy-féle
Hierarchikus skálafüggetlen gráfok generálása fraktálokkal
Hierarchikus skálafüggetlen gráfok generálása fraktálokkal Komjáthy Júlia Simon Károly Sztochasztika Tanszék Matematika Intézet Budapesti Műszaki és Gazdaságtudományi Egyetem www.math.bme.hu/~komyju www.math.bme.hu/~simonk
3D Számítógépes Geometria II.
3D Számítógépes Geometra II. 8. n-olalú ézer felülete ttp://cg.t.bme.u/portal/3geo2 ttps://www.v.bme.u/epzes/targya/viiiav6 Dr. Váray Tamás Dr. Salv Péter ME Vllamosmérnö és Informata Kar Irányítástecna
Társadalmi és gazdasági hálózatok modellezése
Társadalmi és gazdasági hálózatok modellezése 6. el adás Hálózatok növekedési modelljei: `uniform és preferential attachment' El adó: London András 2015. október 12. Hogyan n nek a hálózatok? Statikus
Az Összetett hálózatok vizsgálata elektronikus tantárgy részletes követeleményrendszere
Az Összetett hálózatok vizsgálata elektronikus tantárgy részletes követeleményrendszere Horváth Árpád 2014. február 7. A tárgy célja: Az összetett hálózatok fogalomrendszerének használata a tudomány több
9. tétel: Elsı- és másodfokú egyenlıtlenségek, pozitív számok nevezetes közepei, és ezek felhasználása szélsıérték-feladatok megoldásában
9. tétel: Elsı- és másodfoú egyelıtlesége, pozitív számo evezetes özepei, és eze felhaszálása szélsıérté-feladato megoldásáa Egyelıtleség: Két relációsjellel összeapcsolt ifejezés vagy függvéy. Az egyelıtleséget
DiMat II Végtelen halmazok
DiMat II Végtelen halmazok Czirbusz Sándor 2014. február 16. 1. fejezet A kiválasztási axióma. Ismétlés. 1. Deníció (Kiválasztási függvény) Legyen {X i, i I} nemüres halmazok egy indexelt családja. Egy
Időjárási csúcsok. Bemenet. Kimenet. Példa. Korlátok. Nemes Tihamér Nemzetközi Informatikai Tanulmányi Verseny, 2-3. korcsoport
Időjárási csúcsok Ismerjük N napra a déli hőmérséklet értékét. Lokálisan melegnek nevezünk egy napot (az első és az utolsó kivételével), ha az aznap mért érték nagyobb volt a két szomszédjánál, lokálisan
1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok. HálózatokII, 2007
Hálózatok II 2007 1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok 1 Az előadáshoz Előadás: Szerda 17:00 18:30 Gyakorlat: nincs Vizsga írásbeli Honlap: http://people.inf.elte.hu/lukovszki/courses/g/07nwii
Elméleti összefoglaló a Valószín ségszámítás kurzushoz
Elméleti összefoglaló a Valószín ségszámítás kurzushoz Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet kimeneteleinek
Készletek - Rendelési tételnagyság számítása -1
Készlete - Rendelési tételnagyság számítása -1 A endelési tételnagyság meghatáozása talán a legészletesebben tágyalt édésö a észletgazdálodási szaiodalomban. Enne nagyészt az az oa, hogy mind az egyszee
Analízis 1. (BSc) vizsgakérdések Programtervez informatikus szak 2008-2009. tanév 2. félév
Analízis 1. (BSc) vizsgakérdések Programtervez informatikus szak 2008-2009. tanév 2. félév Valós számok 1. Hogyan szól a Bernoulli-egyenl tlenség? Mikor van egyenl ség? Válasz. Minden h 1 valós számra
Valószínűségi változók. Várható érték és szórás
Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :
Tuzson Zoltán A Sturm-módszer és alkalmazása
Tuzso Zoltá A turm-módszer és alalmazása zámtala szélsérté probléma megoldása, vag egeltleség bzoítása ago gara, már a matemata aalízs eszözere szorítoz, mt például a Jese-, Hölder-féle egeltleség, derválta
0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2)
Legyen adott a P átmenetvalószín ség mátrix és a ϕ 0 kezdeti eloszlás Kérdés, hogy miként lehetne meghatározni az egyes állapotokban való tartózkodás valószín ségét az n-edik lépés múlva Deniáljuk az n-lépéses
Relációk. 1. Descartes-szorzat. 2. Relációk
Relációk Descartes-szorzat. Relációk szorzata, inverze. Relációk tulajdonságai. Ekvivalenciareláció, osztályozás. Részbenrendezés, Hasse-diagram. 1. Descartes-szorzat 1. Deníció. Tetsz leges két a, b objektum
Pénzügyi matematika. Vizsgadolgozat I. RÉSZ. 1. Deniálja pontosan, mit értünk amerikai vételi opció alatt!
NÉV: NEPTUN KÓD: Pénzügyi matematika Vizsgadolgozat I. RÉSZ Az ebben a részben feltett 4 kérdés közül legalább 3-ra kell hibátlan választ adni ahhoz, hogy a vizsga sikeres lehessen. Kett vagy kevesebb
Ramsey-féle problémák
FEJEZET 8 Ramsey-féle problémák "Az intelligens eljárást az jellemzi, hogy még a látszólag megközelíthetetlen célhoz is utat nyit, megfelelő segédproblémát talál ki és először azt oldja meg." Pólya György:
Furfangos fejtörők fizikából
Furfangos fejtörő fiziából Vigh Máté ELTE Komple Rendszere Fiziája Tanszé Az atomotól a csillagoig 03. április 5. . Fejtörő. A,,SLINKY-rugó'' egy olyan rugó, melyne nyújtatlan hossza elhanyagolhatóan icsi,
Matematika A1. 9. feladatsor. A derivált alkalmazásai. Függvény széls értékei
Matematika A1 9. feladatsor A derivált alkalmazásai Függvény széls értékei 1. Keressük meg a függvények abszolút maximumát és minimumát a megadott intervallumon. Ezután rajzoljuk fel a függvény grakonját.
Gráfok 2. Legrövidebb utak, feszítőfák. Szoftvertervezés és -fejlesztés II. előadás. Szénási Sándor
Gráfok 2. Legrövidebb utak, feszítőfák előadás http://nik.uni-obuda.hu/sztf2 Szénási Sándor Óbudai Egyetem,Neumann János Informatikai Kar Legrövidebb utak keresése Minimális feszítőfa keresése Gráfok 2
Holtsáv és kotyogás kompenzálása mechanikai irányítási rendszerekben
Holtsáv és otyogás ompenzálása mechaniai irányítási rendszereben A mechaniai irányítására alalmazott lineáris vagy folytonos nemlineáris irányítási algoritmusoal megvalósított szabályozási rendszer tulajdonságait
Matematikai logika. 3. fejezet. Logikai m veletek, kvantorok 3-1
3. fejezet Matematikai logika Logikai m veletek, kvantorok D 3.1 A P és Q elemi ítéletekre vonatkozó logikai alapm veleteket (konjunkció ( ), diszjunkció ( ), implikáció ( ), ekvivalencia ( ), negáció
1. Egyensúlyi pont, stabilitás
lméleti fizia. elméleti összefoglaló. gyensúlyi pont, stabilitás gyensúlyi pontna az olyan pontoat nevezzü, ahol a tömegpont gyorsulása 0. Ha a tömegpont egy ilyen pontban tartózodi, és nincs sebessége,
Határozott integrál és alkalmazásai
Határozott integrál és alkalmazásai 5. május 5.. Alapfeladatok. Feladat: + d = Megoldás: Egy határozott integrál kiszámolása a feladat. Ilyenkor a Newton-Leibniz-tételt használhatjuk, mely azt mondja ki,
Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!
Taylor-polinomok 205. április.. Alapfeladatok. Feladat: Írjuk fel az fx) = e 2x függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot kétféle úton is megoldjuk. Az els megoldásban induljunk el
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Diszkrét matematika 2.
Diszkrét matematika 2. Mérai László előadása alapján Készítette: Nagy Krisztián 1. előadás Gráfok halmaza, gráf, ahol a csúcsok halmaza, az élek illesztkedés reláció: illesztkedik az élre, ha ( -él illesztkedik
A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató
Otatási Hivatal A 015/016 tanévi Országos Középisolai Tanulmányi Verseny másodi forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értéelési útmutató 1 Egy adott földterület felásását három munás
Számítógép hálózatok, osztott rendszerek 2009
Számítógép hálózatok, osztott rendszerek 2009 1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok 1 Az előadáshoz Előadás: Hétfő 10:00 12:00 óra Gyakorlat: Hétfő 14:00-16:00 óra Honlap: http://people.inf.elte.hu/lukovszki/courses/0910nwmsc
Bevezetés az elméleti zikába
Bevezetés az elméleti zikába egyetemi jegyzet Kúpszeletek Lázár Zsolt, Lázár József Babe³Bolyai Tudományegyetem Fizika Kar 2011 TARTALOMJEGYZÉK 6 TARTALOMJEGYZÉK Azokat a görbéket, amelyeknek egyenlete
Diszkrét matematika 2.
Diszkrét matematika 2. 2018. szeptember 21. 1. Diszkrét matematika 2. 2. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. szeptember 21. Gráfelmélet
Diszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Véletlen bolyongás. 2. rész. Márkus László jegyzete alapján Tóth Tamás december 10.
2. rész 2012. december 10. Határeloszlás tételek a bolyongás funkcionáljaira 1 A bolygó pont helyzete: EX i = 0, D 2 X i = EX 2 = 1 miatt i ES n = 0, D 2 S n = n, és a centrális határeloszlás tétel (CHT)
Egyváltozós függvények 1.
Egyváltozós függvények 1. Filip Ferdinánd filip.ferdinand@bgk.uni-obuda.hu siva.banki.hu/jegyzetek 015 szeptember 1. Filip Ferdinánd 015 szeptember 1. Egyváltozós függvények 1. 1 / 5 Az el adás vázlata
10. Koordinátageometria
I. Nulladik ZH-ban láttuk: 0. Koordinátageometria. Melyek azok a P x; y pontok, amelyek koordinátái kielégítik az Ábrázolja a megoldáshalmazt a koordináta-síkon! x y x 0 egyenlőtlenséget? ELTE 00. szeptember
A különböz lerajzolásokhoz különböz metszési szám tartozik: x(k 5, λ) = 5,
Gráfelmélet/Diszkrét Matematika MSc hallgatók számára Gráfok metszési paramétere és alkalmazásai 2013. El adó: Hajnal Péter 1. Gráfok metszési száma Az el adás a metszési szám nev gráfparaméterr l szól.
Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1
Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =
SZÁLLÍTÓ REPÜLŐGÉPEK GÁZTURBINÁS HAJTÓMŰVEI NYOMÁSVISZONYA NÖVELÉSÉNEK TERMIKUS PROBLÉMÁI
Dr. Pásztor Endre SZÁLLÍTÓ REPÜLŐGÉPEK GÁZTURBINÁS HAJTÓMŰVEI NYOMÁSVISZONYA NÖVELÉSÉNEK TERMIKUS PROBLÉMÁI A probléma felvetése, bevezetése. Az ideális termius hatáso (η tid ) folytonosan növeszi a ompresszor
Hálózati elemzések az üzleti életben. Kovács Gyula Sixtep Kft.
Hálózati elemzések az üzleti életben Kovács Gyula Sixtep Kft. Hálózat kutatás rövid ismertetése Königsbergi hidak problémája Háttér: A probléma története, hogy a poroszországi Königsberg (most Kalinyingrád,
Abszolút folytonos valószín ségi változó (4. el adás)
Abszolút folytonos valószín ségi változó (4. el adás) Deníció (Abszolút folytonosság és s r ségfüggvény) Az X valószín ségi változó abszolút folytonos, ha van olyan f : R R függvény, melyre P(X t) = t
Diszkrét matematika II. gyakorlat
Diszkrét matematika II. gyakorlat 9. Gyakorlat Szakács Nóra Helyettesít: Bogya Norbert Bolyai Intézet 2013. április 11. Bogya Norbert (Bolyai Intézet) Diszkrét matematika II. gyakorlat 2013. április 11.
6. HMÉRSÉKLETMÉRÉS. A mérés célja: ismerkedés a villamos elven mköd kontakthmérkkel; exponenciális folyamat idállandójának meghatározása.
6. HMÉRSÉKLETMÉRÉS A mérés célja: ismeredés a villamos elven möd ontathmérel; exponenciális folyamat idállandójána meghatározása. Elismerete: ellenállás hmérséletfüggése; ellenállás és feszültség mérése;
Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. 3. Rövid leírás. 4. Oktatási módszer. Biró Zsolt. 1.
Matematika B/1 Biró Zsolt Tartalomjegyzék 1. Célkit zések 1 2. Általános követelmények 1 3. Rövid leírás 1 4. Oktatási módszer 1 5. Követelmények, pótlások 2 6. Program (el adás) 2 7. Program (gyakorlat)
Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36
Vektorok Wettl Ferenc 2014. október 20. Wettl Ferenc Vektorok 2014. október 20. 1 / 36 Tartalom 1 Vektorok a 2- és 3-dimenziós térben 2 Távolság, szög, orientáció 3 Vektorok koordinátás alakban 4 Összefoglalás
2. A ξ valószín ségi változó eloszlásfüggvénye a következ : x 4 81 F (x) = x 4 ha 3 < x 0 különben
1 feladatsor 1 Egy dobozban 20 fehér golyó van Egy szabályos dobókockával dobunk, majd a következ t tesszük: ha a dobott szám 1,2 vagy 3, akkor tíz golyót cserélünk ki pirosra; ha a dobott szám 4 vagy
2009. májusi matematika érettségi közép szint
I 1.feladat Oldja meg a valós számok halmazán az alábbi egyenletet! 2 x 2 +13x +24=0 2.feladat Számítsa ki a 12 és 75 számok mértani közepét! 3.feladat Egy négytagú csoportban minden tagnak pontosan két
Állapottér modellek tulajdonságai PTE PMMK MI BSc 1
Állapottér modelle tulajdonságai 28..22. PTE PMMK MI BSc Kalman-féle rendszer definíció Σ (T, X, U, Y, Ω, Γ, ϕ, η) T az időhalmaz X a lehetséges belső állapoto halmaza U a lehetséges bemeneti értée halmaza
EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF
Összefoglaló Gráfok / EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF Adott a G = (V, E) gráf ahol a V a csomópontok, E az élek halmaza E = {(x, y) x, y V, x y (nincs hurokél) és (x, y) = (y, x)) Jelölések:
Valószín ségszámítás és statisztika
Valószín ségszámítás és statisztika Informatika BSc, esti tagozat Backhausz Ágnes agnes@math.elte.hu fogadóóra: szerda 10-11 és 13-14, D 3-415 2018/2019. tavaszi félév Bevezetés A valószín ségszámítás
Boronkay György Műszaki Középiskola és Gimnázium
Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. (: 27-317 - 077 (/fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör 2014/2015.
Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7
A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat
Ez is Hungaricum. Kovács Vera, Palotay Dorka, Pozsonyi Enik, Szabó Csaba január 27. ELTE
Ez is ELTE 2013. január 27. Motiváció Tapasztalatok és célok A középiskolából kikerül diákok nagy része nem ismeri a gráfokat Vizsgálataink: A gráfok oktatásának mai helyzete Mi ennek az oka? A gráfok
Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok
Kiegészítő részelőadás 2. Algebrai és transzcendens számo, nevezetes onstanso Dr. Kallós Gábor 204 205 A valós számo ategorizálása Eml. (óori felismerés): nem minden szám írható fel törtszámént (racionálisént)
Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 3. hét A KERESLETELMÉLET ALAPJAI. HASZNOSSÁG, PREFERENCIÁK
KÖZGAZDASÁGTAN I. ELTE TáTK Közgazdaságtudományi Tanszék Közgazdaságtan 1. A KERESLETELMÉLET ALAPJAI. HASZNOSSÁG, PREFERENCIÁK Bíró Anikó, K hegyi Gergely, Major Klára Szakmai felel s: K hegyi Gergely
eszemélyi Kliens Szoftvercsomag
Belügyminisztérium eszemélyi Kliens Szoftvercsomag Telepítési Útmutató 1 Bevezetés 1.1 Jelen dokumentum célja Az alábbi dokumentum írja le, hogy hogyan kell telepíteni az eszemélyi Kliens szoftvercsomagot.
13. Oldja meg a valós számok halmazán az alábbi egyenleteket!
A 13. Oldja meg a valós számok halmazán az alábbi egyenleteket! a) b) sin 2 x 1 2cos x a) 6 pont b) 6 pont 12 pont írásbeli vizsga, II. összetev 4 / 16 2011. október 18. 14. Egy felmérés során két korcsoportban
9. évfolyam feladatai
Hómezővásárhely, 015. április 10-11. A versenyolgozato megírására 3 óra áll a iáo renelezésére, minen tárgyi segéeszöz használható. Minen évfolyamon 5 felaatot ell megolani. Egy-egy felaat hibátlan megolása
HALMAZELMÉLET feladatsor 1.
HALMAZELMÉLET feladatsor 1. Egy (H,, ) algebrai struktúra háló, ha (H, ) és (H, ) kommutatív félcsoport, és teljesül az ún. elnyelési tulajdonság: A, B H: A (A B) = A, A (A B) = A. A (H,, ) háló korlátos,
Csima Judit BME, SZIT február 17.
1 Véletlen gráfok és valós hálózatok Csima Judit BME, SZIT 2010. február 17. Tartalom 2 1. Motiváció: miért pont véletlen gráfok? 2. A klasszikus modell: Erdős-Rényi véletlen-gráf modell definíció jellemzői
Érdemes egy n*n-es táblázatban (sorok-lányok, oszlopok-fiúk) ábrázolni a két színnel, mely éleket húztuk be (pirossal, kékkel)
Kombi/2 Egy bizonyos bulin n lány és n fiú vesz részt. Minden fiú pontosan a darab lányt és minden lány pontosan b darab fiút kedvel. Milyen (a,b) számpárok esetén létezik biztosan olyan fiúlány pár, akik