Összetett hálózatok vizsgálata

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Összetett hálózatok vizsgálata"

Átírás

1 Összetett hálózato vizsgálata az Internet és a csomagfügg ségi hálózat példáján Horváth Árpád <horvath.arpad@are.uni-obuda.hu> 013. április 18. Összetett hálózato Nagyobb gráfo összetett tulajdonságoal. csúcs él 5 foszámú csúcs csomópont (nagy foszám) Összetett hálózato (complex networs) Hálózato gráfo, vagy azo id ben változó sorozata Összetett hálózato: szerezetü nem írható le egyszer en. Átmér Útvonal hossza, a benne szerepl éle száma. Az út hossza. Két csúcs távolsága: a özöttü vezet legrövidebb út hossza. d(1, 3) = mert van özöttü három hosszúságú út, de rövidebb nincsen Deníció Hálózat átmér je Példá hálózatora hálózat csúcso él van ha... ir. ismeretségi h. személye találozta Világháló weboldala van öztü lin Internet routere van vezeté özöttü cie h. cie hivatozi a másira fehérjeh. fehérjé özös ölcsönhatásban részt veszne szava h. szava ha szerepelne együtt a szinonímaszótárban színésze h. színésze szerepelte özös lmben 1

2 Határozzu meg az összes csúcspár esetén a öztü lév távolságot. Ezene a távolságona a maximuma a hálózat átmér je. D = max d(i, j) i j Átmér D 1 =. Bármelyi ett távolsága legfeljebb 4, és az alsó és fels özött pontosan annyi. 1. A foszámeloszlás D =. Bármelyi ett özött mehetün a özépen lév n eresztül ett hosszúságún, de egy hosszúságú út nincsen például az alsó és a fels özött. A foszám 1. deníció. A hálózat egy csúcsána foszáma (degree) alatt a hozzá csatlaozó éle számát értem. Ha nem engede meg többszörös éleet és a iinduló csúcsba visszatér huroéleet, aor ez a szomszédo számát is megadja. Irányított hálózato esetén ülön értelmezhetün befoszámot (a nyila hegyét számolju meg), és ifoszámot a nyila ezd pontját számolju meg be,7 = i,7 = 7 = Kapcsolat a hálózato alapvet tulajdonságai özött Az élene ép végpontja van, tehát minden egyes él ett csúcs foszámát növeli meg. Az átlagos foszám: Be-foszám esetén az átlagos foszám: Ki-foszám esetén szintén. Példá = M N be = M N

3 Meora az ábrán látható hálózatban az átlagfoszám, az átlagos ifoszám és az átlagos befoszám, a maximális és minimális foszám, 3 4 a maximális befoszám és maximális ifoszám? 1.1. Hálózatmodelle és foszámeloszlásu Erd s Pál és Rényi Alfréd Véletlen hálózato Véletlen hálózato Erd s Pál és Rényi Alfréd vizsgálta 1959-t l. Véletlen hálózatonál adott egy N csúcsszám és egy p valószín ség. Végigmegye az összes csúcspáron és p valószín séggel élt húzo özéjü. Éle száma és átlagfoszám a véletlen hálózatoban Ha a hálózat teljes hálózat lenne, benne M teljes = N(N 1) él lenne. (Minden csúcsból N 1 él, de aor mindet étszer számoltam.) Éle várható száma a véletlen hálózatban: E(M v ) = p N(N 1) p N ha N nagy 3

4 Az átlagfoszám várható értée: E( ) = p(n 1) p N ha N nagy Az utóbbi összefüggés étféleéppen is származtatható. Az egyszer bb módszer, hogy megnézzü hány él futhatna i maximálisan egy csúcsból: ha teljes lenne a hálózat, aor egy csúcs az összes többi N 1 csúccsal össze lenne ötve. Ha p valószín séggel választju i az éleet, aor nyilván p(n 1) fog eze özül létezni átlagosan, így az átlagfoszám ennyi lesz. A mási lehet ség, ha az átlagfoszám iszámításána = M/N épletébe behelyettesítem a várható értéét az éle számána a véletlen hálózatban. A foszámeloszlás. deníció. A p() foszámeloszlás (degree distribution) egy olyan függvény, amely az egyes foszámohoz hozzárendeli anna a valószín ségét, hogy egy véletlenszer en iválasztott csúcs foszámú, azaz p() = P rob(véletlen csúcs foszáma = ) Példá Megoldás a végén. Az ábrán látható hálózat foszámeloszlása: N p() Két hálózatmodell eloszlása (darabszám) Két eltérő modellből származó hálózat foszámeloszlása Barabási-Albert modell (m=3) Erdős-Rényi modell (p=0,006) p() valószínűség csúcso száma átlagos foszám b foszám 4

5 A valódi hálózatonál általában nem az Erd srényi modell foszámeloszlását tapasztaltá. Az eloszlás fontos lehet a hálózaton történ folyamato (vírusterjedés, meghibásodás, célzott támadás, híre terjedése) és hatásai szempontjából. Vajon hogyan jön létre egy hálózat? A hálózato ialaulása 1. A hálózat növeszi.. Népszer ségi csatlaozás: a nagyobb foszámú csúcshoz nagyobb valószín séggel csatlaozna. A BarabásiAlbert modell szerint egy tetsz leges ezd hálózatból indulun i. Minden lépésben egy új csúcs eletezi, és adott m számú éllel apcsolódi a régi csúcsohoz. A apcsolódás valószín sége arányos a foszámmal. Barabási Albert-László, a Behálózva cím önyve és Albert Réa Az éle száma a BA-modellben A BarabásiAlbert-modellben az éle száma minden lépésben m-mel növeszi. Ha ezdetben N 0 csúcs volt, és M 0 él, aor N N 0 lépést ellett végrehajtani, amiben (N N 0 )m él jött létre, tehát az éle száma M = M 0 + (N N 0 )m Ha a végén a csúcso száma jóval nagyobb, mint ezdetben, aor jó özelít értéet aphatun az épletb l. M m N Tehát az átlagos foszám = M N m Ez nem meglep, hiszen minden lépésben m élvég jön létre. 5

6 1.. Az összegzett foszámeloszlás Az összegzett foszámeloszlás 3. deníció. A P () összegzett foszámeloszlás (cumulative degree distribution) egy olyan függvény, amely az egyes foszámohoz hozzárendeli anna a valószín ségét, hogy egy véletlenszer en iválasztott csúcs foszáma nagyobb vagy egyenl mint, azaz Kevésbé ugrál nagy foszámonál. P () = P rob(véletlen csúcs foszáma ) Ha az eredeti p() hatványfüggvény, aor a P () is az lesz. A itev eggyel isebb abszolútérté lesz. A hatványfüggvény étszer logaritmius sálán egyenes. Néhány hálózat összegzett foszámeloszlása (a) matematiai együttmûödése (b) hivatozáso (c) World Wide Web (d) Internet (e) eletromos hálózat Az el z oldalon a övetez szerepelne. Matematiuso együttm ödése (özös cie), cie hivatozásai, Világháló, Internet, eletromos hálózat, fehérjeölcsönhatáso. A fentie özül csa az eletromos hálózat nem sálafüggetlen. (Lineáris sála a vizszintes tengelyen.) Sálafüggetlen hálózato (f) fehérje ölcsönhatáso 4. deníció. Sálafüggetlen hálózatona nevezzü azoat a hálózatoat, melyene a foszámeloszlása hatványfüggvényt övet nagy foszámo esetén: p() γ P () (γ 1) A hatványfüggvényre igaz egyedül: f(c 1 x) = c f(x) c 1, c R 6

7 Ellenállóépesség 1. Véletlen meghibásodás: Ha véletlenszer en vesze el csúcsoat (pl. az Internet routereine véletlen meghibásodása) a sálafüggetlen hálózato soáig egyben maradna, nem esne szét omponenseere, például az Internet érzéetlen a véletlen routermeghibásodásoal szemben. A véletlen hálózato hamarabb esne szét.. Célzott támadás: Ha célzottan a legnagyobb foszámú csúcsoat törlöm i a sálafüggetlen hálózat hamar és rövid id alatt esi szét nagyon icsi darabora. A véletlen hálózato tovább egyben maradna. Egyi hatással szemben az egyi, másial szemben a mási ellenállóbb. Egyi sem töéletes.. Ubuntu szoftvercsomagjai omponense Az Ubuntu szoftvercsomagjai Az Ubuntu a GNU/Linux operációs rendszer egyi disztribúciója A Debianból származó deb szoftvercsomagoat használ A deb fájlo optiai diszr l vagy Internetes tárolóból érhet e el. Legtöbb csomag másiatól függ, tehát irányított hálózatot alotna. apt csomagezel rendszer: telepítés függ ségeel együtt, eltávolítás, frissítés, eresés A csomagfügg ségi hálózat egy részlete vim-latexsuite vim-vimoutliner vim vim-common python.5 vim-runtime libgpmg1 libncurses5 libc6 7

8 Csomago, amit l so mási függ (nagy be-foszám in ) Átlagos be-foszám: éle száma/csúcso száma = 5,077. in csomagnév megjegyzés libc6 C standard önyvtár 330 libgcc1 C-fordító önyvtárai 3109 libstdc++6 C++ standard önyvtár 696 libx11-6 A graus felület önyvtára 1985 libglib.0-0 A GLIB önyvtár 1940 zlib1g Tömörít önyvtár 199 perl Perl programnyelv 1865 libxext6 A graus felület iterjesztései 1381 libgt.0-0 A GTK graus felület önyvtárai 196 python A Python nyelv :-) Er sen összefügg omponense (a másodi legnagyobb) libmono-posix.0-cil libmono-system.0-cil libmono-security.0-cil libmono-corlib.0-cil mono-runtime mono-.0-gac mono-gac 8

9 xserver-xorg-input-all Mindegyib l mindegyibe el lehet jutni nyila irányába. xserver-xorg-input-wacom xserver-xorg-input-evdev xserver-xorg-video-r18 xserver-xorg-video-mach64 xserver-xorg-video-vmware xserver-xorg xserver-xorg-input-synaptics xserver-xorg-video-geode xserver-xorg-video-s3 xserver-xorg-video-ati xserver-xorg-video-radeon xserver-xorg-video-i18 xserver-xorg-video-rendition xserver-xorg-video-siliconmotion xserver-xorg-video-sisusb xserver-xorg-video-chips xserver-xorg-video-tdfx xserver-xorg-core xserver-xorg-video-all xserver-xorg-video-trident xserver-xorg-video-openchrome xserver-xorg-video-mga xserver-xorg-video-nouveau xserver-xorg-video-s3virge xserver-xorg-video-fbdev xserver-xorg-video-vesa xserver-xorg-video-savage xserver-xorg-video-voodoo xserver-xorg-video-neomagic xserver-xorg-video-nv xserver-xorg-video-ar xserver-xorg-video-sis xserver-xorg-video-tseng xserver-xorg-video-i740 xserver-xorg-video-apm xserver-xorg-video-intel xserver-xorg-video-cirrus 3. Csoporter sségi együttható Csoporter sségi együttható Legtöbb valódi hálózatban egy csúcs szomszédjai nagyobb valószín séggel össze vanna ötve, mint tetsz leges ett. Szociológiai példa: ét ismer söm nagyobb valószín séggel ismeri egymást, mint tesz leges ét ember. Hogyan számszer síthet ez? Állítás Ha egy irányítatlan egyszer hálózatban az i. csúcs i szomszédja özött legfeljebb futhat. él Egyszer hálózat: nincs többszörös él, és a csúcsot önmagával összeöt huroél. Csoporter sségi együttható: példa Z-ne 5 ismer se van. Folytonos vonal (él): ismeri egymást. 9

10 Cili Bob Z Alice Dani Egon Z ismer sei özött lehetséges élb l létezi. Z csoporter sségi együtthatója. Csoporter sségi együttható Deníció Egy 1-nél nagyobb foszámú csúcs C i csoporter sségi együtthatója (angolul clustering coecient) C i = E i i ( i 1), ahol E i a csúcs szomszédjai özötti éle tényleges száma. A hálózat C csoporter sségi együtthatója eze átlaga. együtthatóját átlagolju.) (Csa az 1-nél nagyobb foszámú csúcso Példa C 1 = C 3 = C = 3 4 C 7 = C =? (otthon) Valódi hálózato csoporter ssége A szaggatott vonal mindenhol a 1-es itev ne felel meg. (a) (b) C() 10 1 C() a) Színésze, szerint szerepelte özös lmben (N = ) b) angol szava, Merriam Webster szótár szerint szinonímá (N = ) 10

11 Hierarchius hálózato 5. deníció. Egy hálózatot hierarchiusna nevezün, ha benne a csúcso csoporter sségi együtthatója a foszámmal nagyjából fordítottan arányos. C() 1 Valódi hálózato csoporter ssége (c) (d) C() 10 C() (c) Világháló (N = 35 79) (d) Internet tartomány-szinten, van-e özöttü router (N = 65 50) Valódi hálózato csoporter ssége (a) (b) 10 1 C() 10 C() (a) Internet router-szinten (N = ) 1 10 (b) Eletromos hálózat (N = 4941) Nem hierarchius Mindett földrajzilag meghatározott. Távolia özött a apcsolat iépítése öltségesebb. 11

12 A hierarcius modell, Ravasz E.Barabási A-L., 00 (a) n=0, N=5 (b) n=1, N=5 (c) n=, N=15 A hierarchius modell ( ) és a BarabásiAlbert modell ( ) összevetése (a) (b) (c) P() C() C(N) N 4. Megoldáso Az ábrán látható hálózat p() foszámeloszlása: N p() 0 1 0, ,1 0, 3 3 0, ,

13 p()

Összetett hálózatok a híradástechnikában

Összetett hálózatok a híradástechnikában Összetett hálózatok a híradástechnikában Horváth Árpád 03. december 4.. Híradástechnikai példák. példa: A telefonhálózat El ször minden telefont összekötöttek. Kés bb

Részletesebben

A feladatok megoldása

A feladatok megoldása A feladato megoldása A hivatozáso C jelölései a i egyenleteire utalna.. feladat A beérezési léps felszíne fölött M magasságban indul a mozgás, esési ideje t = M/g. Ezalatt a labda vízszintesen ut utat,

Részletesebben

Véletlen gráfok. Backhausz Ágnes Eötvös Loránd Tudományegyetem és MTA Rényi Alfréd Matematikai Kutatóintézet december 2.

Véletlen gráfok. Backhausz Ágnes Eötvös Loránd Tudományegyetem és MTA Rényi Alfréd Matematikai Kutatóintézet december 2. Véletlen gráfok Backhausz Ágnes Eötvös Loránd Tudományegyetem és MTA Rényi Alfréd Matematikai Kutatóintézet agnes@cs.elte.hu 2015. december 2. Nagy hálózatok Példák valós hálózatokra társadalmi hálózatok

Részletesebben

Véletlen gráfok, hálózatok

Véletlen gráfok, hálózatok Véletlen gráfok, hálózatok Véletlen gráfok, hálózatok Csirik András 2018.04.25 Erdős-Rényi modell Watts-Strogatz modell Barabási-Albert modell Hálózatok a mindennapokban Hálózatok a világ minden területén

Részletesebben

Statisztikai módszerek a skálafüggetlen hálózatok

Statisztikai módszerek a skálafüggetlen hálózatok Statisztikai módszerek a skálafüggetlen hálózatok vizsgálatára Gyenge Ádám1 1 Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Számítástudományi és Információelméleti

Részletesebben

1. tétel - Gráfok alapfogalmai

1. tétel - Gráfok alapfogalmai 1. tétel - Gráfok alapfogalmai 1. irányítatlan gráf fogalma A G (irányítatlan) gráf egy (Φ, E, V) hátmas, ahol E az élek halmaza, V a csúcsok (pontok) halmaza, Φ: E {V-beli rendezetlen párok} illeszkedési

Részletesebben

A Barabási-Albert-féle gráfmodell

A Barabási-Albert-féle gráfmodell A Barabási-Albert-féle gráfmodell és egyéb véletlen gráfok Papp Pál András Gráfok, hálózatok modelljei Rengeteg gráfokkal modellezhető terület: Pl: Internet, kapcsolati hálók, elektromos hálózatok, stb.

Részletesebben

Digitális Fourier-analizátorok (DFT - FFT)

Digitális Fourier-analizátorok (DFT - FFT) 6 Digitális Fourier-analizátoro (DFT - FFT) Eze az analizátoro digitális műödésűe és a Fourier-transzformálás elvén alapulna. A digitális Fourier analizátoro a folytonos időfüggvény mintavételezett jeleit

Részletesebben

Tizenegyedik gyakorlat: Parciális dierenciálegyenletek Dierenciálegyenletek, Földtudomány és Környezettan BSc

Tizenegyedik gyakorlat: Parciális dierenciálegyenletek Dierenciálegyenletek, Földtudomány és Környezettan BSc Tizenegyedi gyaorlat: Parciális dierenciálegyenlete Dierenciálegyenlete, Földtudomány és Környezettan BSc A parciális dierenciálegyenlete elmélete még a özönséges egyenleteénél is jóval tágabb, így a félévben

Részletesebben

Doktori disszertáció. szerkezete

Doktori disszertáció. szerkezete Doktori disszertáció tézisfüzet Komplex hálózatok szerkezete Szabó Gábor Témavezető Dr. Kertész János Elméleti Fizika Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 2005 Bevezetés A tudományos

Részletesebben

Komplex hálózatok: alapfogalmak, modellek, módszerek

Komplex hálózatok: alapfogalmak, modellek, módszerek Komplex hálózatok: alapfogalmak, modellek, módszerek London András, Németh Tamás 2015. április 13. Motiváció Alapfogalmak Centralitás mértékek Néhány gráfmodell Hálózatok mindenhol! ábra 1: Facebook kapcsolati

Részletesebben

Véletlen bolyongás. Márkus László március 17. Márkus László Véletlen bolyongás március / 31

Véletlen bolyongás. Márkus László március 17. Márkus László Véletlen bolyongás március / 31 Márkus László Véletlen bolyongás 2015. március 17. 1 / 31 Véletlen bolyongás Márkus László 2015. március 17. Modell Deníció Márkus László Véletlen bolyongás 2015. március 17. 2 / 31 Modell: Egy egyenesen

Részletesebben

A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA

A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projet eretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszéén az ELTE Közgazdaságtudományi

Részletesebben

Legfontosabb bizonyítandó tételek

Legfontosabb bizonyítandó tételek Legfontosabb bizonyítandó tétele 1. A binomiális tétel Tetszőleges éttagú ifejezés (binom) bármely nem negatív itevőj ű hatványa polinommá alaítható a övetez ő módon: Az nem más, mint egy olyan n tényezős

Részletesebben

Betekintés a komplex hálózatok világába

Betekintés a komplex hálózatok világába Betekintés a komplex hálózatok világába Dr. Varga Imre Debreceni Egyetem Informatikai Kar EFOP-3.6.1-16-2016-00022 Egyszerű hálózatok Grafit kristály Árpád házi uralkodók családfája LAN hálózat Komplex

Részletesebben

Lineáris egyenletrendszerek

Lineáris egyenletrendszerek Lineáris egyenletrendszerek 1 Alapfogalmak 1 Deníció Egy m egyenletb l álló, n-ismeretlenes lineáris egyenletrendszer általános alakja: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

1. Kombinatorikai bevezetés példákkal, (színes golyók):

1. Kombinatorikai bevezetés példákkal, (színes golyók): 1. Kombinatoriai bevezetés példáal, (színes golyó: (a ismétlés nélüli permutáció (sorba rendezés: n ülönböz szín golyót hányféleépp állíthatun sorba? 10-et? n! 10! (b ismétléses permutáció: n 1 piros,

Részletesebben

Valószínűségszámítás feladatok

Valószínűségszámítás feladatok Valószínűségszámítás feladato A FELADATOK MEGOLDÁSAI A 0. FELADAT UTÁN TALÁLHATÓK.. Egyszerre dobun fel három érmét. Mi anna a valószínűsége, hogy mindegyine ugyanaz az oldala erül felülre?. Két dobóocát

Részletesebben

Drótos G.: Fejezetek az elméleti mechanikából 4. rész 1

Drótos G.: Fejezetek az elméleti mechanikából 4. rész 1 Drótos G.: Fejezete az elméleti mechaniából 4. rész 4. Kis rezgése 4.. gyensúlyi pont, stabilitás gyensúlyi pontna az olyan r pontoat nevezzü valamely oordináta-rendszerben, ahol a vizsgált tömegpont gyorsulása

Részletesebben

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2018/

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2018/ Operációkutatás I. 2018/2019-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c

Részletesebben

3. előadás Reaktorfizika szakmérnököknek TARTALOMJEGYZÉK. Az a bomlás:

3. előadás Reaktorfizika szakmérnököknek TARTALOMJEGYZÉK. Az a bomlás: beütésszám. előadás TARTALOMJEGYZÉK Az alfa-bomlás Az exponenciális bomlástörvény Felezési idő és ativitás Poisson-eloszlás Bomlási sémá értelmezése Bomlási soro, radioatív egyensúly Az a bomlás: A Z X

Részletesebben

1. Komplex szám rendje

1. Komplex szám rendje 1. Komplex szám redje A hatváyo periódiusa ismétlőde. Tétel Legye 0 z C. Ha z egységgyö, aor hatváyai periódiusa ismétlőde. Ha z em egységgyö, aor bármely ét, egész itevőjű hatváya ülöböző. Tegyü föl,

Részletesebben

Csima Judit BME, SZIT február 18.

Csima Judit BME, SZIT február 18. 1 Véletlen gráfok és valós hálózatok Csima Judit BME, SZIT 2011. február 18. Tartalom 2 1. Motiváció: miért pont véletlen gráfok? Tartalom 2 1. Motiváció: miért pont véletlen gráfok? 2. A klasszikus modell:

Részletesebben

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek

Lineáris algebra 2. Filip Ferdinánd december 7. siva.banki.hu/jegyzetek Lineáris algebra 2 Filip Ferdinánd filipferdinand@bgkuni-obudahu sivabankihu/jegyzetek 2015 december 7 Filip Ferdinánd 2016 februar 9 Lineáris algebra 2 1 / 37 Az el adás vázlata Determináns Determináns

Részletesebben

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2017/

A lineáris programozás alapfeladata Standard alak Az LP feladat megoldása Az LP megoldása: a szimplex algoritmus 2017/ Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatika Intézet Számítógépes Optimalizálás Tanszék 2. Előadás LP alapfeladat A lineáris programozás (LP) alapfeladata standard formában Max c

Részletesebben

EGY KERESZTPOLARIZÁCIÓS JELENSÉG BEMUTATÁSA FIZIKAI HALLGATÓI LABORATÓRIUMBAN

EGY KERESZTPOLARIZÁCIÓS JELENSÉG BEMUTATÁSA FIZIKAI HALLGATÓI LABORATÓRIUMBAN Fiia Modern fiia GY KRSZTPOLARIZÁCIÓS JLNSÉG BMUTATÁSA FIZIKAI HALLGATÓI LABORATÓRIUMBAN DMONSTRATION OF AN OPTICAL CROSS- POLARIZATION FFCT IN A STUDNT LABORATORY Kőhái-Kis Ambrus, Nag Péter 1 Kecseméti

Részletesebben

Online algoritmusok. Algoritmusok és bonyolultságuk. Horváth Bálint március 30. Horváth Bálint Online algoritmusok március 30.

Online algoritmusok. Algoritmusok és bonyolultságuk. Horváth Bálint március 30. Horváth Bálint Online algoritmusok március 30. Online algoritmusok Algoritmusok és bonyolultságuk Horváth Bálint 2018. március 30. Horváth Bálint Online algoritmusok 2018. március 30. 1 / 28 Motiváció Gyakran el fordul, hogy a bemenetet csak részenként

Részletesebben

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.

Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus. Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza

Részletesebben

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok Kiegészítő részelőadás. Algebrai és transzcendens számo, nevezetes onstanso Dr. Kallós Gábor 04 05 A valós számo ategorizálása Eml. (óori felismerés): nem minden szám írható fel törtszámént (racionálisént)

Részletesebben

Valószínőségszámítás feladatok A FELADATOK MEGOLDÁSAI A 21. FELADAT UTÁN TALÁLHATÓK.

Valószínőségszámítás feladatok A FELADATOK MEGOLDÁSAI A 21. FELADAT UTÁN TALÁLHATÓK. Valószínőségszámítás feladato A FELADATOK MEGOLDÁSAI A 2. FELADAT UTÁN TALÁLHATÓK.. Egyszerre dobun fel három érmét. Mi anna a valószínősége, hogy mindegyine ugyanaz az oldala erül felülre? 2. Két teljesen

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész MATEMATIKA PRÓBAÉRETTSÉGI 203 I. rész. Oldja meg a következő egyenletet: x 2 25. Az egyenlet megoldása: 2. Egy vállalat 280 000 Ft-ért vásárol egy számítógépet. A számítógép évente 5%-ot veszít az értékéből.

Részletesebben

Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ)

Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ) Optika gyakorlat 6. Interferencia Interferencia Az interferencia az a jelenség, amikor kett vagy több hullám fázishelyes szuperpozíciója révén a térben állóhullám kép alakul ki. Ez elektromágneses hullámok

Részletesebben

Függvényhatárérték és folytonosság

Függvényhatárérték és folytonosság 8. fejezet Függvényhatárérték és folytonosság Valós függvények és szemléltetésük D 8. n-változós valós függvényen (n N + ) olyan f függvényt értünk amelynek értelmezési tartománya (Dom f ) az R n halmaznak

Részletesebben

Dr. Tóth László, Kombinatorika (PTE TTK, 2007)

Dr. Tóth László, Kombinatorika (PTE TTK, 2007) A Fibonacci-sorozat általános tagjára vontozó éplet máséppen is levezethető A 149 Feladatbeli eljárás alalmas az x n+1 ax n + bx, n 1 másodrendű állandó együtthatós lineáris reurzióal adott sorozato n-edi

Részletesebben

3. el adás: Determinánsok

3. el adás: Determinánsok 3. el adás: Determinánsok Wettl Ferenc 2015. február 27. Wettl Ferenc 3. el adás: Determinánsok 2015. február 27. 1 / 19 Tartalom 1 Motiváció 2 A determináns mint sorvektorainak függvénye 3 A determináns

Részletesebben

Exponenciális és logaritmusos kifejezések, egyenletek

Exponenciális és logaritmusos kifejezések, egyenletek Gyaorló feladato Eponenciális és logaritmusos ifejezése, egyenlete. Hatványozási azonosságo. Számítsd i a övetező hatványo pontos értéét! g) b) c) d) 7 e) f) 9 0, 9 h) 0, 6 i) 0,7 j), 6 ), l). A övetező

Részletesebben

Képfeldolgozás. 1. el adás. A képfeldolgozás m veletei. Mechatronikai mérnök szak BME, 2008

Képfeldolgozás. 1. el adás. A képfeldolgozás m veletei. Mechatronikai mérnök szak BME, 2008 Képfeldolgozás 1. el adás. A képfeldolgozás m veletei Mechatronikai mérnök szak BME, 2008 1 / 61 Alapfogalmak transzformációk Deníció Deníció Geometriai korrekciókra akkor van szükség, ha a képr l valódi

Részletesebben

1. feladat Az egyensúly algoritmus viselkedése: Tekintsük a kétdimenziós Euklideszi teret, mint metrikus teret. A pontok

1. feladat Az egyensúly algoritmus viselkedése: Tekintsük a kétdimenziós Euklideszi teret, mint metrikus teret. A pontok 1. feladat Az egyensúly algoritmus viselkedése: Tekintsük a kétdimenziós Euklideszi teret, mint metrikus teret. A pontok (x, y) valós számpárokból állnak, két (a, b) és (c, d) pontnak a távolsága (a c)

Részletesebben

TÁVÉRZÉKELÉS (EG527-ABBAB) 1. feladat: Egyszerő mérések és számolások digitális légifényképeken

TÁVÉRZÉKELÉS (EG527-ABBAB) 1. feladat: Egyszerő mérések és számolások digitális légifényképeken Nyugat-magyarországi Egyetem Erdımérnöi Kar Geomatiai, Erdıfeltárási és Vízgazdálodási Intézet Földmérési és Távérzéelési Tanszé TÁVÉRZÉKELÉS (EG527-ABBAB) 1. feladat: Egyszerő mérése és számoláso digitális

Részletesebben

Sorozatok és Sorozatok és / 18

Sorozatok és Sorozatok és / 18 Sorozatok 2015.11.30. és 2015.12.02. Sorozatok 2015.11.30. és 2015.12.02. 1 / 18 Tartalom 1 Sorozatok alapfogalmai 2 Sorozatok jellemz i 3 Sorozatok határértéke 4 Konvergencia és korlátosság 5 Cauchy-féle

Részletesebben

Hierarchikus skálafüggetlen gráfok generálása fraktálokkal

Hierarchikus skálafüggetlen gráfok generálása fraktálokkal Hierarchikus skálafüggetlen gráfok generálása fraktálokkal Komjáthy Júlia Simon Károly Sztochasztika Tanszék Matematika Intézet Budapesti Műszaki és Gazdaságtudományi Egyetem www.math.bme.hu/~komyju www.math.bme.hu/~simonk

Részletesebben

3D Számítógépes Geometria II.

3D Számítógépes Geometria II. 3D Számítógépes Geometra II. 8. n-olalú ézer felülete ttp://cg.t.bme.u/portal/3geo2 ttps://www.v.bme.u/epzes/targya/viiiav6 Dr. Váray Tamás Dr. Salv Péter ME Vllamosmérnö és Informata Kar Irányítástecna

Részletesebben

Társadalmi és gazdasági hálózatok modellezése

Társadalmi és gazdasági hálózatok modellezése Társadalmi és gazdasági hálózatok modellezése 6. el adás Hálózatok növekedési modelljei: `uniform és preferential attachment' El adó: London András 2015. október 12. Hogyan n nek a hálózatok? Statikus

Részletesebben

Az Összetett hálózatok vizsgálata elektronikus tantárgy részletes követeleményrendszere

Az Összetett hálózatok vizsgálata elektronikus tantárgy részletes követeleményrendszere Az Összetett hálózatok vizsgálata elektronikus tantárgy részletes követeleményrendszere Horváth Árpád 2014. február 7. A tárgy célja: Az összetett hálózatok fogalomrendszerének használata a tudomány több

Részletesebben

9. tétel: Elsı- és másodfokú egyenlıtlenségek, pozitív számok nevezetes közepei, és ezek felhasználása szélsıérték-feladatok megoldásában

9. tétel: Elsı- és másodfokú egyenlıtlenségek, pozitív számok nevezetes közepei, és ezek felhasználása szélsıérték-feladatok megoldásában 9. tétel: Elsı- és másodfoú egyelıtlesége, pozitív számo evezetes özepei, és eze felhaszálása szélsıérté-feladato megoldásáa Egyelıtleség: Két relációsjellel összeapcsolt ifejezés vagy függvéy. Az egyelıtleséget

Részletesebben

DiMat II Végtelen halmazok

DiMat II Végtelen halmazok DiMat II Végtelen halmazok Czirbusz Sándor 2014. február 16. 1. fejezet A kiválasztási axióma. Ismétlés. 1. Deníció (Kiválasztási függvény) Legyen {X i, i I} nemüres halmazok egy indexelt családja. Egy

Részletesebben

Időjárási csúcsok. Bemenet. Kimenet. Példa. Korlátok. Nemes Tihamér Nemzetközi Informatikai Tanulmányi Verseny, 2-3. korcsoport

Időjárási csúcsok. Bemenet. Kimenet. Példa. Korlátok. Nemes Tihamér Nemzetközi Informatikai Tanulmányi Verseny, 2-3. korcsoport Időjárási csúcsok Ismerjük N napra a déli hőmérséklet értékét. Lokálisan melegnek nevezünk egy napot (az első és az utolsó kivételével), ha az aznap mért érték nagyobb volt a két szomszédjánál, lokálisan

Részletesebben

1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok. HálózatokII, 2007

1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok. HálózatokII, 2007 Hálózatok II 2007 1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok 1 Az előadáshoz Előadás: Szerda 17:00 18:30 Gyakorlat: nincs Vizsga írásbeli Honlap: http://people.inf.elte.hu/lukovszki/courses/g/07nwii

Részletesebben

Elméleti összefoglaló a Valószín ségszámítás kurzushoz

Elméleti összefoglaló a Valószín ségszámítás kurzushoz Elméleti összefoglaló a Valószín ségszámítás kurzushoz Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet kimeneteleinek

Részletesebben

Készletek - Rendelési tételnagyság számítása -1

Készletek - Rendelési tételnagyság számítása -1 Készlete - Rendelési tételnagyság számítása -1 A endelési tételnagyság meghatáozása talán a legészletesebben tágyalt édésö a észletgazdálodási szaiodalomban. Enne nagyészt az az oa, hogy mind az egyszee

Részletesebben

Analízis 1. (BSc) vizsgakérdések Programtervez informatikus szak 2008-2009. tanév 2. félév

Analízis 1. (BSc) vizsgakérdések Programtervez informatikus szak 2008-2009. tanév 2. félév Analízis 1. (BSc) vizsgakérdések Programtervez informatikus szak 2008-2009. tanév 2. félév Valós számok 1. Hogyan szól a Bernoulli-egyenl tlenség? Mikor van egyenl ség? Válasz. Minden h 1 valós számra

Részletesebben

Valószínűségi változók. Várható érték és szórás

Valószínűségi változók. Várható érték és szórás Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :

Részletesebben

Tuzson Zoltán A Sturm-módszer és alkalmazása

Tuzson Zoltán A Sturm-módszer és alkalmazása Tuzso Zoltá A turm-módszer és alalmazása zámtala szélsérté probléma megoldása, vag egeltleség bzoítása ago gara, már a matemata aalízs eszözere szorítoz, mt például a Jese-, Hölder-féle egeltleség, derválta

Részletesebben

0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2)

0,424 0,576. f) P (X 2 = 3) g) P (X 3 = 1) h) P (X 4 = 1 vagy 2 X 2 = 2) i) P (X 7 = 3, X 4 = 1, X 2 = 2 X 0 = 2) j) P (X 7 = 3, X 4 = 1, X 2 = 2) Legyen adott a P átmenetvalószín ség mátrix és a ϕ 0 kezdeti eloszlás Kérdés, hogy miként lehetne meghatározni az egyes állapotokban való tartózkodás valószín ségét az n-edik lépés múlva Deniáljuk az n-lépéses

Részletesebben

Relációk. 1. Descartes-szorzat. 2. Relációk

Relációk. 1. Descartes-szorzat. 2. Relációk Relációk Descartes-szorzat. Relációk szorzata, inverze. Relációk tulajdonságai. Ekvivalenciareláció, osztályozás. Részbenrendezés, Hasse-diagram. 1. Descartes-szorzat 1. Deníció. Tetsz leges két a, b objektum

Részletesebben

Pénzügyi matematika. Vizsgadolgozat I. RÉSZ. 1. Deniálja pontosan, mit értünk amerikai vételi opció alatt!

Pénzügyi matematika. Vizsgadolgozat I. RÉSZ. 1. Deniálja pontosan, mit értünk amerikai vételi opció alatt! NÉV: NEPTUN KÓD: Pénzügyi matematika Vizsgadolgozat I. RÉSZ Az ebben a részben feltett 4 kérdés közül legalább 3-ra kell hibátlan választ adni ahhoz, hogy a vizsga sikeres lehessen. Kett vagy kevesebb

Részletesebben

Ramsey-féle problémák

Ramsey-féle problémák FEJEZET 8 Ramsey-féle problémák "Az intelligens eljárást az jellemzi, hogy még a látszólag megközelíthetetlen célhoz is utat nyit, megfelelő segédproblémát talál ki és először azt oldja meg." Pólya György:

Részletesebben

Furfangos fejtörők fizikából

Furfangos fejtörők fizikából Furfangos fejtörő fiziából Vigh Máté ELTE Komple Rendszere Fiziája Tanszé Az atomotól a csillagoig 03. április 5. . Fejtörő. A,,SLINKY-rugó'' egy olyan rugó, melyne nyújtatlan hossza elhanyagolhatóan icsi,

Részletesebben

Matematika A1. 9. feladatsor. A derivált alkalmazásai. Függvény széls értékei

Matematika A1. 9. feladatsor. A derivált alkalmazásai. Függvény széls értékei Matematika A1 9. feladatsor A derivált alkalmazásai Függvény széls értékei 1. Keressük meg a függvények abszolút maximumát és minimumát a megadott intervallumon. Ezután rajzoljuk fel a függvény grakonját.

Részletesebben

Gráfok 2. Legrövidebb utak, feszítőfák. Szoftvertervezés és -fejlesztés II. előadás. Szénási Sándor

Gráfok 2. Legrövidebb utak, feszítőfák. Szoftvertervezés és -fejlesztés II. előadás.   Szénási Sándor Gráfok 2. Legrövidebb utak, feszítőfák előadás http://nik.uni-obuda.hu/sztf2 Szénási Sándor Óbudai Egyetem,Neumann János Informatikai Kar Legrövidebb utak keresése Minimális feszítőfa keresése Gráfok 2

Részletesebben

Holtsáv és kotyogás kompenzálása mechanikai irányítási rendszerekben

Holtsáv és kotyogás kompenzálása mechanikai irányítási rendszerekben Holtsáv és otyogás ompenzálása mechaniai irányítási rendszereben A mechaniai irányítására alalmazott lineáris vagy folytonos nemlineáris irányítási algoritmusoal megvalósított szabályozási rendszer tulajdonságait

Részletesebben

Matematikai logika. 3. fejezet. Logikai m veletek, kvantorok 3-1

Matematikai logika. 3. fejezet. Logikai m veletek, kvantorok 3-1 3. fejezet Matematikai logika Logikai m veletek, kvantorok D 3.1 A P és Q elemi ítéletekre vonatkozó logikai alapm veleteket (konjunkció ( ), diszjunkció ( ), implikáció ( ), ekvivalencia ( ), negáció

Részletesebben

1. Egyensúlyi pont, stabilitás

1. Egyensúlyi pont, stabilitás lméleti fizia. elméleti összefoglaló. gyensúlyi pont, stabilitás gyensúlyi pontna az olyan pontoat nevezzü, ahol a tömegpont gyorsulása 0. Ha a tömegpont egy ilyen pontban tartózodi, és nincs sebessége,

Részletesebben

Határozott integrál és alkalmazásai

Határozott integrál és alkalmazásai Határozott integrál és alkalmazásai 5. május 5.. Alapfeladatok. Feladat: + d = Megoldás: Egy határozott integrál kiszámolása a feladat. Ilyenkor a Newton-Leibniz-tételt használhatjuk, mely azt mondja ki,

Részletesebben

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját!

Taylor-polinomok. 1. Alapfeladatok. 2015. április 11. 1. Feladat: Írjuk fel az f(x) = e 2x függvény másodfokú Maclaurinpolinomját! Taylor-polinomok 205. április.. Alapfeladatok. Feladat: Írjuk fel az fx) = e 2x függvény másodfokú Maclaurinpolinomját! Megoldás: A feladatot kétféle úton is megoldjuk. Az els megoldásban induljunk el

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 10. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. Mérai László előadása alapján Készítette: Nagy Krisztián 1. előadás Gráfok halmaza, gráf, ahol a csúcsok halmaza, az élek illesztkedés reláció: illesztkedik az élre, ha ( -él illesztkedik

Részletesebben

A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató

A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny második forduló MATEMATIKA I. KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értékelési útmutató Otatási Hivatal A 015/016 tanévi Országos Középisolai Tanulmányi Verseny másodi forduló MATEMATIKA I KATEGÓRIA (SZAKKÖZÉPISKOLA) Javítási-értéelési útmutató 1 Egy adott földterület felásását három munás

Részletesebben

Számítógép hálózatok, osztott rendszerek 2009

Számítógép hálózatok, osztott rendszerek 2009 Számítógép hálózatok, osztott rendszerek 2009 1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok 1 Az előadáshoz Előadás: Hétfő 10:00 12:00 óra Gyakorlat: Hétfő 14:00-16:00 óra Honlap: http://people.inf.elte.hu/lukovszki/courses/0910nwmsc

Részletesebben

Bevezetés az elméleti zikába

Bevezetés az elméleti zikába Bevezetés az elméleti zikába egyetemi jegyzet Kúpszeletek Lázár Zsolt, Lázár József Babe³Bolyai Tudományegyetem Fizika Kar 2011 TARTALOMJEGYZÉK 6 TARTALOMJEGYZÉK Azokat a görbéket, amelyeknek egyenlete

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. 2018. szeptember 21. 1. Diszkrét matematika 2. 2. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. szeptember 21. Gráfelmélet

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Véletlen bolyongás. 2. rész. Márkus László jegyzete alapján Tóth Tamás december 10.

Véletlen bolyongás. 2. rész. Márkus László jegyzete alapján Tóth Tamás december 10. 2. rész 2012. december 10. Határeloszlás tételek a bolyongás funkcionáljaira 1 A bolygó pont helyzete: EX i = 0, D 2 X i = EX 2 = 1 miatt i ES n = 0, D 2 S n = n, és a centrális határeloszlás tétel (CHT)

Részletesebben

Egyváltozós függvények 1.

Egyváltozós függvények 1. Egyváltozós függvények 1. Filip Ferdinánd filip.ferdinand@bgk.uni-obuda.hu siva.banki.hu/jegyzetek 015 szeptember 1. Filip Ferdinánd 015 szeptember 1. Egyváltozós függvények 1. 1 / 5 Az el adás vázlata

Részletesebben

10. Koordinátageometria

10. Koordinátageometria I. Nulladik ZH-ban láttuk: 0. Koordinátageometria. Melyek azok a P x; y pontok, amelyek koordinátái kielégítik az Ábrázolja a megoldáshalmazt a koordináta-síkon! x y x 0 egyenlőtlenséget? ELTE 00. szeptember

Részletesebben

A különböz lerajzolásokhoz különböz metszési szám tartozik: x(k 5, λ) = 5,

A különböz lerajzolásokhoz különböz metszési szám tartozik: x(k 5, λ) = 5, Gráfelmélet/Diszkrét Matematika MSc hallgatók számára Gráfok metszési paramétere és alkalmazásai 2013. El adó: Hajnal Péter 1. Gráfok metszési száma Az el adás a metszési szám nev gráfparaméterr l szól.

Részletesebben

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1

Megoldott feladatok november 30. n+3 szigorúan monoton csökken, 5. n+3. lim a n = lim. n+3 = 2n+3 n+4 2n+1 Megoldott feladatok 00. november 0.. Feladat: Vizsgáljuk az a n = n+ n+ sorozat monotonitását, korlátosságát és konvergenciáját. Konvergencia esetén számítsuk ki a határértéket! : a n = n+ n+ = n+ n+ =

Részletesebben

SZÁLLÍTÓ REPÜLŐGÉPEK GÁZTURBINÁS HAJTÓMŰVEI NYOMÁSVISZONYA NÖVELÉSÉNEK TERMIKUS PROBLÉMÁI

SZÁLLÍTÓ REPÜLŐGÉPEK GÁZTURBINÁS HAJTÓMŰVEI NYOMÁSVISZONYA NÖVELÉSÉNEK TERMIKUS PROBLÉMÁI Dr. Pásztor Endre SZÁLLÍTÓ REPÜLŐGÉPEK GÁZTURBINÁS HAJTÓMŰVEI NYOMÁSVISZONYA NÖVELÉSÉNEK TERMIKUS PROBLÉMÁI A probléma felvetése, bevezetése. Az ideális termius hatáso (η tid ) folytonosan növeszi a ompresszor

Részletesebben

Hálózati elemzések az üzleti életben. Kovács Gyula Sixtep Kft.

Hálózati elemzések az üzleti életben. Kovács Gyula Sixtep Kft. Hálózati elemzések az üzleti életben Kovács Gyula Sixtep Kft. Hálózat kutatás rövid ismertetése Königsbergi hidak problémája Háttér: A probléma története, hogy a poroszországi Königsberg (most Kalinyingrád,

Részletesebben

Abszolút folytonos valószín ségi változó (4. el adás)

Abszolút folytonos valószín ségi változó (4. el adás) Abszolút folytonos valószín ségi változó (4. el adás) Deníció (Abszolút folytonosság és s r ségfüggvény) Az X valószín ségi változó abszolút folytonos, ha van olyan f : R R függvény, melyre P(X t) = t

Részletesebben

Diszkrét matematika II. gyakorlat

Diszkrét matematika II. gyakorlat Diszkrét matematika II. gyakorlat 9. Gyakorlat Szakács Nóra Helyettesít: Bogya Norbert Bolyai Intézet 2013. április 11. Bogya Norbert (Bolyai Intézet) Diszkrét matematika II. gyakorlat 2013. április 11.

Részletesebben

6. HMÉRSÉKLETMÉRÉS. A mérés célja: ismerkedés a villamos elven mköd kontakthmérkkel; exponenciális folyamat idállandójának meghatározása.

6. HMÉRSÉKLETMÉRÉS. A mérés célja: ismerkedés a villamos elven mköd kontakthmérkkel; exponenciális folyamat idállandójának meghatározása. 6. HMÉRSÉKLETMÉRÉS A mérés célja: ismeredés a villamos elven möd ontathmérel; exponenciális folyamat idállandójána meghatározása. Elismerete: ellenállás hmérséletfüggése; ellenállás és feszültség mérése;

Részletesebben

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. 3. Rövid leírás. 4. Oktatási módszer. Biró Zsolt. 1.

Matematika B/1. Tartalomjegyzék. 1. Célkit zések. 2. Általános követelmények. 3. Rövid leírás. 4. Oktatási módszer. Biró Zsolt. 1. Matematika B/1 Biró Zsolt Tartalomjegyzék 1. Célkit zések 1 2. Általános követelmények 1 3. Rövid leírás 1 4. Oktatási módszer 1 5. Követelmények, pótlások 2 6. Program (el adás) 2 7. Program (gyakorlat)

Részletesebben

Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36

Vektorok. Wettl Ferenc október 20. Wettl Ferenc Vektorok október / 36 Vektorok Wettl Ferenc 2014. október 20. Wettl Ferenc Vektorok 2014. október 20. 1 / 36 Tartalom 1 Vektorok a 2- és 3-dimenziós térben 2 Távolság, szög, orientáció 3 Vektorok koordinátás alakban 4 Összefoglalás

Részletesebben

2. A ξ valószín ségi változó eloszlásfüggvénye a következ : x 4 81 F (x) = x 4 ha 3 < x 0 különben

2. A ξ valószín ségi változó eloszlásfüggvénye a következ : x 4 81 F (x) = x 4 ha 3 < x 0 különben 1 feladatsor 1 Egy dobozban 20 fehér golyó van Egy szabályos dobókockával dobunk, majd a következ t tesszük: ha a dobott szám 1,2 vagy 3, akkor tíz golyót cserélünk ki pirosra; ha a dobott szám 4 vagy

Részletesebben

2009. májusi matematika érettségi közép szint

2009. májusi matematika érettségi közép szint I 1.feladat Oldja meg a valós számok halmazán az alábbi egyenletet! 2 x 2 +13x +24=0 2.feladat Számítsa ki a 12 és 75 számok mértani közepét! 3.feladat Egy négytagú csoportban minden tagnak pontosan két

Részletesebben

Állapottér modellek tulajdonságai PTE PMMK MI BSc 1

Állapottér modellek tulajdonságai PTE PMMK MI BSc 1 Állapottér modelle tulajdonságai 28..22. PTE PMMK MI BSc Kalman-féle rendszer definíció Σ (T, X, U, Y, Ω, Γ, ϕ, η) T az időhalmaz X a lehetséges belső állapoto halmaza U a lehetséges bemeneti értée halmaza

Részletesebben

EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF

EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF Összefoglaló Gráfok / EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF Adott a G = (V, E) gráf ahol a V a csomópontok, E az élek halmaza E = {(x, y) x, y V, x y (nincs hurokél) és (x, y) = (y, x)) Jelölések:

Részletesebben

Valószín ségszámítás és statisztika

Valószín ségszámítás és statisztika Valószín ségszámítás és statisztika Informatika BSc, esti tagozat Backhausz Ágnes agnes@math.elte.hu fogadóóra: szerda 10-11 és 13-14, D 3-415 2018/2019. tavaszi félév Bevezetés A valószín ségszámítás

Részletesebben

Boronkay György Műszaki Középiskola és Gimnázium

Boronkay György Műszaki Középiskola és Gimnázium Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. (: 27-317 - 077 (/fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör 2014/2015.

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

Ez is Hungaricum. Kovács Vera, Palotay Dorka, Pozsonyi Enik, Szabó Csaba január 27. ELTE

Ez is Hungaricum. Kovács Vera, Palotay Dorka, Pozsonyi Enik, Szabó Csaba január 27. ELTE Ez is ELTE 2013. január 27. Motiváció Tapasztalatok és célok A középiskolából kikerül diákok nagy része nem ismeri a gráfokat Vizsgálataink: A gráfok oktatásának mai helyzete Mi ennek az oka? A gráfok

Részletesebben

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok

Kiegészítő részelőadás 2. Algebrai és transzcendens számok, nevezetes konstansok Kiegészítő részelőadás 2. Algebrai és transzcendens számo, nevezetes onstanso Dr. Kallós Gábor 204 205 A valós számo ategorizálása Eml. (óori felismerés): nem minden szám írható fel törtszámént (racionálisént)

Részletesebben

Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 3. hét A KERESLETELMÉLET ALAPJAI. HASZNOSSÁG, PREFERENCIÁK

Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 3. hét A KERESLETELMÉLET ALAPJAI. HASZNOSSÁG, PREFERENCIÁK KÖZGAZDASÁGTAN I. ELTE TáTK Közgazdaságtudományi Tanszék Közgazdaságtan 1. A KERESLETELMÉLET ALAPJAI. HASZNOSSÁG, PREFERENCIÁK Bíró Anikó, K hegyi Gergely, Major Klára Szakmai felel s: K hegyi Gergely

Részletesebben

eszemélyi Kliens Szoftvercsomag

eszemélyi Kliens Szoftvercsomag Belügyminisztérium eszemélyi Kliens Szoftvercsomag Telepítési Útmutató 1 Bevezetés 1.1 Jelen dokumentum célja Az alábbi dokumentum írja le, hogy hogyan kell telepíteni az eszemélyi Kliens szoftvercsomagot.

Részletesebben

13. Oldja meg a valós számok halmazán az alábbi egyenleteket!

13. Oldja meg a valós számok halmazán az alábbi egyenleteket! A 13. Oldja meg a valós számok halmazán az alábbi egyenleteket! a) b) sin 2 x 1 2cos x a) 6 pont b) 6 pont 12 pont írásbeli vizsga, II. összetev 4 / 16 2011. október 18. 14. Egy felmérés során két korcsoportban

Részletesebben

9. évfolyam feladatai

9. évfolyam feladatai Hómezővásárhely, 015. április 10-11. A versenyolgozato megírására 3 óra áll a iáo renelezésére, minen tárgyi segéeszöz használható. Minen évfolyamon 5 felaatot ell megolani. Egy-egy felaat hibátlan megolása

Részletesebben

HALMAZELMÉLET feladatsor 1.

HALMAZELMÉLET feladatsor 1. HALMAZELMÉLET feladatsor 1. Egy (H,, ) algebrai struktúra háló, ha (H, ) és (H, ) kommutatív félcsoport, és teljesül az ún. elnyelési tulajdonság: A, B H: A (A B) = A, A (A B) = A. A (H,, ) háló korlátos,

Részletesebben

Csima Judit BME, SZIT február 17.

Csima Judit BME, SZIT február 17. 1 Véletlen gráfok és valós hálózatok Csima Judit BME, SZIT 2010. február 17. Tartalom 2 1. Motiváció: miért pont véletlen gráfok? 2. A klasszikus modell: Erdős-Rényi véletlen-gráf modell definíció jellemzői

Részletesebben

Érdemes egy n*n-es táblázatban (sorok-lányok, oszlopok-fiúk) ábrázolni a két színnel, mely éleket húztuk be (pirossal, kékkel)

Érdemes egy n*n-es táblázatban (sorok-lányok, oszlopok-fiúk) ábrázolni a két színnel, mely éleket húztuk be (pirossal, kékkel) Kombi/2 Egy bizonyos bulin n lány és n fiú vesz részt. Minden fiú pontosan a darab lányt és minden lány pontosan b darab fiút kedvel. Milyen (a,b) számpárok esetén létezik biztosan olyan fiúlány pár, akik

Részletesebben