Véletlen gráfok, hálózatok
|
|
- Csenge Barta
- 6 évvel ezelőtt
- Látták:
Átírás
1 Véletlen gráfok, hálózatok Véletlen gráfok, hálózatok Csirik András Erdős-Rényi modell Watts-Strogatz modell Barabási-Albert modell Hálózatok a mindennapokban Hálózatok a világ minden területén megtalálhatók internet társadalom elektromos hálózatok agy tápláléklánc terrorista hálózatok tudományos hivatkozások kémiai reakciók Hálózatok a mindennapokban Összefüggő-e a hálózat? Mikor összefüggő? Pl. Vírusok terjedése számítógépen, járványok terjedése emberek között Hány és mely pontokat vehetjük ki a hálózatból hogy összefüggő maradjon? (Robosztusság) Pl. Elektromos hálózat meghibásodik-e, terrorista sejtet fel tudunk-e számolni, Ökoszisztémát mennyire veszélyezteti egy-egy faj kihalása? Hálózatok modellezése gráfokkal Probléma: a legtöbb hálózat túl nagy, nem ismerjük a pontos szerkezetét Az Erdős-Rényi modell Az Erdős-Rényi modell Véletlen gráf Két rokon modell: G(n,M) : n csúcsú és M élű gráfok közül választunk azonos valószínűséggel G(n,p) : n csúcsú gráf minden élét egymástól függetlenül azonos valószínűséggel húzzuk be Kapcsolat: G(n,p)-ben nagyságrendben (n(n-1)/2)*p él lesz. M=(n(n-1)/2)*p esetén G(n,M) és G(n,p) ugyanúgy viselkedik nagy n-ekre. G(n,p) tulajdonságai: Várható élszám: Fokszámeloszlás: Határátmenetben: Poisson(np) Átlagos fokszám: c=(n-1)p Binom(n-1,p) 1
2 Óriás komponens P=0 esetén a gráf üres, minden pont egy külön komponens (1 méretű), ha növeljük a pontok számát ez akkor sem változik P=1 esetén a gráf teljes, minden pont az egyetlen komponenshez tartozik (n méretű), ha növeljük a pontok számát, akkor a komponens mérete is növekszik (n-nel arányosan) Óriás komponens: olyan összefüggő komponens melynek mérete a pontok számával arányosan nő Milyen p valószínűségnél jön létre óriás komponens? Óriás komponens S: Azon pontok aránya a gráfban melyek az óriás komponensben vannak Átlagos fokszám: c=(n-1)p A következő egyenlet érvényes: Nincs zárt alak Jobb megértéshez grafikus megoldás Óriás komponens C=1 a kritikus érték, efölött megjelenik az óriás komponens A természetben előforduló hálózatokban egy pontnak sokkal több szomszédja van 1-nél Emiatt lehet az, hogy az emberek között egy pletyka mindenkihez eljuthat, vagy egy járvány mindenkire átterjedhet Az interneten is emiatt terjedhetnek el a vírusok Kis világok Óriási hálózatokban milyen távol vannak egymástól a pontok? Milgram kísérlet (1967.) USA-ban szerette volna "megmérni" két tetszőleges ember között a távolságot Ehhez kiválasztott egy célszemélyt Illetve egy tőle távoli városban élő véletlenszerű embereknek levelet küldött, amiben leírta a kísérlete célját, és megkérte őket, hogy vegyenek részt a kísérletben Amennyiben ismerik a célszemélyt, küldjék neki tovább a levelet Amennyiben nem, akkor küldjék tovább egy olyan ismerősüknek, aki nagyobb valószínűséggel ismeri a célszemélyt Eredmény: azok a levelek melyek elérték a célszemélyt átlagosan 5,5 lépésben tették ezt 2
3 Kis világok Az internet feltérképezése: Albert Réka, Hawoong Jeong (1998.) Egy olyan programot készítettek, amely a weblapok között lépkedett a köztük található linkeken keresztül A teljes web feltérképezése lehetetlen feladat (akkoriban 800 millió weboldal) Ehelyett kisebb részeit vizsgálták (1000,10000,.,amekkorát a számítógépük még kezelni tudott) Ezeken meghatározták az átlagos távolságot Majd a kapott eredményekre extrapoláltak Eredmény: d=0,35+2logn (az átlagos távolság kb. 19 lépés) A pontok közti átlagos távolság a pontok számának logaritmusával nő Kis világok Miért van ez így? Tegyük fel, hogy az átlagos fokszám k Ekkor egy adott pontból kiindulva az első szomszédok száma k A a kettő távolságra lévő pontok száma k^2 A d távolságra lévő pontok száma k^d Mennyit kell átlagosan lépni, hogy minden csúcsba eljussunk? k^d=n, ebből pedig d=logn/logk Hány lépésben ismered Trumpot? Csoportképződés Tényleg úgy néznek ki a valódi hálózatok, ahogy az Erdős-Rényi modell leírja őket? A társadalomban baráti társaságok/ismeretségi körök alakulnak ki (csoportok képződnek) Ennek a mérésére szolgál a csoporterősségi együttható Adott csúcs szomszédjai között a lehetséges élek milyen arányban vannak jelen (ismerőseim milyen arányban ismerik egymást) A társadalomban ezt lehetetlen lenne megmérni, de egy kis szeletében lehetséges! Tudományos életben a publikációkon keresztül vizsgálható (társszerzők) Csoportképződés A társadalomban szer nagyobb a csoportképződési együttható, mint az E-R modell alapján lenne. A csoportképződést kimutatták: Idegsejtek között Elektromos hálózatokban Közgazdaságtanban a vállalatok között Az Erdős-Rényi modell nem jól írja le a valódi hálózatokat 3
4 Watts-Strogatz modell N csúcs egy körlapon elhelyezve Minden csúcsot összekötünk a tőle jobbra ill. balra levő K/2 db szomszédjával Ez a modell jól kiadja a csoportképződési együttható nagyságát Viszont a kis világ tulajdonság eltűnik Minden meglévő élt nagyobb végpontját β valószínűséggel cseréljük ki egy másik végpontra (ezt a végpontot azonos valószínűséggel választjuk, úgy hogy a gráf egyszerű maradjon) Így a csoportképződési eh. alig változik, viszont újra kis-világot kapunk Középpontok és összekötők Társadalomban vannak olyan emberek, akik kiugróan sok ismeretséggel rendelkeznek (hírességek, celebek) Világhálón vannak olyan oldalak, melyek nagyon sok linkkel rendelkeznek (Google, Facebook) Sejtben vannak olyan vegyületek, amik nagyon sok reakcióban vesznek részt (víz) Az E-R és W-S modell szerint az ilyen pontok létezésének az esélye nagyon-nagyon kicsi (közel 0) 80/20-as szabály Pareto olasz közgazdász nevéhez fűződik Borsó betakarításakor a szemek 80%-a a hüvelyek 20%-ban található Olasz termőföld 80%-a a lakosság 20%-nak kezében Linkek 80%-a a weblapok 15%-ra mutat A tudományos hivatkozások 80%-át a kutatók 38%-a kapja Az élek jelentős része a csúcsok egy kisebb hányadához tartozik E-R vagy W-S modell szerint minden csúcs nagyjából ugyanolyan lenne, nem lennének kiugróan magas fokszámú csúcsok Skálafüggetlen hálózatok Internet feltérképezésekor kapott eredmény szerint az egy lapra mutató hivatkozások számát hatványfüggvény írja le N(k) =ck^(-α) Sok csúcs kicsi fokszámmal Nagyobb fokszámú csúcsok előfordulása sem lehetetlen (csak kevésbé gyakori) Ezzel szemben az E-R és W-S modellekben nem fordulhatnak elő kiugróan magas fokszámú csúcsok Minden csúcs körülbelül ugyanannyi kapcsolattal rendelkezik A legtöbb valódi hálózat fokszámeloszlása hatványfüggvényt követ, ezeket nevezzük skálafüggetlen hálózatoknak A sok hálózatban előforduló hatványeloszlás azt sugallja, hogy a hálózatok nem véletlenszerűek, hanem valamilyen természeti törvények alapján jönnek létre. 4
5 Mitől jön létre a hatványfüggvény-eloszlás? Hogyan alakulnak ki a hálózatok? Az eddigi modellekben feltettük, hogy a csúcsok száma adott (n) A valóságban a hálózatok általában növekednek A gazdag egyre gazdagabb lesz Első próba: Kiindulunk n csúcsból Egyesével veszünk hozzá a hálózatunkhoz új csúcsokat, és ezeket a pontokat egymástól függetlenül, azonos valószínűséggel kötjük össze a korábbi pontokkal Ennek az a következménye, hogy a legrégebbi pontoknak lesz a legtöbb csúcsa, a legújabbaknak meg a legkevesebb A probléma az, hogy ebből a modellből is exponenciális lecsengésű fokszámeloszlás jön ki Második próba: Népszerűségi kapcsolódás Az új pontok kapcsolódása nem véletlenszerű, hanem arányos az adott pont fokszámával Ez már hatványfüggvény lecsengésű lesz Viszont ebben a modellben az új pontoknak nincs esélyük "legyőzni" a régebbieket Harmadik próba: Fitness paraméter bevezetése a csúcsokhoz Kiindulunk egy m0 pontból álló tetszőleges összefüggő gráfból Minden lépésben hozzáadunk egy új pontot a hálózathoz és összekötjük m m0 csúccsal Annak a valószínűsége, hogy ezt az új pontot az i. csúccsal összekötjük függ a csúcs k_i fokszámától: Fitness paraméterrel: Ha mind egyenlő akkor visszakapjuk a fentebbi képletet 5
6 Egy csúcs fokszámának időbeli változása: t_i az az időpont amikor az i. csúcs belépett a gráfba β=½ A fokszámeloszlás: Valóban hatványfüggvény A modell hiányosságai: Új összeköttetések akkor is keletkezhetnek, amikor a pontok már a hálózatban vannak (pl. Színészek új filmjei, új ismerettségek) Egyes pontok el is tűnhetnek a hálózatból (pl. weboldalak megszűnése) A valódi hálózatokban a kapcsolódási mechanizmus ettől eltérő (jóval bonyolultabb) lehet Az első modell, ami a hálózatok topológiáját összefüggésbe hozza a fejlődésükkel Rávilágít, hogy a hálózatok mögött is természeti törvények bújnak meg Tesztkérdés A hálózatok mely tulajdonságát nem tudja visszaadni a Watts-Strogatz modell? a) Kis világ b) Csoportképződés c) Csomópontok d) Mindegyik tulajdonságot jól megmagyarázza Felhasznált irodalom Barabási Albert-László: Behálózva (2002.) Wikipédia szócikkek: Erdős-Rényi model 6
Hálózatok fejlődése A hatványtörvény A preferential attachment A uniform attachment Vertex copy. SZTE Informatikai Intézet
Hálózattudomány SZTE Informatikai Intézet Számítógépes Optimalizálás Tanszék Előadó: London András 4. Előadás Hogyan nőnek a hálózatok? Statikus hálózatos modellek: a pontok száma (n) fix, az éleket valamilyen
RészletesebbenA Barabási-Albert-féle gráfmodell
A Barabási-Albert-féle gráfmodell és egyéb véletlen gráfok Papp Pál András Gráfok, hálózatok modelljei Rengeteg gráfokkal modellezhető terület: Pl: Internet, kapcsolati hálók, elektromos hálózatok, stb.
RészletesebbenSzalai Péter. April 17, Szalai Péter April 17, / 36
Szociális hálók Szalai Péter April 17, 2015 Szalai Péter April 17, 2015 1 / 36 Miről lesz szó? 1 Megfigyelések Kis világ Power-law Klaszterezhetőség 2 Modellek Célok Erdős-Rényi Watts-Strogatz Barabási
RészletesebbenBevezete s a ha ló zatók vila ga ba II.
Bevezete s a ha ló zatók vila ga ba II. Véletlen hálózatok Szervezzünk partit! Körülbelül 100 vendéget hívunk meg. A vendégek kezdetben nem ismerik egymást. Kínáljuk őket sajttal és borral, biztosítva
RészletesebbenCsima Judit BME, SZIT február 18.
1 Véletlen gráfok és valós hálózatok Csima Judit BME, SZIT 2011. február 18. Tartalom 2 1. Motiváció: miért pont véletlen gráfok? Tartalom 2 1. Motiváció: miért pont véletlen gráfok? 2. A klasszikus modell:
RészletesebbenTársadalmi és gazdasági hálózatok modellezése
Társadalmi és gazdasági hálózatok modellezése 6. el adás Hálózatok növekedési modelljei: `uniform és preferential attachment' El adó: London András 2015. október 12. Hogyan n nek a hálózatok? Statikus
RészletesebbenBetekintés a komplex hálózatok világába
Betekintés a komplex hálózatok világába Dr. Varga Imre Debreceni Egyetem Informatikai Kar EFOP-3.6.1-16-2016-00022 Egyszerű hálózatok Grafit kristály Árpád házi uralkodók családfája LAN hálózat Komplex
RészletesebbenCsima Judit BME, SZIT február 17.
1 Véletlen gráfok és valós hálózatok Csima Judit BME, SZIT 2010. február 17. Tartalom 2 1. Motiváció: miért pont véletlen gráfok? 2. A klasszikus modell: Erdős-Rényi véletlen-gráf modell definíció jellemzői
RészletesebbenStatisztikai módszerek a skálafüggetlen hálózatok
Statisztikai módszerek a skálafüggetlen hálózatok vizsgálatára Gyenge Ádám1 1 Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Számítástudományi és Információelméleti
RészletesebbenKomplex hálózatok: alapfogalmak, modellek, módszerek
Komplex hálózatok: alapfogalmak, modellek, módszerek London András, Németh Tamás 2015. április 13. Motiváció Alapfogalmak Centralitás mértékek Néhány gráfmodell Hálózatok mindenhol! ábra 1: Facebook kapcsolati
RészletesebbenÖsszefoglalás és gyakorlás
Összefoglalás és gyakorlás High Speed Networks Laboratory 1 / 28 Hálózatok jellemző paraméterei High Speed Networks Laboratory 2 / 28 Evolúció alkotta adatbázis Önszerveződő adatbázis = (struktúra, lekérdezés)
RészletesebbenDoktori disszertáció. szerkezete
Doktori disszertáció tézisfüzet Komplex hálózatok szerkezete Szabó Gábor Témavezető Dr. Kertész János Elméleti Fizika Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 2005 Bevezetés A tudományos
RészletesebbenSzociális hálózatok Gráf alapú módszerek. Adatbányászat. Klaszterezés Szociális hálózatok. Szegedi Tudományegyetem. Adatbányászat
Klaszterezés Szegedi Tudományegyetem Élei lehetnek címkézettek (pl. ellenség, barát), továbbá súlyozottak (pl. telefonbeszélgetés) Megjelenési formái Ismeretségi, társszerzőségi gráf (Erdős-Bacon szám)
RészletesebbenAlapfogalmak II. Def.: Egy gráf összefüggő, ha bármely pontjából bármely pontjába eljuthatunk egy úton.
lapfogalmak II Nézzük meg mégegyszer a königsbergi séták problémáját! város lakói vasárnaponként szerettek sétálni a szigeteken. Felvetődött a kérdés, hogy hogyan lehetne olyan sétát tenni a városban,
RészletesebbenSzA II. gyakorlat, szeptember 18.
SzA II. gyakorlat, 015. szeptember 18. Barátkozás a gráfokkal Drótos Márton drotos@cs.bme.hu 1. Az előre megszámozott (címkézett) n darab pont közé hányféleképp húzhatunk be éleket úgy, hogy egyszerű gráfhoz
RészletesebbenDiszkrét matematika 2.
Diszkrét matematika 2. A szakirány 11. előadás Ligeti Péter turul@cs.elte.hu www.cs.elte.hu/ turul Nagy hálózatok Nagy hálózatok jellemzése Internet, kapcsolati hálók, biológiai hálózatok,... globális
RészletesebbenHálózati elemzések az üzleti életben. Kovács Gyula Sixtep Kft.
Hálózati elemzések az üzleti életben Kovács Gyula Sixtep Kft. Hálózat kutatás rövid ismertetése Königsbergi hidak problémája Háttér: A probléma története, hogy a poroszországi Königsberg (most Kalinyingrád,
RészletesebbenVéletlen gráfok. Backhausz Ágnes Eötvös Loránd Tudományegyetem és MTA Rényi Alfréd Matematikai Kutatóintézet december 2.
Véletlen gráfok Backhausz Ágnes Eötvös Loránd Tudományegyetem és MTA Rényi Alfréd Matematikai Kutatóintézet agnes@cs.elte.hu 2015. december 2. Nagy hálózatok Példák valós hálózatokra társadalmi hálózatok
RészletesebbenGráfelméleti alapfogalmak-1
KOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára Gráfelméleti alapfogalmak Előadó: Hajnal Péter 2015 1. Egyszerű gráfok Nagyon sok helyzetben egy alaphalmaz elemei között kitűntetett
RészletesebbenA hazai elszámolásforgalom hálózati elemzése
A hazai elszámolásforgalom hálózati elemzése Révkomárom, 2013. január 23. Pál Zsolt egyetemi tanársegéd Miskolci Egyetem Gazdaságtudományi Kar A kutatás előzményei, háttere Hálózatelmélet - szabályos gráfok
RészletesebbenZsidók, tudomány és hálózatok?
Zsidók, tudomány és hálózatok? Bevezető gondolatok és alapfogalmak Biró Tamás OR-ZSE Hálózatkutatás a Zsidó Tanulmányokban kutatócsoport 2018. 12. 19. Hálózatok mindenhol Például: emberek alkotta társadalmi
RészletesebbenA MATEMATIKA NÉHÁNY KIHÍVÁSA
A MATEMATIKA NÉHÁNY KIHÍVÁSA NAPJAINKBAN Simon L. Péter ELTE, Matematikai Intézet Alkalmazott Analízis és Számításmatematikai Tsz. 1 / 20 MATEMATIKA AZ ÉLET KÜLÖNBÖZŐ TERÜLETEIN Kaotikus sorozatok és differenciálegyenletek,
RészletesebbenTársadalmi és gazdasági hálózatok modellezése
Társadalmi és gazdasági hálózatok modellezése 5. el adás Közösségszerkezet El adó: London András 2017. október 16. Közösségek hálózatban Homofília, asszortatívitás Newman modularitás Közösségek hálózatban
RészletesebbenKözösség detektálás gráfokban
Közösség detektálás gráfokban Önszervező rendszerek Hegedűs István Célkitűzés: valamilyen objektumok halmaza felett minták, csoportok detektálása csakis az egyedek közötti kapcsolatok struktúrájának a
RészletesebbenBabeş-Bolyai Tudományegyetem Fizika Kar, Kolozsvár. Hegyi Géza. Filozofia és Történelem Kar, Kolozsvár. M.A. Santos, R. Coelho és J.J.
Vagyoneloszlás a társadalmakban - egy fizikus megközelítése Néda Zoltán Babeş-Bolyai Tudományegyetem Fizika Kar, Kolozsvár Hegyi Géza Babeş-Bolyai Tudományegyetem Filozofia és Történelem Kar, Kolozsvár
RészletesebbenA zsebrádiótól Turán tételéig
Jegyzetek egy matekóráról Lejegyezte és kiegészítésekkel ellátta: Meszéna Balázs A katedrán: Pataki János A gráfokat rengeteg életszagú példa megoldásában tudjuk segítségül hívni. Erre nézzünk egy példát:
RészletesebbenLokális tulajdonságok véletlen. Nagy Gábor
Eötvös Loránd Tudományegyetem Természettudományi Kar Lokális tulajdonságok véletlen gráfokban Szakdolgozat Nagy Gábor Matematika BSc Alkalmazott matematikus szakirány Témavezető: Backhausz Ágnes tanársegéd
RészletesebbenREKLÁMPSZICHOLÓGIA. 1/a. TÁRSTUDOMÁNYOK és ÚJ TUDOMÁNYÁGAK
REKLÁMPSZICHOLÓGIA 1/a. TÁRSTUDOMÁNYOK és ÚJ TUDOMÁNYÁGAK Interdiszciplináris tudomány kereskedelem lélektan kommunikáció kutatás kampány hatásvizsgálatok médiakutatás, mérés REKLÁM PSZICHO- LÓGIA fogyasztói
RészletesebbenKOMBINATORIKA ElŐADÁS Matematika BSc hallgatók számára. Klikkek gráfokban-1. Definíció. Egy G gráfban egy K V(G) csúcshalmazt klikknek nevezünk, ha K
KOMBINATORIKA ElŐADÁS Matematika BSc hallgatók számára Klikkek gráfokban Előadó: Hajnal Péter 2017 1. Az alapkérdés Emlékeztetünk egy a gráfok színezésénél tárgyalt fontos fogalomra: Definíció. Egy G gráfban
RészletesebbenSzociális hálózatok geográfiai beágyazódása
Eötvös Loránd Tudományegyetem Természettudományi Kar Szociális hálózatok geográfiai beágyazódása Szakdolgozat Készítette: Fejes Ágota Matematika BSc, Matematikai elemző szakirány Témavezető: Lukács András
RészletesebbenEGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF
Összefoglaló Gráfok / EGYSZERŰ, NEM IRÁNYÍTOTT (IRÁNYÍTATLAN) GRÁF Adott a G = (V, E) gráf ahol a V a csomópontok, E az élek halmaza E = {(x, y) x, y V, x y (nincs hurokél) és (x, y) = (y, x)) Jelölések:
RészletesebbenStatisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
RészletesebbenFeladatok MATEMATIKÁBÓL
Feladatok MATEMATIKÁBÓL a 12. évfolyam számára III. 1. Számítsuk ki a következő hatványok értékét! 2. Írjuk fel gyökjelekkel a következő hatványokat! 3. Az ötnek hányadik hatványa a következő kifejezés?
RészletesebbenAdatszerkezetek 2. Dr. Iványi Péter
Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat
RészletesebbenKözösségek keresése nagy gráfokban
Közösségek keresése nagy gráfokban Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 2011. április 14. Katona Gyula Y. (BME SZIT) Közösségek
RészletesebbenSíkbarajzolható gráfok Április 26.
Síkbarajzolható gráfok 2017. Április 26. Síkgráfok Egy gráf síkgráf=síkba rajzolható gráf, ha lerajzolható úgy a síkba, hogy élei csak a szögpontokban metszik egymást. Ha egy gráf lerajzolható a síkba,
RészletesebbenMatematika tanmenet 11. évfolyam (középszintű csoport)
Matematika tanmenet 11. évfolyam (középszintű csoport) Műveltségi terület: MATEMATIKA Iskola, osztályok: Vetési Albert Gimnázium, 11.A, 11.B, 11.D (alap) Tantárgy: MATEMATIKA Heti óraszám: 4 óra Készítették:
RészletesebbenDiszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2015. tavasz 1. Diszkrét matematika 2.C szakirány 1. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu Komputeralgebra Tanszék 2015. tavasz Gráfelmélet Diszkrét
RészletesebbenDiszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
RészletesebbenDiszkrét matematika 1. estis képzés
Diszkrét matematika 1. estis képzés 2019. tavasz 1. Diszkrét matematika 1. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Mérai László diái alapján
RészletesebbenStatisztika I. 8. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes
RészletesebbenGráf-algoritmusok ERŐS / GYENGE KÖTÉSEK
Gráf-algoritmusok ERŐS / GYENGE KÖTÉSEK Sapientia-EMTE 2017-18 http://www.cs.cornell.edu/home/kleinber/networks-book/ A gyenge kapcsolatok ereje The strength of weak ties (legidézettebb cikk) 1969 (American
RészletesebbenÖsszetett hálózatok a híradástechnikában
Összetett hálózatok a híradástechnikában Horváth Árpád 03. december 4.. Híradástechnikai példák. példa: A telefonhálózat El ször minden telefont összekötöttek. Kés bb
RészletesebbenMagyar és angol szóasszociációs hálózatok vizsgálata. Orosz Katalin Kovács László Pollner Péter
Magyar és angol szóasszociációs hálózatok vizsgálata Orosz Katalin Kovács László Pollner Péter 0. Bevezetés Jelenlegi elképzeléseink szerint a beszédértés és beszédprodukció során előhívott szavakat (és
RészletesebbenTermelés- és szolgáltatásmenedzsment
Termelés- és szolgáltatásmenedzsment egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelés- és szolgáltatásmenedzsment 13. Előrejelzési módszerek 14. Az előrejelzési modellek felépítése
RészletesebbenEz is Hungaricum. Kovács Vera, Palotay Dorka, Pozsonyi Enik, Szabó Csaba január 27. ELTE
Ez is ELTE 2013. január 27. Motiváció Tapasztalatok és célok A középiskolából kikerül diákok nagy része nem ismeri a gráfokat Vizsgálataink: A gráfok oktatásának mai helyzete Mi ennek az oka? A gráfok
RészletesebbenÁdám Réka. Szakdolgozat Alkalmazott matematikus MSc, Sztochasztika szakirány
E ÖTVÖS L ORÁND T UDOMÁNYEGYETEM T ERMÉSZETTUDOMÁNYI K AR Ádám Réka V ÉLETLEN GRÁFOK ÉS JÁRVÁNYTERJEDÉSI FOLYAMATOK Szakdolgozat Alkalmazott matematikus MSc, Sztochasztika szakirány Témavezeto : Backhausz
RészletesebbenTársadalmi és gazdasági hálózatok modellezése
Társadalmi és gazdasági hálózatok modellezése 2. el adás A hálózatkutatás néhány fontos fogalma El adó: London András 2015. szeptember 15. Átmér l ij a legrövidebb út a hálózatban i és j pont között =
RészletesebbenEgy negyedikes felvételi feladattól az egyetemi matematikáig
Egy negyedikes felvételi feladattól az egyetemi matematikáig Tassy Gergely Veres Péter Gimnázium, Budapest ELTE Matematikatanár-délután Kombinatorika és gráfelmélet a középiskolában 2015. február 18. I.
RészletesebbenA kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése.
A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. Eszközszükséglet: tanulói tápegység funkcionál generátor tekercsek digitális
RészletesebbenALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN!
A1 A2 A3 (8) A4 (12) A (40) B1 B2 B3 (15) B4 (11) B5 (14) Bónusz (100+10) Jegy NÉV (nyomtatott nagybetűvel) CSOPORT: ALÁÍRÁS: ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN! 2011. december 29. Általános tudnivalók:
RészletesebbenA számítástudomány alapjai
A számítástudomány alapjai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Legszélesebb utak Katona Gyula Y. (BME SZIT) A számítástudomány
RészletesebbenHAMILTON ÚT: minden csúcson PONTOSAN egyszer áthaladó út
SÍKBA RAJZOLHATÓ GRÁFOK ld. előadás diasorozat SZÍNEZÉS: ld. előadás diasorozat PÉLDA: Reguláris 5 gráf színezése 4 színnel Juhász, PPKE ITK, 007: http://users.itk.ppke.hu/~b_novak/dmat/juhasz_5_foku_graf.bmp
Részletesebben[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát
RészletesebbenÉrdemes egy n*n-es táblázatban (sorok-lányok, oszlopok-fiúk) ábrázolni a két színnel, mely éleket húztuk be (pirossal, kékkel)
Kombi/2 Egy bizonyos bulin n lány és n fiú vesz részt. Minden fiú pontosan a darab lányt és minden lány pontosan b darab fiút kedvel. Milyen (a,b) számpárok esetén létezik biztosan olyan fiúlány pár, akik
Részletesebben1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)
1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)
RészletesebbenA társadalom hálózati jelenségeinek adatvezérelt vizsgálata I: Társadalmi terjedés. Magyar Tudomány Ünnepe 2017 Számítógépes Társadalomtudomány
A társadalom hálózati jelenségeinek adatvezérelt vizsgálata I: Társadalmi terjedés Kertész János CEU, BME Magyar Tudomány Ünnepe 2017 Számítógépes Társadalomtudomány Zhongyuan Ruan (CEU) Márton Karsai
RészletesebbenBevezete s a ha ló zatók vila ga ba
Bevezete s a ha ló zatók vila ga ba Bevezetés Kezdjük egy játékkal! Képzeletünkben kalandozzunk el és válasszunk egy tetszőleges országot a világon, annak tetszőleges települését és egy ott élő tetszőleges
RészletesebbenHierarchikus skálafüggetlen gráfok generálása fraktálokkal
Hierarchikus skálafüggetlen gráfok generálása fraktálokkal Komjáthy Júlia Simon Károly Sztochasztika Tanszék Matematika Intézet Budapesti Műszaki és Gazdaságtudományi Egyetem www.math.bme.hu/~komyju www.math.bme.hu/~simonk
RészletesebbenHAMILTON KÖR: minden csúcson PONTOSAN egyszer áthaladó kör. Forrás: (
HAMILTON KÖR: minden csúcson PONTOSAN egyszer áthaladó kör Teljes gráf: Páros gráf, teljes páros gráf és Hamilton kör/út Hamilton kör: Minden csúcson áthaladó kör Hamilton kör Forrás: (http://www.math.klte.hur/~tujanyi/komb_j/k_win_doc/g0603.doc
RészletesebbenDiszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 7. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
RészletesebbenAz egyszerűsítés utáni alak:
1. gyszerűsítse a következő törtet, ahol b 6. 2 b 36 b 6 Az egyszerűsítés utáni alak: 2. A 2, 4 és 5 számjegyek mindegyikének felhasználásával elkészítjük az összes, különböző számjegyekből álló háromjegyű
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Gráfok
MTEMTIK ÉRETTSÉGI TÍPUSFELDTOK MEGOLDÁSI KÖZÉP SZINT Gráfok 1) Egy gráfban 4 csúcs van. z egyes csúcsokból 3; 2; 2; 1 él indul. Hány éle van a gráfnak? Egy lehetséges ábrázolás: gráfnak 4 éle van. (ábra
RészletesebbenSzimuláció RICHARD M. KARP és AVI WIGDERSON. (Készítette: Domoszlai László)
Szimuláció RICHARD M. KARP és AVI WIGDERSON A Fast Parallel Algorithm for the Maximal Independent Set Problem című cikke alapján (Készítette: Domoszlai László) 1. Bevezetés A következőkben megadott algoritmus
RészletesebbenKettőnél több csoport vizsgálata. Makara B. Gábor
Kettőnél több csoport vizsgálata Makara B. Gábor Három gyógytápszer elemzéséből az alábbi energia tartalom adatok származtak (kilokalória/adag egységben) Három gyógytápszer elemzésébô A B C 30 5 00 10
RészletesebbenStatisztikai következtetések Nemlineáris regresszió Feladatok Vége
[GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell
RészletesebbenSTATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése
4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól
Részletesebben1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)
Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő
RészletesebbenGráfelméleti alapfogalmak
1 Gráfelméleti alapfogalmak Gráf (angol graph= rajz): pontokból és vonalakból álló alakzat. pontok a gráf csúcsai, a vonalak a gráf élei. GRÁ Irányítatlan gráf Vegyes gráf Irányított gráf G H Izolált pont
RészletesebbenINFORMÁCIÓTERJEDÉS MODELLEZÉSE HÁLÓZATOKON DIFFERENCIÁLEGYENLETEKKEL
INFORMÁCIÓTERJEDÉS MODELLEZÉSE HÁLÓZATOKON DIFFERENCIÁLEGYENLETEKKEL Eötvös Loránd Tudományegyetem Természettudományi Kar BSc szakdolgozat Készítette: Korányi Gerg Matematika BSc Matematikai elemz szakirány
RészletesebbenGráfelmélet Megoldások
Gráfelmélet Megoldások 1) a) Döntse el az alábbi négy állítás közül melyik igaz és melyik hamis! Válaszát írja a táblázatba! A: Egy 6 pontot tartalmazó teljes gráfnak 15 éle van B: Ha egy teljes gráfnak
Részletesebben8. OSZTÁLY ; ; ; 1; 3; ; ;.
BEM JÓZSEF Jelszó:... VÁROSI MATEMATIKAVERSENY Teremszám:... 2010. december 7-8. Hely:... 8. OSZTÁLY Tiszta versenyidő: 90 perc. A feladatokat többször is olvasd el figyelmesen! A megoldás menetét, gondolataidat
RészletesebbenHIDROSZTATIKA, HIDRODINAMIKA
HIDROSZTATIKA, HIDRODINAMIKA Hidrosztatika a nyugvó folyadékok fizikájával foglalkozik. Hidrodinamika az áramló folyadékok fizikájával foglalkozik. Folyadékmodell Önálló alakkal nem rendelkeznek. Térfogatuk
RészletesebbenMATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész
MATEMATIKA PRÓBAÉRETTSÉGI 203 I. rész. Oldja meg a következő egyenletet: x 2 25. Az egyenlet megoldása: 2. Egy vállalat 280 000 Ft-ért vásárol egy számítógépet. A számítógép évente 5%-ot veszít az értékéből.
RészletesebbenGráfelmélet. I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma
Készítette: Laczik Sándor János Gráfelmélet I. Előadás jegyzet (2010.szeptember 9.) 1.A gráf fogalma Definíció: a G=(V,E) párt egyszerű gráfnak nevezzük, (V elemeit a gráf csúcsainak/pontjainak,e elemeit
RészletesebbenDiszkrét matematika 2. estis képzés
Diszkrét matematika 2. estis képzés 2016. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
RészletesebbenSzociális hálók klaszterezése
EÖTVÖS LORÁND TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR Besenyei Andrea Matematika BSc. Matematikai elemző szakirány Szociális hálók klaszterezése Szakdolgozat Témavezető: Dr. Kósa Balázs Információs Rendszerek
Részletesebbene (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:
Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:
RészletesebbenFEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen
RészletesebbenBiomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)
RészletesebbenMatematikai geodéziai számítások 6.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Bácsatyai László Matematikai geodéziai számítások 6. MGS6 modul Lineáris regresszió számítás elektronikus távmérőkre SZÉKESFEHÉRVÁR 2010 Jelen szellemi
RészletesebbenAz egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete?
1. Írja fel annak az egyenesnek az egyenletét, amely áthalad az (1; 3) ponton, és egyik normálvektora a (8; 1) vektor! Az egyenes egyenlete: 2. Végezze el a következő műveleteket, és vonja össze az egynemű
RészletesebbenVéletlen gráfok szerkesztésekor n csomópontból indulunk ki. p valószínűséggel két csomópontot éllel kötünk össze.
9. előadás P(k) k Véletlen gráfok szerkesztésekor n csomópontból ndulunk k. p valószínűséggel két csomópontot éllel kötünk össze. A fokszámok Posson eloszlásúak P( k) = e pn ( pn) k! k http://www.ct.nfn.t/cactus/applets/gant%20component.html
RészletesebbenHatvány, gyök, logaritmus. Válogatás korábbi évek érettségi feladataiból ( , emelt szint)
Hatvány, gyök, logaritmus Válogatás korábbi évek érettségi feladataiból (2014-2017, emelt szint) 2014. máj. E/2. Jelölje H a 5,2 x 3 egyenlőtlenség pozitív egész megoldásainak halmazát. Jelölje továbbá
RészletesebbenGráf csúcsainak színezése. The Four-Color Theorem 4 szín tétel Appel és Haken bebizonyították, hogy minden térkép legfeljebb 4 színnel kiszínezhető.
Gráf csúcsainak színezése Kromatikus szám 2018. Április 18. χ(g) az ún. kromatikus szám az a szám, ahány szín kell a G gráf csúcsainak olyan kiszínezéséhez, hogy a szomszédok más színűek legyenek. 2 The
RészletesebbenSzámelméleti alapfogalmak
1 Számelméleti alapfogalmak 1 Definíció Az a IN szám osztója a b IN számnak ha létezik c IN melyre a c = b Jelölése: a b 2 Példa a 0 bármely a számra teljesül, mivel c = 0 univerzálisan megfelel: a 0 =
RészletesebbenBME Nyílt Nap november 21.
Valószínűségszámítás, statisztika és valóság Néhány egyszerű példa Kói Tamás Budapesti Műszaki és Gazdaságtudományi Egyetem koitomi@math.bme.hu BME Nyílt Nap 2014. november 21. Matematikai modell Matematikai
Részletesebben1. Gráfelmélet alapfogalmai
1. Gráfelmélet alapfogalmai Definíció: A gráf pontok és az őket összekötő élek együttese. Megjegyzés: A gráf pontjait szögpontoknak, illetve csúcsoknak is nevezzük. Ha a gráf élei irányítottak, irányított
Részletesebben1. számú ábra. Kísérleti kályha járattal
Kísérleti kályha tesztelése A tesztsorozat célja egy járatos, egy kitöltött harang és egy üres harang hőtároló összehasonlítása. A lehető legkisebb méretű, élére állított téglából épített héjba hagyományos,
RészletesebbenGépi tanulás a gyakorlatban. Kiértékelés és Klaszterezés
Gépi tanulás a gyakorlatban Kiértékelés és Klaszterezés Hogyan alkalmazzuk sikeresen a gépi tanuló módszereket? Hogyan válasszuk az algoritmusokat? Hogyan hangoljuk a paramétereiket? Precízebben: Tegyük
RészletesebbenPuskás Béla: Hálózatelméleti alapok
Puskás Béla: Hálózatelméleti alapok "Egyébként kedves játék alakult ki a vitából. Annak bizonyításául, hogy a Földgolyó lakossága sokkal közelebb van egymáshoz, mindenféle tekintetben, mint ahogy valaha
Részletesebben1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása
HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat
Részletesebben2. Adott a valós számok halmazán értelmezett f ( x) 3. Oldja meg a [ π; π] zárt intervallumon a. A \ B = { } 2 pont. függvény.
1. Az A halmaz elemei a ( 5)-nél nagyobb, de 2-nél kisebb egész számok. B a pozitív egész számok halmaza. Elemeinek felsorolásával adja meg az A \ B halmazt! A \ B = { } 2. Adott a valós számok halmazán
RészletesebbenAlgoritmusok bonyolultsága
Algoritmusok bonyolultsága 5. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 27 Gazdaságos faváz Kruskal-algoritmus Joseph Kruskal (1928 2010) Legyen V = {v 1, v 2,..., v n }, E = {e 1, e 2,...,
RészletesebbenDiszkrét matematika 2.
Diszkrét matematika 2. Mérai László előadása alapján Készítette: Nagy Krisztián 1. előadás Gráfok halmaza, gráf, ahol a csúcsok halmaza, az élek illesztkedés reláció: illesztkedik az élre, ha ( -él illesztkedik
RészletesebbenMatematikai geodéziai számítások 6.
Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre
RészletesebbenIII. Gráfok. 1. Irányítatlan gráfok:
III. Gráfok 1. Irányítatlan gráfok: Jelölés: G=(X,U), X a csomópontok halmaza, U az élek halmaza X={1,2,3,4,5,6}, U={[1,2], [1,4], [1,6], [2,3], [2,5], [3,4], [3,5], [4,5],[5,6]} Értelmezések: 1. Fokszám:
Részletesebbeni p i p 0 p 1 p 2... i p i
. vizsga, 06--9, Feladatok és megoldások. (a) Adja meg az diszkrét eloszlás várható értékének a definícióját! i 0... p i p 0 p p... i p i (b) Tegyük fel, hogy a rigófészkekben található tojások X száma
RészletesebbenStatisztikai csalások és paradoxonok. Matematikai statisztika Gazdaságinformatikus MSc november 26. 1/31
Matematikai statisztika Gazdaságinformatikus MSc 11. előadás 2018. november 26. 1/31 A tojást rakó kutya - a könyv Hans Peter Beck-Bernholdt, Hans-Hermann Dubben: A tojást rakó kutya c. könyve alapján
RészletesebbenNagyméretű adathalmazok kezelése (BMEVISZM144) Reinhardt Gábor április 5.
Asszociációs szabályok Budapesti Műszaki- és Gazdaságtudományi Egyetem 2012. április 5. Tartalom 1 2 3 4 5 6 7 ismétlés A feladat Gyakran együtt vásárolt termékek meghatározása Tanultunk rá hatékony algoritmusokat
Részletesebben