Statisztikai csalások és paradoxonok. Matematikai statisztika Gazdaságinformatikus MSc november 26. 1/31
|
|
- Lilla Bakos
- 5 évvel ezelőtt
- Látták:
Átírás
1 Matematikai statisztika Gazdaságinformatikus MSc 11. előadás november 26. 1/31
2 A tojást rakó kutya - a könyv Hans Peter Beck-Bernholdt, Hans-Hermann Dubben: A tojást rakó kutya c. könyve alapján 2/31
3 A tojást rakó kutya - a sztori 3/31
4 Ugatókór Egy turista hallotta, hogy abban az egzotikus országban, ahol nyaralt, felütötte a fejét a canine overhoe (ún. ugatókor) betegség. Elvégeztet egy tesztet, mert korai stádiumban felfedezve a betegséget, egy kis műtéttel gyógyítható. 4/31
5 Ugatókór Egy turista hallotta, hogy abban az egzotikus országban, ahol nyaralt, felütötte a fejét a canine overhoe (ún. ugatókor) betegség. Elvégeztet egy tesztet, mert korai stádiumban felfedezve a betegséget, egy kis műtéttel gyógyítható. 100 fertőzöttből 99-et azonosít a teszt, 1-et nem. 4/31
6 Ugatókór Egy turista hallotta, hogy abban az egzotikus országban, ahol nyaralt, felütötte a fejét a canine overhoe (ún. ugatókor) betegség. Elvégeztet egy tesztet, mert korai stádiumban felfedezve a betegséget, egy kis műtéttel gyógyítható. 100 fertőzöttből 99-et azonosít a teszt, 1-et nem. 100 nem fertőzött közül 98-ról álĺıtja, hogy egészséges, 2-ről tévesen, hogy beteg. 4/31
7 Ugatókór Egy turista hallotta, hogy abban az egzotikus országban, ahol nyaralt, felütötte a fejét a canine overhoe (ún. ugatókor) betegség. Elvégeztet egy tesztet, mert korai stádiumban felfedezve a betegséget, egy kis műtéttel gyógyítható. 100 fertőzöttből 99-et azonosít a teszt, 1-et nem. 100 nem fertőzött közül 98-ról álĺıtja, hogy egészséges, 2-ről tévesen, hogy beteg. Kb minden 1000-edik turista kapja el. 4/31
8 Ugatókór Egy turista hallotta, hogy abban az egzotikus országban, ahol nyaralt, felütötte a fejét a canine overhoe (ún. ugatókor) betegség. Elvégeztet egy tesztet, mert korai stádiumban felfedezve a betegséget, egy kis műtéttel gyógyítható. 100 fertőzöttből 99-et azonosít a teszt, 1-et nem. 100 nem fertőzött közül 98-ról álĺıtja, hogy egészséges, 2-ről tévesen, hogy beteg. Kb minden 1000-edik turista kapja el. A turistával néhány nap után közlik, hogy a vizsgálat pozitív volt. Mekkora az esélye annak, hogy megkapta a betegséget? 98%, 95%, 92%, 50%, 5%, 2%? 4/31
9 5/31
10 6/31
11 Mi a tévedés oka? Csak a teszt megbízhatóságát vesszük figyelembe 7/31
12 Mi a tévedés oka? Csak a teszt megbízhatóságát vesszük figyelembe A betegség gyakoriságát viszont nem (prevalencia) 7/31
13 Mi a tévedés oka? Csak a teszt megbízhatóságát vesszük figyelembe A betegség gyakoriságát viszont nem (prevalencia) Pl AIDS teszt esetén: Pozitív eredmény estén az eredeti vérmintával elvégeznek egy második, költségesebb, de pontosabb tesztet is. (Immunobot-próba). Ha ez is pozitív, akkor újabb vérmintát vesznek a pácienstől, amin elvégzik az immunobot tesztet. Ha ez is pozitív, akkor kezdik el a kezelést. 7/31
14 Időbeli sűrűsödés 8/31
15 Térbeli sűrűsödés Hamburgban átlagosan 30 leukémiás megbetegedés fordul elő egy évben. Harminc szimulált leukémiás beteg címét a telefonkönyvből véletlenszerűen választottak ki. Winterhude városrészben szemmel láthatóan sűrűbb a megbetegedések előfordulása. 9/31
16 Térbeli sűrűsödés Hamburgban átlagosan 30 leukémiás megbetegedés fordul elő egy évben. Harminc szimulált leukémiás beteg címét a telefonkönyvből véletlenszerűen választottak ki. Winterhude városrészben szemmel láthatóan sűrűbb a megbetegedések előfordulása. Ilyen jelenség szinte minden hasonló jellegű vizsgálatban előfordul. vetődés... Árnyékra 9/31
17 Véletlen vagy törvényszerű? Egy éjszakai ellenőrzés során 6000 autót megálĺıtva 84 vezetőt ittasnak találtak. Tehát az sofőrök 1,5%-át. Ezután egy felvilágosító kampányba kezdtek. 10/31
18 Véletlen vagy törvényszerű? Egy éjszakai ellenőrzés során 6000 autót megálĺıtva 84 vezetőt ittasnak találtak. Tehát az sofőrök 1,5%-át. Ezután egy felvilágosító kampányba kezdtek. Két hónappal később megismételve az éjszakai ellenőrzést, 400 autóból csak kettő sofőrje volt ittas, ez 0,5%. Vagyis harmadára csökkent az arány. Sikeres volt a kampány? 10/31
19 Véletlen vagy törvényszerű Eredmény: χ 2 = 2, 2 < 3, 84, azaz nem szignifikáns az eredmény (13,8% a véletlen valsége!) 11/31
20 5% A konvenció jelentése: Adott eredmény 5% valséggel a véletlenen alapul 12/31
21 5% A konvenció jelentése: Adott eredmény 5% valséggel a véletlenen alapul Átlagosan ez minden 20. eredményt érinti! 12/31
22 5% A konvenció jelentése: Adott eredmény 5% valséggel a véletlenen alapul Átlagosan ez minden 20. eredményt érinti! Régebben 0,27%-os tévedési eséllyel dolgoztak 12/31
23 5% 13/31
24 5% - Független tesztek 14/31
25 5% - Független tesztek 16 tanulmány mindegyike egyenként 16 paramétert elemez. A fekete négyzetek a téves pozitív eredmények. A véletlenfüggő szignifikáns paraméterek aránya most is csak 5% (13/256), de a 16 tanulmányból 9 (56%) téves eredményt hoz ki. 14/31
26 5% 15/31
27 5% Ha 81 a paraméterek száma, és most is csak 5%-os hibával számolunk, a téves eredmény valószínűsége már 98,4% lesz! 15/31
28 5% Autógyártás: 50 kritikus alkatrész 16/31
29 5% Autógyártás: 50 kritikus alkatrész Új autóban 99,9% az alkatrészek megbízhatósága Használt autóban 99,8% Régi autóban: 95% 16/31
30 5% 17/31
31 Másodfajú hiba Nem találunk szignifikáns különbséget nem bizonyítja, hogy nincs semmilyen különbség. 18/31
32 Másodfajú hiba Nem találunk szignifikáns különbséget nem bizonyítja, hogy nincs semmilyen különbség. Mitől függ, hogy észreveszünk-e egy létező eltérést? A különbség nagyságától 18/31
33 Másodfajú hiba Nem találunk szignifikáns különbséget nem bizonyítja, hogy nincs semmilyen különbség. Mitől függ, hogy észreveszünk-e egy létező eltérést? A különbség nagyságától Az elsőfajú hiba valószínűségétől (egyszerre csak egyik minimalizálható) 18/31
34 Másodfajú hiba Nem találunk szignifikáns különbséget nem bizonyítja, hogy nincs semmilyen különbség. Mitől függ, hogy észreveszünk-e egy létező eltérést? A különbség nagyságától Az elsőfajú hiba valószínűségétől (egyszerre csak egyik minimalizálható) A vizsgált minta nagyságától 18/31
35 Másodfajú hiba Nem találunk szignifikáns különbséget nem bizonyítja, hogy nincs semmilyen különbség. Mitől függ, hogy észreveszünk-e egy létező eltérést? A különbség nagyságától Az elsőfajú hiba valószínűségétől (egyszerre csak egyik minimalizálható) A vizsgált minta nagyságától Minél pontosabb kérdéseket tesz fel egy vizsgálat, annál kevesebb beteggel kénytelen beérni, s így a válasz is egyre pontatlanabb lesz. Minél pontatlanabb a kérdés, statisztikai szempontból annál pontosabb lesz a válasz. 18/31
36 Igazsággal csalni 19/31
37 Igazsággal csalni 20/31
38 Igazsággal csalni 21/31
39 Igazsággal csalni 22/31
40 Igazsággal csalni Az A gyógyszerrel a szívkoszorúér megbetegedések halálozási rátája 2,0%-ról 1,6%-ra csökkenthető. Ez a 0,4%-os csökkenés statisztikailag szignifikáns. 23/31
41 Igazsággal csalni Az A gyógyszerrel a szívkoszorúér megbetegedések halálozási rátája 2,0%-ról 1,6%-ra csökkenthető. Ez a 0,4%-os csökkenés statisztikailag szignifikáns. A B gyógyszerrel történő kezelés relatívan 20%-al csökkenti a a szívkoszorúér megbetegedések miatt bekövetkező elhalálozások számát. Ez a csökkenés statisztikailag szignifikáns. 23/31
42 Igazsággal csalni 24/31
43 Igazsággal csalni 25/31
44 Hibás következtetések 26/31
45 Hibás következtetések Mennyiség vs hányad. 26/31
46 Hibás következtetések 27/31
47 Hibás következtetések A grafikon torzít, hiszen nem veszi figyelembe a vizsgált időszak alatt a megnövekedett várható élettartamra. Ez az adat az 50 alatti nőkre nincs hatással, csak az ötven felettiekre... 27/31
48 Simpson paradoxon Álĺıtás: egy cég a férfi jelentkezők nagyobb hányadát veszi fel mint a női jelentkezőkénél (4%-al). 28/31
49 Simpson paradoxon 29/31
50 Simpson paradoxon 29/31
51 logika 30/31
52 Köszönöm a féléves munkát! Vége 31/31
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát
RészletesebbenA mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra
A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra Vörös Zsuzsanna NÉBIH RFI tervezési referens 2013. április 17. Egy kis felmérés nem kor Következtetések: 1. a jelenlevők nemi megoszlása:
Részletesebben1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása
HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat
RészletesebbenKét diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat
Két diszkrét változó függetlenségének vizsgálata, illeszkedésvizsgálat Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi fizika és statisztika I. előadás 2016.11.09 Orvosi
RészletesebbenHipotézis vizsgálatok
Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével
RészletesebbenHipotéziselmélet - paraméteres próbák. eloszlások. Matematikai statisztika Gazdaságinformatikus MSc szeptember 10. 1/58
u- t- Matematikai statisztika Gazdaságinformatikus MSc 2. előadás 2018. szeptember 10. 1/58 u- t- 2/58 eloszlás eloszlás m várható értékkel, σ szórással N(m, σ) Sűrűségfüggvénye: f (x) = 1 e (x m)2 2σ
RészletesebbenHipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok
STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris
RészletesebbenStatisztika I. 8. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes
RészletesebbenKiváltott agyi jelek informatikai feldolgozása Statisztika - Gyakorlat Kiss Gábor IB.157.
Kiváltott agyi jelek informatikai feldolgozása 2018 Statisztika - Gyakorlat Kiss Gábor IB.157. kiss.gabor@tmit.bme.hu Példa I (Vonat probléma) Aladár 25 éves és mindkét nagymamája él még: Borbála és Cecília.
RészletesebbenKabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a
Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,
RészletesebbenORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!
ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test
RészletesebbenVIZSGADOLGOZAT. I. PÉLDÁK (60 pont)
VIZSGADOLGOZAT (100 pont) A megoldások csak szöveges válaszokkal teljes értékűek! I. PÉLDÁK (60 pont) 1. példa (13 pont) Az egyik budapesti könyvtárban az olvasókból vett 400 elemű minta alapján a következőket
RészletesebbenKÖVETKEZTETŐ STATISZTIKA
ÁVF GM szak 2010 ősz KÖVETKEZTETŐ STATISZTIKA A MINTAVÉTEL BECSLÉS A sokasági átlag becslése 2010 ősz Utoljára módosítva: 2010-09-07 ÁVF Oktató: Lipécz György 1 A becslés alapfeladata Pl. Hányan láttak
RészletesebbenMatematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása
Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból
RészletesebbenBevezetés a hipotézisvizsgálatokba
Bevezetés a hipotézisvizsgálatokba Nullhipotézis: pl. az átlag egy adott µ becslése : M ( x -µ ) = 0 Alternatív hipotézis: : M ( x -µ ) 0 Szignifikancia: - teljes bizonyosság csak teljes enumerációra -
RészletesebbenKabos: Statisztika II. ROC elemzések 10.1. Szenzitivitás és specificitás a jelfeldolgozás. és ilyenkor riaszt. Máskor nem.
Kabos: Statisztika II. ROC elemzések 10.1 ROC elemzések Szenzitivitás és specificitás a jelfeldolgozás szóhasználatával A riasztóberendezés érzékeli, ha támadás jön, és ilyenkor riaszt. Máskor nem. TruePositiveAlarm:
RészletesebbenBME Nyílt Nap november 21.
Valószínűségszámítás, statisztika és valóság Néhány egyszerű példa Kói Tamás Budapesti Műszaki és Gazdaságtudományi Egyetem koitomi@math.bme.hu BME Nyílt Nap 2014. november 21. Matematikai modell Matematikai
RészletesebbenKettőnél több csoport vizsgálata. Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet
Kettőnél több csoport vizsgálata Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet Gyógytápszerek (kilokalória/adag) Három gyógytápszer A B C 30 5 00 10 05 08 40 45 03 50 35 190 Kérdések: 1. Van-e
RészletesebbenHipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás
STATISZTIKA Hipotézis, sejtés 11. Előadás Hipotézisvizsgálatok, nem paraméteres próbák Tudományos hipotézis Nullhipotézis felállítása (H 0 ): Kétmintás hipotézisek Munkahipotézis (H a ) Nullhipotézis (H
Részletesebbenbiometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás
Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani
RészletesebbenHipotézis vizsgálatok
Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével
RészletesebbenAdatok statisztikai értékelésének főbb lehetőségei
Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció
RészletesebbenStatisztikai alapok. Leíró statisztika Lineáris módszerek a statisztikában
Statisztikai alapok Leíró statisztika Lineáris módszerek a statisztikában Tudományosan és statisztikailag tesztelhető állítások? A keserűcsokoládé finomabb, mint a tejcsoki. A patkány a legrondább állat,
RészletesebbenTöbbváltozós lineáris regressziós modell feltételeinek
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p
RészletesebbenStatisztikai becslés
Kabos: Statisztika II. Becslés 1.1 Statisztikai becslés Freedman, D. - Pisani, R. - Purves, R.: Statisztika. Typotex, 2005. Reimann J. - Tóth J.: Valószínűségszámítás és matematikai statisztika. Tankönyvkiadó,
RészletesebbenStatisztikai következtetések Nemlineáris regresszió Feladatok Vége
[GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell
RészletesebbenKUTATÁSMÓDSZERTAN 4. ELŐADÁS. A minta és mintavétel
KUTATÁSMÓDSZERTAN 4. ELŐADÁS A minta és mintavétel 1 1. A MINTA ÉS A POPULÁCIÓ VISZONYA Populáció: tágabb halmaz, alapsokaság a vizsgálandó csoport egésze Minta: részhalmaz, az alapsokaság azon része,
RészletesebbenKettőnél több csoport vizsgálata. Makara B. Gábor
Kettőnél több csoport vizsgálata Makara B. Gábor Három gyógytápszer elemzéséből az alábbi energia tartalom adatok származtak (kilokalória/adag egységben) Három gyógytápszer elemzésébô A B C 30 5 00 10
RészletesebbenStatisztika I. 11. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek
RészletesebbenArisztotelesz Kr.e. 350 körül írta logikai műveit, melyek egyrésze elveszett, a többit 300 évvel később
Slide 1 Induktív következtetés Érvelési hibák Ajánlott források: Lakatos László Kutrovátz Gábor Bognár - Forrai Slide Arisztotelesz Kr.e. 350 körül írta logikai műveit, melyek egyrésze elveszett, a többit
RészletesebbenFEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen
RészletesebbenStatisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
RészletesebbenStatisztikai módszerek 7. gyakorlat
Statisztikai módszerek 7. gyakorlat A tanult nem paraméteres próbák: PRÓBA NEVE Illeszkedés-vizsgálat Χ 2 próbával Homogenitás-vizsgálat Χ 2 próbával Normalitás-vizsgálataΧ 2 próbával MIRE SZOLGÁL? A val.-i
RészletesebbenTARTALOMJEGYZÉK. 1. téma Átlagbecslés (Barna Katalin) téma Hipotézisvizsgálatok (Nagy Mónika Zita)... 23
TARTALOMJEGYZÉK 1. téma Átlagbecslés (Barna Katalin).... 7 2. téma Hipotézisvizsgálatok (Nagy Mónika Zita)... 23 3. téma Összefüggések vizsgálata, korrelációanalízis (Dr. Molnár Tamás)... 73 4. téma Összefüggések
RészletesebbenEPIDEMIOLÓGIA I. Alapfogalmak
EPIDEMIOLÓGIA I. Alapfogalmak TANULJON EPIDEMIOLÓGIÁT! mert része a curriculumnak mert szüksége lesz rá a bármilyen tárgyú TDK munkában, szakdolgozat és rektori pályázat írásában mert szüksége lesz rá
RészletesebbenSTATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése
4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól
RészletesebbenBIOMETRIA (H 0 ) 5. Előad. zisvizsgálatok. Hipotézisvizsg. Nullhipotézis
Hipotézis BIOMETRIA 5. Előad adás Hipotézisvizsg zisvizsgálatok Tudományos hipotézis Nullhipotézis feláll llítása (H ): Kétmintás s hipotézisek Munkahipotézis (H a ) Nullhipotézis (H ) > = 1 Statisztikai
RészletesebbenVizsgáljuk elôször, hogy egy embernek mekkora esélye van, hogy a saját
376 Statisztika, valószínûség-számítás 1500. Az elsô kérdésre egyszerû válaszolni, elég egy ellenpélda, és biztosan nem lehet akkor így kiszámolni. Pl. legyen a három szám a 3; 5;. A két kisebb szám átlaga
RészletesebbenBiomatematika 13. Varianciaanaĺızis (ANOVA)
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 13. Varianciaanaĺızis (ANOVA) Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:
RészletesebbenALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN!
A1 A2 A3 (8) A4 (12) A (40) B1 B2 B3 (15) B4 (11) B5 (14) Bónusz (100+10) Jegy NÉV (nyomtatott nagybetűvel) CSOPORT: ALÁÍRÁS: ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN! 2011. december 29. Általános tudnivalók:
RészletesebbenGVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet
GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő
Részletesebben6. Előadás. Vereb György, DE OEC BSI, október 12.
6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás
Részletesebbeny ij = µ + α i + e ij
Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai
RészletesebbenKlinikai és Bírósági Alkalmazások Valószínűségszámítási Modellek BREUER-LÁBADY PÉTER
Klinikai és Bírósági Alkalmazások Valószínűségszámítási Modellek BREUER-LÁBADY PÉTER KLINIKAI ALKALMAZÁSOK GYÓGYSZER TESZTELÉS MIK LEHETNEK A PROBLÉMÁK? STATISZTIKAI ALAPKÖVEK GYÓGYULÁSI ESÉLYEK TARTALOM
RészletesebbenSzámítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA
SZDT-04 p. 1/30 Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás
RészletesebbenStatisztika I. 9. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 9. előadás Előadó: Dr. Ertsey Imre Statisztikai hipotézis vizsgálatok elsősorban a biometriában alkalmazzák, újabban reprezentatív jellegű ökonómiai vizsgálatoknál, üzemi szinten élelmiszeripari
RészletesebbenElemszám becslés. Kaszaki József Ph.D. SZTE ÁOK Sebészeti Műtéttani Intézet
Elemszám becslés Kaszaki József Ph.D. SZTE ÁOK Sebészeti Műtéttani Intézet Miért fontos? Gazdasági okok: Túl kevés elem esetén nem tudjuk kimutatni a kívánt hatást Túl kevés elem esetén olyan eredmény
RészletesebbenBiostatisztika VIII. Mátyus László. 19 October
Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.
RészletesebbenKiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely.
Kiválasztás A változó szerint Egymintás t-próba Mann-Whitney U-test paraméteres nem-paraméteres Varianciaanalízis De melyiket válasszam? Kétmintás t-próba Fontos, hogy mindig a kérdésnek és a változónak
RészletesebbenTartalomjegyzék I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE
Tartalomjegyzék 5 Tartalomjegyzék Előszó I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE 1. fejezet: Kontrollált kísérletek 21 1. A Salk-oltás kipróbálása 21 2. A porta-cava sönt 25 3. Történeti kontrollok 27 4. Összefoglalás
Részletesebben1. Két pályázat esetén a nyerési esélyeket vizsgálják. Mintát véve mindkét pályázat esetén az egyik. (b) Mit nevezünk másodfajú hibának?
Statisztika 2015. május 08. D csoport Név Neptun kód 1. Két pályázat esetén a nyerési esélyeket vizsgálják. Mintát véve mindkét pályázat esetén az egyik pályázatnál 320 pályázóból 42 nyert, a másik pályázatnál
Részletesebben4/24/12. Regresszióanalízis. Legkisebb négyzetek elve. Regresszióanalízis
1. feladat Regresszióanalízis. Legkisebb négyzetek elve 2. feladat Az iskola egy évfolyamába tartozó diákok átlagéletkora 15,8 év, standard deviációja 0,6 év. A 625 fős évfolyamból hány diák fiatalabb
RészletesebbenX PMS 2007 adatgyűjtés eredményeinek bemutatása X PMS ADATGYŰJTÉS
X PMS ADATGYŰJTÉS 2007 1 Tartalom Összefoglalás...3 A kutatásba beválasztott betegek életkora... 4 A kutatásba bevont betegek nem szerinti megoszlása... 5 Az adatgyűjtés során feltárt diagnózisok megoszlása...
RészletesebbenFüggetlenségvizsgálat, Illeszkedésvizsgálat
Varga Beatrix, Horváthné Csolák Erika Függetlenségvizsgálat, Illeszkedésvizsgálat 4. előadás Üzleti statisztika A sokaság/minta több ismérv szerinti vizsgálata A statisztikai elemzés egyik ontos eladata
Részletesebbennem kezelt 1.29, 1.60, 2.27, 1.31, 1.81, 2.21 kezelt 0.96, 1.14, 1.59
1. feladat Egy szer rákellenes hatását vizsgálták úgy, hogy 9 egér testébe rákos sejteket juttattak be. Közülük 3 véletlenszerűen kiválasztott egérnek kezelésként beadták a vizsgálandó szert, 6-nak pedig
RészletesebbenKörnyezet statisztika
Környezet statisztika Permutáció, variáció, kombináció k számú golyót n számú urnába helyezve hányféle helykitöltés lehetséges, ha a golyókat helykitöltés Minden urnába akárhány golyó kerülhet (ismétléses)
RészletesebbenGyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László
Gyakorló feladatok Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László I/. A vizsgaidőszak második napján a hallgatók %-ának az E épületben, %-ának a D épületben,
RészletesebbenAZ EGÉSZSÉGESEN ÉS A FOGYATÉKOSSÁG NÉLKÜL LEÉLT ÉVEK VÁRHATÓ SZÁMA MAGYARORSZÁGON
AZ EGÉSZSÉGESEN ÉS A FOGYATÉKOSSÁG NÉLKÜL LEÉLT ÉVEK VÁRHATÓ SZÁMA MAGYARORSZÁGON DR. PAKSY ANDRÁS A lakosság egészségi állapotát jellemző morbiditási és mortalitási mutatók közül a halandósági tábla alapján
RészletesebbenAutóipari beágyazott rendszerek. Kockázatelemzés
Autóipari beágyazott rendszerek Kockázatelemzés 1 Biztonságkritikus rendszer Beágyazott rendszer Aminek hibája Anyagi vagyont, vagy Emberéletet veszélyeztet Tipikus példák ABS, ESP, elektronikus szervokormány
RészletesebbenMatematikai statisztika c. tárgy oktatásának célja és tematikája
Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:
RészletesebbenStatisztikai alapfogalmak a klinikai kutatásban. Molnár Zsolt PTE, AITI
Statisztikai alapfogalmak a klinikai kutatásban Molnár Zsolt PTE, AITI Bevezetés Research vs. Science Kutatás Tudomány Szerkezeti háttér hiánya Önkéntesek (lelkes kisebbség) Beosztottak (parancsot teljesítő
RészletesebbenVéletlenszám generátorok és tesztelésük. Tossenberger Tamás
Véletlenszám generátorok és tesztelésük Tossenberger Tamás Érdekességek Pénzérme feldobó gép: $0,25-os érme 1/6000 valószínűséggel esik az élére 51% eséllyel érkezik a felfelé mutató oldalára Pörgetésnél
RészletesebbenStatisztika I. 10. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 10. előadás Előadó: Dr. Ertsey Imre Varianciaanalízis A különböző tényezők okozta szórás illetőleg szórásnégyzet összetevőire bontásán alapszik Segítségével egyszerre több mintát hasonlíthatunk
Részletesebbenföldtudományi BSc (geológus szakirány) Matematikai statisztika elıadás, 2014/ félév 6. elıadás
Matematikai statisztika elıadás, földtudományi BSc (geológus szakirány) 2014/2015 2. félév 6. elıadás Konfidencia intervallum Def.: 1-α megbízhatóságú konfidencia intervallum: Olyan intervallum, mely legalább
RészletesebbenTöbbváltozós lineáris regressziós modell feltételeinek tesztelése I.
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Kvantitatív statisztikai módszerek Petrovics Petra Többváltozós lineáris regressziós
RészletesebbenAz első számjegyek Benford törvénye
Az első számjegyek Benford törvénye Frank Benford (1883-1948) A General Electric fizikusa Simon Newcomb (1835 1909) asztronómus 1. oldal 2. oldal A híres arizonai csekk sikkasztási eset http://www.aicpa.org/pubs/jofa/may1999/nigrini.htm
RészletesebbenNormális eloszlás tesztje
Valószínűség, pontbecslés, konfidenciaintervallum Normális eloszlás tesztje Kolmogorov-Szmirnov vagy Wilk-Shapiro próba. R-funkció: shapiro.test(vektor) balra ferde eloszlás jobbra ferde eloszlás balra
RészletesebbenMikor hazudnak a számok?
Mikor hazudnak a számok? MERT KELL A MATEK A HELYES DÖNTÉSEKHEZ. PONT. BOBÁLY MIHÁLY @jabjabhu linkedin.com/in/jabjabhu jabjab.hu 1 A mai napon A matek a mindennapokban A CPC fetisiszta Konverziós arány
RészletesebbenHajléktalanság keletkezése, megszűnése és alakváltozásai I.
Hajléktalanság keletkezése, megszűnése és alakváltozásai I. 2006-2011 Kit melyik évben, vagy években kérdeztünk 2006 2011 között Fluktuáció mérése a személyi azonosító alapján Melyik évben szerepel az
Részletesebben20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek!
SPEC 2009-2010. II. félév Statsztka II HÁZI dolgozat Név:... Neptun kód: 20 PONT Aláírás:... A megoldások csak szöveges válaszokkal teljes értékőek! 1. példa Egy üzemben tejport csomagolnak zacskókba,
RészletesebbenAsszociációs szabályok
Asszociációs szabályok Nikházy László Nagy adathalmazok kezelése 2010. március 10. Mi az értelme? A ö asszociációs szabály azt állítja, hogy azon vásárlói kosarak, amik tartalmaznak pelenkát, általában
Részletesebben[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.08. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)
RészletesebbenVéletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.
Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza
RészletesebbenStatisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat
Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat 7. lecke Paraméter becslés Konfidencia intervallum Hipotézis vizsgálat feladata Paraméter becslés és konfidencia
RészletesebbenMódszertani dilemmák a statisztikában 40 éve alakult a Jövőkutatási Bizottság
Módszertani dilemmák a statisztikában 40 éve alakult a Jövőkutatási Bizottság SZIGNIFIKANCIA Sándorné Kriszt Éva Az MTA IX. Osztály Statisztikai és Jövőkutatási Tudományos Bizottságának tudományos ülése
RészletesebbenDSD DSD. Az új Nemzeti Rákregiszter előnyei kutatói szempontból. Kovács László Szentirmay Zoltán Surján György Gaudi István Pallinger Péter
MTA SZTAKI Department of Distributed Systems Az új Nemzeti Rákregiszter előnyei kutatói szempontból Kovács László Szentirmay Zoltán Surján György Gaudi István Pallinger Péter Nemzeti regiszterek Európában
RészletesebbenA minőség és a kockázat alapú gondolkodás kapcsolata
Mottó: A legnagyobb kockázat nem vállalni kockázatot A minőség és a kockázat alapú gondolkodás kapcsolata DEMIIN XVI. Katonai Zsolt 1 Ez a gép teljesen biztonságos míg meg nem nyomod ezt a gombot 2 A kockázatelemzés
RészletesebbenBiomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.05. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)
RészletesebbenMarkov modellek 2015.03.19.
Markov modellek 2015.03.19. Markov-láncok Markov-tulajdonság: egy folyamat korábbi állapotai a későbbiekre csak a jelen állapoton keresztül gyakorolnak befolyást. Semmi, ami a múltban történt, nem ad előrejelzést
RészletesebbenAnyagvizsgálati módszerek Mérési adatok feldolgozása. Anyagvizsgálati módszerek
Anyagvizsgálati módszerek Mérési adatok feldolgozása Anyagvizsgálati módszerek Pannon Egyetem Mérnöki Kar Anyagvizsgálati módszerek Statisztika 1/ 22 Mérési eredmények felhasználása Tulajdonságok hierarchikus
RészletesebbenA magyar lakosság vitaminbevitelének. Schreiberné Molnár Erzsébet, Bakacs Márta
A magyar lakosság vitaminbevitelének vizsgálata az OTÁP2014 felmérés alapján Schreiberné Molnár Erzsébet, Bakacs Márta OTÁP felmérés A Központi Statisztikai Hivatal által szervezett Európai Lakossági Egészségfelmérés
RészletesebbenSTATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika
RészletesebbenA GDP hasonlóképpen nem tükrözi a háztartások közötti munka- és termékcseréket.
FŐBB MUTATÓK A regionális GDP adatok minősége alapvetően 3 tényezőtől függ: az alkalmazott számítási módszertől a felhasznált adatok minőségétől a vizsgált területi egység nagyságától. A TERÜLETI EGYENLŐTLENSÉGEK
RészletesebbenNemzeti Onkológiai Kutatás-Fejlesztési Konzorcium 1/48/ Részjelentés: November december 31.
Nemzeti Kutatási és Fejlesztési Program 1. Főirány: Életminőség javítása Nemzeti Onkológiai Kutatás-Fejlesztési Konzorcium a daganatos halálozás csökkentésére 1/48/2001 3. Részjelentés: 2003. November
RészletesebbenÉRZÉS NÉLKÜLI ÁLLAPOTOK Az ájulással összefüggésbe hozható pszichés sajátosságok Disszociáció és alexitímia vizsgálata syncopés betegek körében
ÉRZÉS NÉLKÜLI ÁLLAPOTOK Az ájulással összefüggésbe hozható pszichés sajátosságok Disszociáció és alexitímia vizsgálata syncopés betegek körében Dávid Tamás, G. Tóth Kinga, Nagy Kálmán, Rónaszéki Aladár
RészletesebbenSTATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.
STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése
RészletesebbenKözlemény. Biostatisztika és informatika alapjai. Alapsokaság és minta
Közlemény Biostatisztika és informatika alajai. előadás: Az orvostudományban előforduló nevezetes eloszlások 6. szetember 9. Veres Dániel Statisztika és Informatika tankönyv (Herényi Levente) már kaható
RészletesebbenÁLLAMI SZÁMVEVŐSZÉKRŐL - ÁBRÁK -
LAKOSSÁGI VÉLEMÉNYEK AZ ÁLLAMI SZÁMVEVŐSZÉKRŐL 201. április - ÁBRÁK - MÓDSZERTANI ÁTTEKINTÉS A kutatást végezte: Ipsos Zrt. Mintanagyság: 1000 fő Mintavétel módja: személyes kérdezés, kérdezőbiztosok által,
RészletesebbenDiszkrét idejű felújítási paradoxon
Magda Gábor Szaller Dávid Tóvári Endre 2009. 11. 18. X 1, X 2,... független és X-szel azonos eloszlású, pozitív egész értékeket felvevő valószínűségi változó (felújítási idők) P(X M) = 1 valamilyen M N
RészletesebbenBiomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 15. Nemparaméteres próbák Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date: November
RészletesebbenExponenciális kisimítás. Üzleti tervezés statisztikai alapjai
Exponenciális kisimítás Üzleti tervezés statisztikai alapjai Múlt-Jelen-Jövő kapcsolat Egyensúlyi helyzet Teljes konfliktus Részleges konfliktus: 0 < α < 1, folytatódik a múlt, de nem változatlanul módosítás:
RészletesebbenFEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus
RészletesebbenA 2007. évi hőhullám expozíció, egészségi hatás és módosító tényezők összefüggésének kistérségi modellezése
A 2007. évi hőhullám expozíció, egészségi hatás és módosító tényezők összefüggésének kistérségi modellezése Páldy Anna 1, Juhász Attila 2, Bobvos János 1, Nagy Csilla 2 1 Országos Környzetegészségügyi
RészletesebbenFEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,
RészletesebbenValószínűségszámítás és statisztika
Valószínűségszámítás és statisztika Programtervező informatikus szak esti képzés Varga László Valószínűségelméleti és Statisztika Tanszék Matematikai Intézet Természettudományi Kar Eötvös Loránd Tudományegyetem
RészletesebbenGYORSTESZTEK ALKALMAZÁSA A
GYORSTESZTEK ALKALMAZÁSA A GYÓGYSZERTÁRAKBAN DR. MISETA ILDIKÓ GÖLLE, SZENT ISTVÁN GYÓGYSZERTÁR Rozsnyay Mátyás emlékverseny Debrecen, 2012. május 10-12. BEVEZETÉS - CÉLKITŰZÉS Miért kell a gyorstesztekkel
RészletesebbenRomics Imre, Majoros Attila
Befolyásolja-e a pathológus gyakorlata a radicalis prostatectomia kapcsán észlelhető understaginget és undergradinget? Romics Imre, Majoros Attila Semmelweis Egyetem Urológiai Klinika Uroonkológiai centrum
RészletesebbenIrányított TULAJDONSÁGRA IRÁNYULÓ Melyik minta sósabb?, érettebb?, stb. KEDVELTSÉGRE IRÁNYULÓ Melyik minta jobb? rosszabb?
ÉRZÉKSZERVI VIZSGÁLATI MÓDSZEREK RENDSZEREZÉSE I. Kókai Zoltán - dr.erdélyi Mihály v.6. 26 ÉRZÉKSZERVI VIZSGÁLATI MÓDSZEREK CSOPORTOSÍTÁSA SZAKÉRTôI módszerek analitikus tesztek és eljárások FOGYASZTÓI
RészletesebbenTájékoztatott vagy tájékozott beteg kérdése
Tájékoztatott vagy tájékozott beteg kérdése Az elektív csípő- és térd-protézis műtéten résztvevő betegek tájékoztatásának vizsgálata Készítette: Fehér Mónika MSc ápoló hallgató Az elektív csípő- és térd-protézis
RészletesebbenBiometria az orvosi gyakorlatban. Regresszió Túlélésanalízis
SZDT-09 p. 1/36 Biometria az orvosi gyakorlatban Regresszió Túlélésanalízis Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Logisztikus regresszió
Részletesebben