Irányított TULAJDONSÁGRA IRÁNYULÓ Melyik minta sósabb?, érettebb?, stb. KEDVELTSÉGRE IRÁNYULÓ Melyik minta jobb? rosszabb?
|
|
- Árpád Szabó
- 6 évvel ezelőtt
- Látták:
Átírás
1 ÉRZÉKSZERVI VIZSGÁLATI MÓDSZEREK RENDSZEREZÉSE I. Kókai Zoltán - dr.erdélyi Mihály v ÉRZÉKSZERVI VIZSGÁLATI MÓDSZEREK CSOPORTOSÍTÁSA SZAKÉRTôI módszerek analitikus tesztek és eljárások FOGYASZTÓI bírálatok érzelmeken, ingereken alapulnak I. Különbségvizsgálati módszerek II. Rangsorolásos módszerek III. Leíróés értékelô módszerek Kérdésfeltevés módja: ÁLTALÁNOS Van-e különbség két minta között? Irányított TULAJDONSÁGRA IRÁNYULÓ Melyik minta sósabb?, érettebb?, stb. KEDVELTSÉGRE IRÁNYULÓ Melyik minta jobb? rosszabb?. A - NOT A TESZT /EGYPRÓBA/ 2. EGYSZERû ÖSSZEHASONLÍTÁS 3. PÁROS ÖSSZEHASONLÍTÁS - 4. DUÓ-TRIÓ PRÓBA 5. HÁROMSZÖG PRÓBA 6. NÉGYBôL KETTô PRÓBA 7. ÖTBôL KETTô PRÓBA 8. R-INDEX TESZT EGYOLDALI különbségvizsgálat a minták természetébôl adódó különbségek eleve adottak. Létezik elôre ismerhetô helyes válasz. A kérdés, hogy a bírálók ezt a különbséget statisztikailag megalapozottan képesek-e megállapítani vagy sem. Pl. A kávéban, gr cukor, B kávéban 3, gr cukor KÉTOLDALI különbségvizsgálat a minták természetébôl adódó különbségek nem egyértelmûek. Pl. A fenti minták esetében arra irányuló kérdés, hogy: Melyik mintát kedveli jobban? A KÉT ESET STATISZTIKAI ÉRTÉKELÉSE ELTÉRô!!! VÉGREHAJTÁSI VÁLTOZATAI A Forced choice Kötelezô választás A bírálónak mindenképp döntenie kell!!! B No difference / No preference Nincs különbség válasz megengedett (5-5% -ban a hibás és a helyes válaszok közé soroljuk vagy elhanyagoljuk az ilyen válaszokat)
2 I.. A - NOT A TESZT /EGYPRÓBA/ I.. A - NOT A TESZT /EGYPRÓBA/ I.. A - NOT A TESZT /EGYPRÓBA/ MÓDSZER LEÍRÁS elõfeltétel az A minta (referencia) alapos, elôzetes megismerése a teszt során már nem áll rendelkezésre a referencia az összes not-a minta azonos a minták bírálata között azonosak az idôtartamok MÓDSZER LEÍRÁS 2 A és not A minták a bírálatvezetõ által elõre meghatározott számban (lehet eltérõ is, de össz. max. ajánlott), véletlenszerû sorrendben fordulnak elõ a mintasorozatban az elõfordulási gyakoriság a bíráló számára nem ismert I.. A - NOT A TESZT /EGYPRÓBA/ Alkalmazási példák csekély különbségek esetén az Egyszerû Összehasonlítás helyett akkor, ha az egyik minta standardnak vagy referenciának tekinthetô, elôre ismert érzékszervi emlékezôképességfejlesztésére ha a minták nagyon intenzív, ingerlô tulajdonságuk miatt többmintás tesztre nem alkalmasak I.. A - NOT A TESZT /EGYPRÓBA/ MEGENGEDETT VARIÁCIÓK, VÁLTOZATOK: A és NOT A mintát egyaránt elôzetesen megismeri a bíráló az A referencia mindvégig rendelkezésre áll a bíráló számára a NOT A minták egymástól eltérôek is lehetnek I.. A - NOT A TESZT /EGYPRÓBA/ ÉRTÉKELÉS c 2 próbával Azt ellenôrizzük, hogy az A mintára adott helyes és helytelen válaszok aránya szignifikánsan különbözik -e a NOT A mintára adott helyes és helytelen válaszok arányától
3 I.2. EGYSZERû ÖSSZEHASONLÍTÁS Általános kérdésfeltevés: Van -e különbség a két minta között? A-A, A-B B-A, B-B mintapárok I.2. EGYSZERû ÖSSZEHASONLÍTÁS ÉRTÉKELÉS c 2 próbával Azt ellenôrizzük, hogy a különbözô mintapárokra adott helyes és helytelen válaszok aránya szignifikánsan különbözik -e az azonos mintapárokra adott helyes és helytelen válaszok arányától A-B B-A mintapárok Páros összehasonlításnál tulajdonságra irányuló kérdésfeltevés: A két minta közül melyik a...? (sósabb, édesebb, puhább, stb.) Páros preferenciánál kedveltségre irányuló kérdésfeltevés: A két minta közül melyiket választja? - melyiket kedveli jobban? - melyiket preferálja? MÓDSZER LEÍRÁS 2 egyoldali vizsgálat: létezik elôre ismert helyes válasz (pl. jelentôs koncentráció különbségnél, irányított kérdésfeltevés: melyik édesebb?) kétoldali vizsgálat: nincs elôre ismert helyes válasz (pl. szubjektív kérdés: melyik ízlik jobban? ) MÓDSZER LEÍRÁS 3 elôzetes feladat ismertetés, a majdanihoz hasonló minták közös megbeszélése 5% A - B és 5 % B - A a mintapárokat egymást követôen vagy egyszerre is kaphatják a bírálók
4 ÉRTÉKELÉS: Binomiális tétel Helyes válaszok minimális n + száma: Y = + k n n + 2 n + = + k n = + z,25n 2 2 Egyoldali Kétoldali Egyoldali Kétoldali a<,5 k =,82 k =,98 z =,64 z =,96 a<, k =,6 k =,29 z = 2,33 z = 2,58 a<, k =,55 k =,65 z = 3, z = 3.29 VÁLTOZATOK: kötelezõ választás (Forced Choice) - ha nem érez különbséget a bíráló akkor is választania kell - ez az általánosan javasolt változat! Nincs különbség válasz megengedett (No difference / No preference) ez esetben vagy semmisnek tekintjük a választ, vagy 5-5%-ban soroljuk a mintákhoz I.4. DUÓ-TRIÓ PRÓBA ALKALMAZÁS - annak megítélésére, hogy két minta között fennáll-e érzékszervi különbség MÓDSZER LEÍRÁSA : A bírálók egy vagy több mintahármast kapnak, melyekben két kódolt minta szerepel, a harmadik az etalon (referencia). Az etalon a kódolt minták valamelyike. A feladat az etalontól eltérô minta kiválasztása, megjelölése. I.4. DUÓ - TRIÓ PRÓBA., VÁLTOZAT: Változó referencia Véletlenszerûen kiválasztva mindkét mintát használjuk etalonként. (Képzetlen bírálók esetén, vagy ha mindkét minta ismeretlen.) I.4. DUÓ - TRIÓ PRÓBA 2, VÁLTOZAT: Állandó referencia Amikor az egyik minta ismerôs a bírálók számára vagy rutinszerûen kerül vizsgálatra I.4. DUÓ - TRIÓ PRÓBA Elôkészítés: az összes mintahármas száma lehetôség szerint osztható kell legyen a lehetséges változatok számával (változó referencia esetén 4 -el, állandó referencia esetén 2-vel), hogy a kiegyenlített mintapozícionálásmegtörténhessen Végrehajtás: a mintahármasok bírálata meghatározott sorrendben (pl. balról jobbra vagy fordítva) kell történjen.
5 I.4. DUÓ - TRIÓ PRÓBA ÉRTÉKELÉS: Binomiális tétel Helyes válaszok minimális n + Y = + k száma: n + 2 = + k n 2 Egyoldali a<,5 k =,82 a<, k =,6 a<, k =,55 A bírálók egy vagy több kódolt mintahármast kapnak. Minden mintahármason belül két egyforma és egy különbözô minta van. Feladat az eltérô minta kiválasztása, megjelölése. Csak általános kérdésfeltevés megengedett.!!! I..5. HÁROMSZÖG PRÓBA Elôkészítés: az összes mintahármas száma lehetôség szerint osztható kell legyen a lehetséges változatok számával (6-al), hogy a kiegyenlített mintapozícionálás biztosítható legyen. AAB, BAA, ABA, BAB, BBA, ABB Végrehajtás: a bírálók egy mintahármas tagjait tetszés szerinti sorrendben és számban kóstolhatják, de újabb mintahármas kóstolása esetén már nem térhetnek vissza az elôzôre ÉRTÉKELÉS I: Binomiális tétel Helyes válaszok minimális száma: n Y + + n =,474 * k * 2 (2n + 3) n + 6 Egyoldali a<,5 k =,64 a<, k = 2,33 a<, k = 3, Az összes helyes válaszok száma ÉRTÉKELÉS II: Szekvenciális eljárás Az elvégzett bírálatok száma Elfogadási határegyenes Elutasítási határegyenes Összes helyes válasz ÉRTÉKELÉS II: Szekvenciális elfogadási határegyenes elutasítási határegyenes L = a + b n L = a + b n e a = K2 E= lg β lg( α ) k k b = K2 K E 2 = lg( β) lgα e a 2 = k k k = lg p lg p 2 2 eljárás
6 I.6. NÉGYBôL KETTô PRÓBA MÓDSZER LEÍRÁSA A vizsgálók négy mintát kapnak, melybôl kettô-kettô egyforma. Feladat a két egyforma minta felismerése és megjelölése. ELôKÉSZÍTÉS A négy mintát véletlenszerû kódszámokkal látjuk el. I.6. NÉGYBôL KETTô PRÓBA VÉGREHAJTÁS A vizsgáló személyek négy-négy mintát kapnak. Nagy mintaszám - nagyfokú leterheltség. Max. 3 feladat elvégzése lehet egyszerre. ÉRTÉKELÉS Binomiális táblázat I.7. ÖTBôL KETTô PRÓBA MÓDSZER LEÍRÁSA A vizsgáló személyek egy vagy több 5 mintából álló mintasort kapnak, melyek közül 3 ill. 2 azonos. Feladat a két csoport különválasztása, megjelölése. ( P= /) I.7. ÖTBôL KETTô PRÓBA VÉGREHAJTÁS A nagy mintaszám miatt igen nagy a megterhelés, egy vagy max. két feladat végezhetô egyszerre. ÉRTÉKELÉS A véletlen eltalálási esély /, az értékelés táblázatból történik a többi különbségvizsgálati módszerhez hasonlóan.
STATISZTIKA. Egymintás u-próba. H 0 : Kefir zsírtartalma 3% Próbafüggvény, alfa=0,05. Egymintás u-próba vagy z-próba
Egymintás u-próba STATISZTIKA 2. Előadás Középérték-összehasonlító tesztek Tesztelhetjük, hogy a valószínűségi változónk értéke megegyezik-e egy konkrét értékkel. Megválaszthatjuk a konfidencia intervallum
biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás
Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani
Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok
STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris
Hipotézis vizsgálatok
Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével
1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása
HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat
Érzékeink csábításában
Workshop az innovációról Érzékeink csábításában (organoleptikus vizsgálatok napjainkban) Horváthné Dr.Almássy Katalin főiskolai tanár SZTE TIK, 2012. február 16. 1 Az élelmiszerminőség elemei 1. EGÉSZSÉGÜGYI
Hipotéziselmélet - paraméteres próbák. eloszlások. Matematikai statisztika Gazdaságinformatikus MSc szeptember 10. 1/58
u- t- Matematikai statisztika Gazdaságinformatikus MSc 2. előadás 2018. szeptember 10. 1/58 u- t- 2/58 eloszlás eloszlás m várható értékkel, σ szórással N(m, σ) Sűrűségfüggvénye: f (x) = 1 e (x m)2 2σ
GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet
GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő
Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás
STATISZTIKA Hipotézis, sejtés 11. Előadás Hipotézisvizsgálatok, nem paraméteres próbák Tudományos hipotézis Nullhipotézis felállítása (H 0 ): Kétmintás hipotézisek Munkahipotézis (H a ) Nullhipotézis (H
Kettőnél több csoport vizsgálata. Makara B. Gábor
Kettőnél több csoport vizsgálata Makara B. Gábor Három gyógytápszer elemzéséből az alábbi energia tartalom adatok származtak (kilokalória/adag egységben) Három gyógytápszer elemzésébô A B C 30 5 00 10
Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely.
Kiválasztás A változó szerint Egymintás t-próba Mann-Whitney U-test paraméteres nem-paraméteres Varianciaanalízis De melyiket válasszam? Kétmintás t-próba Fontos, hogy mindig a kérdésnek és a változónak
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát
Eloszlás-független módszerek (folytatás) 14. elıadás ( lecke) 27. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok
Eloszlás-független módszerek (folytatás) 14. elıadás (7-8. lecke) Illeszkedés-vizsgálat 7. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok elemzésére Illeszkedés-vizsgálat Gyakorisági sorok
Többtényezős döntési problémák
KIPA módszer: Lépései: 1. értékelési tényezők páros elrendezése, 2. páros összehasonlítás elvégzése, 3. egyéni preferencia táblázatok felvétele, konzisztencia mutatók meghatározása, 4. aggregált preferencia
Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 15. Nemparaméteres próbák Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date: November
Statisztika I. 10. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 10. előadás Előadó: Dr. Ertsey Imre Varianciaanalízis A különböző tényezők okozta szórás illetőleg szórásnégyzet összetevőire bontásán alapszik Segítségével egyszerre több mintát hasonlíthatunk
Gyakorlat 8 1xANOVA. Dr. Nyéki Lajos 2016
Gyakorlat 8 1xANOVA Dr. Nyéki Lajos 2016 A probléma leírása Azt vizsgáljuk, hogy milyen hatása van a család jövedelmének a tanulók szövegértés teszten elért tanulmányi eredményeire. A minta 59 iskola adatait
Statisztika Elıadások letölthetık a címrıl
Statisztika Elıadások letölthetık a http://www.cs.elte.hu/~arato/stat*.pdf címrıl Konfidencia intervallum Def.: 1-α megbízhatóságú konfidencia intervallum: Olyan intervallum, mely legalább 1-α valószínőséggel
Tudnivalók a versenyeken alkalmazott érzékszervi bírálatokról
Tudnivalók a versenyeken alkalmazott érzékszervi bírálatokról Dr. Kókai Zoltán Dr. Sipos László Szent István Egyetem, Élelmiszertudományi Kar, Árukezelési és Érzékszervi Minősítési Tanszék, Érzékszervi
Többtényezős döntési problémák
KIPA módszer: Lépései:. értékelési tényezők páros elrendezése, 2. páros összehasonlítás elvégzése, 3. egyéni preferencia táblázatok felvétele, konzisztencia mutatók meghatározása, 4. aggregált preferencia
Biomatematika 13. Varianciaanaĺızis (ANOVA)
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 13. Varianciaanaĺızis (ANOVA) Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:
Az első számjegyek Benford törvénye
Az első számjegyek Benford törvénye Frank Benford (1883-1948) A General Electric fizikusa Simon Newcomb (1835 1909) asztronómus 1. oldal 2. oldal A híres arizonai csekk sikkasztási eset http://www.aicpa.org/pubs/jofa/may1999/nigrini.htm
y ij = µ + α i + e ij
Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai
földtudományi BSc (geológus szakirány) Matematikai statisztika elıadás, 2014/ félév 6. elıadás
Matematikai statisztika elıadás, földtudományi BSc (geológus szakirány) 2014/2015 2. félév 6. elıadás Konfidencia intervallum Def.: 1-α megbízhatóságú konfidencia intervallum: Olyan intervallum, mely legalább
Hipotézis vizsgálatok
Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével
VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA
VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA A VALÓSZÍNŰSÉGI SZEMLÉLET ALAPOZÁSA 1-6. OSZTÁLY A biztos, a lehetetlen és a lehet, de nem biztos események megkülünböztetése Valószínűségi játékok, kísérletek események
Varianciaanalízis 4/24/12
1. Feladat Egy póker kártya keverő gép a kártyákat random módon választja ki. A vizsgálatban 1600 választott kártya színei az alábbi gyakorisággal fordultak elő. Vizsgáljuk meg, hogy a kártyák kiválasztása
Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes
Hipotézisvizsgálat az Excel adatelemző eljárásaival. Dr. Nyéki Lajos 2018
Hipotézisvizsgálat az Excel adatelemző eljárásaival Dr. Nyéki Lajos 2018 Egymintás t-próba Az egymintás T-próba azt vizsgálja, hogy különbözik-e a változó M átlaga egy megadott m konstanstól. Az a feltételezés,
Eloszlás-független módszerek 13. elıadás ( lecke)
Eloszlás-független módszerek 13. elıadás (25-26. lecke) Rangszámokon alapuló korrelációs együttható A t-próbák és a VA eloszlásmentes megfelelıi 25. lecke A Spearman-féle rangkorrelációs együttható A Kendall-féle
Pálinka érzékszervi bírálók képzése. 1. Rész: Jó érzékszervi gyakorlat Kókai Zoltán
Pálinka érzékszervi bírálók képzése 1. Rész: Jó érzékszervi gyakorlat Kókai Zoltán Jogszabályi háttér - 1 2008. évi LXXIII. törvény a pálinkáról, a törkölypálinkáról és a Pálinka Nemzeti Tanácsról http://www.vm.gov.hu/main.php?folderid=2537&
Többváltozós lineáris regressziós modell feltételeinek tesztelése I.
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Kvantitatív statisztikai módszerek Petrovics Petra Többváltozós lineáris regressziós
Kettőnél több csoport vizsgálata. Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet
Kettőnél több csoport vizsgálata Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet Gyógytápszerek (kilokalória/adag) Három gyógytápszer A B C 30 5 00 10 05 08 40 45 03 50 35 190 Kérdések: 1. Van-e
Statisztikai alapok. Leíró statisztika Lineáris módszerek a statisztikában
Statisztikai alapok Leíró statisztika Lineáris módszerek a statisztikában Tudományosan és statisztikailag tesztelhető állítások? A keserűcsokoládé finomabb, mint a tejcsoki. A patkány a legrondább állat,
Statisztika elméleti összefoglaló
1 Statisztika elméleti összefoglaló Tel.: 0/453-91-78 1. Tartalomjegyzék 1. Tartalomjegyzék.... Becsléselmélet... 3 3. Intervallumbecslések... 5 4. Hipotézisvizsgálat... 8 5. Regresszió-számítás... 11
Többváltozós lineáris regressziós modell feltételeinek
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p
Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 9. előadás Előadó: Dr. Ertsey Imre Statisztikai hipotézis vizsgálatok elsősorban a biometriában alkalmazzák, újabban reprezentatív jellegű ökonómiai vizsgálatoknál, üzemi szinten élelmiszeripari
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 Mérési hibák súlya és szerepe a mérési eredményben A mérési hibák csoportosítása A hiba rendűsége Mérési bizonytalanság Standard és kiterjesztett
y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell
Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.
Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA
SZDT-04 p. 1/30 Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás
Tartalomjegyzék I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE
Tartalomjegyzék 5 Tartalomjegyzék Előszó I. RÉSZ: KÍSÉRLETEK MEGTERVEZÉSE 1. fejezet: Kontrollált kísérletek 21 1. A Salk-oltás kipróbálása 21 2. A porta-cava sönt 25 3. Történeti kontrollok 27 4. Összefoglalás
Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
Nemparametrikus tesztek. 2014. december 3.
Nemparametrikus tesztek 2014. december 3. Nemparametrikus módszerek Alkalmazásuk: nominális adatok (gyakoriságok) esetén, ordinális adatok esetén, metrikus adatok esetén (intervallum és arányskála), ha
Az empirikus vizsgálatok alapfogalmai
Az empirikus vizsgálatok alapfogalmai Az adatok forrása és jellege Milyen kísérleti típusok fordulnak elő a beszédtudományokban? Milyen adatok jönnek ki ezekből? Tudományosan (statisztikailag) megválaszolható
Gépi tanulás. Hány tanítómintára van szükség? VKH. Pataki Béla (Bolgár Bence)
Gépi tanulás Hány tanítómintára van szükség? VKH Pataki Béla (Bolgár Bence) BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Induktív tanulás A tanítás folyamata: Kiinduló
Adatok statisztikai értékelésének főbb lehetőségei
Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció
Statisztikai próbák. Ugyanazon problémára sokszor megvan mindkét eljárás.
Statsztka próbák Paraméteres. A populácó paraméteret becsüljük, ezekkel számolunk.. Az alapsokaság eloszlására van kkötés. Nem paraméteres Nncs lyen becslés Nncs kkötés Ugyanazon problémára sokszor megvan
MINŐSÉGELLENŐRZÉS TÁBLÁZATOK A JEGYZŐKÖNYVEK MEGOLDÁSÁHOZ
MINŐSÉGELLENŐRZÉS TÁBLÁZATOK A JEGYZŐKÖNYVEK MEGOLDÁSÁHOZ Minőségi jellemzők csoportosítása Tervezett, mérhető minőségi jellemzők Használatra való alkalmasság. Szabványoknak, rajzoknak, műszaki, környezetvédelmi
Dr. Király István Igazságügyi szakértő Varga Zoltán Igazságügyi szakértő Dr. Marosán Miklós Igazságügyi szakértő
Dr. Király István Igazságügyi szakértő Varga Zoltán Igazságügyi szakértő Dr. Marosán Miklós Igazságügyi szakértő Mintaterületek kijelölésének javasolt módjai kapás sortávú növényekre Miért is kell mintatér?
18. modul: STATISZTIKA
MATEMATIK A 9. évfolyam 18. modul: STATISZTIKA KÉSZÍTETTE: LÖVEY ÉVA, GIDÓFALVI ZSUZSA MODULJÁNAK FELHASZNÁLÁSÁVAL Matematika A 9. évfolyam. 18. modul: STATISZTIKA Tanári útmutató 2 A modul célja Időkeret
Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás
Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre
[Biomatematika 2] Orvosi biometria. Visegrády Balázs
[Biomatematika 2] Orvosi biometria Visegrády Balázs 2016. 03. 27. Probléma: Klinikai vizsgálatban három különböző antiaritmiás gyógyszert (ß-blokkoló) alkalmaznak, hogy kipróbálják hatásukat a szívműködés
Matematika kisérettségi I. rész 45 perc NÉV:...
Matematika kisérettségi I. rész 45 perc NÉV:... 1. Az A halmaz elemei a háromnál nagyobb egyjegyű számok, a B halmaz elemei pedig a húsznál kisebb pozitív páratlan számok. Sorolja fel az halmaz elemeit!
BIOMETRIA (H 0 ) 5. Előad. zisvizsgálatok. Hipotézisvizsg. Nullhipotézis
Hipotézis BIOMETRIA 5. Előad adás Hipotézisvizsg zisvizsgálatok Tudományos hipotézis Nullhipotézis feláll llítása (H ): Kétmintás s hipotézisek Munkahipotézis (H a ) Nullhipotézis (H ) > = 1 Statisztikai
Statisztikai csalások és paradoxonok. Matematikai statisztika Gazdaságinformatikus MSc november 26. 1/31
Matematikai statisztika Gazdaságinformatikus MSc 11. előadás 2018. november 26. 1/31 A tojást rakó kutya - a könyv Hans Peter Beck-Bernholdt, Hans-Hermann Dubben: A tojást rakó kutya c. könyve alapján
Biomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)
MÓDSZERTANI ESETTANULMÁNY. isk_4kat végzettségek négy katban. Frequency Percent Valid Percent. Valid 1 legfeljebb 8 osztály ,2 43,7 43,7
MÓDSZERTANI ESETTANULMÁNY 1. Az elemzés kérdésfeltevése Egy 2009-es kutatásban (pszichiátriai ellátásban szociális lévők körében) attitűdöket vizsgáltunk, melyből a foglalkoztatás egyes modelljeinek egészségmegóvó
12/04/2011. ProPraline projekt. Kiváló minőségű pralinék szerkezete és előállítása
ProPraline projekt Kiváló minőségű pralinék szerkezete és előállítása A projekt célja A KKV-k számára fontos technológiai és minőségi problémák megoldása A pralinékon jelentkező minőségi hibák (zsírkiválás,
Érzékszervi bírálók kiválasztásának, képzésének és monitorozásának nemzetközi módszerei. Sipos László 1, Kókai Zoltán 1 Gere Attila 1
Érzékszervi bírálók kiválasztásának, képzésének és monitorozásának nemzetközi módszerei Sipos László 1, Kókai Zoltán 1 Gere Attila 1 1 Szent István Egyetem, Élelmiszertudományi Kar, Árukezelési és Érzékszervi
VÁLLALATGAZDASÁGTAN II. Döntési Alapfogalmak
Vállalkozási VÁLLALATGAZDASÁGTAN II. Tantárgyfelelős: Prof. Dr. Illés B. Csaba Előadó: Dr. Gyenge Balázs Az ökonómiai döntés fogalma Vállalat Környezet Döntések sorozata Jövő jövőre vonatkozik törekszik
Helena projekt. A projekt célja 12/04/2011. Campden BRI 1
Helena projekt Healthy Lifestyle in Europe by Nutrition in Adolescence A projekt célja A HELENA program EU FP 6-s kutatási program része volt, amely az európai fiatalok étkezési- és fogyasztási szokásainak
FELÜLETI VIZSGÁLATOK ÉRZÉKENYSÉGI SZINTJEI. Szűcs Pál, okl. fizikus R.U.M. TESTING Kft.*
FELÜLETI VIZSGÁLATOK ÉRZÉKENYSÉGI SZINTJEI Szűcs Pál, okl. fizikus R.U.M. TESTING Kft.* Az EN sorozatú szabványok megjelenésével megváltozott a szemrevételezéses vizsgálat (VT) feladata. Amíg korábban
ANOVA összefoglaló. Min múlik?
ANOVA összefoglaló Min múlik? Kereszt vagy beágyazott? Rögzített vagy véletlen? BIOMETRIA_ANOVA5 1 I. Kereszt vagy beágyazott Két faktor viszonyát mondja meg. Ha több, mint két faktor van, akkor bármely
Méréstechnika kommunikációs dosszié MÉRÉSTECHNIKA. Anyagmérnök alapképzés (BsC) Tantárgyi kommunikációs dosszié
MÉRÉSTECHNIKA Anyagmérnök alapképzés (BsC) Tantárgyi kommunikációs dosszié MISKOLCI EGYETEM Műszaki Anyagtudományi Kar Energia- és Minőségügyi Intézet Minőségügyi Intézeti Kihelyezett Tanszék MISKOLC,
Hanthy László Tel.: 06 20 9420052
Hanthy László Tel.: 06 20 9420052 Néhány probléma a gyártási folyamatok statisztikai szabályzásával kapcsolatban Miben kellene segíteni az SPC alkalmazóit? Hanthy László T: 06(20)9420052 Megválaszolandó
STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika
Kontrol kártyák használata a laboratóriumi gyakorlatban
Kontrol kártyák használata a laboratóriumi gyakorlatban Rikker Tamás tudományos igazgató WESSLING Közhasznú Nonprofit Kft. 2013. január 17. Kis történelem 1920-as években, a Bell Laboratórium telefonjainak
EPRES JOGHURTOK ÉLVEZETI ÉRTÉKÉNEK
EPRES JOGHURTOK ÉLVEZETI ÉRTÉKÉNEK OBJEKTÍV (MŰSZERES) VIZSGÁLATA ÉS SZUBJEKTÍV (FOGYASZTÓI) MEGÍTÉLÉSE SZIGETI ORSOLYA 1, ROMVÁRI RÓBERT 2 1 Kaposvári Egyetem Gazdaságtudományi Kar Marketing és Kereskedelem
Populációbecslés és monitoring. Eloszlások és alapstatisztikák
Populációbecslés és monitoring Eloszlások és alapstatisztikák Eloszlások Az eloszlás megadja, hogy milyen valószínűséggel kapunk egy adott intervallumba tartozó értéket, ha egy olyan populációból veszünk
A továbbiakban Y = {0, 1}, azaz minden szóhoz egy bináris sorozatot rendelünk
1. Kódelmélet Legyen X = {x 1,..., x n } egy véges, nemüres halmaz. X-et ábécének, elemeit betűknek hívjuk. Az X elemeiből képzett v = y 1... y m sorozatokat X feletti szavaknak nevezzük; egy szó hosszán
Páros összehasonlítás mátrixok empirikus vizsgálata. Bozóki Sándor
Páros összehasonlítás mátrixok empirikus vizsgálata Bozóki Sándor MTA SZTAKI Operációkutatás és Döntési Rendszerek Kutatócsoport Budapesti Corvinus Egyetem Operációkutatás és Aktuáriustudományok Tanszék
V. Gyakorisági táblázatok elemzése
V. Gyakorisági táblázatok elemzése Tartalom Diszkrét változók és eloszlásuk Gyakorisági táblázatok Populációk összehasonlítása diszkrét változók segítségével Diszkrét változók kapcsolatvizsgálata Példák
Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef.
Intervallumbecsle s Mintave tel+ Hipote zisvizsga lat Egyminta s pro ba k Ke tminta s pro ba k Egye b vizsga latok O sszef. Feladatok Gazdaságstatisztika 7. Statisztikai becslések (folyt.); 8. Hipotézisvizsgálat
A konfidencia intervallum képlete: x± t( α /2, df )
1. feladat. Egy erdőben az egy fészekben levő tojásszámokat vizsgáltuk egy madárfajnál. A következő tojásszámokat találtuk: 1, 1, 1,,,,,,, 3, 3, 3, 3, 3, 4, 4, 5, 6, 7. Mi a mintának a minimuma, maximuma,
2013 ŐSZ. 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét!
GAZDASÁGSTATISZTIKA KIDOLGOZOTT ELMÉLETI KÉRDÉSEK A 3. ZH-HOZ 2013 ŐSZ Elméleti kérdések összegzése 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét! 2. Mutassa be az
STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése
4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól
KUTATÁSMÓDSZERTAN 4. ELŐADÁS. A minta és mintavétel
KUTATÁSMÓDSZERTAN 4. ELŐADÁS A minta és mintavétel 1 1. A MINTA ÉS A POPULÁCIÓ VISZONYA Populáció: tágabb halmaz, alapsokaság a vizsgálandó csoport egésze Minta: részhalmaz, az alapsokaság azon része,
Biostatisztika VIII. Mátyus László. 19 October
Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.
Próba érettségi feladatsor április I. RÉSZ
Név: osztály: Próba érettségi feladatsor 2007 április 17-18 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti keretbe
Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a
Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,
Diszkrét matematika 1.
Diszkrét matematika 1. 201. ősz 1. Diszkrét matematika 1. 1. előadás Mérai László diái alapján Komputeralgebra Tanszék 201. ősz Kombinatorika Diszkrét matematika 1. 201. ősz 2. Kombinatorika Kombinatorika
Normális eloszlás paramétereire vonatkozó próbák
Normális eloszlás paramétereire vonatkozó próbák Az alábbi próbák akkor használhatók, ha a meggyelések függetlenek, és feltételezhetjük, hogy normális eloszlásúak a meggyelések függetlenek, véges szórású
A tudományos munka. Megismerés. Megismerés. Tudományos megismerés jellemzői:
A tudományos munka Megismerés Tudományos Az egyedi jelenséget mint az általános egy kiragadott példáját vizsgálja Megismételhető Az emberi szubjektum visszaszorítása A megismert új elemeket be kell illeszteni
Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.
Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,
A Sólyi Sőlőhegyi Kertbarátok Egyesülete borverseny szabályzata
A Sólyi Sőlőhegyi Kertbarátok Egyesülete borverseny szabályzata A Sólyi Szőlőhegyi Kertbarátok Egyesülete minden évben borversenyt rendez, hogy a gazdák egymás között meg tudják méretni boraikat. I. Nevezési
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.
Kalibrálás és mérési bizonytalanság. Drégelyi-Kiss Ágota I
Kalibrálás és mérési bizonytalanság Drégelyi-Kiss Ágota I. 120. dregelyi.agota@bgk.uni-obuda.hu Kalibrálás Azoknak a mőveleteknek az összessége, amelyekkel meghatározott feltételek mellett megállapítható
Bemeneti mérés 2009/2010. M A T E M A T I K A 9. é v f o l y a m JAVÍTÓKULCS A változat
Bemeneti mérés 009/010. M A T E M A T I K A 9. é v f o l y a m JAVÍTÓKULCS A változat Minden a javítókulcsban megadott leírás szerinti helyes válasz (a tevékenység helyes elvégzése) értéke: 1 pont, ha
Minimum követelmények matematika tantárgyból 11. évfolyamon
Minimum követelmények matematika tantárgyból. évfolyamon A hatványozás általánosítása pozitív alap esetén racionális kitevőre. Műveletek hatványokkal. A, a 0 függvény. Az eponenciális függvény. Vizsgálata
A preferencia térképezés kritikus pontjai az élelmiszeripari termékfejlesztésben
A preferencia térképezés kritikus pontjai az élelmiszeripari termékfejlesztésben Gere A., Losó, V., Györey, A., Szabó, D., Sipos, L., Kókai, Z. Budapesti Corvinus Egyetem, Élelmiszertudományi Kar Érzékszervi
A biomatematika alapjai és a kapcsolódó feladatok megoldása számítógép segítségével Abonyi-Tóth Zsolt, 2005-2006 készült Harnos Andrea, Reiczigel Jenő zoológus előadásainak valamint Fodor János és Solymosi
10. Előadás. Megyesi László: Lineáris algebra, oldal. 10. előadás Sajátérték, Kvadaratikus alak
10. Előadás Megyesi László: Lineáris algebra, 98. 108. oldal. Gondolkodnivalók Mátrix inverze 1. Gondolkodnivaló Igazoljuk, hogy invertálható trianguláris mátrixok inverze is trianguláris. Bizonyítás:
Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.
Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,
VENDÉGLÁTÓIPARI ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA
VENDÉGLÁTÓIPARI ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA II. A VIZSGA LEÍRÁSA A vizsga részei Középszint Emelt szint 120 perc 15 perc 180 perc 20 perc 100 pont 50 pont 100 pont 50 pont A vizsgán használható
Matematika III. 2. Eseményalgebra Prof. Dr. Závoti, József
Matematika III. 2. Eseményalgebra Prof. Dr. Závoti, József Matematika III. 2. : Eseményalgebra Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027 Tananyagfejlesztéssel
13. Egy január elsejei népesség-statisztika szerint a Magyarországon él k kor és nem szerinti megoszlása (ezer f re) kerekítve az alábbi volt:
A 13. Egy 2000. január elsejei népesség-statisztika szerint a Magyarországon él k kor és nem szerinti megoszlása (ezer f re) kerekítve az alábbi volt: korcsoport (év) férfiak száma (ezer f ) n k száma
Gyakorló feladatok. Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László
Gyakorló feladatok Az alábbi feladatokon kívül a félév szemináriumi anyagát is nézzék át. Jó munkát! Gaál László I/. A vizsgaidőszak második napján a hallgatók %-ának az E épületben, %-ának a D épületben,
Mérési struktúrák
Mérési struktúrák 2007.02.19. 1 Mérési struktúrák A mérés művelete: a mérendő jellemző és a szimbólum halmaz közötti leképezés megvalósítása jel- és rendszerelméleti aspektus mérési folyamat: a leképezést
Az ÉTI 1953. évben végzett cementvizsgálatainak kiértékelése POPOVICS SÁNDOR és UJHELYI JÁNOS
- 1 - Építőanyag, 1954. 9. pp. 307-312 Az ÉTI 1953. évben végzett cementvizsgálatainak kiértékelése POPOVICS SÁNDOR és UJHELYI JÁNOS 1. Bevezetés Az Építéstudományi Intézet Minősítő Laboratóriumába 1953.