Módszertani dilemmák a statisztikában 40 éve alakult a Jövőkutatási Bizottság
|
|
- Anna Fodor
- 6 évvel ezelőtt
- Látták:
Átírás
1 Módszertani dilemmák a statisztikában 40 éve alakult a Jövőkutatási Bizottság SZIGNIFIKANCIA Sándorné Kriszt Éva Az MTA IX. Osztály Statisztikai és Jövőkutatási Tudományos Bizottságának tudományos ülése MTA Székház, Budapest, november 18.
2 Miről lesz szó? Bevezetés A szignifikancia-teszt problémája A problémák okai és története Ajánlások Viták - Vélemények Összegzés
3 Bevezetés I. Egy régi probléma újra előtérben Időszerűsége: Basic and Applied Social Psychology folyóirat, szerkesztőségi állásfoglalás, 2015 Lényege: NHTSzTE (nullhipotézis szignifikancia teszt eljárásának betiltása, 2014 és 2015 közötti türelmi idő után Forrás: BASP, szerkesztői bevezető, február
4 Bevezetés II. Szakmai közvélemény értesülése Egy régi probléma újra előtérben: a nullhipotézis szignifikanciateszt téves gyakorlata c. tanulmány Szerzők: Bárdics Anna, egyetemi hallgató, ELTE Németh Renáta, egyetemi docens, ELTE Terplán Győző, egyetemi hallgató, ELTE Statisztikai Szemle, 94. évf. 1. szám év január
5 Bevezetés III. Szakmai vita: Száműzött szignifikanciatesztek c. tanulmány Szerzők: Hunyadi László, egyetemi tanár, BCE Vita László, egyetemi tanár, BCE Szignifikanciatesztek negyven éve hibás elemzéseket végzek és téveszméket tanítok? Szerző: Vargha András, egyetemi tanár, KGE, ELTE Statisztikai Szemle, 94. évfolyam 4. szám, április
6 A szignifikancia-teszt problémája I. Nézzünk egy tesztelést! Vizsgáljuk egy húsz elemű kísérleti és egy húsz elemű kontrollcsoportokban az átlagok egyenlőségére vonatkozó nullhipotézist, kétmintás t-próbával! A t-próba statisztikai eredménye t=2,7, az empirikus szignifikancia p=0,01. Forrás: Bárdits-Németh-Terplán: Egy régi probléma újra előtérben. Stat. Szemle, 94. évf. 1. szám 53. old
7 A szignifikancia-teszt problémája II. Melyik állítás igaz? A nullhipotézist maradéktalanul cáfoltuk. Megtaláltuk annak valószínűségét, hogy a nullhipotézis igaz. A kísérleti hipotézist maradéktalanul cáfoltuk Forrás: Bárdits-Németh-Terplán: Egy régi probléma újra előtérben. Stat. Szemle, 94. évf. 1. szám 53. old.
8 A szignifikancia-teszt problémája III. Melyik állítás igaz? Az eredmények alapján ki tudjuk számolni annak a valószínűségét, hogy a kísérleti hipotézis igaz. Ha elutasítjuk a nullhipotézist ismerjük a valószínűségét annak, hogy rossz döntést hoztunk Forrás: Bárdits-Németh-Terplán: Egy régi probléma újra előtérben. Stat. Szemle, 94. évf. 1. szám 53. old.
9 A szignifikancia-teszt problémája IV. Melyik állítás igaz? Megbízható kísérleti eredményünk van abban az értelemben, hogy ha sokszor megismételnénk a kísérletet, az esetek 99 százalékában szignifikáns eredményt kapnánk. Válaszok, tévedések. Forrás: Bárdits-Németh-Terplán: Egy régi probléma újra előtérben. Stat. Szemle, 94. évf. 1. szám 53. old
10 A szignifikancia-teszt problémája V. Tudományos problémák matematikai hibák a tesztek erejének figyelmen kívül hagyása a szignifikanciteszt használata kifejezetten nagy mintáknál a p-érték azonosítása a nullhipotézis valószínűségével ragaszkodás az öt százalékos küszöbhöz a teszt feltételeinek figyelmen kívül hagyása
11 A szignifikancia-teszt problémája IV. Tudományos problémák Interpretációs hibák a szubsztantív szakmai fontosság összetévesztése a statisztikai szignifinankiával A p-érték, mint egyetlen mutató azonosítása a hipotézissel kapcsolatos bizonyítékkal A hatásnagyság vizsgálatának elmaradása, dichotóm döntés p 5% alapján Tudományszociológiai háttetű problémák is lehetnek, pl. szignifinakciavadászat
12 A problémák okai és története Lehetséges okok: oktatási gyakorlat szoftverek hibája hiányos módszertani felkészültsége a felhasználóknál leegyszerűsítés vágya (fekete/fehér) tudományszociológiai okok Történeti áttekintés
13 Ajánlások Szerkesztőségek javaslata a p-érték helyett leíró statisztikák, pontbecslés és megbízhatósági intervallum, stb. Amerikai Statisztikai Szövetség állásfoglalása szerint; a tudományos közösségnek szélesebb vitát kell folytatnia a statisztikai következtetési eljárásokról
14 Viták Vélemények I. Hunyadi-Vita: Száműzött szignifikanciatesztek Statisztikai Szemle, 94. évfolyam 4. szám Kerülendő a szakmai és a statisztikai szignifikancia szembeállítása...a modellek arra valók, hogy használjuk őket, nem pedig arra, hogy higgyünk bennünk. (Henri Theil) A próbák ereje, erőfüggvény, erőfüggvényértékelés nem várható el a felhasználóktól. A minta jelentősége
15 Viták Vélemények II. Hunyadi-Vita: Száműzött szignifkanciatesztek Statisztikai Szemle, 94. évfolyam 4. szám Javaslatok A publikációs kényszer csökkentése a felsőoktatásban Lektorálási munka fejlesztése Statisztikai módszertan széleskörű oktatása Szoftverek fejlesztése (Pl. R-nyelv alkalmazása fejlesztésekben és kutatói együttműködésekben.)
16 Viták Vélemények III. Statisztikai Tudományos Albizottság ülése június 16-án. felkért hozzászólók: Singer Júlia (Klinikai Biostatisztikai Társaság): nem a betiltás a megoldás a kutatásokat meg kell tervezni módszertanilag is Vargha András: mit tanítunk?, hogyan tanítunk? a felsőoktatásban a statisztika oktatásának lehetőségei és hiányosságai Hunyadi László: klasszikus módszertan, átvett alkalmazások a következtető statisztika lényegét nem értik
17 Viták Vélemények IV. További észrevételek: meddig tart a statisztikus, honnan kezdődik a felhasználó? széles körben kellene lefolytatni a vitát oktassunk kevesebbet, de azt mélyebben állásfoglalásunk a cikkek olvasóihoz is szóljon a statisztikus közösségnek jobban kellen menedzselnie magát állásfoglalás készült
18 Állásfoglalás: Összegzés I. Tudományos cikkek, eredmények közlésekor kívánatos az empíria alkalmazása. Minták alkalmazásakor nem elegendő csupán a leíró statisztikák közlése. A tesztek alkalmazási feltételeinek teljesülése megkövetelendő.
19 Állásfoglalás: Összegzés II. Pusztán csak a p-értékek alapján történő merev küszöbértékek alapján a döntéshozatal nem elfogadható, az eredmények gazdagabb (például konfidencia-intervallumok, hatásnagyság vizsgálatok) bemutatása szükséges. A kutatóktól elvárt, hogy a minták tervezésekor a próbák erejére is fordítsanak figyelmet. A folyóiratokban megjelenő cikkek esetében szerkesztői és lektori felelősség, hogy a cikkben mi jelenik meg.
20 Célul tűztük ki: Összegzés III. A szignifikancia-teszt problémájának bemutatását Az okok feltárását, bemutatását A vélemények összefoglalását A folyamat ismertetését Az ajánlás közzétételét Eddig jutottunk, de nincs vége!
21 Összegzés IV. Folytassuk tovább, együtt!!
22 Köszönöm megtisztelő figyelmüket!
Egy régi probléma újra előtérben: a nullhipotézis szignifikancia-teszt téves gyakorlata
Egy régi probléma újra előtérben: a nullhipotézis szignifikancia-teszt téves gyakorlata Bárdits Anna, Németh Renáta, Terplán Győző barditsanna@gmail.com nemethr@tatk.elte.hu terplangyozo@caesar.elte.hu
Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok
STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris
1. Adatok kiértékelése. 2. A feltételek megvizsgálása. 3. A hipotézis megfogalmazása
HIPOTÉZIS VIZSGÁLAT A hipotézis feltételezés egy vagy több populációról. (pl. egy gyógyszer az esetek 90%-ában hatásos; egy kezelés jelentősen megnöveli a rákos betegek túlélését). A hipotézis vizsgálat
Bevezetés a hipotézisvizsgálatokba
Bevezetés a hipotézisvizsgálatokba Nullhipotézis: pl. az átlag egy adott µ becslése : M ( x -µ ) = 0 Alternatív hipotézis: : M ( x -µ ) 0 Szignifikancia: - teljes bizonyosság csak teljes enumerációra -
Hipotézis vizsgálatok
Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével
Az MTA IX. Osztálya Statisztikai és Jövőkutatási Tudományos Bizottságának évi tevékenysége
Az MTA IX. Osztálya Statisztikai és Jövőkutatási Tudományos Bizottságának 2017. évi tevékenysége 1. A bizottság al- és munkabizottságai a tisztségviselők feltüntetésével: Elnök: Társlelnök: Titkár: 2.
Matematikai statisztika c. tárgy oktatásának célja és tematikája
Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:
Egy régi probléma újra elôtérben: a nullhipotézis szignifikanciateszt téves gyakorlata*
Mûhely Bárdits Anna, az Eötvös Loránd Tudományegyetem hallgatója E-mail: barditsanna@gmail.com Németh Renáta, az Eötvös Loránd Tudományegyetem docense E-mail: nemethr@tatk.elte.hu Terplán Győző, az Eötvös
Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás
STATISZTIKA Hipotézis, sejtés 11. Előadás Hipotézisvizsgálatok, nem paraméteres próbák Tudományos hipotézis Nullhipotézis felállítása (H 0 ): Kétmintás hipotézisek Munkahipotézis (H a ) Nullhipotézis (H
STATISZTIKA. Egymintás u-próba. H 0 : Kefir zsírtartalma 3% Próbafüggvény, alfa=0,05. Egymintás u-próba vagy z-próba
Egymintás u-próba STATISZTIKA 2. Előadás Középérték-összehasonlító tesztek Tesztelhetjük, hogy a valószínűségi változónk értéke megegyezik-e egy konkrét értékkel. Megválaszthatjuk a konfidencia intervallum
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát
Statisztika I. 9. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 9. előadás Előadó: Dr. Ertsey Imre Statisztikai hipotézis vizsgálatok elsősorban a biometriában alkalmazzák, újabban reprezentatív jellegű ökonómiai vizsgálatoknál, üzemi szinten élelmiszeripari
STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése
4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól
y ij = µ + α i + e ij
Elmélet STATISZTIKA 3. Előadás Variancia-analízis Lineáris modellek A magyarázat a függő változó teljes heterogenitásának két részre bontását jelenti. A teljes heterogenitás egyik része az, amelynek okai
Oktatói önéletrajz. Dr. Síklaki István. Karrier. egyetemi docens
Dr. Síklaki István egyetemi docens Társadalomtudományi és Nemzetközi Kapcsolatok Kar Magatartástudományi és Kommunikációelméleti Intézet Karrier Felsőfokú végzettségek: 1971-1976 ELTE BTK, klinikai pszichológus
Gyakorlat 8 1xANOVA. Dr. Nyéki Lajos 2016
Gyakorlat 8 1xANOVA Dr. Nyéki Lajos 2016 A probléma leírása Azt vizsgáljuk, hogy milyen hatása van a család jövedelmének a tanulók szövegértés teszten elért tanulmányi eredményeire. A minta 59 iskola adatait
A statisztika oktatásának átalakulása a felsőoktatásban
A statisztika oktatásának átalakulása a felsőoktatásban (A debreceni példa) Dr. Balogh Péter docens Debreceni Egyetem Agrár- és Gazdálkodástudományok Centruma Gazdálkodástudományi és Vidékfejlesztési Kar
TARTALOMJEGYZÉK. 1. téma Átlagbecslés (Barna Katalin) téma Hipotézisvizsgálatok (Nagy Mónika Zita)... 23
TARTALOMJEGYZÉK 1. téma Átlagbecslés (Barna Katalin).... 7 2. téma Hipotézisvizsgálatok (Nagy Mónika Zita)... 23 3. téma Összefüggések vizsgálata, korrelációanalízis (Dr. Molnár Tamás)... 73 4. téma Összefüggések
A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra
A mintavétel szakszerűtlenségeinek hatása a monitoring-statisztikákra Vörös Zsuzsanna NÉBIH RFI tervezési referens 2013. április 17. Egy kis felmérés nem kor Következtetések: 1. a jelenlevők nemi megoszlása:
Hipotézis vizsgálatok
Hipotézis vizsgálatok Hipotézisvizsgálat Hipotézis: az alapsokaság paramétereire vagy az alapsokaság eloszlására vonatkozó feltevés. Hipotézis ellenőrzés: az a statisztikai módszer, amelynek segítségével
Egy régi probléma újra előtérben: a nullhipotézis szignifikancia-teszt téves gyakorlata 1
Egy régi probléma újra előtérben: a nullhipotézis szignifikancia-teszt téves gyakorlata 1 Bárdits Anna 2, Németh Renáta 3, Terplán Győző 4 Kivonat Tanulmányunkban az empirikus adatelemzés egyik sarokkövének,
Hipotéziselmélet - paraméteres próbák. eloszlások. Matematikai statisztika Gazdaságinformatikus MSc szeptember 10. 1/58
u- t- Matematikai statisztika Gazdaságinformatikus MSc 2. előadás 2018. szeptember 10. 1/58 u- t- 2/58 eloszlás eloszlás m várható értékkel, σ szórással N(m, σ) Sűrűségfüggvénye: f (x) = 1 e (x m)2 2σ
Statisztika Elıadások letölthetık a címrıl
Statisztika Elıadások letölthetık a http://www.cs.elte.hu/~arato/stat*.pdf címrıl Konfidencia intervallum Def.: 1-α megbízhatóságú konfidencia intervallum: Olyan intervallum, mely legalább 1-α valószínőséggel
A Statisztika alapjai
A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati
[Biomatematika 2] Orvosi biometria. Visegrády Balázs
[Biomatematika 2] Orvosi biometria Visegrády Balázs 2016. 03. 27. Probléma: Klinikai vizsgálatban három különböző antiaritmiás gyógyszert (ß-blokkoló) alkalmaznak, hogy kipróbálják hatásukat a szívműködés
A pedagógiai szaksajtó, mint közéleti és tudományos fórum ( )
A pedagógiai szaksajtó, mint közéleti és tudományos fórum (1900-1945) Változó életformák régi és új tanulási környezetek ONK, 2013. nov. 7-9., Eger Biró Zsuzsanna Hanna, PhD ELTE PPK Előadás menete Kutatási
Adatok statisztikai értékelésének főbb lehetőségei
Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció
Statisztika. Politológus képzés. Daróczi Gergely április 17. Politológia Tanszék
Statisztika Politológus képzés Daróczi Gergely Politológia Tanszék 2012. április 17. Outline 1 Leíró statisztikák 2 Középértékek Példa 3 Szóródási mutatók Példa 4 Néhány megjegyzés a grafikonokról 5 Számítások
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen
90 Éves az MST. Kilencven éves a Statisztikai Szemle
Hunyadi László Kilencven éves a Statisztikai Szemle A Statisztikai Szemle az egyik legrégibb szakmai folyóirat, 1923 januárja óta gyakorlatilag folyamatosan megjelenik. Sokan, sokat írtak a történetéről.
STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.
STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése
GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet
GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő
egyetemi jegyzet Meskó Balázs
egyetemi jegyzet 2011 Előszó 2. oldal Tartalomjegyzék 1. Bevezetés 4 1.1. A matematikai statisztika céljai.............................. 4 1.2. Alapfogalmak......................................... 4 2.
az Általános Vállalkozási Főiskola tanszékvezető tanára, 2009 és 2010 között a KSH elnöke a Káldor díj és a Fényes Elek díj tulajdonosa
Dr. Belyó Pál az Általános Vállalkozási Főiskola tanszékvezető tanára, 2009 és 2010 között a KSH elnöke a Káldor díj és a Fényes Elek díj tulajdonosa Bódiné Vajda Györgyi dr. a KSH Tájékoztatási főosztály,
Hitelintézeti Szemle Lektori útmutató
Hitelintézeti Szemle Lektori útmutató Tisztelt Lektor Úr/Asszony! Egy tudományos dolgozat bírálatára szóló felkérés a lektor tudományos munkásságának elismerése. Egy folyóirat szakmai reputációja jelentős
Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása
Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból
Kiváltott agyi jelek informatikai feldolgozása Statisztika - Gyakorlat Kiss Gábor IB.157.
Kiváltott agyi jelek informatikai feldolgozása 2018 Statisztika - Gyakorlat Kiss Gábor IB.157. kiss.gabor@tmit.bme.hu Példa I (Vonat probléma) Aladár 25 éves és mindkét nagymamája él még: Borbála és Cecília.
Publikációs stratégia, tudománymetria, open access, szakirodalmi adatbázisok április 11.
Publikációs stratégia, tudománymetria, open access, szakirodalmi adatbázisok 2018. április 11. Miért írunk cikket? A tanulmány megjelentetésének lépései (0,5-2,5 év időtartam) Szakirodalmazás Téma meghatározása
biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás
Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani
Félidőben félsiker Részleges eredmények a kutatásalapú kémiatanulás terén
Félidőben félsiker Részleges eredmények a kutatásalapú kémiatanulás terén Szalay Luca 1, Tóth Zoltán 2, Kiss Edina 3 MTA-ELTE Kutatásalapú Kémiatanítás Kutatócsoport 1 ELTE, Kémiai Intézet, luca@caesar.elte.hu
A TANTÁRGY ADATLAPJA
A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeş-Bolyai Tudományegyetem 1.2 Kar Közgazdaság- és Gazdálkodástudományi Kar 1.3 Intézet Közgazdaság- és Gazdálkodástudományi
Kettőnél több csoport vizsgálata. Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet
Kettőnél több csoport vizsgálata Makara B. Gábor MTA Kísérleti Orvostudományi Kutatóintézet Gyógytápszerek (kilokalória/adag) Három gyógytápszer A B C 30 5 00 10 05 08 40 45 03 50 35 190 Kérdések: 1. Van-e
BIOMETRIA (H 0 ) 5. Előad. zisvizsgálatok. Hipotézisvizsg. Nullhipotézis
Hipotézis BIOMETRIA 5. Előad adás Hipotézisvizsg zisvizsgálatok Tudományos hipotézis Nullhipotézis feláll llítása (H ): Kétmintás s hipotézisek Munkahipotézis (H a ) Nullhipotézis (H ) > = 1 Statisztikai
Kutatásmódszertan és prezentációkészítés
Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I
Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat
Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat 7. lecke Paraméter becslés Konfidencia intervallum Hipotézis vizsgálat feladata Paraméter becslés és konfidencia
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,
Valószín ségszámítás és statisztika Gyakorlat (Kétmintás próbák)
Gyakorlat (Kétmintás próbák) 2018. december 4. Kétmintás u-próba 1 Adott két független minta 0.0012 szórású normális eloszlásból. Az egyik, 9 elem minta realizációjának átlaga 0.1672, a másik 16 elem é
SZAK MA AKTUALITÁSOK, KÖZÉLET, VITA SZAK-MA. Beszámoló a Módszeresen című rendezvénysorozatról. Bevezető
SZAK MA AKTUALITÁSOK, KÖZÉLET, VITA Szociológiai Szemle 27(1): 118. SZAK-MA Beszámoló a Módszeresen című rendezvénysorozatról Bevezető A Szociológiai Szemle örömmel vesz részt minden, a szakmai közéleti
Horváth Krisztina Pécsi Tudományegyetem Közgazdaságtudományi Kar Regionális Politika és Gazdaságtan Doktori Iskola, III. évfolyam
Menedzsment technikák hatása a tudásintenzív és nem tudásintenzív vállalatok produktivitására: magyar kis- és középvállalatok esete Horváth Krisztina Pécsi Tudományegyetem Közgazdaságtudományi Kar Regionális
Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 15. Nemparaméteres próbák Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date: November
Zempléni gyümölcsalapú kézműves élelmiszerek fogyasztói magtartásának vizsgálata a nők körében
Debreceni Egyetem Gazdaságtudományi Kar XXXII. Országos Tudományos Diákköri Konferencia Közgazdaságtudományi Szekció Fogyasztói magatartás 1. Zempléni gyümölcsalapú kézműves élelmiszerek fogyasztói magtartásának
FIT-jelentés :: Weöres Sándor Általános Iskola, Gimnázium és Szakközépiskola - Gimnáziumtagintézmény. Telephelyi jelentés
FIT-jelentés :: 2008 10. évfolyam :: 4 évfolyamos gimnázium Weöres Sándor Általános Iskola, Gimnázium és Szakközépiskola - Gimnáziumtagintézmény 1098 Budapest, Toronyház u. 21 Matematika Országos kompetenciamérés
Kabos: Statisztika II. t-próba 9.1. Ha ismert a doboz szórása de nem ismerjük a
Kabos: Statisztika II. t-próba 9.1 Egymintás z-próba Ha ismert a doboz szórása de nem ismerjük a doboz várhatóértékét, akkor a H 0 : a doboz várhatóértéke = egy rögzített érték hipotézisről úgy döntünk,
JA45 Cserkeszőlői Petőfi Sándor Általános Iskola (OM: ) 5465 Cserkeszőlő, Ady Endre utca 1.
ORSZÁGOS KOMPETENCIAMÉRÉS EREDMÉNYEINEK ÉRTÉKELÉSE LÉTSZÁMADATOK Intézményi, telephelyi jelentések elemzése SZÖVEGÉRTÉS 2016 6. a 6. b osztály 1. ÁTLAGEREDMÉNYEK A tanulók átlageredménye és az átlag megbízhatósági
FIT-jelentés :: Hunyadi János Gimnázium és Szakközépiskola 9300 Csorna, Soproni út 97. OM azonosító: Telephely kódja: 001
FIT-jelentés :: 2008 10. évfolyam :: 4 évfolyamos gimnázium Hunyadi János Gimnázium és Szakközépiskola 9300 Csorna, Soproni út 97. Matematika Országos kompetenciamérés 1 1 Átlageredmények A telephelyek
A TANTÁRGY ADATLAPJA
A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeş-Bolyai Tudományegyetem 1.2 Kar Közgazdaság- és Gazdálkodástudományi Kar 1.3 Intézet Közgazdaság- és Gazdálkodástudományi
A társadalomkutatás módszerei I.
A társadalomkutatás módszerei I. 13. hét Daróczi Gergely Budapesti Corvinus Egyetem 2011. december 8. Outline 1 A mintaválasztás célja 2 Alapfogalmak 3 Mintavételi eljárások 4 További fogalmak 5 Mintavételi
Biostatisztika VIII. Mátyus László. 19 October
Biostatisztika VIII Mátyus László 19 October 2010 1 Ha σ nem ismert A gyakorlatban ritkán ismerjük σ-t. Ha kiszámítjuk s-t a minta alapján, akkor becsülhetjük σ-t. Ez további bizonytalanságot okoz a becslésben.
FIT-jelentés :: Árpád-házi Szent Erzsébet Középiskola 2500 Esztergom, Mindszenty tér 7. OM azonosító: Telephely kódja: 001
FIT-jelentés :: 2008 10. évfolyam :: 4 évfolyamos gimnázium 2500 Esztergom, Mindszenty tér 7. Matematika Országos kompetenciamérés 1 1 Átlageredmények A telephelyek átlageredményeinek összehasonlítása
Biostatisztika Összefoglalás
Biostatisztika Összefoglalás A biostatisztika vizsga A biostatisztika vizsga az Orvosi fizika és statisztika I. fizika vizsgájával egy napon történik. A vizsga keretében 30 perc alatt 0 kérdésre kell válaszolni
Statisztika elméleti összefoglaló
1 Statisztika elméleti összefoglaló Tel.: 0/453-91-78 1. Tartalomjegyzék 1. Tartalomjegyzék.... Becsléselmélet... 3 3. Intervallumbecslések... 5 4. Hipotézisvizsgálat... 8 5. Regresszió-számítás... 11
Biostatisztika Összefoglalás
Biostatisztika Összefoglalás A biostatisztika vizsga A biostatisztika vizsga az Orvosi fizika és statisztika I. fizika vizsgájával egy napon történik. A vizsga keretében 30 perc alatt 0 kérdésre kell válaszolni
Az MTA IX. Osztálya Statisztikai ás Jövőkutatási Tudományos/Állandó Bizottságának évi tevékenysége
Az MTA IX. Osztálya Statisztikai ás Jövőkutatási Tudományos/Állandó Bizottságának 2016. évi tevékenysége 1. A bizottság al- és munkabizottságai a tisztségviselők feltüntetésével: Elnök: Alelnök: Titkár:
Statisztikai módszerek 7. gyakorlat
Statisztikai módszerek 7. gyakorlat A tanult nem paraméteres próbák: PRÓBA NEVE Illeszkedés-vizsgálat Χ 2 próbával Homogenitás-vizsgálat Χ 2 próbával Normalitás-vizsgálataΧ 2 próbával MIRE SZOLGÁL? A val.-i
K oz ep ert ek es variancia azonoss ag anak pr ob ai: t-pr oba, F -pr oba m arcius 21.
Középérték és variancia azonosságának próbái: t-próba, F -próba 2012. március 21. Hipotézis álĺıtása Feltételezés: a minta egy adott szempont alapján más populációhoz tartozik, mint b minta. Nullhipotézis
A konfidencia intervallum képlete: x± t( α /2, df )
1. feladat. Egy erdőben az egy fészekben levő tojásszámokat vizsgáltuk egy madárfajnál. A következő tojásszámokat találtuk: 1, 1, 1,,,,,,, 3, 3, 3, 3, 3, 4, 4, 5, 6, 7. Mi a mintának a minimuma, maximuma,
Kutatásmódszertan és prezentációkészítés
Kutatásmódszertan és prezentációkészítés 8. rész: Statisztikai eszköztár: Alapfokú statisztikai ismeretek Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Nyolcadik rész Statisztikai eszköztár: Alapfokú statisztikai
FIT-jelentés :: Telephelyi jelentés. 6. évfolyam :: Általános iskola
FIT-jelentés :: 2008 6. évfolyam :: Általános iskola Dr. Török Béla Óvoda, Általános Iskola, Speciális Szakiskola, Egységes Gyógypedagógiai Módszertani Intézmény, Diákotthon és Gyermekotthon 1142 Budapest,
Könyvvizsgálói jelentés
Könyvvizsgálói jelentés 2016-2017 Könyvvizsgálói jelentéssel kapcsolatos változások 2016. december 15-én vagy azt követően végződő időszakokra vonatkozó pénzügyi kimutatások könyvvizsgálata során kell
Kettőnél több csoport vizsgálata. Makara B. Gábor
Kettőnél több csoport vizsgálata Makara B. Gábor Három gyógytápszer elemzéséből az alábbi energia tartalom adatok származtak (kilokalória/adag egységben) Három gyógytápszer elemzésébô A B C 30 5 00 10
KÖVETKEZTETŐ STATISZTIKA
ÁVF GM szak 2010 ősz KÖVETKEZTETŐ STATISZTIKA A MINTAVÉTEL BECSLÉS A sokasági átlag becslése 2010 ősz Utoljára módosítva: 2010-09-07 ÁVF Oktató: Lipécz György 1 A becslés alapfeladata Pl. Hányan láttak
A biostatisztika alapfogalmai, hipotézisvizsgálatok. Dr. Boda Krisztina Boda PhD SZTE ÁOK Orvosi Informatikai Intézet
A biostatisztika alapfogalmai, hipotézisvizsgálatok Dr. Boda Krisztina Boda PhD SZTE ÁOK Orvosi Informatikai Intézet Hipotézisvizsgálatok A hipotézisvizsgálat során a rendelkezésre álló adatok (statisztikai
Az értékelés során következtetést fogalmazhatunk meg a
Az értékelés során következtetést fogalmazhatunk meg a a tanuló teljesítményére, a tanulási folyamatra, a célokra és követelményekre a szülők teljesítményére, a tanulási folyamatra, a célokra és követelményekre
Kísérlettervezés alapfogalmak
Kísérlettervezés alapfogalmak Rendszermodellezés Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Kísérlettervezés Cél: a modell paraméterezése a valóság alapján
y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell
Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.
Ribarics Ildikó PTE Klinikai Központ Ápolásszakmai Igazgatóság
Mammográfiás szűrés vagy diagnosztika? Emlő képalkotó vizsgálatok elemzése a Pécsi Tudományegyetem Klinikai Központ Radiológiai Klinika Mammográfiás Centrumában Ribarics Ildikó PTE Klinikai Központ Ápolásszakmai
Statisztikai alapfogalmak a klinikai kutatásban. Molnár Zsolt PTE, AITI
Statisztikai alapfogalmak a klinikai kutatásban Molnár Zsolt PTE, AITI Bevezetés Research vs. Science Kutatás Tudomány Szerkezeti háttér hiánya Önkéntesek (lelkes kisebbség) Beosztottak (parancsot teljesítő
Biomatematika 13. Varianciaanaĺızis (ANOVA)
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 13. Varianciaanaĺızis (ANOVA) Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:
Az éghajlati modellek eredményeinek alkalmazhatósága hatásvizsgálatokban
Az éghajlati modellek eredményeinek alkalmazhatósága hatásvizsgálatokban Szépszó Gabriella Országos Meteorológiai Szolgálat, szepszo.g@met.hu RCMTéR hatásvizsgálói konzultációs workshop 2015. június 23.
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus
Klinikai és Bírósági Alkalmazások Valószínűségszámítási Modellek BREUER-LÁBADY PÉTER
Klinikai és Bírósági Alkalmazások Valószínűségszámítási Modellek BREUER-LÁBADY PÉTER KLINIKAI ALKALMAZÁSOK GYÓGYSZER TESZTELÉS MIK LEHETNEK A PROBLÉMÁK? STATISZTIKAI ALAPKÖVEK GYÓGYULÁSI ESÉLYEK TARTALOM
Hol terem a magyar statisztikus?
Hol terem a magyar statisztikus? 90 éves az MST jubileumi konferencia Balatonőszöd, 2012. november 15-16. Rappai Gábor PTE KTK Ki a statisztikus? Értelmező Szótár Statisztikával foglalkozó szakember. Etikai
FIT-jelentés :: Vörösmarty Mihály Gimnázium 2030 Érd, Széchenyi tér 1. OM azonosító: Telephely kódja: 001. Telephelyi jelentés
FIT-jelentés :: 2008 8. évfolyam :: 8 évfolyamos gimnázium 2030 Érd, Széchenyi tér 1. Matematika Országos kompetenciamérés 1 1 Átlageredmények A telephelyek átlageredményeinek összehasonlítása Matematika
Anyagvizsgálati módszerek Mérési adatok feldolgozása. Anyagvizsgálati módszerek
Anyagvizsgálati módszerek Mérési adatok feldolgozása Anyagvizsgálati módszerek Pannon Egyetem Mérnöki Kar Anyagvizsgálati módszerek Statisztika 1/ 22 Mérési eredmények felhasználása Tulajdonságok hierarchikus
Intézményi jelentés. 6. évfolyam
FIT-jelentés :: 2008 Szandaszőlősi Általános Iskola, Művelődési Ház és Alapfokú Művészetoktatási Intézmény 5008 Szolnok, Gorkij u. 47. Matematika Országos kompetenciamérés 1 1 Átlageredmények Az iskolák
Holl András - MTAK, MTA CsFK CsI Bilicsi Erika, MTMT. REAL adminisztrátor képzés 2012 november 27. / december 4.
REAL admin 2012 nov 27. / dec. 4. Holl A. 1 MTA OA rendelet REAL Holl András - MTAK, MTA CsFK CsI Bilicsi Erika, MTMT REAL adminisztrátor képzés 2012 november 27. / december 4. REAL admin 2012 nov 27.
Intézményi jelentés. 6. évfolyam
FIT-jelentés :: 2008 Budapest XXI. Kerület Csepel Önkormányzata Gróf Széchenyi István Általános és Kéttannyelvű Iskola Gróf Széchenyi István Grund-und Zweisprachige Schule 1212 Budapest, Széchenyi u. 93.
FIT-jelentés :: Német Nemzetiségi Gimnázium és Kollégium 1203 Budapest, Serény utca 1. OM azonosító: Intézményi jelentés.
FIT-jelentés :: 2016 Összefoglalás Német Nemzetiségi Gimnázium és Kollégium 1203 Budapest, Serény utca 1. Összefoglalás Az intézmény létszámadatai Tanulók száma Évfolyam Képzési forma Összesen A jelentésben
A kutatási eredmények nyilvánossá tétele
A kutatási eredmények nyilvánossá tétele A kutatási beszámoló megírása Mivel az empirikus munka logikája és lépései meglehetısen kötöttek, az empirikus kutatási beszámoló mőfaja is kötött. A kutatási beszámoló
FIT-jelentés :: Bányai Júlia Gimnázium 6000 Kecskemét, Nyíri út 11. OM azonosító: Telephely kódja: 001. Telephelyi jelentés
FIT-jelentés :: 2009 10. évfolyam :: 8 évfolyamos gimnázium Bányai Júlia Gimnázium 6000 Kecskemét, Nyíri út 11. Létszámadatok A telephely létszámadatai a 8 évfolyamos gimnáziumi képzéstípusban a 10. évfolyamon
1/8. Iskolai jelentés. 10.évfolyam matematika
1/8 2009 Iskolai jelentés 10.évfolyam matematika 2/8 Matematikai kompetenciaterület A fejlesztés célja A kidolgozásra kerülő programcsomagok az alább felsorolt készségek, képességek közül a számlálás,
Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók
Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz
ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN!
A1 A2 A3 (8) A4 (12) A (40) B1 B2 B3 (15) B4 (11) B5 (14) Bónusz (100+10) Jegy NÉV (nyomtatott nagybetűvel) CSOPORT: ALÁÍRÁS: ALÁÍRÁS NÉLKÜL A TESZT ÉRVÉNYTELEN! 2011. december 29. Általános tudnivalók:
FIT-jelentés :: Árpád-házi Szent Erzsébet Középiskola 2500 Esztergom, Mindszenty tér 7. OM azonosító: Telephely kódja: 001
FIT-jelentés :: 2008 6. évfolyam :: 8 évfolyamos gimnázium 2500 Esztergom, Mindszenty tér 7. Matematika Országos kompetenciamérés 1 1 Átlageredmények A telephelyek átlageredményeinek összehasonlítása Matematika
3. A mintavételi kockázat elfogadható szintjének meghatározása (pl. 5 vagy 10%)
MINTAVÉTELEZÉSI ELJÁRÁSOK A mintavételezés célja A statisztikai és nem statisztikai mintavételi eljárások során az ellenőr megtervezi és kiválasztja az ellenőrzési mintát, valamint kiértékeli a mintavétel
Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető!
BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, 2012.. Név:... Neptun kód:... Érdemjegy:..... STATISZTIKA II. VIZSGADOLGOZAT Feladatok 1. 2. 3. 4. 5. 6. Összesen Szerezhető pontszám 21 20 7 22
STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika
STATISZTIKA I. Tantárgykódok. Oktatók. Időbeosztás. Tematika. http://www.agr.unideb.hu/~huzsvai. 1. Előadás Bevezetés, a statisztika szerepe
Tantárgykódok STATISZTIKA I. GT_APSN018 GT_AKMN021 GT_ATVN020 1. Előadás Bevezetés, a statisztika szerepe Oktatók Előadó: Dr. habil. Huzsvai László tanszékvezető Gyakorlatvezetők: Dr. Balogh Péter Dr.
I. Általános információk az előadásokról, szemináriumokról, szak- vagy laborgyakorlatokról
BABEŞ BOLYAI TUDOMÁNYEGYETEM KOLOZSVÁR KÖZGAZDASÁG- ÉS GAZDÁLKODÁSTUDOMÁNYI KAR SZAKIRÁNY: KÖZÖS TÖRZS EGYETEMI ÉV: 2009/2010 FÉLÉV: IV I. Általános információk az előadásokról, szemináriumokról, szak-
Kiválasztás. A változó szerint. Rangok. Nem-paraméteres eljárások. Rang: Egy valamilyen szabály szerint felállított sorban elfoglalt hely.
Kiválasztás A változó szerint Egymintás t-próba Mann-Whitney U-test paraméteres nem-paraméteres Varianciaanalízis De melyiket válasszam? Kétmintás t-próba Fontos, hogy mindig a kérdésnek és a változónak