Gráf-algoritmusok ERŐS / GYENGE KÖTÉSEK

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Gráf-algoritmusok ERŐS / GYENGE KÖTÉSEK"

Átírás

1 Gráf-algoritmusok ERŐS / GYENGE KÖTÉSEK Sapientia-EMTE

2 A gyenge kapcsolatok ereje The strength of weak ties (legidézettebb cikk) 1969 (American Sociological Review) 1973 (American Journal of Sociology) Kitől szerzett tudomást az új munkahelyéről? közeli barátok / ismerősök Mark Granovetter

3 Hálózatok dinamikája Tranzitivitás / triadikus bezáródás A barátaink idővel egymás barátai is lesznek Mivel magyaráznád e jelenséget? Csomósodási együttható (clustering coefficient) Mennyi a valószínűsége, hogy A két barátja egymásnak is barátai? (a) 1/6 (B-C,B-D,B-E,C-D,C-E,D-E); (b) 3/6 (B-C,B-D,B-E,C-D,C-E,D-E)

4 Hidak / lokális hidak Jó álláslehetőségről olyan barátoktól hallhatsz, akik más körökben is megfordulnak HÍD LOKÁLIS HÍD Egy lokális híd fesztávolsága (span): mekkora lesz a végpontok közti távolság, ha töröljük a hidat? LOKÁLIS HÍD: fesztávolság > 2. LOKÁLIS HÍD >> << TRIADIKUS BEZÁRÓDÁS

5 Erős és gyenge kötések Granovetter kísérlet Olyantól hallottam, akivel lokális híd köt össze Egy ismerősömtől hallottam Barátok/ismerősök erős/gyenge kapcsolat Erős triadikus bezáródás tulajdonság: A barátaim legalább ismerősök Ha egy pontnak van legalább 2 erős kötése, akkor a hídjai gyenge kötések

6 A gyenge kapcsolatok ereje Ha megelőlegezzük az erős triadikus bezáródás tulajdonságot, akkor: Ha van legalább 2 barátod (erős kötések), akkor ismerősök (gyenge kötések) kapcsolnak olyan körökhöz, amelyek új információ forrást jelenthetnek számodra.

7 Onnela et al., Structure and tie strengths in mobile communication networks Nagy (valós) hálózatok Mobil-beszélgetés hálózat (célország 20%-a) Él-súly: mennyi ideig beszélgettek Óriás összefüggő komponens (84%) Mivel kevés a lokális híd ezért bevezetjük a majdnem lokális híd fogalmát Valamely él szomszédság-átfedési foka közös szomszédok száma / össz-szomszéd-szám Az A-F élre: 1/6 Lokális hidakra: 0 Majdnem lokális híd kis szomszédsági átfedés híd lokális híd majdnem lokális híd

8 Onnela et al., Structure and tie strengths in mobile communication networks Él-erősség vs. lokális/globális strukturális jellemzők Minél kisebb a súlya egy élnek, annál kisebb a szomszédsági átfedése is A majdnem lokális hidak távoli ismerősöket jelentenek Ha az éleket súlyuk szerint növekvő sorrendben törölték gyorsabban esett szét az óriás komponens részeire, mint amikor csökkenő sorrendet alkalmaztak Gyenge kötések tartják össze sűrű komponenseit

9 Gyenge/Erős kötések a facebook-on Egy felhasználó baráti kapcsolatai (1 hónap) Kétirányú kommunikáció (üzenet oda-vissza) Egyirányú kommunikáció (üzenet oda/vissza) Fenntartott kapcsolat (információ követés) Sok triadikus bezáródás, ami szoros barátságokat feltételez Kurrens baráti kapcsolatok Öreg baráti kapcsolatok

10 Gyenge/Erős kötések a facebook-on Lehet ugyan 500 barátod, de csak 10-20, akikkel aktív kapcsolatot ápolsz, és <50, akiket passzívan követsz. A passzív elkötelezettség (közepes erősségű kötések) fogalma a online szociális hálók új hozadéka Telefonon, valószínűleg, csak a kétirányú kommunikációs háló jött volna létre

11 Csomópontok helyezései Egy él beágyazottsági foka: közös szomszédok száma piros élek végpontjainak min. 2 közös szomszédja az A pont minden éle piros B-C és B-D beágyazottsága 0 Beágyazott élek végpontjai: Alap a bizalomra Szem előtt vannak biztonságos tranzakciók Csoportok közti kapocs (B) Strukturális lyukat tölt be korai hozzáférés több információ forráshoz több kreativitás (kombinálás) nagyobb kontrol az információ áramlás felett Melyik a kívánatosabb pozicionálás? A/B Társadalmi tőke: bonding capital bridging capital Kívánatos lehet megóvni a hídjaidat a triadikus bezáródásoktól

12 Karate klub A két góc között jelentős számú kötés van Gráf particionálás (gyengén összekötött gócok azonosítása) Bár se hídja, se lokális hídja Szükség van egy árnyaltabb fogalomra Társszerzők gráfja

13 Köztességi fok (Betweenness) Miért nem elég jó megközelítés, hogy töröld sorra a hidakat? Két pont között a fluxus/forgalom 1 egység a legrövidebb úton. 2. Ha k legrövidebb út van, akkor utanként 1/k a forgalom 3. Egy él köztességi foka a rajta áthaladó összes legrövidebb út forgalmának összege 4. A 7-8 él köztessége: 7*7=49 5. A 3-7 él köztessége: 3*11=33

14 Girvan-Newman módszer 1. Meghatározzuk minden él köztességi fokát, és töröljük a maximális értékűeket Ha szétesik a gráf komponenseire, akkor ezek lesznek az első szintű gócok 2. Újraszámoljuk a köztességi fokokat, és töröljük a maximális értékű éleket 3. Addig ismételjük mindezt, míg minden élt törlünk

15 5=5*1 5=1*5 25=5*5 30= =5+25

16 Újból a karate klub alapító diák edző Mind a Grivan-Newman, mind a minimális-vágás módszer a színezés szerint particionálta a gráfot, kivéve a 9-es pontot Háttér információ: amikor a klub kettévált, a 9-es egy potenciális fekete övre tekintett elő, amit csak az edző segítségével szerezhetett meg

17 Köztességi fokok hatékonyan (BFS-emlékeztető)

18 Az A pontból bármely pontba vezető legrövidebb utak száma

19 Forgalom-értékek az élek mentén Minden pont 1 egység forgalmat nyel el. Bármely pont be-forgalma 1- vel több, mint ki-forgalma. A be-forgalom arányosan oszlik el a be-éleken (a beszomszédokhoz vezető legrövidebb út számokkal arányosan)

20 Minden él köztességi foka Határozd meg az élek forgalom-értékeit minden pontból induló BFS-ek nyomán! Összegezd az élek BFS-enkénti forgalomértékeit, majd ossz 2-vel! Töröld a legnagyobb köztességi fokú éleket! lásd a Girvan-Newman módszer. Jól működik nem túl nagy hálózatok esetén

Közösség detektálás gráfokban

Közösség detektálás gráfokban Közösség detektálás gráfokban Önszervező rendszerek Hegedűs István Célkitűzés: valamilyen objektumok halmaza felett minták, csoportok detektálása csakis az egyedek közötti kapcsolatok struktúrájának a

Részletesebben

Szociális hálózatok Gráf alapú módszerek. Adatbányászat. Klaszterezés Szociális hálózatok. Szegedi Tudományegyetem. Adatbányászat

Szociális hálózatok Gráf alapú módszerek. Adatbányászat. Klaszterezés Szociális hálózatok. Szegedi Tudományegyetem. Adatbányászat Klaszterezés Szegedi Tudományegyetem Élei lehetnek címkézettek (pl. ellenség, barát), továbbá súlyozottak (pl. telefonbeszélgetés) Megjelenési formái Ismeretségi, társszerzőségi gráf (Erdős-Bacon szám)

Részletesebben

Társadalmi és gazdasági hálózatok modellezése

Társadalmi és gazdasági hálózatok modellezése Társadalmi és gazdasági hálózatok modellezése 2. el adás A hálózatkutatás néhány fontos fogalma El adó: London András 2015. szeptember 15. Átmér l ij a legrövidebb út a hálózatban i és j pont között =

Részletesebben

Adott: VPN topológia tervezés. Költségmodell: fix szakaszköltség VPN végpontok

Adott: VPN topológia tervezés. Költségmodell: fix szakaszköltség VPN végpontok Hálózatok tervezése VITMM215 Maliosz Markosz 2012 12.10..10.27 27. Adott: VPN topológia tervezés fizikai hálózat topológiája Költségmodell: fix szakaszköltség VPN végpontok 2 VPN topológia tervezés VPN

Részletesebben

Közösségek keresése nagy gráfokban

Közösségek keresése nagy gráfokban Közösségek keresése nagy gráfokban Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 2011. április 14. Katona Gyula Y. (BME SZIT) Közösségek

Részletesebben

Doktori disszertáció. szerkezete

Doktori disszertáció. szerkezete Doktori disszertáció tézisfüzet Komplex hálózatok szerkezete Szabó Gábor Témavezető Dr. Kertész János Elméleti Fizika Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 2005 Bevezetés A tudományos

Részletesebben

HAMILTON ÚT: minden csúcson PONTOSAN egyszer áthaladó út

HAMILTON ÚT: minden csúcson PONTOSAN egyszer áthaladó út SÍKBA RAJZOLHATÓ GRÁFOK ld. előadás diasorozat SZÍNEZÉS: ld. előadás diasorozat PÉLDA: Reguláris 5 gráf színezése 4 színnel Juhász, PPKE ITK, 007: http://users.itk.ppke.hu/~b_novak/dmat/juhasz_5_foku_graf.bmp

Részletesebben

Keresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék

Keresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Keresés képi jellemzők alapján Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Lusta gépi tanulási algoritmusok Osztályozás: k=1: piros k=5: kék k-legközelebbi szomszéd (k=1,3,5,7)

Részletesebben

Gráf-algoritmusok Legrövidebb utak

Gráf-algoritmusok Legrövidebb utak https://www.cs.princeton.edu/~rs/algsds07/15shortestpaths.pdf Gráf-algoritmusok Legrövidebb utak Sapientia-EMTE 2017-18 Typesetting in TeX Két pont között, akkor van él, ha közéjük 1 2 3 4 eső szó szekvencia

Részletesebben

A Barabási-Albert-féle gráfmodell

A Barabási-Albert-féle gráfmodell A Barabási-Albert-féle gráfmodell és egyéb véletlen gráfok Papp Pál András Gráfok, hálózatok modelljei Rengeteg gráfokkal modellezhető terület: Pl: Internet, kapcsolati hálók, elektromos hálózatok, stb.

Részletesebben

Betekintés a komplex hálózatok világába

Betekintés a komplex hálózatok világába Betekintés a komplex hálózatok világába Dr. Varga Imre Debreceni Egyetem Informatikai Kar EFOP-3.6.1-16-2016-00022 Egyszerű hálózatok Grafit kristály Árpád házi uralkodók családfája LAN hálózat Komplex

Részletesebben

1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok. HálózatokII, 2007

1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok. HálózatokII, 2007 Hálózatok II 2007 1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok 1 Az előadáshoz Előadás: Szerda 17:00 18:30 Gyakorlat: nincs Vizsga írásbeli Honlap: http://people.inf.elte.hu/lukovszki/courses/g/07nwii

Részletesebben

Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék

Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Számítógépes képelemzés 7. előadás Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Momentumok Momentum-alapú jellemzők Tömegközéppont Irányultáság 1 2 tan 2 1 2,0 1,1 0, 2 Befoglaló

Részletesebben

Euler tétel következménye 1:ha G összefüggő síkgráf és legalább 3 pontja van, akkor: e 3

Euler tétel következménye 1:ha G összefüggő síkgráf és legalább 3 pontja van, akkor: e 3 Síkgráfok Kuratowski-tétel: egy gráf akkor és csak akkor síkba rajzolható gráf, ha nincs olyan részgráfja, ami a K 5 -el, vagy a K 3,3 -altopologikusan izomorf (homeomorf). Euler síkgráfokra vonatkozó

Részletesebben

HAMILTON KÖR: minden csúcson PONTOSAN egyszer áthaladó kör. Forrás: (

HAMILTON KÖR: minden csúcson PONTOSAN egyszer áthaladó kör. Forrás: ( HAMILTON KÖR: minden csúcson PONTOSAN egyszer áthaladó kör Teljes gráf: Páros gráf, teljes páros gráf és Hamilton kör/út Hamilton kör: Minden csúcson áthaladó kör Hamilton kör Forrás: (http://www.math.klte.hur/~tujanyi/komb_j/k_win_doc/g0603.doc

Részletesebben

A világ legkisebb bankfiókja

A világ legkisebb bankfiókja A világ legkisebb bankfiókja 1. Mobilbank - a folyamatos fejlődés története 2. Mit hoz a holnap? 3. A mobilfizetésről röviden 4. Együttműködési modellek Tartalom 5. Egy működő hazai példa és tanulságai

Részletesebben

Komplex hálózatok: alapfogalmak, modellek, módszerek

Komplex hálózatok: alapfogalmak, modellek, módszerek Komplex hálózatok: alapfogalmak, modellek, módszerek London András, Németh Tamás 2015. április 13. Motiváció Alapfogalmak Centralitás mértékek Néhány gráfmodell Hálózatok mindenhol! ábra 1: Facebook kapcsolati

Részletesebben

Gráfok 2. Legrövidebb utak, feszítőfák. Szoftvertervezés és -fejlesztés II. előadás. Szénási Sándor

Gráfok 2. Legrövidebb utak, feszítőfák. Szoftvertervezés és -fejlesztés II. előadás.   Szénási Sándor Gráfok 2. Legrövidebb utak, feszítőfák előadás http://nik.uni-obuda.hu/sztf2 Szénási Sándor Óbudai Egyetem,Neumann János Informatikai Kar Legrövidebb utak keresése Minimális feszítőfa keresése Gráfok 2

Részletesebben

Algoritmusok bonyolultsága

Algoritmusok bonyolultsága Algoritmusok bonyolultsága 5. előadás http://www.ms.sapientia.ro/~kasa/komplex.htm 1 / 27 Gazdaságos faváz Kruskal-algoritmus Joseph Kruskal (1928 2010) Legyen V = {v 1, v 2,..., v n }, E = {e 1, e 2,...,

Részletesebben

Gráfelméleti alapfogalmak

Gráfelméleti alapfogalmak 1 Gráfelméleti alapfogalmak Gráf (angol graph= rajz): pontokból és vonalakból álló alakzat. pontok a gráf csúcsai, a vonalak a gráf élei. GRÁ Irányítatlan gráf Vegyes gráf Irányított gráf G H Izolált pont

Részletesebben

A számítástudomány alapjai

A számítástudomány alapjai A számítástudomány alapjai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Legszélesebb utak Katona Gyula Y. (BME SZIT) A számítástudomány

Részletesebben

Véletlen gráfok, hálózatok

Véletlen gráfok, hálózatok Véletlen gráfok, hálózatok Véletlen gráfok, hálózatok Csirik András 2018.04.25 Erdős-Rényi modell Watts-Strogatz modell Barabási-Albert modell Hálózatok a mindennapokban Hálózatok a világ minden területén

Részletesebben

Near Field Communication (NFC)

Near Field Communication (NFC) Near Field Communication (NFC) 1 Mi is az az NFC? NFC = Near Field Communication (Rövid hatótávolságú kommunikáció) Kommunikációs szabványgyűjtemény Okostelefonok, mobil eszközök Az NFC és RFID kapcsolata:

Részletesebben

Összefoglalás és gyakorlás

Összefoglalás és gyakorlás Összefoglalás és gyakorlás High Speed Networks Laboratory 1 / 28 Hálózatok jellemző paraméterei High Speed Networks Laboratory 2 / 28 Evolúció alkotta adatbázis Önszerveződő adatbázis = (struktúra, lekérdezés)

Részletesebben

angolul: greedy algorithms, románul: algoritmi greedy

angolul: greedy algorithms, románul: algoritmi greedy Mohó algoritmusok angolul: greedy algorithms, románul: algoritmi greedy 1. feladat. Gazdaságos telefonhálózat építése Bizonyos városok között lehet direkt telefonkapcsolatot kiépíteni, pl. x és y város

Részletesebben

Marketing Megfeleljen a vásárlók igényeinek nyereséges módon

Marketing Megfeleljen a vásárlók igényeinek nyereséges módon Marketing Marketinget gyakran tekintik mint a munka létrehozása, a termékek és szolgáltatások promóciója és szállítása az egyéni fogyasztók vagy más cégek, az úgynevezett üzleti ügyfelek számára. (A legrövidebb

Részletesebben

Informatikai alapismeretek

Informatikai alapismeretek Informatikai alapismeretek Informatika tágabb értelemben -> tágabb értelemben az információ keletkezésével, továbbításával, tárolásával és feldolgozásával foglalkozik Informatika szűkebb értelemben-> számítógépes

Részletesebben

Algoritmuselmélet. Gráfok megadása, szélességi bejárás, összefüggőség, párosítás. Katona Gyula Y.

Algoritmuselmélet. Gráfok megadása, szélességi bejárás, összefüggőség, párosítás. Katona Gyula Y. Algoritmuselmélet Gráfok megadása, szélességi bejárás, összefüggőség, párosítás Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 2. előadás

Részletesebben

7. Régió alapú szegmentálás

7. Régió alapú szegmentálás Digitális képek szegmentálása 7. Régió alapú szegmentálás Kató Zoltán http://www.cab.u-szeged.hu/~kato/segmentation/ Szegmentálási kritériumok Particionáljuk a képet az alábbi kritériumokat kielégítő régiókba

Részletesebben

Párhuzamos programozási platformok

Párhuzamos programozási platformok Párhuzamos programozási platformok Parallel számítógép részei Hardver Több processzor Több memória Kapcsolatot biztosító hálózat Rendszer szoftver Párhuzamos operációs rendszer Konkurenciát biztosító programozási

Részletesebben

Párhuzamos programozási platformok

Párhuzamos programozási platformok Párhuzamos programozási platformok Parallel számítógép részei Hardver Több processzor Több memória Kapcsolatot biztosító hálózat Rendszer szoftver Párhuzamos operációs rendszer Konkurenciát biztosító programozási

Részletesebben

NEMZETKÖZI ADATGYŰJTÉS KIHÍVÁSAI: A BOLDOGSÁG ÉS BIZALOM KUTATÁS

NEMZETKÖZI ADATGYŰJTÉS KIHÍVÁSAI: A BOLDOGSÁG ÉS BIZALOM KUTATÁS NEMZETKÖZI ADATGYŰJTÉS KIHÍVÁSAI: A BOLDOGSÁG ÉS BIZALOM KUTATÁS Udvari Beáta Podani Krisztina Dezső Máté Első Magyar Felelősségteljes Innováció Egyesület http://www.interreg-danube.eu/approved-projects/attractive-danube

Részletesebben

IV.4. FELHŐ ALAPÚ BIZTONSÁGOS ADATTÁROLÁSI MÓDSZER ÉS TESZTKÖRNYEZET KIDOLGOZÁSA

IV.4. FELHŐ ALAPÚ BIZTONSÁGOS ADATTÁROLÁSI MÓDSZER ÉS TESZTKÖRNYEZET KIDOLGOZÁSA infokommunikációs technológiák IV.4. FELHŐ ALAPÚ BIZTONSÁGOS ADATTÁROLÁSI MÓDSZER ÉS TESZTKÖRNYEZET KIDOLGOZÁSA BEVEZETÉS Mit jelent, hogy működik a felhő alapú adattárolás? Az adatainkat interneten elérhető

Részletesebben

Bizonytalanságok melletti következtetés

Bizonytalanságok melletti következtetés Bizonytalanságok melletti következtetés Mesterséges Intelligencia I. Valószínűségi alapfogalmak (ismétlés) A, B,C események esetén a priori valószínűség: feltételes (a posteiori) valószínűség: Bayes-formula

Részletesebben

A 2013/2014 tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória

A 2013/2014 tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória Oktatási Hivatal A 201/2014 tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló javítási-értékelési útmutató INFORMATIKA II. (programozás) kategória 1. feladat: Metró (20 pont) Egy metróállomásra

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

2008 II. 19. Internetes alkalmazások forgalmának mérése és osztályozása. Február 19

2008 II. 19. Internetes alkalmazások forgalmának mérése és osztályozása. Február 19 2008 II. 19. Internetes alkalmazások forgalmának mérése és osztályozása Az óra rövid vázlata kapacitás, szabad sávszélesség ping, traceroute pathcar, pcar pathload pathrate pathchirp BART Sprobe egyéb

Részletesebben

Szalai Péter. April 17, Szalai Péter April 17, / 36

Szalai Péter. April 17, Szalai Péter April 17, / 36 Szociális hálók Szalai Péter April 17, 2015 Szalai Péter April 17, 2015 1 / 36 Miről lesz szó? 1 Megfigyelések Kis világ Power-law Klaszterezhetőség 2 Modellek Célok Erdős-Rényi Watts-Strogatz Barabási

Részletesebben

Közlekedési csomópontok új helyzete, a belváros közlekedésének átalakítása

Közlekedési csomópontok új helyzete, a belváros közlekedésének átalakítása Budapest kereskedelmi és turisztikai helyzetének revitalizációja Budapest, 2014. február 5. Közlekedési csomópontok új helyzete, a belváros közlekedésének átalakítása Kerényi László Sándor közlekedésstratégia

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. Mérai László előadása alapján Készítette: Nagy Krisztián 1. előadás Gráfok halmaza, gráf, ahol a csúcsok halmaza, az élek illesztkedés reláció: illesztkedik az élre, ha ( -él illesztkedik

Részletesebben

MINTA Írásbeli Záróvizsga Mechatronikai mérnök MSc. Debrecen,

MINTA Írásbeli Záróvizsga Mechatronikai mérnök MSc. Debrecen, MINTA Írásbeli Záróvizsga Mechatronikai mérnök MSc Debrecen, 2017. 01. 03. Név: Neptun kód: Megjegyzések: A feladatok megoldásánál használja a géprajz szabályait, valamint a szabványos áramköri elemeket.

Részletesebben

Építésikivitelezés-Vállalkozás / 2: Gráftechnikai alapfogalmak VÁLLALKOZÁS. javított háttöltés

Építésikivitelezés-Vállalkozás / 2: Gráftechnikai alapfogalmak VÁLLALKOZÁS. javított háttöltés Elõadás:Folia201.doc VÁLLALKOZÁS ( tervezés - bonyolítás - változásmenedzsment ) ideiglenes földút monolit vb.támfal javított háttöltés új földtöltés régi töltés humusz teherbíró talaj Tevékenység Sz Megnevezés

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. ősz 1. Diszkrét matematika 2.C szakirány 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.

Részletesebben

Algoritmusok és adatszerkezetek gyakorlat 07

Algoritmusok és adatszerkezetek gyakorlat 07 Algoritmusok és adatszerkezetek gyakorlat 0 Keresőfák Fák Fa: összefüggő, körmentes gráf, melyre igaz, hogy: - (Általában) egy gyökér csúcsa van, melynek 0 vagy több részfája van - Pontosan egy út vezet

Részletesebben

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra:

Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: Minimális feszítőfák Legyen G = (V,E,c), c : E R + egy súlyozott irányítatlan gráf. Terjesszük ki a súlyfüggvényt a T E élhalmazokra: C(T ) = (u,v) T c(u,v) Az F = (V,T) gráf minimális feszitőfája G-nek,

Részletesebben

Algoritmuselmélet. Mélységi keresés és alkalmazásai. Katona Gyula Y.

Algoritmuselmélet. Mélységi keresés és alkalmazásai. Katona Gyula Y. Algoritmuselmélet Mélységi keresés és alkalmazásai Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem 9. előadás Katona Gyula Y. (BME SZIT) Algoritmuselmélet

Részletesebben

Számítógép hálózatok, osztott rendszerek 2009

Számítógép hálózatok, osztott rendszerek 2009 Számítógép hálózatok, osztott rendszerek 2009 1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok 1 Az előadáshoz Előadás: Hétfő 10:00 12:00 óra Gyakorlat: Hétfő 14:00-16:00 óra Honlap: http://people.inf.elte.hu/lukovszki/courses/0910nwmsc

Részletesebben

Navigáci. stervezés. Algoritmusok és alkalmazásaik. Osváth Róbert Sorbán Sámuel

Navigáci. stervezés. Algoritmusok és alkalmazásaik. Osváth Róbert Sorbán Sámuel Navigáci ció és s mozgástervez stervezés Algoritmusok és alkalmazásaik Osváth Róbert Sorbán Sámuel Feladat Adottak: pálya (C), játékos, játékos ismerethalmaza, kezdőpont, célpont. Pálya szerkezete: akadályokkal

Részletesebben

Hálózat, kapcsolat, interakció társadalmi tőke és együttműködés

Hálózat, kapcsolat, interakció társadalmi tőke és együttműködés Hálózat, kapcsolat, interakció társadalmi tőke és együttműködés Csizmadia Zoltán, tudományos munkatárs MTA KRTK RKI NYUTO MTA, 2014. november 20. MTA RKK 30. évfordulójára Tudományterületi sajátosságok

Részletesebben

22. GRÁFOK ÁBRÁZOLÁSA

22. GRÁFOK ÁBRÁZOLÁSA 22. GRÁFOK ÁBRÁZOLÁSA A megoldandó feladatok, problémák modellezése során sokszor gráfokat alkalmazunk. A gráf fogalmát a matematikából ismertnek vehetjük. A modellezés során a gráfok több változata is

Részletesebben

Gráfelméleti feladatok. c f

Gráfelméleti feladatok. c f Gráfelméleti feladatok d e c f a b gráf, csúcsok, élek séta: a, b, c, d, e, c, a, b, f vonal: c, d, e, c, b, a út: f, b, a, e, d (walk, lanţ) (trail, lanţ simplu) (path, lanţ elementar) 1 irányított gráf,

Részletesebben

Márka vs. Társadalom. Kun Miklós COO & Head of Research

Márka vs. Társadalom. Kun Miklós COO & Head of Research Márka vs. Társadalom 2014 _ Kun Miklós COO & Head of Research Axiómák márka = (termék) + (jelentés) termék = (márka) (jelentés) Axiómák márka = (termék) + (jelentés) termék = (márka) (jelentés) egy márka

Részletesebben

Exact inference in general Bayesian networks

Exact inference in general Bayesian networks Exact inference in general Bayesian networks Peter Antal antal@mit.bme.hu Overview The Probability Propagation in Trees of Cliques (a.k.a. ~in join trees) Practical inference Exercises Literature: Valószínűségi

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2016. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

VBKTO logisztikai modell bemutatása

VBKTO logisztikai modell bemutatása VBKTO logisztikai modell bemutatása Logisztikai rendszerek információs technológiája: Szakmai nyílt nap Pannon Egyetem Műszaki Informatikai Kar 2007. június 6. Tartalom Vagyontárgy nyilvántartó központ

Részletesebben

KIR 2.0 A KIR MEGÚJÍTÁSÁNAK ELSŐ LÉPÉSEI BARCSÁNSZKY PÉTER OKTATÁSI HIVATAL. TÁMOP-3.1.5/12-2012-0001 PEDAGÓGUSKÉPZÉS Támogatása

KIR 2.0 A KIR MEGÚJÍTÁSÁNAK ELSŐ LÉPÉSEI BARCSÁNSZKY PÉTER OKTATÁSI HIVATAL. TÁMOP-3.1.5/12-2012-0001 PEDAGÓGUSKÉPZÉS Támogatása A KIR MEGÚJÍTÁSÁNAK ELSŐ LÉPÉSEI BARCSÁNSZKY PÉTER OKTATÁSI HIVATAL TÁMOP-3.1.5/12-2012-0001 PEDAGÓGUSKÉPZÉS Támogatása A köznevelés információs rendszere Jogszabályi környezet határozza meg a kapcsolódó

Részletesebben

Nem jeleníthető meg a kép. Lehet, hogy nincs elegendő memória a megnyitásához, de az sem kizárt, hogy sérült a kép. Indítsa újra a számítógépet, és

Nem jeleníthető meg a kép. Lehet, hogy nincs elegendő memória a megnyitásához, de az sem kizárt, hogy sérült a kép. Indítsa újra a számítógépet, és Nem jeleníthető meg a kép. Lehet, hogy nincs elegendő memória a megnyitásához, de az sem kizárt, hogy sérült a kép. Indítsa újra a számítógépet, és nyissa meg újból a fájlt. Ha továbbra is a piros x ikon

Részletesebben

Infokommunikáció a közlekedésben (VITMJV27)

Infokommunikáció a közlekedésben (VITMJV27) Infokommunikáció a közlekedésben (VITMJV27) Közlekedési információs rendszerek Vidács Attila Távközlési és Médiainformatikai Tsz. I.E.348, T:19-25, vidacs@tmit.bme.hu Tartalom Intelligens közlekedési rendszerek

Részletesebben

Király Zoltán, Kondé Zoltán, Kovács Antal, Lévai Annamária 2006

Király Zoltán, Kondé Zoltán, Kovács Antal, Lévai Annamária 2006 A Network-Elemzés - és felhasználása általános iskolai osztályok társas szerkezetének és a szerveződésért felelős személyes tulajdonságok feltárására Király Zoltán, Kondé Zoltán, Kovács Antal, Lévai Annamária

Részletesebben

HÁLÓZATSEMLEGESSÉG - EGYSÉGES INTERNET SZOLGÁLTATÁS-LEÍRÓ TÁBLÁZAT

HÁLÓZATSEMLEGESSÉG - EGYSÉGES INTERNET SZOLGÁLTATÁS-LEÍRÓ TÁBLÁZAT Díjcsomag neve PR-unó PR-Net 1,5 PR-Net 3 PR-Net 6 PR-Net 10 PR-Net 12 PR-Net 15 PR-Net 20 PR-Net 30 PR-Net 60 PR-Net 80 PR-Net 100 PR-Net 120 PR-Net 140 PR-Net 200 PR-Net 240 PR-Net 250 PR-Net 500 Kínált

Részletesebben

5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus.

5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus. 5/1. tétel: Optimalis feszítőfák, Prim és Kruskal algorithmusa. Legrövidebb utak graphokban, negatív súlyú élek, Dijkstra és Bellman Ford algorithmus. Optimalis feszítőfák Egy összefüggő, irányítatlan

Részletesebben

Adatszerkezetek 2. Dr. Iványi Péter

Adatszerkezetek 2. Dr. Iványi Péter Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat

Részletesebben

30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK

30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK 30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK A gráfos alkalmazások között is találkozunk olyan problémákkal, amelyeket megoldását a részekre bontott gráfon határozzuk meg, majd ezeket alkalmas módon teljes megoldássá

Részletesebben

SAJÓ-BÓDVA VÖLGYE ÉS KÖRNYÉKE Hulladékkezelési Önkormányzati Társulás

SAJÓ-BÓDVA VÖLGYE ÉS KÖRNYÉKE Hulladékkezelési Önkormányzati Társulás SAJÓ-BÓDVA VÖLGYE ÉS KÖRNYÉKE Hulladékkezelési Önkormányzati Társulás 2014-2018. ÉVEK IDŐSZAKÁRA SZÓLÓ BELSŐ ELLENŐRZÉSI STRATÉGIAI TERVÉHEZ SZÜKSÉGES KOCKÁZATELEMZÉS A költségvetési szervek belső kontrollrendszeréről

Részletesebben

A szoftverek és a vezetői kreativitás szerepe a vállalati teljesítmény mérésében és irányításában

A szoftverek és a vezetői kreativitás szerepe a vállalati teljesítmény mérésében és irányításában A VÁLLALATOK IRÁNYÍTÁSA ÉS SZERVEZÉSE A szoftverek és a vezetői kreativitás szerepe a vállalati teljesítmény mérésében és irányításában A vállalatok jövője szempontjából meghatározó jelentőségű döntéseket

Részletesebben

c adatpontok és az ismeretlen pont közötti kovariancia vektora

c adatpontok és az ismeretlen pont közötti kovariancia vektora 1. MELLÉKLET: Alkalmazott jelölések A mintaterület kiterjedése, területe c adatpontok és az ismeretlen pont közötti kovariancia vektora C(0) reziduális komponens varianciája C R (h) C R Cov{} d( u, X )

Részletesebben

Számítógép-rendszerek fontos jellemzői (Hardver és Szoftver):

Számítógép-rendszerek fontos jellemzői (Hardver és Szoftver): B Motiváció B Motiváció Számítógép-rendszerek fontos jellemzői (Hardver és Szoftver): Helyesség Felhasználóbarátság Hatékonyság Modern számítógép-rendszerek: Egyértelmű hatékonyság (például hálózati hatékonyság)

Részletesebben

Erdészeti útügyi információs rendszerek

Erdészeti útügyi információs rendszerek Erdészeti útügyi információs rendszerek PÉTERFALVI József, MARKÓ Gergely, KOSZTKA Miklós 1 Az erdészeti útügyi információs rendszerek célja a feltáróhálózatok térképi vonalai és az azokhoz kapcsolt leíró

Részletesebben

Algoritmuselmélet 7. előadás

Algoritmuselmélet 7. előadás Algoritmuselmélet 7. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Március 11. ALGORITMUSELMÉLET 7. ELŐADÁS 1 Múltkori

Részletesebben

Gráfelméleti alapfogalmak-1

Gráfelméleti alapfogalmak-1 KOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára Gráfelméleti alapfogalmak Előadó: Hajnal Péter 2015 1. Egyszerű gráfok Nagyon sok helyzetben egy alaphalmaz elemei között kitűntetett

Részletesebben

Diszkrét matematika 2. estis képzés

Diszkrét matematika 2. estis képzés Diszkrét matematika 2. estis képzés 2018. tavasz 1. Diszkrét matematika 2. estis képzés 9. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék

Részletesebben

Önsegítő társadalom 2.0. Miskolc, MAB 2012. Május 24

Önsegítő társadalom 2.0. Miskolc, MAB 2012. Május 24 Önsegítő társadalom 2.0 Miskolc, MAB 2012. Május 24 A kezdet A kezdet, mely nem múlik el, mely előttünk magasodik A nyugati individuum megszületése Az én felszabadulása és megrettenése Atreidák, Labdkiádák

Részletesebben

Hálózatok I. A tárgy célkitűzése

Hálózatok I. A tárgy célkitűzése Hálózatok I. A tárgy célkitűzése A tárgy keretében a hallgatók megismerkednek a számítógép-hálózatok felépítésének és működésének alapelveivel. Alapvető ismereteket szereznek a TCP/IP protokollcsalád megvalósítási

Részletesebben

Az elektronikus pénz és a helyi pénz kapcsolata

Az elektronikus pénz és a helyi pénz kapcsolata Helyi pénz, helyi bizalom konferencia 2010. december 3. Az elektronikus pénz és a helyi pénz kapcsolata Gáspár Bencéné dr. Vér Katalin Ph.D. A pénz Minden gazdaságban és időszakban az általános, egyenértékes

Részletesebben

VI. Magyar Földrajzi Konferencia 986-999

VI. Magyar Földrajzi Konferencia 986-999 Vida Zsófia Viktória 1 KAPCSOLATHÁLÓZAT ELEMZÉS TÁRSADALOMFÖLDRAJZI NÉZŐPONTBÓL EGYÜTTMŰKÖDÉSEK ÉS GENERÁCIÓK KÖZÖTTI KAPCSOLATOK VIZSGÁLATA BEVEZETÉS A kapcsolathálózat elemzés a hálózattudományon belül

Részletesebben

SZENZOROKRA ÉPÜLŐ ADAPTÍV RENDSZERMODELL

SZENZOROKRA ÉPÜLŐ ADAPTÍV RENDSZERMODELL infokommunikációs technológiák SZENZOROKRA ÉPÜLŐ ADAPTÍV RENDSZERMODELL Dr. Jaskó Szilárd Pannon Egyetem, MIK, Nagykanizsai kampusz Kanizsa Felsőoktatásáért Alapítvány 2015 VIRTUÁLIS STRUKTÚRA 2 VIRTUÁLIS

Részletesebben

Pénz-és kockázatkezelés

Pénz-és kockázatkezelés Pénz-és kockázatkezelés X-Trade Brokers Magyarországi Fióktelepe Soós Róbert Egy befektetési stratégia elemei 1. Meg kell határozni a belépési és zárási pozíciókat. 2. Pénz-és kockázatkezelés 3. Pszichológia

Részletesebben

A közösségi kapcsolatépítés módszerei és eszközei a rákmegelőzés hatékonyabbá tételében

A közösségi kapcsolatépítés módszerei és eszközei a rákmegelőzés hatékonyabbá tételében A közösségi kapcsolatépítés módszerei és eszközei a rákmegelőzés hatékonyabbá tételében Kovács Zsuzsanna 2014. február 26. OEFI TÁMOP 6.1.1 - Egészségfejlesztési szakmai hálózat létrehozása Népegészségügyi

Részletesebben

Autonóm jármű forgalomszimulátorba illesztése

Autonóm jármű forgalomszimulátorba illesztése Autonóm jármű forgalomszimulátorba illesztése Szalai Mátyás 2018 Konzulens: Dr. Tettamanti Tamás A szimulációs feladat Miért hasznos? Biztonságos környezetben nyújt lehetőséget az autonóm járművek forgalmi

Részletesebben

Operációkutatás vizsga

Operációkutatás vizsga Operációkutatás vizsga A csoport Budapesti Corvinus Egyetem 2007. január 9. Egyéb gyakorló és vizsgaanyagok találhatók a honlapon a Letölthető vizsgasorok, segédanyagok menüpont alatt. OPERÁCIÓKUTATÁS

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Problémamegoldás kereséssel ha sötétben tapogatózunk Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade

Részletesebben

A társadalom hálózati jelenségeinek adatvezérelt vizsgálata I: Társadalmi terjedés. Magyar Tudomány Ünnepe 2017 Számítógépes Társadalomtudomány

A társadalom hálózati jelenségeinek adatvezérelt vizsgálata I: Társadalmi terjedés. Magyar Tudomány Ünnepe 2017 Számítógépes Társadalomtudomány A társadalom hálózati jelenségeinek adatvezérelt vizsgálata I: Társadalmi terjedés Kertész János CEU, BME Magyar Tudomány Ünnepe 2017 Számítógépes Társadalomtudomány Zhongyuan Ruan (CEU) Márton Karsai

Részletesebben

A biztonság már közvetlen üzleti előnyt is jelent

A biztonság már közvetlen üzleti előnyt is jelent SAJTÓKÖZLEMÉNY AZONNAL KÖZÖLHETŐ 2014. november 4. A biztonság már közvetlen üzleti előnyt is jelent A Google friss, SSL-hez kapcsolódó változtatásaira hívja fel a figyelmet a NETLOCK Az SSL tanúsítvány

Részletesebben

Györgyi Tamás. Szoba: A 131 Tanári.

Györgyi Tamás. Szoba: A 131 Tanári. Györgyi Tamás Szoba: A 131 Tanári E-Mail: gyorgyit@petriktiszk.hu 2 Számítógépek megjelenésekor mindenki külön dolgozott. (Personal Computer) A fejlődéssel megjelent az igény a számítógépek összekapcsolására.

Részletesebben

A társadalmi kapcsolatok jellemzői

A társadalmi kapcsolatok jellemzői A társadalmi kapcsolatok jellemzői A győri lakosság kapcsolati tőkekészletének sajátosságai Dr. Csizmadia Zoltán, tanszékvezető egyetemi docens SZE PLI Szociális Tanulmányok Tanszék Zárórendezvény Győr,

Részletesebben

Szociális hálók klaszterezése

Szociális hálók klaszterezése EÖTVÖS LORÁND TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR Besenyei Andrea Matematika BSc. Matematikai elemző szakirány Szociális hálók klaszterezése Szakdolgozat Témavezető: Dr. Kósa Balázs Információs Rendszerek

Részletesebben

Gráfok, definíciók. Gráfok ábrázolása. Az adott probléma megoldásához ténylegesen mely műveletek szükségesek. Ábrázolások. Példa:

Gráfok, definíciók. Gráfok ábrázolása. Az adott probléma megoldásához ténylegesen mely műveletek szükségesek. Ábrázolások. Példa: Gráfok, definíciók Irányítatlan gráf: G = (V,E), ahol E rendezetlen (a,b),a,b V párok halmaza. Irányított gráf: G = (V,E) E rendezett (a,b) párok halmaza; E V V. Címkézett (súlyozott) gráf: G = (V,E,C)

Részletesebben

23. SZÉLESSÉGI BEJÁRÁS

23. SZÉLESSÉGI BEJÁRÁS 23. SZÉLESSÉGI BEJÁRÁS A bejárási algoritmusok feladata általában a gráf csúcsainak végiglátogatása valamilyen stratégia szerint. A bejárás gyakran azért hajtjuk végre, mert adott tulajdonságú csúcsot

Részletesebben

Számítógépes Hálózatok

Számítógépes Hálózatok Számítógépes Hálózatok 7a. Előadás: Hálózati réteg ased on slides from Zoltán Ács ELTE and. hoffnes Northeastern U., Philippa Gill from Stonyrook University, Revised Spring 06 by S. Laki Legrövidebb út

Részletesebben

Intelligens közlekedési rendszer alkalmazásokkal a közlekedésbiztonság javításáért

Intelligens közlekedési rendszer alkalmazásokkal a közlekedésbiztonság javításáért Új évtized, új kihívások a közlekedésbiztonságban közúti közlekedésbiztonsági konferencia Intelligens közlekedési rendszer alkalmazásokkal a közlekedésbiztonság javításáért Szűcs Lajos elnök ITS Hungary

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 4. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.

Részletesebben

AZ EGÉSZSÉGFEJLESZTÉSI TEVÉKENYSÉGEK HÁLÓZATOS MŰKÖDTETÉSE DR. SZŰCS ERZSÉBET NEFI EGÉSZSÉGFEJLESZTÉSI IGAZGATÓSÁG

AZ EGÉSZSÉGFEJLESZTÉSI TEVÉKENYSÉGEK HÁLÓZATOS MŰKÖDTETÉSE DR. SZŰCS ERZSÉBET NEFI EGÉSZSÉGFEJLESZTÉSI IGAZGATÓSÁG AZ EGÉSZSÉGFEJLESZTÉSI TEVÉKENYSÉGEK HÁLÓZATOS MŰKÖDTETÉSE DR. SZŰCS ERZSÉBET NEFI EGÉSZSÉGFEJLESZTÉSI IGAZGATÓSÁG Hálózatok Hálózatok mindenhol vannak. Az agy axonok által összekötött idegsejtek hálózata,

Részletesebben

Operációkutatás példatár

Operációkutatás példatár 1 Operációkutatás példatár 2 1. Lineáris programozási feladatok felírása és megoldása 1.1. Feladat Egy gazdálkodónak azt kell eldöntenie, hogy mennyi kukoricát és búzát vessen. Ha egységnyi földterületen

Részletesebben

Hálózati folyamok. Tétel: A maximális folyam értéke megegyezik a minimális vágás értékével.

Hálózati folyamok. Tétel: A maximális folyam értéke megegyezik a minimális vágás értékével. Hálózati folyamok Definíció: Legyen G = (V,E) egy irányított gráf, adott egy c: E R + {0} ún. kapacitásfüggvény, amely minden (u,v) ε E élhez hozzárendel egy nem negatív c(u,v) kapacitást. A gráfnak van

Részletesebben

Konkurencia figyelés a közösségi média támogatásával.

Konkurencia figyelés a közösségi média támogatásával. Konkurencia figyelés a közösségi média támogatásával orsolya@zoomsphere.com Közösségi megjelenés A közösségi oldalak lehetővé teszik a vállalatok számára, hogy egy olyan interaktív felületen jelenjenek

Részletesebben

Bevezete s a ha ló zatók vila ga ba

Bevezete s a ha ló zatók vila ga ba Bevezete s a ha ló zatók vila ga ba Bevezetés Kezdjük egy játékkal! Képzeletünkben kalandozzunk el és válasszunk egy tetszőleges országot a világon, annak tetszőleges települését és egy ott élő tetszőleges

Részletesebben

Kommunikációs rendszerek programozása. Routing Information Protocol (RIP)

Kommunikációs rendszerek programozása. Routing Information Protocol (RIP) Kommunikációs rendszerek programozása Routing Information Protocol (RIP) Távolságvektor alapú útválasztás Routing Information Protocol (RIP) TCP/IP előttről származik (Xerox Network Services) Tovább fejlesztve

Részletesebben

MOODLE mobileszközön

MOODLE mobileszközön SU2009 - Debrecen MOODLE mobileszközön LENGYEL Péter, lengyel@agr.unideb.hu Debrecen Egyetem, AMTC Gazdasági- és Agrárinformatika Tanszék Moodle - Modular Object-Oriented Dynamic Learning Environment nyílt

Részletesebben

A 9001:2015 a kockázatközpontú megközelítést követi

A 9001:2015 a kockázatközpontú megközelítést követi A 9001:2015 a kockázatközpontú megközelítést követi Tartalom n Kockázat vs. megelőzés n A kockázat fogalma n Hol található a kockázat az új szabványban? n Kritikus megjegyzések n Körlevél n Megvalósítás

Részletesebben