Dugattyús szivattyú általános beépítési körülményei (szívó- és nyomóoldali légüsttel) Vegyipari- és áramlástechnikai gépek. 2.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Dugattyús szivattyú általános beépítési körülményei (szívó- és nyomóoldali légüsttel) Vegyipari- és áramlástechnikai gépek. 2."

Átírás

1 gypar és áramlástchnka gépk.. lőaás Készíttt: r. ára Sánor Buapst Műszak és Gazaságtuomány Egytm Gépészmérnök Kar Hronamka nszrk Tanszék 1111, Buapst, Műgytm rkp. 3. D ép Tl: Fax:

2 Dugattyús szvattyú általános bépítés körülmény (szívó- és nyomóolal légüsttl) gypar- és áramlástchnka gépk.. lőaás

3 légüst műköés és mértzés ugattyús szvattyú szakaszos műköés lükttő folyaékmozgást létsít a szívó- és nyomóvztékbn, amly a hngr és a csővzték közé ktatott rugalmas taggal, a légüsttl mérséklhtő Mntapéla: nyomólégüst z1 hngrs 1 gyszrs műköésű ugattyús szvattyúhoz gypar- és áramlástchnka gépk.. lőaás

4 Légüst alsó- ll. flső folyaékszntkkl gypar- és áramlástchnka gépk.. lőaás

5 légüstbl folyaékflszín változása az ő függvényébn 0,08 0,06 0,04 0,0 H [m] 0,00-0,10-0,05 0,00 0,05 0,10 0,15 0,0 0,5-0,0-0,04-0,06-0,08 t [s] gypar- és áramlástchnka gépk.. lőaás

6 Folyaékszállítás az ő függvényébn q max 0,007 0,006 0,005 q, qk [m 3 /s] 0,004 0,003 B 0,00 B 0,001 0,000 0,00 0,05 0,10 0,15 t t t [s] q qk gypar- és áramlástchnka gépk.. lőaás

7 gypar- és áramlástchnka gépk.. lőaás Egyhngrs (z1) gyszrs (1) műköésű ugattyús szvattyú jllmzőnk számítása Kulsszás hajtómű stén a pllanatny folyaékszállítás: maxmáls folyaékszállítás: közps folyaékszállítás: sn( t) v q x x ω ω ω q max π π ω π ω q s n q s k max

8 J a légüstbn tárolanó folyaéktérfogat J max mn ν ν s s hol ν a lökt-térfogathánya (térfogatarány) ν J s max - a légüst folyaékkal töltésénk kzt B a légüst folyaékkal töltésénk vég max k + J mn s k mn J gypar- és áramlástchnka gépk.. lőaás

9 légüstbn lévő folyaéktérfogat változása az ő függvényébn 0,0007 0,0006 0, [m 3 ] 0,0004 0,0003 0,000 0,0001 0,0000 J - -0,10-0,05 0,00 0,05 0,10 0,15 0,0 0,5 t [s] ss k b gypar- és áramlástchnka gépk.. lőaás

10 légüst mértzésénk közlítő fltétl légüst a folyaékszállítást tökéltsn kgynlít, thát a csővztékbn a q k közps folyaékszállításnak mgfllő térfogatáram áramlk η v 1 volumtrkus hatásfok λ t 1 töltés fok légüstbn az állapotváltozás zotrmkus k qkt qk t + áll. z ntgrálás állanó mghatározásához: ha t0, akkor válasszunk k 0 térfogatot, zért az áll.0, thát k q k t gypar- és áramlástchnka gépk.. lőaás

11 ha akkor zzl t π ω π ω π qk t qk ω π ω k s s b qt v t ω sn(ωt) t 1 ω ω ω [ cos( ωt) ] + áll. cos( t) áll. + gypar- és áramlástchnka gépk.. lőaás

12 z ntgrálás állanó mghatározásához: ha t0, akkor válasszunk b 0 térfogatot, zért az állanó az alább gynltből számítható honnan Thát k b b áll. cos( ωt) + t ω + π s 4 s ω t 1 + cos( ω t ) π 0 + áll. (1 s (1 tnglymtszt t0-nál cos( ωt)) cos( ωt) gypar- és áramlástchnka gépk.. lőaás

13 gypar- és áramlástchnka gépk.. lőaás π ω ω t t s k b ) cos( 1 folyaékflszín a légüstbn π ω ω t t s H légüst légüst k b foly ) cos( 1

14 Izotrmkus állapotváltozás a légüstbn p áll. z gynlt ffrncáls mértkkl s flírható ( p ) p + p 0 p p p p a ngatív lőjl arra utal. hogy ha a nyomás nő, akkor a térfogat csökkn gypar- és áramlástchnka gépk.. lőaás

15 z gynltt végs, ks p, mnnységkr ktrjsztv írható: hol p max + p p mn k p p k ( p + p)( ) k p k pk k pk + k p p k k k p k k max + mn k a másornűn kcsny tag lhanyagolásával gypar- és áramlástchnka gépk.. lőaás

16 Bvztv a δ p nyomás gynlőtlnség fokot pmax pmn max mn J ν δ p p k k k ahol ν a lökt-térfogathánya (térfogatarány) Ezzl a közps légüst térfogat (statkus térfogat) k k Szívólégüst számításakor st st ν δ p s δ p k s Nyomólégüst számításakor δ p gypar- és áramlástchnka gépk.. lőaás

17 ν térfogatarány érték Típus z ν K ϕ Egyhngrs gyszrs műköés Egyhngrs kttős műköés Kéthngrs kttős műköés Háromhngrs gyszrs műk K a légüstb érkző lökésk száma gy próus alatt (ún. grjsztés szám). folyaéksznt gy tljs próus alatt hány tljs lngést végz. ϕ - forgattyú léklés szög gypar- és áramlástchnka gépk.. lőaás

18 légüst közps térfogatát két kövtlmény határozza mg 1. Fogaja b a tárolanó J folyaék-térfogatot az lőírt nyomásgynlőtlnség fok túllépés nélkül ν. légüstből és a csatlakozó csővztékből álló lngő rnszr sajátfrkvncája n ssn gyb a ugattyúk mozgása által grjszttt frkvncával rzonancát aó kr krtkus közps légtérfogat c k kr c ρ L K p ω L K mvl hol: c a légüsthöz csatlakozó csővzték krsztmtszt L c a csővzték hossza g ρ a folyaék sűrűség c c h ω k k h st k δ pk ρg p s gypar- és áramlástchnka gépk.. lőaás

19 st + kr st statkus légtérfogat és a kr krtkus légtérfogat összg aja a légüst térfogatot Célszrű a nyomóolal légüstöt közvtlnül a nyomószlpk fölött lhlyzn és a folyaékot ránytöréssl átvztn gypar- és áramlástchnka gépk.. lőaás

20 Kétszrs műköésű szvattyúnak két külön nyomólégüstj van. légtrkt és a folyaéktrkt kgynlítő csővzték köt össz gypar- és áramlástchnka gépk.. lőaás

21 Két légüstös lngő rnszr mollj 1 z k ' h1 k + H o + hn 1 k k + ρ g o 1 y y h h H p gypar- és áramlástchnka gépk.. lőaás

22 Szívólégüstnél: h pi ρ g 1k I H h ' sz p I a szívótér középnyomása gypar- és áramlástchnka gépk.. lőaás

23 Egyszrűsítő fltétlk a moll használatához 1. Izotrmkus állapotváltozás. Súrlóásmnts közg 3. Mrv cső 4. Össznyomhatatlan folyaék (ρ f áll.) 5. légüstből nncs láramlás lngést líró ffrncálgynlt (PTTNTYÚS): " z + α z 0 g α l r r l r rukált hossz r rukált krsztmtszt gypar- és áramlástchnka gépk.. lőaás

24 1 l r h 1k + h k r 1 1k k l + l l ha és kcs, akkor 1 rukált krsztmtszt és a rukált hossz mlléklt fnícót flhasználva l r l ha k zkkl nagy, akkor 1 h 1k r 1k gypar- és áramlástchnka gépk.. lőaás

25 α l g h 1k r r 1k g l EZONNCI ESETÉN: α Kω hol K a légüstb érkző lökésk száma K ω h 1k 1k g l 1 k g h1k l K ω légüst térfogata: l st + ν δ p s + g h1k l K ω gypar- és áramlástchnka gépk.. lőaás

26 ugattyú és a tömszlnc kalakítása Tömítőzsnóros tömítés: a tömítőzsnór fonott, vagy szövött, knőanyaggal áttatott, négyzt krsztmtsztű pamutzsnór Graftos zsnór Tflon zsnór Fémszállal rősíttt zsnór gypar- és áramlástchnka gépk.. lőaás

27 proflú karmantyús tömítés gypar- és áramlástchnka gépk.. lőaás

28 Manzsttás tömítés gypar- és áramlástchnka gépk.. lőaás

29 gypar- és áramlástchnka gépk.. lőaás

30 < 100 mm 100 mm átmérőg a > 100 mm 100 mm átmérő fltt a 3 gypar- és áramlástchnka gépk.. lőaás

31 Üzm közbn állítható lökt gypar- és áramlástchnka gépk.. lőaás

32 Kttős xcntr. Csak álló hlyztbn állítható lökt gypar- és áramlástchnka gépk.. lőaás

33 aálugattyús szvattyú (motor) gypar- és áramlástchnka gépk.. lőaás

34 aálugattyús szvattyú (motor) n max 1000/mn p max 63 MPa (630 bar) q max 300 lt/mn gypar- és áramlástchnka gépk.. lőaás

35 Térfogatáram változtatása az xcntrctás változtatásával gypar- és áramlástchnka gépk.. lőaás

36 z lmélt folyaékszállítás számítása gypar- és áramlástchnka gépk.. lőaás

37 ρ α cosα + zsgáljuk a gyök alatt részt Mvl szokásos konstrukcós aat Ezért azaz sn α cosα + 1 sn sn α 1 sn α << sn α 0.08 gypar- és áramlástchnka gépk.. lőaás 0.1 α

38 1 sn 1 sn α α thát írható ρ α + cosα 1 sn α Flhasználva az smrt trgonomtra összfüggéskt: sn α + cos α 1 cos cos α sn α α gypar- és áramlástchnka gépk.. lőaás

39 gypar- és áramlástchnka gépk.. lőaás α α cos 1 sn két gynlt összvonásával vagy kfjzv cos 1 sn α α α α α α ρ α cos 4 4 cos cos 1 1 cos + + +

40 gypar- és áramlástchnka gépk.. lőaás ugattyú útja: ( ) ( ) α α ρ α α s cos 4 4 cos α α α s cos 4 4 cos + ha lynkor s s max α α o 180 α s α

41 gypar- és áramlástchnka gépk.. lőaás ugattyú sbsség: t t t s v ω ω ω ω α α sn sn + ugattyú pllanatny folyaékszállítása: z rő pllanatny folyaékszállítás: hol k a nyomótérrl kapcsolatban álló ugattyúk száma t t v q v v v ω ω η π ω ω η π η π α α sn 4 sn k q q 1 α

42 z 1 ugattyú pllanatny folyaékszállításának össztvő 8,E-05 7,E-05 q α1 η v π/4ωsnωt 6,E-05 5,E-05 qα [m 3 /s] 4,E-05 3,E-05,E-05 1,E-05 0,E+00-1,E-05 q α η v π/4 ω/ /snωt 0 0,01 0,0 0,03 0,04 0,05 0,06 t [s] 1 qa1 qa gypar- és áramlástchnka gépk.. lőaás

43 Erő folyaékszállítás z8, k4 stén és össztvő z gynlőtlnség fok,e-04 δ q max q q max mn qα, q [m 3 /s],e-04 1,E-04 5,E-05 0,E ,01 0,0 0,03 0,04 0,05 0,06-5,E-05 t [s] q gypar- és áramlástchnka gépk.. lőaás

Mérnöki alapok 10. előadás

Mérnöki alapok 10. előadás Mérnöki alapok 10. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334.

Részletesebben

A szelepre ható érintkezési erő meghatározása

A szelepre ható érintkezési erő meghatározása A szlpr ható érintkzési rő mghatározása Az [ 1 ] műbn az alábbi fladatot találtuk. A fladat: Adott az ábra szrinti szlpmlő szrkzt. Az a xcntricitással szrlt R sugarú bütyök / körtárcsa ω 1 állandó szögsbsséggl

Részletesebben

Mérnöki alapok 11. előadás

Mérnöki alapok 11. előadás Mérnöki alapok 11. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334.

Részletesebben

Mérnöki alapok 10. előadás

Mérnöki alapok 10. előadás Mérnöki alapok 10. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334.

Részletesebben

A hajtás nyomatékigénye. Vegyipari- és áramlástechnikai gépek. 3. előadás

A hajtás nyomatékigénye. Vegyipari- és áramlástechnikai gépek. 3. előadás Vegyipari és áramlástechnikai gépek. 3. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem

Részletesebben

Áramlástechnikai gépek

Áramlástechnikai gépek Buaest Műsza és Gazasátuomány Eyetem zent István Eyetem Óbua Eyetem Tyotex Kaó TÁMOP-4..-08//KMR-009 Áramlástechna ée 7. olumetrus elven műöő ée, uattyús szvattyú nátor aramja, eáls és valós jelleörbé.

Részletesebben

0,00 0,01 0,02 0,03 0,04 0,05 0,06 Q

0,00 0,01 0,02 0,03 0,04 0,05 0,06 Q 1. Az ábrában látható kapcsolási vázlat szerinti berendezés két üzemállapotban működhet. A maximális vízszint esetében a T jelű tolózár nyitott helyzetben van, míg a minimális vízszint esetén az automatikus

Részletesebben

13. gyakorlat Visszacsatolt műveletierősítők. A0=10 6 ; ω1=5r/s, ω2 =1Mr/s R 1. Kérdések: uki/ube=?, ha a ME ideális!

13. gyakorlat Visszacsatolt műveletierősítők. A0=10 6 ; ω1=5r/s, ω2 =1Mr/s R 1. Kérdések: uki/ube=?, ha a ME ideális! . gyakorlat Visszacsatolt művltirősítők.) Példa b (s) 6 ; r/s, Mr/s kω, 9 kω, kω, ( s )( s ) Kérdésk: /b?, ha a ME ális! Mkkora lgyn érték ahhoz, hogy az /b rősítés maximális lapos lgyn ( ξ ). Mkkora a

Részletesebben

A központos furnérhámozás néhány alapösszefüggése

A központos furnérhámozás néhány alapösszefüggése A közpotos furérhámozás éháy alapösszfüggés 1. ábra: A hámozás jllmző myiségi Az 1. ábra forrása: Dr. Lugosi Armad ( szrk. ) : Faipari szrszámok és gépk kéziköyv Műszaki Köyvkiadó, Budapst, 1987, 57. oldal.

Részletesebben

3. Gyakorlat Áramlástani feladatok és megoldásuk

3. Gyakorlat Áramlástani feladatok és megoldásuk 3 Gyakorlat Áramlástani feladatok és megoldásuk 681 Feladat Adja meg Kelvin és Fahrenheit fokban a T = + 73 = 318 K o K T C, T = 9 5 + 3 = 113Fo F T C 68 Feladat Adja meg Kelvin és Celsius fokban a ( T

Részletesebben

Széchenyi István Egyetem. Alkalmazott Mechanika Tanszék

Széchenyi István Egyetem. Alkalmazott Mechanika Tanszék Széchnyi István Egytm Alkalmazott Mchanika Tanszék Végslm analízis Elmélti kérdésk gytmi mstrképzésbn (MSc) résztvv járm mérnöki, mchatronikai mérnök és logisztikai mérnök szakos hallgatók számára 0. októbr

Részletesebben

Hidrosztatikus hajtások, Szivattyúk és motorok BMEGEVGAG11

Hidrosztatikus hajtások, Szivattyúk és motorok BMEGEVGAG11 Hidrosztatikus hajtások, Szivattyúk és motorok BMEGEVGAG11 Dr. Hős Csaba, csaba.hos@hds.bme.hu 2013. november 4. Áttekintés 1 Főbb típusok 2 Dugattyús gépek 3 Forgó géptípusok Főbb típusok Dugattyús gépek

Részletesebben

Hidrosztatikus hajtások, Szivattyúk és motorok BMEGEVGAG11

Hidrosztatikus hajtások, Szivattyúk és motorok BMEGEVGAG11 Hidrosztatikus hajtások, Szivattyúk és motorok BMEGEVGAG11 Dr. Hős Csaba, csaba.hos@hds.bme.hu 2018. október 9. Áttekintés 1 Főbb típusok 2 Dugattyús gépek 3 Forgó géptípusok Főbb típusok Dugattyús gépek:

Részletesebben

Készítette: Nagy Gábor (korábbi zh feladatok alapján) Kiadja: Nagy Gábor portál

Készítette: Nagy Gábor (korábbi zh feladatok alapján) Kiadja: Nagy Gábor portál Készítette: (korábbi zh felaatok alaján) Kiaja: ortál htt://vasutas.uw.hu. Ára: Ft Elıszó nnak okán készítettem ezt az összeállítást, hogy a jövıben kevesebben bukjanak. Olyan felaatokat tartalmaz, amely

Részletesebben

Néhány pontban a függvény értéke: x -4-2 -1-0.5 0.5 1 2 4 f (x) -0.2343-0.375 0 6-6 0 0.375 0.2343

Néhány pontban a függvény értéke: x -4-2 -1-0.5 0.5 1 2 4 f (x) -0.2343-0.375 0 6-6 0 0.375 0.2343 Házi ladatok mgoldása 0. nov.. HF. Elmzz az ( ) = üggvényt (értlmzési tartomány, olytonosság, határérték az értlmzési tartomány véginél és a szakadási pontokban, zérushly, y-tnglymtszt, monotonitás, lokális

Részletesebben

Ventilátor (Ve) [ ] 4 ahol Q: a térfogatáram [ m3. Nyomásszám:

Ventilátor (Ve) [ ] 4 ahol Q: a térfogatáram [ m3. Nyomásszám: Ventilátor (Ve) 1. Definiálja a következő dimenziótlan számokat és írja fel a képletekben szereplő mennyiségeket: φ (mennyiségi szám), Ψ (nyomásszám), σ (fordulatszám tényező), δ (átmérő tényező)! Mennyiségi

Részletesebben

4. MECHANIKA STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnök tanár)

4. MECHANIKA STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnök tanár) SZÉCHENYI ISTVÁN EGYETE ALKALAZTT ECHANIKA TANSZÉK 4. ECHANIKA STATIKA GYAKRLAT (kdolgozta: Trsz Pétr, g. ts.; Tarna Gábor, mérnök tanár) Erő, nomaték, rőrndszr rdő, rőrndszrk gnértékűség 4.. Példa: z

Részletesebben

Hatvani István fizikaverseny forduló megoldások. 1. kategória

Hatvani István fizikaverseny forduló megoldások. 1. kategória . kategória.... Téli időben az állóvizekben a +4 -os vízréteg helyezkedik el a legmélyebben. I. év = 3,536 0 6 s I 3. nyolcad tonna fél kg negyed dkg = 5 55 g H 4. Az ezüst sűrűsége 0,5 g/cm 3, azaz m

Részletesebben

Áramlástan feladatgyűjtemény. 3. gyakorlat Hidrosztatika, kontinuitás

Áramlástan feladatgyűjtemény. 3. gyakorlat Hidrosztatika, kontinuitás Áramlástan feladatgyűjtemény Az energetikai mérnöki BSc és gépészmérnöki BSc képzések Áramlástan című tárgyához 3. gyakorlat Hidrosztatika, kontinuitás Összeállította: Lukács Eszter Dr. Istók Balázs Dr.

Részletesebben

1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2

1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2 1. feladat = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V U 1 R 2 R 3 R t1 R t2 U 2 R 2 a. Számítsd ki az R t1 és R t2 ellenállásokon a feszültségeket! b. Mekkora legyen az U 2

Részletesebben

53. sz. mérés. Hurokszabályozás vizsgálata

53. sz. mérés. Hurokszabályozás vizsgálata 53. sz. mérés Hurokszaályozás vizsgálata nagyszültségű alap- illtv losztóhálózat (4,, kv a hálózatok unkcióáól kövtkzőn hurkolt (töszörösn hurkolt kialakítású. sok csomóponttal, tö táplálási illtv ogyasztási

Részletesebben

SIKALAKVÁLTOZÁSI FELADAT MEGOLDÁSA VÉGESELEM-MÓDSZERREL

SIKALAKVÁLTOZÁSI FELADAT MEGOLDÁSA VÉGESELEM-MÓDSZERREL SIKALAKVÁLTOZÁSI FELADAT MEGOLDÁSA VÉGESELEM-MÓDSZERREL ADOTT: Az ábrán látható db végslmből álló tartószrkzt gomtriája, mgfogása és trhlés. A négyzt alakú síkalakváltozási végslmk mért 0 X 0 mm. p Anyagjllmzők:

Részletesebben

Széchenyi István Egyetem. Alkalmazott Mechanika Tanszék

Széchenyi István Egyetem. Alkalmazott Mechanika Tanszék Széchnyi István Egytm Alkalmazott Mchanika Tanszék Végslm analízis Elmélti kérdésk gytmi mstrképzésbn MSc) résztvv járm mérnöki, mchatronikai mérnök és logisztikai mérnök szakos hallgatók számára. Mit

Részletesebben

u u IR n n = 2 3 t 0 <t T

u u IR n n = 2 3 t 0 <t T IR n n =2 3 u() u u u u IR n n = 2 3 ξ A 0 A 0 0 0 < T F IR n F A 0 A 0 A 0 A 0 F :IR n IR n A = F A 0 A 0 A 0 0 0 A F A 0 A F (, y) =0 a = T>0 b A 0 T 1 2 A IR n A A A F A 0 A 0 ξ A 0 = F (ξ) ε>0 δ ε

Részletesebben

CSŐVEZETÉK ELLENÁLLÁSÁNAK MÉRÉSE VÍZZEL

CSŐVEZETÉK ELLENÁLLÁSÁNAK MÉRÉSE VÍZZEL Hiroinamikai Rnrk Tanék Elfogaa: Kéíttt:... kurzus Dátum:...é...hó...nap CSŐVEZETÉK ELLENÁLLÁSÁNAK MÉRÉSE VÍZZEL 1. A jlölésk jgyzék. A mérés célja f q R g pi hi hi i a cső blsőátmérőj csősúrlóási tényző

Részletesebben

Mérnöki alapok 2. előadás

Mérnöki alapok 2. előadás Mérnöki alapok. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

SZÁMÍTÁSI FELADATOK II.

SZÁMÍTÁSI FELADATOK II. SZÁMÍTÁSI FELADATOK II. A feladatokat figyelmesen olvassa el! A válaszokat a feladatban előírt módon adja meg! A számítást igénylő feladatoknál minden esetben először írja fel a megfelelő összefüggést

Részletesebben

A hőmérsékleti sugárzás

A hőmérsékleti sugárzás A hőmérséklt sugárzás (Dr. Parpás Béla lőadása alapján ljgyzték a Mskolc gytm harmadévs nformatkus hallgató) Alapjlnségk Mndnnap tapasztalat, hogy a mlgíttt tstk hősugárzást (nfravörös sugárzást) bocsátanak

Részletesebben

Az elektromágneses sugárzás kölcsönhatása az anyaggal

Az elektromágneses sugárzás kölcsönhatása az anyaggal Az lktromágnss sugárzás kölcsönhatása az anyaggal A fény kölcsönhatása az anyaggal visszavrődés A fény kölcsönhatása az anyaggal 2. törés szórás lnylődés Elnylődés 1 2 3 4 Δ Az intzitás gyngülésénk törvény

Részletesebben

5. MECHANIKA STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár)

5. MECHANIKA STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár) SZÉCHENYI ISTVÁN EGYETE ALKALAZOTT ECHANIKA TANSZÉK. ECHANIKA STATIKA GYAKORLAT (kidolgozta: Trisz Pétr, g. ts.; Tarnai Gábor, mérnöktanár) Síkbli rőrndszr rdő vktorkttős, vonal mntén mgoszló rőrndszrk..

Részletesebben

Ventilátorok. Átáramlás iránya a forgástengelyhez képest: radiális axiális félaxiális keresztáramú. Jelölése: Nyomásviszony:

Ventilátorok. Átáramlás iránya a forgástengelyhez képest: radiális axiális félaxiális keresztáramú. Jelölése: Nyomásviszony: Ventilátorok Jellemzők: Gáz munkaközeg Munkagép: Teljesítmény-bevitel árán kisebb nyomású térből (szívótér) nagyobb nyomású térbe (nyomótér) szállítanak közeget. Működési elv: Euler-elv (áramlástechnikai

Részletesebben

Mágneses momentum, mágneses szuszceptibilitás

Mágneses momentum, mágneses szuszceptibilitás Mágnss ontu, ágnss szuszcptibilitás A olkuláknak (atooknak, ionoknak) lktronszrkztüktől függőn lht pranns (állandóan glévő) ágnss ontua. Ha ágnss térb krülnk, a tér hatására indig ágnss ontu jön létr az

Részletesebben

Vegyipari géptan 2. Hidrodinamikai Rendszerek Tanszék. 1111, Budapest, Műegyetem rkp. 3. D ép. 3. em Tel: 463 16 80 Fax: 463 30 91 www.hds.bme.

Vegyipari géptan 2. Hidrodinamikai Rendszerek Tanszék. 1111, Budapest, Műegyetem rkp. 3. D ép. 3. em Tel: 463 16 80 Fax: 463 30 91 www.hds.bme. Vegyiari gétan 2. Hidrodinamikai Rendszerek Tanszék 1111, Budaest, Műegyetem rk. 3. D é. 3. em Tel: 463 16 80 Fax: 463 30 91 www.hds.bme.hu Csoortosítás 2. Működési elv alaján Centrifugálgéek (örvénygéek)

Részletesebben

KF2 Kenőanyag választás egylépcsős, hengereskerekes fogaskerékhajtóműhöz

KF2 Kenőanyag választás egylépcsős, hengereskerekes fogaskerékhajtóműhöz KF Kenőanyag választás egylépcsős, hengereskerekes fogaskerékhajtóműhöz. Adatválaszték a hajtómű kenéstechnikai számításához No P [kw] n [/s] KA m z z β [fok] d m d m olajhőmérséklet [ C] 6,4 8,5 9 93

Részletesebben

Tételjegyzék Áramlástan, MMF3A5G-N, es tanév, őszi félév, gépészmérnöki szak, nappali tagozat

Tételjegyzék Áramlástan, MMF3A5G-N, es tanév, őszi félév, gépészmérnöki szak, nappali tagozat Tételjegyzék Áramlástan, MMF3A5G-N, 006 007-es tané, őszi félé, géészmérnöki szak, naali tagozat. A folyaékok és gázok jellemzése: nyomás, sűrűség, fajtérfogat. Az ieális folyaék.. A hirosztatikai nyomás.

Részletesebben

Ha a csővezeték falán hőt nem viszünk át és nem végzünk a közegen munkát, akkor az ideális gáz h ö összentalpiája és amiatt T

Ha a csővezeték falán hőt nem viszünk át és nem végzünk a közegen munkát, akkor az ideális gáz h ö összentalpiája és amiatt T 6 Állndósult gázármlás állndó krsztmtsztű csőn Egy hosszú csőztékn ármló gáz nyomássését nm csk fli csúszttófszültség szj mg, hnm csőflon átdott hő mnnyiség is Hő flétl szmontól két ltő stt tárgylunk ktkző

Részletesebben

ELTE I.Fizikus 2004/2005 II.félév. KISÉRLETI FIZIKA Elektrodinamika 13. (IV.29 -V.3.) Interferencia II. = A1. e e. A e 2 = A e A e * = = A.

ELTE I.Fizikus 2004/2005 II.félév. KISÉRLETI FIZIKA Elektrodinamika 13. (IV.29 -V.3.) Interferencia II. = A1. e e. A e 2 = A e A e * = = A. omplx lírás: ELTE I.izius 004/005 II.félév + cos ϕ R ϕ KISÉRLETI IZIK Eltrodinamia 3. (IV.9 -V.3.) Intrfrncia II. [ ]; sin ϕ Im [ ] * i cosϕ + i sinϕ ; cosϕ isinϕ * ; cos ϕ R [ ] f cos ( ω t + ϕ) ; f cos

Részletesebben

Villamos állítószelepek Típus 3226/5857, 3226/5824, 3226/5825 Pneumatikus állítószelepek Típus 3226/2780-1, 3226/2780-2 Háromjáratú szelep Típus 3226

Villamos állítószelepek Típus 3226/5857, 3226/5824, 3226/5825 Pneumatikus állítószelepek Típus 3226/2780-1, 3226/2780-2 Háromjáratú szelep Típus 3226 Villamos állítószelepek Típus 3226/5857, 3226/5824, 3226/5825 Pneumatikus állítószelepek Típus 3226/2780-1, 3226/2780-2 Háromjáratú szelep Típus 3226 Alkalmazás A fűtés-, szellőzés- és klímatechnikában

Részletesebben

Szilárd testek rugalmas alakváltozásai Nyú y j ú tás y j Hooke törvény, Hooke törvén E E o Y un un modulus a f eszültség ffeszültség

Szilárd testek rugalmas alakváltozásai Nyú y j ú tás y j Hooke törvény, Hooke törvén E E o Y un un modulus a f eszültség ffeszültség Kontinuumok mechanikája Szabó Gábor egyetemi tanár SZTE Optikai Tanszék Szilárd testek rugalmas alakváltozásai Nyújtás l l = l E F A Hooke törvény, E Young modulus σ = F A σ a feszültség l l l = σ E Szilárd

Részletesebben

Dinamika. p = mυ = F t vagy. = t

Dinamika. p = mυ = F t vagy. = t Dinamika Mozgás, alakváltozás és ennek háttere Newton: a mozgás természetes állapot. A témakör egyik kulcsfontosságú fizikai mennyisége az impulzus (p), vagy lendület, vagy mozgásmennyiség. Klasszikus

Részletesebben

Csavarorsós emelőbak tervezési feladat Gépészmérnök, Járműmérnök, Mechatronikai mérnök, Logisztikai mérnök, Mérnöktanár (osztatlan) BSC szak

Csavarorsós emelőbak tervezési feladat Gépészmérnök, Járműmérnök, Mechatronikai mérnök, Logisztikai mérnök, Mérnöktanár (osztatlan) BSC szak Csavarorsós emelőbak tervezési feladat Gépészmérnök, Járműmérnök, Mechatronikai mérnök, Logisztikai mérnök, Mérnöktanár (osztatlan) BSC szak A feladat részletezése: Név:.. Csoport:... A számításnak (órai)

Részletesebben

Szélsőérték feladatok megoldása

Szélsőérték feladatok megoldása Szélsőérték feladatok megoldása A z = f (x,y) függvény lokális szélsőértékének meghatározása: A. Szükséges feltétel: f x (x,y) = 0 f y (x,y) = 0 egyenletrendszer megoldása, amire a továbbiakban az x =

Részletesebben

eredő ellenállása. A második esetben: A potenciálkülönbség mindhárom ellenálláson azonos, így U

eredő ellenállása. A második esetben: A potenciálkülönbség mindhárom ellenálláson azonos, így U . z,, llnállásokat az alábbi ábra alaján lsőként sorosan majd árhuzamosan kötjük. dja mg dkét stbn az rdő llnállásra onatkozó ormulát! ad ab + bc + cd + + mil az áramrősség ugyanaz dn llnállásra onatkozóan.

Részletesebben

Fűtési rendszerek hidraulikai méretezése. Baumann Mihály adjunktus Lenkovics László tanársegéd PTE MIK Gépészmérnök Tanszék

Fűtési rendszerek hidraulikai méretezése. Baumann Mihály adjunktus Lenkovics László tanársegéd PTE MIK Gépészmérnök Tanszék Fűtési rendszerek hidraulikai méretezése Baumann Mihály adjunktus Lenkovics László tanársegéd PTE MIK Gépészmérnök Tanszék Hidraulikai méretezés lépései 1. A hálózat kialakítása, alaprajzok, függőleges

Részletesebben

Meghatározás. Olyan erőzárásos hajtás, ahol a tengelyek közötti teljesítmény-, nyomaték-, szögsebesség átvitelt ékszíj és ékszíjtárcsa biztosítja.

Meghatározás. Olyan erőzárásos hajtás, ahol a tengelyek közötti teljesítmény-, nyomaték-, szögsebesség átvitelt ékszíj és ékszíjtárcsa biztosítja. Ékszíjszíjhajtás Tartalomjegyzék Meghatározás Ékhatás Előnyök, hátrányok Szíjhossz, tengely állíthatóság Ékszíjtárcsák szerkezeti kialakítása Normál ékszíjak Keskeny ékszíjak Különleges ékszíjak Keskeny

Részletesebben

FORGATTYÚS HAJTÓMŰ KISFELADAT

FORGATTYÚS HAJTÓMŰ KISFELADAT Dr. Lovas László FORGATTYÚS HAJTÓMŰ KISFELADAT Segédlet a Jármű- és hajtáselemek III. tantárgyhoz Kézirat 2013 FORGATTYÚS HAJTÓMŰ KISFELADAT 1. Adatválaszték p 2 [bar] V [cm3] s/d [-] λ [-] k f [%] k a

Részletesebben

Mérnöki alapok 4. előadás

Mérnöki alapok 4. előadás Mérnöki alapok 4. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80

Részletesebben

Cikória szárítástechnikai tulajdonságainak vizsgálata modellkísérlettel

Cikória szárítástechnikai tulajdonságainak vizsgálata modellkísérlettel Cikória szárítástchnikai tulajdonságainak vizsgálata modllkísérlttl Kacz Károly Stépán Zsolt Kovács Attila Józsf Nményi Miklós Nyugat-Magyarországi Egytm Mzőgazdaság- és Éllmiszrtudományi Kar Agrárműszaki,

Részletesebben

Káprázás -számítási eljárások BME - VIK

Káprázás -számítási eljárások BME - VIK Káprázás -számítási eljárások 2014.04.07. BME - VIK 1 Ismétlés: mi a káprázás? Hatása szerint: Rontó (disabilityglare, physiologische Blendung) Zavaró(discomfortglare, psychologischeblendung) Keletkezése

Részletesebben

Fizika és 6. Előadás

Fizika és 6. Előadás Fzka 5. és 6. Előadás Gejesztett, csllapított oszclláto: dőméés F s λv k F F s m F( t) Fo cos( ωt) v F (t) Mozgásegyenlet: F f o o m ma kx λ v + Fo cos( ωt) Megoldás: x( t) Acos ( ) ( ) β ωt ϕ + ae t sn

Részletesebben

Budapest Főváros VIII. kerület Józsefvárosi Önkormányzat Képviselő-testületének 46/2009.(XII.21.) sz. önkormányzati rendelete

Budapest Főváros VIII. kerület Józsefvárosi Önkormányzat Képviselő-testületének 46/2009.(XII.21.) sz. önkormányzati rendelete A khrdtés módja: kfüggsztés A khrdtés napja: 2009. dcmbr 21. dr. Xantus Judt jgyző Budapst Főváros VIII. krült Józsfváros Önkormányzat Képvslő-tstülténk 46/2009.(XII.21.) sz. önkormányzat rndlt a Budapst

Részletesebben

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések 1. Melyek a rezgőmozgást jellemző fizikai mennyiségek?. Egy rezgés során mely helyzetekben maximális a sebesség, és mikor a gyorsulás? 3. Milyen

Részletesebben

Elektromos VÍZMENTESÍTŐ merülőszivattyúk

Elektromos VÍZMENTESÍTŐ merülőszivattyúk TOP Elktromos VÍZMENTESÍTŐ mrülőszivttyúk Tiszt vízz Háztrtási sznált TELJESÍTMÉNYTARTOMÁNY Szállítási tljsítmény 360 l/prc-ig (21.6 m3/ór) Emlési mgsság 15.5 m-ig HASZNÁLATI KORLÁTOK Mrülési mélység víz

Részletesebben

ÉLELMISZER-IPARI ALAPISMERETEK

ÉLELMISZER-IPARI ALAPISMERETEK Élelmiszer-ipari alapismeretek épszint 08 ÉRETTSÉGI VIZSGA 008. októr 0. ÉLELMISZER-IPARI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:

Részletesebben

Dr. Vad János: Ipari légtechnika BMEGEÁTMOD3 1

Dr. Vad János: Ipari légtechnika BMEGEÁTMOD3 1 Dr. Vad János: Ipari légtechnika BMEGEÁTMOD3. BEVEZETÉS.. Osztályozás, a tématerület korlátozása Munkaközeg: Gáz (Cseppfolyós közeg) (Többfázisú közeg) Teljesítmény bevitel / kivitel: Munkagépek. Teljesítmény-bevitel

Részletesebben

E-mail: info@silliker.hu web: www.silliker.hu Telefon: +36-30-479-1802

E-mail: info@silliker.hu web: www.silliker.hu Telefon: +36-30-479-1802 Pom T-206/3 szállítócsiga Műszaki adatok : T-206/3 4-9 t/h Alapgép hossza (m) 4 Maximális hossz (m) 6 1,7* 4,3** 60⁰ Belső átmérő (mm) 100 1,5 1420 Gép tömege (kb) 80 Kiegészítő tartozékok: fogadógarat

Részletesebben

Sugárzásos hőátadás. Teljes hősugárzás = elnyelt hő + visszavert hő + a testen áthaladó hő Q Q Q Q A + R + D = 1

Sugárzásos hőátadás. Teljes hősugárzás = elnyelt hő + visszavert hő + a testen áthaladó hő Q Q Q Q A + R + D = 1 Suárzásos hőátadás misszióképessé:, W/m. eljes hősuárzás elnyelt hő visszavert hő a testen áthaladó hő R D R D R D a test elnyelő képessée (aszorció), R a test a visszaverő-képessée (reflexió), D a test

Részletesebben

Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához

Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához Izsák Ferenc 2007. szeptember 17. Explicit hibabecslés Maxwell-egyenletek numerikus megoldásához 1 Vázlat Bevezetés: a vizsgált egyenlet,

Részletesebben

Nyomástartóedény-gépész Kőolaj- és vegyipari géprendszer üzemeltetője

Nyomástartóedény-gépész Kőolaj- és vegyipari géprendszer üzemeltetője É 063-06/1/13 A 10/007 (II. 7.) SzMM rendelettel módosított 1/006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján.

Részletesebben

1. Feladat. Megoldás. Számítsd ki az ellenállás-hálózat eredő ellenállását az A B az A C és a B C pontok között! Mindegyik ellenállás értéke 100 Ω.

1. Feladat. Megoldás. Számítsd ki az ellenállás-hálózat eredő ellenállását az A B az A C és a B C pontok között! Mindegyik ellenállás értéke 100 Ω. 1. Feladat Számítsd ki az ellenállás-hálózat eredő ellenállását az A B az A C és a B C pontok között! Mindegyik ellenállás értéke 100 Ω. A 1 2 B 3 4 5 6 7 A B pontok között C 13 = 1 + 3 = 2 = 200 Ω 76

Részletesebben

TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI Előadás jegyzet Dr. Goda Tibor. 3. Lineáris háromszög elem

TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI Előadás jegyzet Dr. Goda Tibor. 3. Lineáris háromszög elem TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI Előadás jgyzt Dr. Goda Tibor 3. Lináris háromszög lm - A végslms mgoldás olyan approximációs függvénykn alapul, amlyk az gys lmk vislkdését írják l (lmozdulás függvény

Részletesebben

Diszkrét Matematika. zöld könyv ): XIII. fejezet: 1583, 1587, 1588, 1590, Matematikai feladatgyűjtemény II. (

Diszkrét Matematika. zöld könyv ): XIII. fejezet: 1583, 1587, 1588, 1590, Matematikai feladatgyűjtemény II. ( FELADATOK A LEKÉPEZÉSEK, PERMUTÁCIÓK TÉMAKÖRHÖZ Diszkrét Matematika 4. LEKÉPEZÉSEK Értelmezési tartomány és értékkészlet meghatározása : Összefoglaló feladatgyűjtemény matematikából ( zöld könyv ): XIII.

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elektronikai alapismeretek középszint ÉETTSÉGI VIZSGA. május. ELEKTONIKAI ALAPISMEETEK KÖZÉPSZINTŰ ÍÁSBELI ÉETTSÉGI VIZSGA JAVÍTÁSI-ÉTÉKELÉSI ÚTMTATÓ NEMZETI EŐOÁS MINISZTÉIM Egyszerű, rövid feladatok

Részletesebben

Fizikai geodézia és gravimetria / 12. VONATKOZTATÁSI RENDSZER PARAMÉTEREINEK MEGHATÁROZÁSA g MÉRÉSEK ALAPJÁN.

Fizikai geodézia és gravimetria / 12. VONATKOZTATÁSI RENDSZER PARAMÉTEREINEK MEGHATÁROZÁSA g MÉRÉSEK ALAPJÁN. MSc Fzka godéza és gravmtra / 1. BMEEOAFML01 VONATKOZTATÁSI RENDSZER PARAMÉTEREINEK MEGHATÁROZÁSA g MÉRÉSEK ALAPJÁN. Godéza vonatkoztatás rndszrnk (Godtc Rfrnc Systm = GRS) a godéza földmodllt matmatkalag

Részletesebben

Szent István Egyetem Fizika és folyamatirányítási Tanszék FIZIKA. rezgések egydimenziós hullám hangok fizikája. Dr. Seres István

Szent István Egyetem Fizika és folyamatirányítási Tanszék FIZIKA. rezgések egydimenziós hullám hangok fizikája. Dr. Seres István Szent István Egyetem Fizika és folyamatirányítási Tanszék rezgések egydimenziós hullám hangok fizikája Dr. Seres István Harmonikus rezgőmozgás ( sin(ct) ) ( c cos(ct) ) c sin(ct) ( cos(ct) ) ( c sin(ct)

Részletesebben

Öszvér oszlopok kialakítása, THÁ, nyírt kapcsolatok, erőbevezetés környezete. 2. mintapélda - oszlop méretezése.

Öszvér oszlopok kialakítása, THÁ, nyírt kapcsolatok, erőbevezetés környezete. 2. mintapélda - oszlop méretezése. Öszvérszerkezetek 4. előadás Öszvér oszlopok kialakítása, THÁ, nyírt kapcsolatok, erőbevezetés környezete. 2. mintapélda - oszlop méretezése. készítette: 2012.10.27. Tartalom Öszvér oszlopok szerkezeti

Részletesebben

Keresztmetszet másodrendű nyomatékainak meghatározása

Keresztmetszet másodrendű nyomatékainak meghatározása BUDAPEST MŰSZAK ÉS GAZDASÁGTUDOMÁNY EGYETEM Keresztmetszet másodrendű nyomatékainak meghatározása Segédlet a Szilárdságtan c tárgy házi feladatához Készítette: Lehotzky Dávid Budapest, 205 február 28 ábra

Részletesebben

Molekuláris és áramlásos diffúzió

Molekuláris és áramlásos diffúzió Molkuláris és áramlásos diffúió H 2 O hossabb idő.. uso 4.. uso 4 H 2 O rvidbb idő Állandósult állaotú (staionr) molkuláris diffúió ik I. trvény: d kmol 2 m s a komonns diffúiósbsség d a komonns diffúióállandója

Részletesebben

1.5. VENTILÁTOR MÉRÉS

1.5. VENTILÁTOR MÉRÉS 1.5. VENTILÁTOR MÉRÉS 1.5.1 A mérés célja A mérés célja egy ventilátorból és a vele összeépített háromfázisú aszinkron motorból álló gépcsoport üzemi jelleggörbéinek felvétele. Ez a következő függvénykapcsolatok

Részletesebben

Pneumatikus szabályozócsappantyú Típus 3335/3278 Pneumatikus szabályozócsappantyú Típus Bélelt szabályozócsappantyú Típus 3335

Pneumatikus szabályozócsappantyú Típus 3335/3278 Pneumatikus szabályozócsappantyú Típus Bélelt szabályozócsappantyú Típus 3335 Pneumatikus szabályozócsappantyú Típus 3335/3278 Pneumatikus szabályozócsappantyú Típus 3335-1 Bélelt szabályozócsappantyú Típus 3335 Alkalmazás Bélelt szabályozócsappantyúk technológiai alkalmazásra és

Részletesebben

A kötéstávolság éppen R, tehát:

A kötéstávolság éppen R, tehát: Forgás és rzgés spktroszkópa:. Határozzuk mg a kövtkző részcskék rdukált tömgét: H H, H 35 Cl, H 37 Cl, H 35 Cl, H 7 I Egy m és m tömgű atomból álló kétatomos molkula rdukált tömg () dfnícó szrnt: mm vagy

Részletesebben

Hatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3

Hatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3 Hatvani István fizikaverseny 016-17. 1. kategória 1..1.a) Két eltérő méretű golyó - azonos magasságból - ugyanakkora végsebességgel ér a talajra. Mert a földfelszín közelében minden szabadon eső test ugyanúgy

Részletesebben

A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I. KATEGÓRIA. Javítási-értékelési útmutató

A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I. KATEGÓRIA. Javítási-értékelési útmutató Oktatási Hivatal A 06/07 tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I KATEGÓRIA Javítási-értékelési útmutató feladat Három azonos méretű, pontszerűnek tekinthető, m, m, m tömegű

Részletesebben

NE HABOZZ! KÍSÉRLETEZZ!

NE HABOZZ! KÍSÉRLETEZZ! NE HABOZZ! KÍSÉRLETEZZ! FOLYADÉKOK FELSZÍNI TULAJDONSÁGAINAK VIZSGÁLATA KICSIKNEK ÉS NAGYOKNAK Országos Fizikatanári Ankét és Eszközbemutató Gödöllő 2017. Ötletbörze Kicsiknek 1. feladat: Rakj három 10

Részletesebben

Az inga mozgásának matematikai modellezése

Az inga mozgásának matematikai modellezése Az inga mozgásának matematikai modellezése Csizmadia László Bolyai Intézet, Szegedi Tudományegyetem Természet és Matematika Szeged, SZTE L. Csizmadia (Szeged) Őszi Kulturális Fesztivál, 2011. 2011.10.08.

Részletesebben

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok Figyelem! A feladatok megoldása legyen áttekinthet és részletes, de férjen el az arra szánt helyen! Ha valamelyik HÁZI FELADATOK. félév. konferencia Komple számok Értékelés:. egység: önálló feladatmegoldás

Részletesebben

Mérnöki alapok 2. előadás

Mérnöki alapok 2. előadás Mérnöki alapok. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

REZGÉSTAN GYAKORLAT Kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus

REZGÉSTAN GYAKORLAT Kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK EZGÉSTAN GYAKOLAT Kidolozta: Dr. Na Zoltán eetemi adjunktus 5. feladat: Szabad csillapított rezőrendszer A c k ϕ c m k () q= q t m rúd c k Adott:

Részletesebben

Szervomotor sebességszabályozása

Szervomotor sebességszabályozása Srvootor sbsségsabályoása. A gyaorlat célja Egynáraú srvootor sbsségsabályoásána trvés. A otorsabályoás prograváána flépítés. A sbsség rányítás algorts gvalósítása valós dőbn. 2. Elélt bvtő A otor sbsségsabályoásána

Részletesebben

1.feladat. Megoldás: r r az O és P pontok közötti helyvektor, r pedig a helyvektor hosszának harmadik hatványa. 0,03 0,04.

1.feladat. Megoldás: r r az O és P pontok közötti helyvektor, r pedig a helyvektor hosszának harmadik hatványa. 0,03 0,04. .feladat A derékszögű koordinátarendszer origójába elhelyezünk egy q töltést. Mekkora ennek a töltésnek a 4,32 0 nagysága, ha a töltés a koordinátarendszer P(0,03;0,04)[m] pontjában E(r ) = 5,76 0 nagyságú

Részletesebben

r tr r r t s t s② t t ① t r ② tr s r

r tr r r t s t s② t t ① t r ② tr s r r tr r r t s t s② t t ① t r ② tr s r r ás③ r s r r r á s r ② s ss rt t s s tt r t r t r P s ② Pá③ á ② Pét r t rs t② t② r t ② s s ás t r s ② st s t t r t t r s t s t t t t s s s str t r r t r t ① r t r

Részletesebben

4. Differenciálszámítás

4. Differenciálszámítás . Diffrnciálszámítás.. Írja fl a diffrnciahányadost a mgadott pontban és határozza mg a határértékét!... f...... f..7. f, f,,..9. f... f... f... f...... f..7...9. f...... f... f... f...,..6. f,,,, f,..8.

Részletesebben

Számítási dokumentáció. Megnevezés: Félév: 2008/2009 I. félév. Lapok száma: 10. Tervezési feladat I. Autóemelő. Név: Katona Géza. Neptun kód: L0I8ZH

Számítási dokumentáció. Megnevezés: Félév: 2008/2009 I. félév. Lapok száma: 10. Tervezési feladat I. Autóemelő. Név: Katona Géza. Neptun kód: L0I8ZH Megnevezés: Tervezési feladat I. Autóemelő Számítási dokumentáció Félév: 008/009 I. félév Név: Katona Géza Lapok száma: 10 Neptun kód: L0I8ZH Bevezető Ezen autóemelő szerkezettel Renault típusú személygépkocsit

Részletesebben

TÉRFOGATÁRAM MÉRÉSE. Mérési feladatok

TÉRFOGATÁRAM MÉRÉSE. Mérési feladatok Készítette:....kurzus Dátum:...év...hó...nap TÉRFOGATÁRAM MÉRÉSE Mérési feladatok 1. Csővezetékben áramló levegő térfogatáramának mérése mérőperemmel 2. Csővezetékben áramló levegő térfogatáramának mérése

Részletesebben

Rácsrezgések.

Rácsrezgések. ácsrzgésk http://physics-imtis.cm/physics/glish/ph_txt.htm ácsrzgésk gitális hllám rúb Nwt II F x x F x V t F F x A x V x x x x x x A hllámszám értlmzési trtmáy végs mért prióiks htárfltétl Br-Kármá t

Részletesebben

Harmadik fél által történő vezetékszakítás során kiáramló gázmennyiségek meghatározása Bemenő adatok A hálózat kialakítása:

Harmadik fél által történő vezetékszakítás során kiáramló gázmennyiségek meghatározása Bemenő adatok A hálózat kialakítása: TIGÁZ-SO ft. FÖGÁZEOSZTÁSI ÜZETSZBÁYZT Gázvsztségszámítás vztékszakítás stén Harmadik fél által történő vztékszakítás során kiáramló gázmnnyiségk mghatározása Bmnő adatok hálózat kialakítása: Számított

Részletesebben

M3 ZÁRT CSATORNÁBAN ELHELYEZETT HENGERRE HATÓ ERŐ MÉRÉSE

M3 ZÁRT CSATORNÁBAN ELHELYEZETT HENGERRE HATÓ ERŐ MÉRÉSE M3 ZÁRT CSATORNÁBAN ELHELYEZETT HENGERRE HATÓ ERŐ MÉRÉSE. A mérés élja A mérés fladat égyzt krsztmtsztű satorába bépíttt, az áramlás ráyára mrőlgs szmmtratglyű, külöböző átmérőjű hgrkr ható ( x, y ) rő

Részletesebben

1. Feladatok a termodinamika tárgyköréből

1. Feladatok a termodinamika tárgyköréből . Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással.. Feladat: (HN 9A-5) Egy épület téglafalának mérete: 4 m 0 m és, a fal 5 cm vastag. A hővezetési együtthatója λ = 0,8 W/m K. Mennyi

Részletesebben

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS!

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! 1. példa Vasúti kocsinak a 6. ábrán látható ütközőjébe épített tekercsrugóban 44,5 kn előfeszítő erő ébred. A rugó állandója 0,18

Részletesebben

Integrált Intetnzív Matematika Érettségi

Integrált Intetnzív Matematika Érettségi tgrált ttzív Matmatika Érttségi. Adott az f : \ -, f függvéy. a) Számítsd ki az f függvéy driváltját! b) Határozd mg az f függvéy mootoitási itrvallumait! c) gazold, hogy f ( ) bármly sté!. Adott az f

Részletesebben

I. Az élő anyag legfontosabb szerkezeti tulajdonságai és szerepük a biológiai funkciókban

I. Az élő anyag legfontosabb szerkezeti tulajdonságai és szerepük a biológiai funkciókban I. z éő yg egotos szekezet tujoság és szeepük oóg ukók h j I. ε ε k e k I.5 h h λ I. p υ ε υ k ozgás I. M [ Z p Z ] M, Z pv k I.5 I.9 II. Sugázások és kösöhtásuk z éő ygg P M II. e P ~, ~ II. továk II.5

Részletesebben

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:

Részletesebben

Mágneses anyagok elektronmikroszkópos vizsgálata

Mágneses anyagok elektronmikroszkópos vizsgálata Mágnss anyagok lktronmikroszkópos vizsgálata 1. Transzmissziós lktronmikroszkóp 1.1. A mágnss kontraszt rdt a TEM-bn Az lktronmikroszkópban 100-200 kv-os (stlg 1 MV-os) gyorsítófszültséggl gyorsított lktronok

Részletesebben

Ajánlott szakmai jellegű feladatok

Ajánlott szakmai jellegű feladatok Ajánlott szakmai jellegű feladatok A feladatok szakmai jellegűek, alkalmazásuk mindenképpen a tanulók motiválását szolgálja. Segít abban, hogy a tanulók a tanultak alkalmazhatóságát meglássák. Értsék meg,

Részletesebben

Mérnöki alapok 8. előadás

Mérnöki alapok 8. előadás Mérnöki alapok 8. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben