12.1. A h!sugárzás alapjai

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "12.1. A h!sugárzás alapjai"

Átírás

1 13

2 "2. H!SUGÁRZÁS A h!sugárzás lpj BVZTÉS ÉS ALAPFOGALMAK Mndgyk tst bocsát k lktromágnss sugárzást. Alcsony h!mérsékltkn (kb. szobh!mérsékltg) z így kbocsátott nrg gykorltlg lhnygolhtó, míg mgs h!mérsékltk trtományábn jlnt!ssé válk. Az nrgánk lktromágnss hullámok formájábn vló térbl trjdésénk és más nrgformává átlkulásánk pontos mnnység lírásához szükségs mtmtk pprátus bonyolultság mtt, gyszr"sít! líró modllt hsználunk m"szk gykorlt h!árm számításhoz szükségs összfüggésk mghtározásár táblázt Az lktromágnss sugárzás trtományok nm 1-2 2nm 2 4nm gmmsugárzás röntgnsugárzás ultrbolysugárzás.4.8µm.8 4µm 4µm... láthtó fény nfrvörös-sugárzás gyéb sugárzás (pl. rádóhullámok) Az lktromágnss sugárzás szokásos hullámhossz-trtomány szrnt flosztását táblázt trtlmzz. A h!közlésbn h!sugrk =.5-1µm között trtomány, ngy nrg trtlom mtt jlnt!s. Az lktromágnss sugárzás gy dott nrgármot (W, kw) jlnt, mt φ - vl jlölünk továbbkbn. A környztévl sugárzásos h!kpcsoltbn lév! tst h!ármát kbocsátott (mttált) és z lnylt (bszorbált) nrgárm különbségként írhtjuk fl:!q = Φ Φ [W, kw]. (12.1) (12.1) kfjz, hogy szmbn h!vztés és h!szállítás stévl h!sugárzáskor z nrg forglom gynsúlybn s kétrányú. A sugárzás flült nrgs"r"ség flültgységnként sugárzás: = dφ [W/m 2, kw/m 2 ]. (12.2) df A flült nrgs"r"ség gységny hullámhosszúságr s! hányd sugárzás ntnztás: d d = = d dfd 2 Φ [W/m3 ]. (12.3) A tljs (= ) hullámhossz trtományr (spktrumr) vontkozó sugárzás gy F flült stébn: 131

3 Φ = d df F. (12.4) Az ntnztás tst flült lmér!l z un. tljs féltérb ksugárzott nrg. A tljs féltér térszög ω= 2π [sr]. (A strdán [sr] térszög mértékgység, zt fjz k, hogy z dott nyílásszög" kúp mkkor flültt mtsz k z gységny sugrú gömb flszínéb!l. Mvl gömb flszín 4πr 2, z gység sugrú félgömb flszín 2π.) n d ϕ ω dω df dfcosϕ ábr Az és összfüggéshz snϕ dω=snϕdϕdψ dϕ ϕ R =1 dψ Ψ ábr A dω térszög mghtározásához gy dott rányb ksugárzott nrg, z gységny térszögr vontkozttott ntnztás: d cosϕ dω, ω =, (12.5) és zzl tljs féltérb ksugárzott nrgát így írhtjuk fl: = cosϕdω 2π. (12.6) hol dω=sn(ϕ)dϕdψ ( szögk értlmzését ábrán kövthtjük). Az féltérb ksugárzott nrgát z l!bbk lpján thát így írhtjuk: 2 π π / 2 = snϕ cos ψdϕdψ. (12.7) 132

4 φ φ r φ gyütt tst látszólgos sugárzás φ φ s φ d φ -környztbõl érkzõ φ -kbocsátott φ -z lnylt φ d -z átrszttt φ r -vsszvrt φ s -szóródás mtt rányt változttott ábr gy tst sugárzássl szmbn mkroszkopkus vslkdés gy tst lktromágnss sugárzássl szmbn mkroszkopkus vslkdését jllmz, hogy nnk hányd részét nyl l (bszorpcó), hányd részét vr vssz (rflxó) és végül hányd részét ngd át (dtrm). Az mlíttt tuljdonságok áltl mghtározott sugárzás hánydok jlntését (jlölésükkl gyütt) szmléltt ábr. A tst sugárzás jllmz!t z l!bbk lpján dfnálhtjuk z dott hullámhosszr és dott rányr vontkozttv ( ), tljs féltérb!l érkz! sugárzásr vontkozttv ( ) és flült nrg s"r"ségr vontkozttv gyránt (). Az bszorpcós tényz!k (lnyl! képsség): =, =, =, (12.8) A rflxós tényz!k (vsszvr! képsség): r r =, r =, r A dtrmctások (átrszt! képsség): d d =, d =, d r d r =, (12.9) d =, (12.1) A (12.8),(12.9),és (12.1) összfüggéskkl dfnált tényz!k, dfnícóbn flhsznált mnnységk között összfüggésk lpján, gymás között átszámíthtók. A sugárzást dffúznk nvzzük, h z r!sség rány függtln, így z (12.7) gynlt lpján írhtjuk: = snϕ cos ψdϕdψ = π. (12.11) 2 π π / 2 Dffúz sugárzás stébn thát féltér tljs sugárzás π-szrs ttsz!lgs rányú (gységny térszögr vontkozó) sugárzásnk. gy tstr vontkozó sugárzás jllmz!k között fnnáll, hogy +r+d=1 133

5 Átlátsztln tstk stén d=, így =1-r. (A h!sugárzásr vontkozón lgtöbb szlárd tst gykorltlg átlátsztln.) Azt tstt, mlynk sugárzás jllmz!r fnnáll, hogy = ==1 bszolút fkt tstnk nvzzük, és rá vontkozó mnnységkt "" ndx fltünttésévl jlöljük továbbkbn ábr Flszín közl ürg, mnt "fkt" tst Az =1, zz z bszolút fkt tst stébn mnd vsszvrt, mnd z átrszttt hányd sugárzásnk null. gy közlít! fzk mgvlósítását z lyn vslkdés" "tstnk" ábr muttj. Az átlátsztln flú ürgb!l résn bjutó sugárzásnk lhnygolhtó hányd távozht csk és soroztos vsszvr!dés és részlgs lnyl!dés htásár nrgáj tljs gészébn lnyl!dk, így ks nyílású ürg gykorltlg "fkt" tst A H#SUGÁRZÁS ALAPTÖRVÉNY A fkt tst gységny térszögr vontkozó, ttsz!lgs ránybn kbocsátott sugárzás ntnztásánk (, ) mghtározásár vontkozó összfüggést PLANCK 191-bn állított fl, hol 2, 5 ( ) " 2hc = hc Tk [W/m3 sr], (12.12) c z lktromágnss sugárzás trjdés sbsség = m/s, h= Js, PLANCK állndó, k= J/K, BOLTZMANN állndó, T z bszolút h!mérséklt K-bn, sugárzás hullámhossz m-bn. PLANCK fkt tst h!mérsékltt!l függ! sugárzás görbé lpján, l!ször mprkus úton jutott l mgfll! összfüggéshz. Kés!bb, z tomokt olyn ω frkvncán rzg! hrmonkus oszcllátoroknk kzlv, mlyk gyszrr csk hω, (zz végs mnnység") nrgát vhtnk fl, sugárzásr vontkozó összfüggésénk lvztését s mgdt, és zt tknthtjük z ls!, hlysn lvzttt kvntummchnk összfüggésnk. A PLANCK törvény szrnt fkt tst dffúz sugárzó, és kbocsátott nrg ngymértékbn függ tst bszolút h!mérsékltét!l. A tljs féltérb kbocsátott sugárzás r!sségt (ntnztást) h!mérséklt és hullámhossz függvényébn ábr muttj. " 134

6 A görbék mxmum hlynk (z hullámhossz, hol z dott h!mérséklt" fkt tst mxmáls ntnztású sugárzást produkálj) h!mérsékltt!l vló függését, WN fél ltolódás törvény írj l, mx T =2.9 mmk, zz mnél mgsbb h!mérséklt" tst, mxmáls nrgájú sugárzás z gyr rövdbb hullámhosszúság flé tolódk l., 1-9 [W /m 3 ] m T=2.9 [m m K] 18K 16K 15K 14K 13K 12K 1K 8K hulámhossz [µm] ábr A fkt tst spktrum A (12.12) ntgrálásávl ( ábr görbé ltt trültk mghtározásávl), gy dott h!mérséklt" fkt tstnk tljs spktrumr (= ) vontkozttott flült, nrg s"r"ségét htározzuk mg: = d T 4 π =, σ. (12.13) Az (12.13) összfüggés STFAN-BOLTZMANN törvény, σ = W/(m 2 K 4 ) pdg STFAN-BOLTZMANN állndó. Vlmnny tst h!sugárzását z bszolút fkt tstéhz vszonyítjuk, így: ε =. (12.14), Az (12.14) összfüggéssl dfnált tényz!t (rltív) msszóképsségnk vgy fktség foknk nvzzük. A msszós tényz! dffúz sugárzók stébn rány függtln: ε = ε =. (12.15), 135

7 Azokt tstkt mlyk msszós tényz!j nm függtln -tól, színs tstnk nvzzük. Amnnybn msszós tényz! hullámhossztól s függtln, h!sugárzás szmpontjából szürk tstr!l vn szó és kkor: 136 ε = ε = ε =. (12.16) A szürk tstk thát olyn dffúz sugárzók, mlyk mndn hullámhosszúságon fkt tst nrgájánk állndó hánydát sugározzák k, így szürk tstk áltl ksugárzott nrg STFAN-BOLTZMANN törvény lpján: 4 = ε σ T. (12.17) A továbbkbn csk szürk tstkkl fogllkozunk. Az msszós és bszorpcós képsség között kpcsoltot KRCHHOFF törvény írj l, mly szrnt tstknk z dott rányú és hullámhosszúságú sugárzásr vontkozó lnylés (bszorpcós) és kbocsátás (msszós) képsség zonos érték. bb!l törvényszr"ségb!l kövtkzk, hogy fkt tstr ε = = 1, m zt jlnt, hogy fkt tst nm csk mxmáls lnyl! képsség" tst, hnm mxmáls nrg kbocsátó s. Mvl z utóbbhoz vszonyítjuk több tst sugárzását, z msszós tényz!r fnnáll, hogy ε < Két szlárd tst között sugárzásos h!árm számítás A szlárd tstk ngy részét h!sugárzás trtományábn flült sugárzónk tknthtjük, míg gázok és folydékok térfogt sugárzók és áltlábn spktrumuk sm folytonos. z utóbb közgk sugárzásávl nm fogllkozunk. A h!sugárzás szmpontjából környzt lvg!t átlátszónk tkntjük és sugárzás trjdését gomtr optk törvényvl írhtjuk l. Bvztv z un. ffktív (látszólgos) sugárzás sgédfoglmt: z 1 tstt!l 2 tst flé rányuló összs sugárzott árms"r"ségt jlnt, zz sját ( ) és vsszvrt sugárzás összgét. Nm átlátszó tstknél r=1-, így: bb!l z 1ff és 2ff kfjzv: " ff " " 2ff = + (" ), 2ff 2 2 " ff = + (" ). " ff 2ff = = " " 2 + (" ) + " 2 " " + (" ) + " 2 " 2,. (12.18) (12.19) A szürk tstk stébn KRCHHOFF törvény szrnt z átlgos msszós tényz! s gynl! z átlgos bszorpcós tényz!vl, 1=ε1 és 2=ε2 vlmnt STFAN-BOLTZMANN törvény lpján tljs hullámhossz trtománybn ksugárzott nrg: " = ε" σ T" 4 vlm nt 2 = ε 2σ T2 4.

A hőmérsékleti sugárzás

A hőmérsékleti sugárzás A hőmérséklt sugárzás (Dr. Parpás Béla lőadása alapján ljgyzték a Mskolc gytm harmadévs nformatkus hallgató) Alapjlnségk Mndnnap tapasztalat, hogy a mlgíttt tstk hősugárzást (nfravörös sugárzást) bocsátanak

Részletesebben

FIZIKAI KÉMIA III FÉNY. szerda 10:00-11:30 Általános és Fizikai Kémiai Tanszék, szemináriumi terem. fehér fénynyaláb

FIZIKAI KÉMIA III FÉNY. szerda 10:00-11:30 Általános és Fizikai Kémiai Tanszék, szemináriumi terem. fehér fénynyaláb FIZIKAI KÉMIA III szrda 10:00-11:30 Általános és Fizikai Kémiai Tanszék, szmináriumi trm FÉNY fhér fénynyaláb FÉNY fhér fénynyaláb prizma színs fénynyalábok fény = hullám (mint a víz flszínén látható hullámok)

Részletesebben

Név:... osztály:... Matematika záróvizsga 2010.

Név:... osztály:... Matematika záróvizsga 2010. Mtmtik záróvizsg 00. Név:... osztály:.... Az lái rjzon gy thrutó rktrénk vázltos rjz láthtó. Az árán olvshtó számtok, rkoásr ténylgsn flhsználhtó térfogtr vontkoznk. Mkkor thrutó hsznos rktrénk térfogt?

Részletesebben

7. Határozott integrál

7. Határozott integrál 7. Htározott intgrál 7.. Számolj ki z lái intgrálokt! 7... d 7... d 7... d 7... d 7... d 7... d 7..7. d 7... d 7..9. d 7... d 7... d 7... d 7... d 7... d 7... d 7... d 7..7. d 7... d 7..9. d 7... d 7...

Részletesebben

KORLÁTOS. mateking.hu BINOMIÁLIS ELOSZLÁS. Egy úton hetente átlag 3 balesetes nap van. Mi a valószínűsége, hogy egy adott héten 2 balesetes nap van?

KORLÁTOS. mateking.hu BINOMIÁLIS ELOSZLÁS. Egy úton hetente átlag 3 balesetes nap van. Mi a valószínűsége, hogy egy adott héten 2 balesetes nap van? NEVEZETES DISZKRÉT ÉS FOLYTONOS OK HIPERGEO. BINOM. POISSON VAN ITT EGY FELADAT ISMERTHOGY MENNYI AZ ÖSSZES ELEM ÉS AZ ÖSSZES SELEJT VAGYIS N K ILLETVE n k. CSAK VALAMI %-OS IZÉ ISMERT A VÁRHATÓ AZ ÁTLAG

Részletesebben

Az integrálszámítás néhány alkalmazása

Az integrálszámítás néhány alkalmazása Az integrálszámítás néhány lklmzás (szerkesztés ltt) Dr Toledo Rodolfo 4 november 4 Trtlomjegyzék Két függvények áltl htárolt terület Forgástestek térfogt és felszíne 5 3 Ívhosszszámítás 7 4 Feldtok 8

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym AMt2 fltlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zsszámológépt nm hsználhtsz. A fltokt ttszés szrinti sorrnn olhto mg. Minn próálkozást,

Részletesebben

Bevezetés a fúziós plazmafizikába 7.

Bevezetés a fúziós plazmafizikába 7. Bvztés fúzós plzmfzkáb 7. Részcskék ütközés plzmákbn, trnszport r. Grgő Pokol BME NTI Bvztés fúzós plzmfzkáb 018. októbr 16. Progrm átum Elődó Cím Szptmbr 4Pokol Szptmbr 11Pokol Szptmbr 18Pokol Szptmbr

Részletesebben

3. MECHANIKA STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Három erő egyensúlya

3. MECHANIKA STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Három erő egyensúlya SZÉHENYI ISTVÁN EGYETEM GÉPSZERKEZETTN ÉS MEHNIK TNSZÉK 3 MEHNIK STTIK GYKORLT Kdolgozt: Tsz Pét gy ts Háom ő gynsúly 3 Péld: dott gy mlőszkzt mét és thlés: m b 5 m c 5 m 0 kn ldt: y c Htáozz mg z és támsztóőkt

Részletesebben

1. Testmodellezés. 1.1. Drótvázmodell. Testmodellezés 1

1. Testmodellezés. 1.1. Drótvázmodell. Testmodellezés 1 Tstmodllzés 1 1. Tstmodllzés Egy objktum modlljén az objktumot rprzntáló adatrndszrt értjük. Egy tstmodll gy digitális rprzntációja gy létz vagy lképzlt objktumnak. trvzés, a modllzés során mgadjuk a objktum

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 2009. jnuár 29. MATEMATIKA FELADATLAP 8. évfolymosok számár 2009. jnuár 29. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zsszámológépt nm hsználhtsz. A fltokt ttszés szrinti sorrnn olhto mg. Minn

Részletesebben

Spektroszkópiai Ellipszometria (SE)

Spektroszkópiai Ellipszometria (SE) Fodo Bálnt Ptk Pét Sktozkó llzomt (S) Lbotóum gyzt Mgy Tudományo Akdém Tmézttudomány K Műzk Fzk é Anygtudomány Kuttóntézt Fotonk oztály Budt . lmélt özfoglló.. Az llzomt fzká A fény olzácó állot két különböző

Részletesebben

Név:... osztály:... Matematika záróvizsga 2008. 1. Tedd ki a megfelelő relációjelet! ; 4

Név:... osztály:... Matematika záróvizsga 2008. 1. Tedd ki a megfelelő relációjelet! ; 4 Mtmtik záróvizsg Név:... osztály:... 1. T ki mgllő rláiójlt! 15 4 675 ; 180 115, 151, ; 31% 10 3 1000 ; 4 5 5 + ; 8. Mlyik átváltás hiás? A hlyskt jlöl pipávl, hiás átváltásoknál húz át z gynlőségjlt!.

Részletesebben

MATEMATIKA FELADATLAP a 6. évfolyamosok számára

MATEMATIKA FELADATLAP a 6. évfolyamosok számára 6. évfolym Mt1 fltlp MATEMATIKA FELADATLAP 6. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zsszámológépt nm hsználhtsz. A fltokt ttszés szrinti sorrnn olhto mg. Minn próálkozást,

Részletesebben

Dugattyús szivattyú általános beépítési körülményei (szívó- és nyomóoldali légüsttel) Vegyipari- és áramlástechnikai gépek. 2.

Dugattyús szivattyú általános beépítési körülményei (szívó- és nyomóoldali légüsttel) Vegyipari- és áramlástechnikai gépek. 2. gypar és áramlástchnka gépk.. lőaás Készíttt: r. ára Sánor Buapst Műszak és Gazaságtuomány Egytm Gépészmérnök Kar Hronamka nszrk Tanszék 1111, Buapst, Műgytm rkp. 3. D ép. 334. Tl: 463-16-80 Fax: 463-30-91

Részletesebben

Tehetetlenségi nyomatékok

Tehetetlenségi nyomatékok Tehetetlenségi nyomtékok 1 Htározzuk meg z m tömegű l hosszúságú homogén rúd tehetetlenségi nyomtékát rúd trtóegyenesét metsző tetszőleges egyenesre vontkozón, h rúd és z egyenes hjlásszöge α, rúd középpontjánk

Részletesebben

2. A geometria alapfogalmai A geometria alapfogalmai: pont, vonal, egyenes, sík, tér.

2. A geometria alapfogalmai A geometria alapfogalmai: pont, vonal, egyenes, sík, tér. 1. Mi z lpfoglom? Alpfoglom: olyn foglom, mit ismrtnk fogdunk l, nm tudunk más foglmk sgítségévl mghtározni, dfiniálni, lgflj szmléltsn körülírjuk. Mindn tudomány ilyn lpfoglmkr épül fl. (Egy foglmt úgy

Részletesebben

Egy látószög - feladat

Egy látószög - feladat Ehhez tekintsük z 1. ábrát is! Egy látószög - feldt 1. ábr Az A pont körül kering C pont, egy r sugrú körön. A rögzített A és B pontok egymástól távolság vnnk. Az = CAB szöget folymtosn mérjük. Keressük

Részletesebben

Határozzuk meg, hogy a következő függvényeknek van-e és hol zérushelye, továbbá helyi szélsőértéke és abszolút szélsőértéke (

Határozzuk meg, hogy a következő függvényeknek van-e és hol zérushelye, továbbá helyi szélsőértéke és abszolút szélsőértéke ( 9 4 FÜGGVÉNYVIZSGÁLAT Htározzuk meg, hogy következő függvényeknek vn-e és hol zérushelye, továbbá helyi szélsőértéke és bszolút szélsőértéke (41-41): 41 f: f, R 4 f: 4 f: f 5, R f 5 44 f: f, 1, 1 1, R

Részletesebben

Szervomotor sebességszabályozása

Szervomotor sebességszabályozása Srvomotor sbsségsabályoása. A gyaorlat célja Egynáramú srvomotor sbsségsabályoásána trvés. A motorsabályoás programváána flépítés. A sbsség rányítás algortms mgvalósítása valós dbn. 2. Elmélt bvt A motor

Részletesebben

KIRCHHOFF törvény : : anyagi minőségtől független univerzális függvény.

KIRCHHOFF törvény : : anyagi minőségtől független univerzális függvény. A sugárzás kvantumos trmészt A őmérséklti sugárzás Bvztés A kövtkzőkbn azokat a századorduló táján kutatott őbb jlnségkt tkintjük át, amlyk mgértés a klasszikus izika alapján nm volt ltségs. E jlnségk

Részletesebben

Ellenállás mérés hídmódszerrel

Ellenállás mérés hídmódszerrel 1. Lbortóriumi gykorlt Ellenállás mérés hídmódszerrel 1. A gykorlt célkitűzései A Whestone-híd felépítésének tnulmányozás, ellenállások mérése 10-10 5 trtománybn, híd érzékenységének meghtározás, vlmint

Részletesebben

Rácsrezgések.

Rácsrezgések. ácsrzgésk http://physics-imtis.cm/physics/glish/ph_txt.htm ácsrzgésk gitális hllám rúb Nwt II F x x F x V t F F x A x V x x x x x x A hllámszám értlmzési trtmáy végs mért prióiks htárfltétl Br-Kármá t

Részletesebben

Egy szép és jó ábra csodákra képes. Az alábbi 1. ábrát [ 1 ] - ben találtuk; talán már máskor is hivatkoztunk rá.

Egy szép és jó ábra csodákra képes. Az alábbi 1. ábrát [ 1 ] - ben találtuk; talán már máskor is hivatkoztunk rá. Egy szép és jó ábr csodákr képes Az lábbi. ábrát [ ] - ben tláltuk; tlán már máskor is hivtkoztunk rá.. ábr Az különlegessége, hogy vlki nem volt rest megcsinál(tt)ni, még h sok is volt vele munk. Ennek

Részletesebben

Testmodellezés ábra. Gúla Ekkor a csúcspontok koordinátáit egy V csúcspont (vertex) listában tárolhatjuk.

Testmodellezés ábra. Gúla Ekkor a csúcspontok koordinátáit egy V csúcspont (vertex) listában tárolhatjuk. Tstmodllzés 1 1. Tstmodllzés Egy objktum modlljén az objktumot rprzntáló adatrndszrt értjük. Egy tstmodll gy digitális rprzntációja gy létz vagy lképzlt objktumnak. A trvzés, a modllzés során mgadjuk a

Részletesebben

Matematika záróvizsga Név:... osztály: ; 5 + 9

Matematika záróvizsga Név:... osztály: ; 5 + 9 006. Név:... osztály:.... T ki mgllő rláiójlt! 7 00 7 4, 0% 4 8 - + 9 8 - : 9 6. Ír mérőszámokt vgy mértékgységkt!..... 0m h,8 mm kg 0,0 m km m m 400 l. π. Végz l számításokt!.) : 4.), 8 : 0, +, 0 7, 4

Részletesebben

KORLÁTOS. mateking.hu BINOMIÁLIS ELOSZLÁS. Egy úton hetente átlag 3 balesetes nap van. Mi a valószínűsége, hogy egy adott héten 2 balesetes nap van?

KORLÁTOS. mateking.hu BINOMIÁLIS ELOSZLÁS. Egy úton hetente átlag 3 balesetes nap van. Mi a valószínűsége, hogy egy adott héten 2 balesetes nap van? NEVEZETES DISZKRÉT ÉS FOLYTONOS OK HIPERGEO. BINOM. POISSON VAN ITT EGY FELADAT ISMERTHOGY MENNYI AZ ÖSSZES ELEM ÉS AZ ÖSSZES SELEJT VAGYIS N K ILLETVE n k. CSAK VALAMI %-OS IZÉ ISMERT A VÁRHATÓ AZ ÁTLAG

Részletesebben

Vektorok. Vektoron irányított szakaszt értünk.

Vektorok. Vektoron irányított szakaszt értünk. Vektorok Vektoron irányított szkszt értünk A definíció értelmében tehát vektort kkor ismerjük, h ismerjük hosszát és z irányát A vektort kövér kis betűkkel (, b stb) jelöljük, megkülönböztetve z, b számoktól,

Részletesebben

Differenciálgeometria feladatok

Differenciálgeometria feladatok Differenciálgeometri feldtok 1. sorozt 1. Egy sugrú kör csúszás nélkül gördül egy egyenes mentén. A kör egy rögzített kerületi pontj áltl leírt pályát cikloisnk nevezzük. () Írjuk fel ciklois egy c: R

Részletesebben

Helyszükséglet összehasonlítás

Helyszükséglet összehasonlítás Hlyszükséglt összhsonlítás Hgyományos riálvntilátor A VAR rnszr összhsonlítás Hlios RADAX VAR Systm A VAR rnszr z lsony nyomás növkésű xiálvntilátorok és riál vntilátorok közötti szükségltkt légíti ki.

Részletesebben

1. Melyik átváltás hibás? A helyeseket jelöld pipával, a hibás átváltásoknál húzd át az egyenlőségjelet!

1. Melyik átváltás hibás? A helyeseket jelöld pipával, a hibás átváltásoknál húzd át az egyenlőségjelet! Mtmtik záróvizsg 011. Név:... osztály:... 1. Mlyik átváltás hiás? A hlyskt jlöl pipávl, hiás átváltásoknál húz át z gynlőségjlt!. 0,578 t = 578 kg;. 100 m g. = 0,1 h; 0 pr = 0,5 ór;.. h. 3,05 kg = 350

Részletesebben

Széchenyi István Egyetem. Alkalmazott Mechanika Tanszék

Széchenyi István Egyetem. Alkalmazott Mechanika Tanszék Széchnyi István Egytm Alkalmazott Mchanika Tanszék Végslm analízis Elmélti kérdésk gytmi mstrképzésbn (MSc) résztvv járm mérnöki, mchatronikai mérnök és logisztikai mérnök szakos hallgatók számára 0. októbr

Részletesebben

Budapest Főváros VIII. kerület Józsefvárosi Önkormányzat Képviselő-testületének 46/2009.(XII.21.) sz. önkormányzati rendelete

Budapest Főváros VIII. kerület Józsefvárosi Önkormányzat Képviselő-testületének 46/2009.(XII.21.) sz. önkormányzati rendelete A khrdtés módja: kfüggsztés A khrdtés napja: 2009. dcmbr 21. dr. Xantus Judt jgyző Budapst Főváros VIII. krült Józsfváros Önkormányzat Képvslő-tstülténk 46/2009.(XII.21.) sz. önkormányzat rndlt a Budapst

Részletesebben

A fotometria alapjai

A fotometria alapjai A fotomtria alapjai Mdicor Training Cntr for Maintnanc of Mdical Equipmnt Budapst, 198 Írta: Porubszky Tamás okl. fizikus Lktorálta: Bátki László és Fillingr László Szrkszttt: Török Tibor 1. ÁLTALÁNOS

Részletesebben

Sugárzásos hőátadás. Teljes hősugárzás = elnyelt hő + visszavert hő + a testen áthaladó hő Q Q Q Q A + R + D = 1

Sugárzásos hőátadás. Teljes hősugárzás = elnyelt hő + visszavert hő + a testen áthaladó hő Q Q Q Q A + R + D = 1 Suárzásos hőátadás misszióképessé:, W/m. eljes hősuárzás elnyelt hő visszavert hő a testen áthaladó hő R D R D R D a test elnyelő képessée (aszorció), R a test a visszaverő-képessée (reflexió), D a test

Részletesebben

3. KISFESZÜLTSÉGŰ VEZETÉKEK MÉRETEZÉSE

3. KISFESZÜLTSÉGŰ VEZETÉKEK MÉRETEZÉSE Vamos műk KSFESZÜLTSÉGŰ VEZETÉKEK MÉRETEZÉSE ksfszütségű áózatok fadata a fogyasztók amos nrgáa aó átása ztékk fontos fadatának átásában fontos szrp an az nrgaszogátatás mnőségét, bztonságát és gazdaságosságát

Részletesebben

Alapfogalmak folytatás

Alapfogalmak folytatás Alapfogalmak folytatás Színek Szem Számítási eljárások Fényforrások 2014.10.14. OMKTI 1 Ismétlés Alapok: Mi a fény? A gyakorlati világítás technika alap mennyisége? Φ K m 0 Φ e ( ) V ( ) d; lm Fényáram,

Részletesebben

Mérıkapcsolások 5. fejezet /Elmélet & Képletgyőjtemény/

Mérıkapcsolások 5. fejezet /Elmélet & Képletgyőjtemény/ . Kompnzált osztó: Mérıkpcsolások 5. fjzt /Elmélt & Képltgyőjtmény/ C b C. Hídkpcsolás: τ b τ C C 4 t Alpértlmztt stbn: 4, íd mnti fzsültség gynlíttt állpotbn 0V. I.. st Egy llnállás változik d 4 t d (

Részletesebben

Ha a csővezeték falán hőt nem viszünk át és nem végzünk a közegen munkát, akkor az ideális gáz h ö összentalpiája és amiatt T

Ha a csővezeték falán hőt nem viszünk át és nem végzünk a közegen munkát, akkor az ideális gáz h ö összentalpiája és amiatt T 6 Állndósult gázármlás állndó krsztmtsztű csőn Egy hosszú csőztékn ármló gáz nyomássését nm csk fli csúszttófszültség szj mg, hnm csőflon átdott hő mnnyiség is Hő flétl szmontól két ltő stt tárgylunk ktkző

Részletesebben

MATEMATIKA FELADATLAP a 6. évfolyamosok számára

MATEMATIKA FELADATLAP a 6. évfolyamosok számára 6. évfolym Mt1 fltlp MATEMATIKA FELADATLAP 6. évfolymosok számár 2018. jnuár 20. 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zsszámológépt nm hsználhtsz. A fltokt ttszés szrinti sorrnn olhto mg.

Részletesebben

S x, SZELEPEMEL MECHANIZMUS Témakör: Kinematika, merev test, síkmozgás, relatív

S x, SZELEPEMEL MECHANIZMUS Témakör: Kinematika, merev test, síkmozgás, relatív ZELEPEMEL MECHNIZMU Témkör: Kinmtik, mr tst, síkmozgás, rltí ázolt szlpml mchnizmus sugrú, cntricitású cntrtárcsáj állndó szögsbsséggl forog. 1. jzoljuk mg szlp foronomii görbéit. Vgis z t, t és t függénkt..

Részletesebben

MATEMATIKA FELADATLAP a 6. évfolyamosok számára

MATEMATIKA FELADATLAP a 6. évfolyamosok számára 6. évfolym Mt2 fltlp MATEMATIKA FELADATLAP 6. évfolymosok számár 2018. jnuár 25. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zsszámológépt nm hsználhtsz. A fltokt ttszés szrinti sorrnn olhto mg.

Részletesebben

REÁLIS GÁZOK ÁLLAPOTEGYENLETEI FENOMENOLOGIKUS KÖZELÍTÉS

REÁLIS GÁZOK ÁLLAPOTEGYENLETEI FENOMENOLOGIKUS KÖZELÍTÉS REÁLIS GÁZOK ÁLLAPOEGYENLEEI FENOMENOLOGIKUS KÖZELÍÉS Száos odell gondoljunk potenciálo! F eltérés z ideális gáz odelljétl: éret és kölcsönhtás Moszkópikus következény: száos állpotegyenlet (ld. RM-jegyzet

Részletesebben

ÚJ FELADATSOR! 2006. FEBRUÁR 2. ANYANYELVI FELADATLAP a 8. évfolyamosok számára. 2006. február 2. 14:00 óra ÚJ FELADATSOR! NÉV:

ÚJ FELADATSOR! 2006. FEBRUÁR 2. ANYANYELVI FELADATLAP a 8. évfolyamosok számára. 2006. február 2. 14:00 óra ÚJ FELADATSOR! NÉV: ÚJ FELADATSOR! 2006. FEBRUÁR 2. ANYANYELVI FELADATLAP 8. évfolymosok számár 2006. fruár 2. 14:00 ór ÚJ FELADATSOR! NÉV: SZÜLETÉSI ÉV: HÓ: NAP: A fltokt ttszés szrinti sorrnn olhto mg. Ügylj mgfllő iőosztásr

Részletesebben

A röntgendiagnosztika alapjai

A röntgendiagnosztika alapjai A röngtgndiagnosztika alapja: a sugárzás lnylődés A röntgndiagnosztika alapjai A foton kölcsönhatásának lhtőségi: Compton-szórás Comptonszórás lnylődés fotoffktusban fotoffktus nincs kölcsönhatás Áthaladt

Részletesebben

1. ábra A rádiócsatorna E négypólus csillapítása a szakaszcsillapítás, melynek definíciója a következő: (1)

1. ábra A rádiócsatorna E négypólus csillapítása a szakaszcsillapítás, melynek definíciója a következő: (1) Az antnna Adó- és vvőantnna Az antnna lktomágnss hullámok kisugázásáa és vétlé szolgáló szköz. A ádióndszkbn btöltött szp alapján az antnna a tápvonal és a szabad té közötti tanszfomáto, mly a tápvonalon

Részletesebben

Középiskolás leszek! matematika. 13. feladatsor 1. 2. 3. 4. 5. 6.

Középiskolás leszek! matematika. 13. feladatsor 1. 2. 3. 4. 5. 6. Középiskolás leszek! mtemtik Melyik számot jelentheti A h tudjuk hogy I felennyi mint S S egyenlõ K és O összegével K egyenlõ O és L különbségével O háromszoros L-nek L negyede 64-nek I + S + K + O + L

Részletesebben

MATEMATIKA FELADATLAP a 6. évfolyamosok számára

MATEMATIKA FELADATLAP a 6. évfolyamosok számára 6. évfolym Mt2 fltlp MATEMATIKA FELADATLAP 6. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zsszámológépt nm hsználhtsz. A fltokt ttszés szrinti sorrnn olhto mg. Minn próálkozást,

Részletesebben

A kötéstávolság éppen R, tehát:

A kötéstávolság éppen R, tehát: Forgás és rzgés spktroszkópa:. Határozzuk mg a kövtkző részcskék rdukált tömgét: H H, H 35 Cl, H 37 Cl, H 35 Cl, H 7 I Egy m és m tömgű atomból álló kétatomos molkula rdukált tömg () dfnícó szrnt: mm vagy

Részletesebben

Széchenyi István Egyetem. Alkalmazott Mechanika Tanszék

Széchenyi István Egyetem. Alkalmazott Mechanika Tanszék Széchnyi István Egytm Alkalmazott Mchanika Tanszék Végslm analízis Elmélti kérdésk gytmi mstrképzésbn MSc) résztvv járm mérnöki, mchatronikai mérnök és logisztikai mérnök szakos hallgatók számára. Mit

Részletesebben

FELVÉTELI FELADATOK 4. osztályosok számára M 1 feladatlap

FELVÉTELI FELADATOK 4. osztályosok számára M 1 feladatlap 2004. jnuár-fruár FELVÉTELI FELADATOK 4. osztályosok számár M 1 fltlp Név:... Szültési év: hó: np: A fltokt ttszés szrinti sorrnn olhto mg. Minn próálkozást fltlpon végzz! Mllékszámításokr z utolsó, ürs

Részletesebben

Meghatározás Pontszerű test. Olyan test, melynek jellemző méretei kicsik a pálya méreteihez képest. A helyvektor megváltozása: r1,2 r(t 2) r(t 1)

Meghatározás Pontszerű test. Olyan test, melynek jellemző méretei kicsik a pálya méreteihez képest. A helyvektor megváltozása: r1,2 r(t 2) r(t 1) I. Mchanka Dfnált fogalom Mghatározás Tömgpont Pontszrű tst. Olyan tst, mlynk jllmző mért kcsk a pálya mérthz képst. Elmozdulás hlyvktor mgváltozása: r1, r(t ) r(t 1) Sbsség dr hlyvktor változás gyorsasága

Részletesebben

FELVÉTELI FELADATOK 8. évfolyamosok számára. A 2 feladatlap. Név:...

FELVÉTELI FELADATOK 8. évfolyamosok számára. A 2 feladatlap. Név:... 2005. jnuár-fruár FELVÉTELI FELADATOK 8. évfolymosok számár A 2 fltlp Név:... Szültési év: hó: np: A fltokt ttszés szrinti sorrnn olhto mg. Ügylj mgfllő iőosztásr és küllkr! A mgolásr összsn 45 pr vn.

Részletesebben

A szelepre ható érintkezési erő meghatározása

A szelepre ható érintkezési erő meghatározása A szlpr ható érintkzési rő mghatározása Az [ 1 ] műbn az alábbi fladatot találtuk. A fladat: Adott az ábra szrinti szlpmlő szrkzt. Az a xcntricitással szrlt R sugarú bütyök / körtárcsa ω 1 állandó szögsbsséggl

Részletesebben

= n 2 = x 2 dx = 3c 2 ( 1 ( 4)). = π 13.1

= n 2 = x 2 dx = 3c 2 ( 1 ( 4)). = π 13.1 Htározott integrál megoldások + 7 + + 9 = 9 6 A bl végpontokt válsztv: i = i n, i+ i = n, fξ i = i 6 d = lim n n i= i n n = n lim n n i = lim n i= A jobb végpontokt válsztv: fξ i = n i, n i d = lim n n

Részletesebben

Villamos érintésvédelem

Villamos érintésvédelem Villamos érintésvédlm A villamos nrgia ipari mértű flhasználása a század ljén kzdtt gyr nagyobb mértékbn ltrjdni és zzl gyidőbn jlntkztk az áramütésből rdő balstk is. Ennk kövtkztébn nagyarányú kutatás

Részletesebben

a b a leghosszabb. A lapátlók által meghatározott háromszögben ezzel szemben lesz a

a b a leghosszabb. A lapátlók által meghatározott háromszögben ezzel szemben lesz a 44 HANCSÓK KÁLMÁN MEGYEI MATEMATIKAVERSENY MEZŐKÖVESD, évfolym MEGOLDÁSOK Mutssuk meg, hogy egy tetszőleges tégltest háromféle lpátlójából szerkesztett háromszög hegyesszögű lesz! 6 pont A tégltest egy

Részletesebben

Differenciálszámítás. Lokális szélsőérték: Az f(x) függvénynek az x 0 helyen lokális szélsőértéke

Differenciálszámítás. Lokális szélsőérték: Az f(x) függvénynek az x 0 helyen lokális szélsőértéke Differenciálszámítás Lokális növekedés (illetve csökkenés): H z f() függvény deriváltj z 0 helyen pozitív: f () > 0 (illetve negtív: f () < 0), kkor z f() függvény z 0 helyen növekvően (illetve csökkenően)

Részletesebben

Az elektromágneses sugárzás kölcsönhatása az anyaggal

Az elektromágneses sugárzás kölcsönhatása az anyaggal Az lktromágnss sugárzás kölcsönhatása az anyaggal A fény kölcsönhatása az anyaggal visszavrődés A fény kölcsönhatása az anyaggal 2. törés szórás lnylődés Elnylődés 1 2 3 4 Δ Az intzitás gyngülésénk törvény

Részletesebben

1. KVANTUMJELENSÉGEK, SUGÁRZÁSOK A kvantumfizika kísérleti alapjai. A klasszikus fizika néhány egyenlete és korlátai.

1. KVANTUMJELENSÉGEK, SUGÁRZÁSOK A kvantumfizika kísérleti alapjai. A klasszikus fizika néhány egyenlete és korlátai. . KVANTUMJELENSÉGEK, SUGÁRZÁSOK.. A kantumfizika kísérlti alapjai A klasszikus fizika néány gynlt és korlátai Haladó mozgás Ha ismrjük x 0 -t és p 0 -t, akkor mgatározatjuk x t -t és p t -t is bármly későbbi

Részletesebben

MAGYAR NYELVI FELADATLAP

MAGYAR NYELVI FELADATLAP 2009. jnuár 29. MAGYAR NYELVI FELADATLAP 4. évfolymosok számár 2009. jnuár 29. 14:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: A fltokt ttszés szrinti sorrnn olhto mg. Ügylj mgfllő iőosztásr és küllkr! A mgolásr

Részletesebben

Többváltozós analízis gyakorlat

Többváltozós analízis gyakorlat Többváltozós nlízis gykorlt Áltlános iskoli mtemtiktnár szk 07/08. őszi félév Ajánlott irodlom (sok gykorló feldt, megoldásokkl: Thoms-féle klkulus 3., Typote, 007. (Jól hsználhtók z -. kötetek is Fekete

Részletesebben

Mátrixok és determinánsok

Mátrixok és determinánsok Informtik lpji Mátriok és erminánsok számok egyfjt tábláztát mátrink hívjuk. mátriok hsználhtóság igen sokrétő kezdve mtemtikávl, folyttv számítástechnikán és fizikán keresztül, egészen z elektrotechnikáig.

Részletesebben

53. sz. mérés. Hurokszabályozás vizsgálata

53. sz. mérés. Hurokszabályozás vizsgálata 53. sz. mérés Hurokszaályozás vizsgálata nagyszültségű alap- illtv losztóhálózat (4,, kv a hálózatok unkcióáól kövtkzőn hurkolt (töszörösn hurkolt kialakítású. sok csomóponttal, tö táplálási illtv ogyasztási

Részletesebben

3. MECHANIKA STATIKA GYAKORLAT (kidolgozta: Triesz Péter; Tarnai Gábor, mérnök tanár) Három erő egyensúlya

3. MECHANIKA STATIKA GYAKORLAT (kidolgozta: Triesz Péter; Tarnai Gábor, mérnök tanár) Három erő egyensúlya SZÉHENYI ISTVÁN EGYETEM LKLMZOTT MEHNIK TNSZÉK Péld: MEHNIK STTIK GYKORLT (kidolgozt: Tisz Pét; Tni Gábo ménök tná) Háom ő gynsúly dott gy mlőszkzt méti és thlés: m b 5 m c 5 m kn ldt: y c Htáozz mg z

Részletesebben

Bevezetés a programozásba. 3. Előadás Algoritmusok, tételek

Bevezetés a programozásba. 3. Előadás Algoritmusok, tételek Bevezetés progrmozásb 3. Elődás Algortmusok, tételek ISMÉTLÉS Specfkácó Előfeltétel: mlyen körülmények között követelünk helyes működést Utófeltétel: mt várunk kmenettől, m z összefüggés kmenet és bemenet

Részletesebben

5. Logaritmus. I. Nulladik ZH-ban láttuk: 125 -öt kapjunk. A 3 5 -nek a 3. hatványa 5, log. x Mennyi a log kifejezés értéke?

5. Logaritmus. I. Nulladik ZH-ban láttuk: 125 -öt kapjunk. A 3 5 -nek a 3. hatványa 5, log. x Mennyi a log kifejezés értéke? . Logritmus I. Nulldik ZH-bn láttuk:. Mennyi kifejezés értéke? (A) Megoldás I.: BME 0. szeptember. (7B) A feldt ritmus definíciójából kiindulv gykorltilg fejben végiggondolhtó. Az kérdés, hogy -öt hánydik

Részletesebben

Kalkulus II. Beugró kérdések és válaszok 2012/2013 as tanév II. félév

Kalkulus II. Beugró kérdések és válaszok 2012/2013 as tanév II. félév Klkulus II. Beugró kérdések és válszok 2012/2013 s tnév II. félév 1. Legyen ], b[ R nemüres, nyílt intervllum, f :], b[ R függvény. Hogyn vn értelmezve z f függvény primitív függvénye? Válsz. Legyen ],

Részletesebben

13. gyakorlat Visszacsatolt műveletierősítők. A0=10 6 ; ω1=5r/s, ω2 =1Mr/s R 1. Kérdések: uki/ube=?, ha a ME ideális!

13. gyakorlat Visszacsatolt műveletierősítők. A0=10 6 ; ω1=5r/s, ω2 =1Mr/s R 1. Kérdések: uki/ube=?, ha a ME ideális! . gyakorlat Visszacsatolt művltirősítők.) Példa b (s) 6 ; r/s, Mr/s kω, 9 kω, kω, ( s )( s ) Kérdésk: /b?, ha a ME ális! Mkkora lgyn érték ahhoz, hogy az /b rősítés maximális lapos lgyn ( ξ ). Mkkora a

Részletesebben

Matematika 4 gyakorlat Földtudomány és Környezettan BSc II/2

Matematika 4 gyakorlat Földtudomány és Környezettan BSc II/2 Mtemtik 4 gykorlt Földtudomány és Környezettn BSc II/2 1. gykorlt Integrálszámítás R n -ben: vonlintegrál, primitív függvény, Newton Leibniz-szbály. Legyen Ω R n egy trtomány, f : Ω R n folytonos függvény

Részletesebben

Város Polgármestere ELŐTERJESZTÉS

Város Polgármestere ELŐTERJESZTÉS Város Polgármstr 251 Biatorbágy, Baross Gábor utca 2/a Tlfon: 6 23 31-174/233 mllék Fax: 6 23 31-135 E-mail: bruhazas@biatorbagy.hu www.biatorbagy.hu ELŐTERJESZTÉS Budapst Balaton közötti krékpárút nyomvonalával

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Koordináta-gomtria A szürkíttt háttrű fladatrészk nm tartoznak az érinttt témakörhöz, azonban szolgálhatnak fontos információval az érinttt fladatrészk mgoldásához!

Részletesebben

MATEMATIKA FELADATLAP a 4. évfolyamosok számára

MATEMATIKA FELADATLAP a 4. évfolyamosok számára 4. évfolym Mt2 fltlp MATEMATIKA FELADATLAP 4. évfolymosok számár 2017. jnuár 26. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zsszámológépt nm hsználhtsz. A fltokt ttszés szrinti sorrnn olhto mg.

Részletesebben

Országos Szakiskolai Közismereti Tanulmányi Verseny 2007/2008 IRODALOM MAGYAR NYELV ÉS HELYESÍRÁS. II. (regionális) forduló. 2008. február 22.

Országos Szakiskolai Közismereti Tanulmányi Verseny 2007/2008 IRODALOM MAGYAR NYELV ÉS HELYESÍRÁS. II. (regionális) forduló. 2008. február 22. Országos Szkiskoli Közismrti Tnulmányi Vrsny 2007/2008 IRODALOM MAGYAR NYELV ÉS HELYESÍRÁS II. (rgionális) foruló 2008. fruár 22. Mgolás 1 Országos Szkiskoli Közismrti Irolom Mgyr nylv és hlysírás Tnulmányi

Részletesebben

Légköri aeroszol elemösszetételének vizsgálata és egészségkárosító hatásának modellezése a továbbfejlesztett Sztochasztikus Tüdőmodellel

Légköri aeroszol elemösszetételének vizsgálata és egészségkárosító hatásának modellezése a továbbfejlesztett Sztochasztikus Tüdőmodellel DE TTK 1949 Légköri rszl lmössztétlénk vizsgált és gészségkársító htásánk mdllzés tvábbfjlszttt Sztchsztikus Tüdőmdlll Egytmi dktri (PhD) értkzés szrző nv: Dbs Erik témvztő nv: Dr. Brbélyné Dr. Kiss Ildikó

Részletesebben

MATEMATIKA FELADATLAP a 8. évfolyamosok számára

MATEMATIKA FELADATLAP a 8. évfolyamosok számára 8. évfolym Mt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zsebszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrendben oldhtod meg.

Részletesebben

Kereskedelmi szálláshelyek kihasználtságának vizsgálata, különös tekintettel az Észak-magyarországi és a Dél-alföldi régióra

Kereskedelmi szálláshelyek kihasználtságának vizsgálata, különös tekintettel az Észak-magyarországi és a Dél-alföldi régióra Észk-mgyrországi Strtégii Füzetek VII. évf. 2010 1 27-35 Kereskedelmi szálláshelyek kihsználtságánk vizsgált, különös tekintettel z Észk-mgyrországi és Dél-lföldi régiór A turizmusfejlesztés egyik prioritás

Részletesebben

Energetikai gazdaságtan 3. gyakorlat Gazdasági mutatók

Energetikai gazdaságtan 3. gyakorlat Gazdasági mutatók Eergetk gzdságt 3. gykorlt Gzdság muttók GAZDASÁGTAN, PÉNZÜGY JELLEMZŐK A gykorlt célj, hogy hllgtók A. elsjátítsák gzdálkodásb szokásos pézügytechk meységek között összefüggéseket; B. egyszerű gzdságosság

Részletesebben

24. MŰVELETI ERŐSÍTŐK ALKALMAZÁSAI

24. MŰVELETI ERŐSÍTŐK ALKALMAZÁSAI 24. MŰVELETI EŐSÍTŐK ALKALMAZÁSAI élkitűzés: Az elektroniki gondolkodásmód fejlesztése. I. Elméleti áttekintés A műveleti erősítőkkel (továikn ME) csknem minden, nem túlságosn ngyfrekvenciás elektroniki

Részletesebben

M3 ZÁRT CSATORNÁBAN ELHELYEZETT HENGERRE HATÓ ERŐ MÉRÉSE

M3 ZÁRT CSATORNÁBAN ELHELYEZETT HENGERRE HATÓ ERŐ MÉRÉSE M3 ZÁRT CSATORNÁBAN ELHELYEZETT HENGERRE HATÓ ERŐ MÉRÉSE. A mérés élja A mérés fladat égyzt krsztmtsztű satorába bépíttt, az áramlás ráyára mrőlgs szmmtratglyű, külöböző átmérőjű hgrkr ható ( x, y ) rő

Részletesebben

Hatvani István fizikaverseny 2015-16. 1. forduló megoldások. 1. kategória

Hatvani István fizikaverseny 2015-16. 1. forduló megoldások. 1. kategória 1. ktegóri 1.1.1. Adtok: ) Cseh László átlgsebessége b) Chd le Clos átlgsebessége Ezzel z átlgsebességgel Cseh László ideje ( ) ltt megtett távolság Így -re volt céltól. Jn Switkowski átlgsebessége Ezzel

Részletesebben

ANYANYELVI FELADATLAP

ANYANYELVI FELADATLAP 2007. fruár 1. ANYANYELVI FELADATLAP 4. évfolymosok számár 2007. fruár 1. 14:00 ór A 2 fltlp NÉV: SZÜLETÉSI ÉV: HÓ: NAP: A fltokt ttszés szrinti sorrnn olhto mg. Ügylj mgfllő iőosztásr és küllkr! A mgolásr

Részletesebben

Els gyakorlat. vagy más jelöléssel

Els gyakorlat. vagy más jelöléssel Els gykorlt Egyszer egyenletek, EHL PDE A gykorlt elején megismerkedünk prciális dierenciálegyenletek (mostntól: PDE-k) lpfoglmivl. A félév során sokt fog szerepelni z ún. multiindex jelöl, melynek lényege,

Részletesebben

1. Az üregsugárzás törvényei

1. Az üregsugárzás törvényei 1. Az üregsugárzás törvényei 1.1. A Wien féle eltolódási törvény és a Stefan-Boltzmann törvény Egy zárt, belül üres fémdoboz kis nyílása az úgynevezett abszolút fekete test. A nyílás elektromágneses sugárzást

Részletesebben

10. lecke. potenciális GDP alakulása. munkanélküliség okai. Konjunkturális. a potenciális kibocsátás szintjén? a tanult növekedéselmélet szerint igen

10. lecke. potenciális GDP alakulása. munkanélküliség okai. Konjunkturális. a potenciális kibocsátás szintjén? a tanult növekedéselmélet szerint igen 10. lck A munkpic jllmzõi és s munknélk lküliség g oki Rövid ávú gynsúly, ponciális kibocsáás, GDP-rés, munknélküliség. A munknélküliség rmészs rááj, rmészs munknélküliség oki. Konjunkurális munknélküliség,

Részletesebben

REZGÉSTAN GYAKORLAT Kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus

REZGÉSTAN GYAKORLAT Kidolgozta: Dr. Nagy Zoltán egyetemi adjunktus SZÉCHENYI ISTVÁN EGYETEM ALKALMAZOTT MECHANIKA TANSZÉK REZGÉSTAN GYAKORLAT Kdogozt: r. Ngy Zotán egyetem djunktus 4. fedt: Mndkét végén efzott rúd ongtudnás rezgése (kontnuum mode) A, ρ, E Adott: mndkét

Részletesebben

ANYANYELVI FELADATLAP a 8. évfolyamosok számára

ANYANYELVI FELADATLAP a 8. évfolyamosok számára ÚJ FELADATLAP 2007. ruár 1. ANYANYELVI FELADATLAP 8. évolymosok számár 2007. ruár 1. 14:00 ór ÚJ FELADATLAPI NÉV: SZÜLETÉSI ÉV: HÓ: NAP: A ltokt ttszés szrinti sorrnn olhto mg. Ügylj mgllő iőosztásr és

Részletesebben

Mátrix-vektor feladatok Összeállította dr. Salánki József egyetemi adjunktus Begépelte Dr. Dudás László és Bálint Gusztáv

Mátrix-vektor feladatok Összeállította dr. Salánki József egyetemi adjunktus Begépelte Dr. Dudás László és Bálint Gusztáv Mátrx-vektor feldtok Összeállított dr. Slánk József egyetem djunktus Begépelte Dr. Dudás László és Bálnt Gusztáv 1. feldt Adottk z n elemű, b vektorok. Képezn kell c vektort, hol c = b / Σ( ), ( = 0,1,,

Részletesebben

Dr. Nagy Balázs Vince D428

Dr. Nagy Balázs Vince D428 Műszaki Optika 2. előadás Dr. Nagy Balázs Vince D428 nagyb@mogi.bme.hu Izzólámpa és fénycső 30,0 25,0 20,0 15,0 10,0 5,0 0,0 350 400 450 500 550 600 650 700 750 2 Fényforrások csoportosítása Fényforrások

Részletesebben

Mágneses momentum, mágneses szuszceptibilitás

Mágneses momentum, mágneses szuszceptibilitás Mágnss ontu, ágnss szuszcptibilitás A olkuláknak (atooknak, ionoknak) lktronszrkztüktől függőn lht pranns (állandóan glévő) ágnss ontua. Ha ágnss térb krülnk, a tér hatására indig ágnss ontu jön létr az

Részletesebben

4. előadás: A vetületek általános elmélete

4. előadás: A vetületek általános elmélete 4. elődás: A vetületek áltlános elmélete A vetítés mtemtiki elve Két mtemtikilg meghtározott felület prméteres egyenletei legyenek következők: x = f 1 (u, v), y = f 2 (u, v), I. z = f 3 (u, v). ξ = g 1

Részletesebben

SV-805AL SV-805AL Color. Videokaputelefon 5 vezetékes vandálbiztos. Rock Series. Telepítõi kézikönyv

SV-805AL SV-805AL Color. Videokaputelefon 5 vezetékes vandálbiztos. Rock Series. Telepítõi kézikönyv SV-805AL SV-805AL Color Vidokputlfon 5 vztéks vndáliztos Rock Sris Tlpítõi kézikönyv BEVEZETŐ 1 2 TÁPEGYSÉG TELEPÍTÉSE Köszönjük, hogy GLMAR trmékét válsztott. Az IS-9001 minősítés és lkötlzttségünk vásárlók

Részletesebben

Az éves statisztikai összegezés 1

Az éves statisztikai összegezés 1 21. mlléklt 2/2006. (I. 13.) IM rndlthz Az évs sttisztiki összgzés 1 Sttisztiki összgzés z évs közbszrzéskről Kbt. IV., VI. fjzt, vlmint ngydik rész szrinti jánltkérők vontkozásábn 1. Az jánltkérő nv,

Részletesebben

Matematika A1a - Analízis elméleti kérdései

Matematika A1a - Analízis elméleti kérdései Mtemtik A1 - Anlízis elméleti kérdései (műszki menedzser szk, 2018. ősz) Kör egyenlete Az (x 0, y 0 ) középpontú, R sugrú kör egyenlete síkon (x x 0 ) 2 + (y y 0 ) 2 = R 2. Polinom Az x n x n + n 1 x n

Részletesebben

VI. Deriválható függvények tulajdonságai

VI. Deriválható függvények tulajdonságai 1 Deriválhtó függvének tuljdonsági VI Deriválhtó függvének tuljdonsági Ebben fejezetben zt vizsgáljuk, hog deriválhtó függvének esetén derivált milen összefüggésben vn függvén más tuljdonságivl, és hogn

Részletesebben

Bojtár-Gáspár: A végeselemmódszer matematikai alapjai

Bojtár-Gáspár: A végeselemmódszer matematikai alapjai Bojtár Imr Gáspár Zsolt A végslmmódszr matmatka alapja Elktronkusan ltölthtő lőadásvázlat építőmérnök hallgatók számára. http://www.pto.bm.hu/m/htdocs/oktatas/oktatas.php Kadó: BME Tartószrkztk Mchankája

Részletesebben

Országos Szakiskolai Közismereti Tanulmányi Verseny 2005/2006 MAGYAR NYELV ÉS HELYESÍRÁS

Országos Szakiskolai Közismereti Tanulmányi Verseny 2005/2006 MAGYAR NYELV ÉS HELYESÍRÁS Orszáos Szkiskoli Közismrti Tnulmányi Vrsny 2005/2006 MAGYAR NYELV ÉS HELYESÍRÁS II. (rionális) oruló 2006. ruár 17... Hlyszín jélyzőj Vrsnyző Pontszám Kój Elértő Elért Százlék. 120.. % Jvító tnár Zsűri

Részletesebben

Koordinátageometria. 3 B 1; Írja fel az AB szakasz felezőpontjának 2 ( ) = vektorok. Adja meg a b vektort a

Koordinátageometria. 3 B 1; Írja fel az AB szakasz felezőpontjának 2 ( ) = vektorok. Adja meg a b vektort a 1) Adott két pont: 1 A 4; és 2 3 B 1; Írja fl az AB szakasz flzőpontjának 2 2) Egy kör sugarának hossza 4, középpontja a B ( 3;5) pont. írja fl a kör gynltét! 3) Írja fl a ( 2;7 ) ponton átmnő, ( 5;8)

Részletesebben

2. NUMERIKUS INTEGRÁLÁS

2. NUMERIKUS INTEGRÁLÁS numerikus nlízis ii. 39 B - SPLINEOK DERIVÁLTJÁRA ÉRVÉNYES : B mi x =m Bm,i x B m,ix. t i+m t i t i+m+ t i+. NUMERIKUS INTEGRÁLÁS Htározott integrálok numerikus kiszámítás mtemtik egyik legrégebbi problémáj.

Részletesebben

Vektorok (folytatás)

Vektorok (folytatás) Vektorok (folyttás) Vektor szorzás számml (sklárrl) Vektor szorzás számml b 1 c 2b c 2 ( 1 ) 2 Az vektor k-szoros (k R, vgyis k egy vlós szám) z vektor, melynek hossz k, irány pedig k > 0 esetén irányávl

Részletesebben