A húrnégyszögek meghódítása

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "A húrnégyszögek meghódítása"

Átírás

1 A húrnégyszögek meghódítása

2 A MINDENTUDÁS ISKOLÁJA

3 Gerőcs lászló A HÚRNÉGYSZÖGEK MEGHÓDÍTÁSA Akadémiai Kiadó, Budapest

4 ISBN Kiadja az Akadémiai Kiadó, az 1795-ben alapított Magyar Könyvkiadók és Könyvterjesztők Egyesülésének tagja 1117 Budapest, Prielle Kornélia u Első magyar nyelvű kiadás: 2010 Gerőcs László, 2010 Minden jog fenntartva, beleértve a sokszorosítás, a nyilvános előadás, a rádió- és televízióadás, valamint a fordítás jogát, az egyes fejezeteket illetően is. Printed in Hungary

5 TARTALOM Bevezető A húrnégyszögekről általában Feladatok Megoldások Irodalom

6 BEVEZETŐ Középiskolai matematikatanár körökben közismert tény, hogy a kétszintű érettségi bevezetése óta a matematika tárgy tanításán belül az elemi geometriára fordítható idő sajnos meglehetősen szűkös. Az érettségi követelményrendszer (akár közép-, akár emelt szinten) lényegesen kevesebbet kíván elemi geometriából a jelöltektől, mint a 2005 előtti években, évtizedekben. Túl a témakör szépségén, már csak azért is sajnálatos mindez, mert tapasztalatból tudható többek között ez az a területe a matematikának, amely leginkább alkalmas a kreativitás, a tér- és síkbeli tájékozódás fejlesztésére. Ez az a terület, amely a legkevésbé algoritmizálható, s így a gondolkodás fejlesztésére, fegyelmezettségére tett hatása óriási. Az elemi geometria sok-sok kérdéskörének egyike a kerületi és középponti szögek, a húrnégyszögek világa. Már önmagában is igen izgalmas és szép szelete ez az elemi geometriának, és külön óriási haszna, hogy a geometria számos egyéb területén is igen jól hasznosítható, igen sokat dolgoznak nekünk a húrnégyszögek például a háromszögek, sokszögek, szabályos sokszögek érdekes tulajdonságainak felfedezésekor. (Gondoljunk csak például a Simson-egyenesre, a háromszög talpponti háromszögeire, a háromszög Torricelli-pontjára stb.) Sajnos e témakörben nem nagyon található egy helyen olyan átfogó elméleti összefoglaló és nagyobb mennyiségű feladatanyag, mely lehetővé tenné a témában való komolyabb elmélyülést. Ezt az űrt igyekszik pótolni könyvünk (egy 12 évvel ezelőtti kötet második, bővített kiadása), melyben az elmúlt évek ide vágó feladattermései mellett számos új probléma tárgyalására kerül sor. Kötetünk három részből áll. Az első fejezetben ismertnek feltételezve a témához tartozó, a középiskolai törzsanyagban szereplő 7

7 definíciókat és tételeket néhány olyan érdekes eredményt tárgyalunk, melyek ugyan nem szerepelnek a középiskolai törzsanyagban, de annak ismeretében könnyen feldolgozhatók, megérthetők. Ezt követően a háromszögek néhány érdekes tulajdonságát, kevésbé ismert nevezetes vonalát, pontját vizsgáljuk meg. Mint látni fogjuk, ekkor is nagy segítségünkre lesznek a húrnégyszögek. A második fejezetben átnyújtunk egy 88 példából álló feladatcsokrot. E feladatok különböző nehézségűek, találunk közöttük egyszerű, a témához tartozó definícióknak, tételeknek csupán közvetlen alkalmazását igénylő feladatokat és összetettebb, mélyebb ötleteket igénylő, nehéz feladatokat is. Így mindenki a maga szintjén és kedvének megfelelően válogathat a példák között. Végül a harmadik fejezet tartalmazza a kitűzött feladatok részletes kidolgozását. A megoldások során igyekeztünk a lehető legrészletesebben leírni a felhasznált gondolatmenetet, elsősorban azok érdekében, akik a kötetben szereplő érdekességeket és problémákat önállóan kívánják feldolgozni. Néhány esetben több megoldást is adunk a kérdéses problémára, illetve egy-egy megjegyzésben a vizsgált feladattal kapcsolatos érdekességre is felhívjuk a figyelmet. Természetesen a rendelkezésre álló hely szűkös volta miatt ezt nem tehettük meg minden esetben. Nyilvánvaló, hogy a könyvben tárgyalt problémák kiválasztása szubjektív. Mégis úgy gondoljuk, akik feldolgozzák a kitűzött feladatokat, kellő mélységekig eljuthatnak, s ezzel a szellemi élményen túl további kérdések, problémák felvetésére és megoldására kaphatnak ihletet. Ajánljuk tehát jó szívvel e kötetet minden érdeklődő középiskolás diáknak, középiskolai matematikatanároknak, illetve a felsőoktatásban geometriát is tanuló hallgatóknak és oktatóiknak. Kívánunk minden kedves olvasónak jó egészséget, hasznos szellemi kalandozást a csodálatos húrnégyszögek világában nyár A szerző 8

8 A HÚRNÉGYSZÖGEKRŐL ÁLTALÁBAN A középiskolában szereplő kerületi és középponti szögekkel, valamint a húrnégyszögekkel kapcsolatos geometriai feladatok megoldása, elemzése során általában azt a tanult tételt szoktuk alkalmazni, mely szerint egy négyszög akkor és csak akkor húrnégyszög, ha szemközti szögeinek összege 180. Ugyanakkor sok egyéb módon is kimutatható egy négyszögről, hogy körbe írható. Ha például sikerül megmutatnunk egy négyszögről, hogy oldalfelező merőlegesei egy pontban metszik egymást, akkor e négyszög biztosan húrnégyszög, hiszen az oldalfelező merőlegesek metszéspontja a négyszög csúcsaitól egyenlő távolságra vannak, így e pont köré alkalmas sugarú kört rajzolva, az a kérdéses négyszögnek mind a négy csúcsán áthalad. Ugyancsak húrnégyszöggel van dolgunk, ha a négyszögnek valamely oldala a másik két csúcsból ugyanakkora szögben látszik. Ekkor ugyanis az azonos íven nyugvó kerületi szögek egyenlőségéről szóló tétel biztosítja számunkra, hogy a négyszög körbe írható. Szintén húrnégyszög adódik, A ha valamely konvex négyszög átlószeleteinek szorzata egyenlő. D Pontosabban: ha az ABCD négyszög átlóinak a metszéspontja M M (1. ábra), és teljesül, hogy AM MC BM MD, akkor ABCD húrnégyszög. B C 1. ábra 9

9 Ha ugyanis AM MC BM MD, akkor AM BM MD. MC Ez azt jelenti, hogy az AMB és DMC háromszögek két-két oldalának aránya, valamint a közbezárt szög egyenlő, így e két háromszög hasonló. Szögei tehát rendre megegyeznek, vagyis például CAB BDC Ezek szerint az ABCD négyszög BC oldala a másik két csúcsból (A-ból és D-ből) ugyanakkora szögben látszik, így ahogyan azt az előbb már láttuk e négyszög valóban húrnégyszög. (Ez utóbbi esetben tulajdonképpen a pont körre vonatkozó hatványának megfordítását használtuk egy speciális esetben: amikor a kérdéses pont a négyszög átlóinak a metszéspontja.) Természetesen a legtöbb esetben mi is azt a tételt használjuk majd, hogy a húrnégyszög szemközti szögeinek összege 180, hiszen az esetek többségében ez lesz a legkézenfekvőbb. Az első fejezetben megvizsgálunk néhány olyan a középiskolában nem feltétlenül tanult eredményt, tételt, melyek a húrnégyszögek sok érdekes tulajdonságával ismertetnek meg bennünket, illetve a háromszögek, körök, négyszögek néhány sajátos tulajdonságára mutatunk rá a húrnégyszögek segítségével, példázva, milyen sok izgalmas eredményre juthatunk a csodálatos húrnégyszögek segítségével. A húrnégyszögek világában tett kalandozásainkat kezdjük Ptolemaiosz tételével. Ptolemaiosz Claudiosz görög matematikus, csillagász volt, Kr. u. a II. században élt és tevékenykedett Alexandriában. Elsősorban csillagászati megfigyelésekkel, trigonometriai táblázatok készítésével és pontosításával foglalkozott. Nevéhez fűződik az egyik legeredetibb húrnégyszögekkel kapcsolatos tétel, mely szerint a húrnégyszög szemközti oldalai szorzatainak összege egyenlő az átlók szorzatával. 10

10 IRODALOM Coxeter, M.: Az újra felfedezett geometria. Gondolat Kiadó, 1977 Gerőcs László: Irány az egyetem 1 4. Nemzeti Tankönyvkiadó Rt., Gerőcs László: REPETA-MATEK 1 5. Scolar Kiadó, Lévárdi László Sain Márton: Matematikatörténeti feladatok. Tankönyvkiadó, 1982 Sain Márton: Nincs királyi út! Gondolat Kiadó,

11 A kiadásért felelős az Akadémiai Kiadó Zrt. igazgatója Szerkesztette: Stark Mariann Felelős szerkesztő: Tárnok Irén Termékmenedzser: Egri Róbert A nyomdai munkálatokat az Akadémiai Nyomda Kft. végezte Felelős vezető: Ujvárosi Lajos Martonvásár, 2010 Kiadványszám: TK Megjelent 12,5 (A/5) ív terjedelemben

Érettségi feladatok: Síkgeometria 1/6

Érettségi feladatok: Síkgeometria 1/6 Érettségi feladatok: Síkgeometria 1/6 2005. május 10. 4. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! A: A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra

Részletesebben

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) 1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy

Részletesebben

Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók)

Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Koordináta-geometria feladatgyűjtemény (A feladatok megoldásai a dokumentum végén találhatók) Vektorok 1. Egy négyzet két szemközti csúcsának koordinátái: A( ; 7) és C(4 ; 1). Határozd meg a másik két

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4

Részletesebben

GEOMETRIA. b a X O Y. A pótszögek olyan szögpárok, amelyek az összege 90. A szögek egymás pótszögei. b a

GEOMETRIA. b a X O Y. A pótszögek olyan szögpárok, amelyek az összege 90. A szögek egymás pótszögei. b a GOMTRI ndrea Philippou, Marios ntoniades Szakaszok és félegyenesek gy szakasz felezőmerőlegese egy olyan egyenes, félegyenes vagy szakasz, ami áthalad a szakasz középpontján és merőleges a szakaszra. Tétel:

Részletesebben

Telepítő programok. Euklides 2.4 (Geometriai szerkesztőprogram) (A makrók megnyitásához szükséges!) Wingeom (Geometriai szerkesztőprogram)

Telepítő programok. Euklides 2.4 (Geometriai szerkesztőprogram) (A makrók megnyitásához szükséges!) Wingeom (Geometriai szerkesztőprogram) Telepítő programok Euklides 2.4 (Geometriai szerkesztőprogram) (A makrók megnyitásához szükséges!) Wingeom (Geometriai szerkesztőprogram) Súgó Menü Súgó Visszalépés a főmenübe Visszalépés a kiválasztott

Részletesebben

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 3. FELADATLAP Síkbeli egyenesek 1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az origón

Részletesebben

Hasonlóság. kísérleti feladatgyűjtemény POKG 2015. 10. osztályos matematika

Hasonlóság. kísérleti feladatgyűjtemény POKG 2015. 10. osztályos matematika Hasonlóság kísérleti feladatgyűjtemény 10. osztályos matematika POKG 2015. Hasonló háromszögek oldalaránya 0. Keressük meg az alábbi háromszögek összetartozó oldalpárjait és arányossággal számítsuk ki

Részletesebben

SZÓTÁRAK ÉS HASZNÁLÓIK

SZÓTÁRAK ÉS HASZNÁLÓIK SZÓTÁRAK ÉS HASZNÁLÓIK LEXIKOGRÁFIAI FÜZETEK 2. Szerkesztőbizottság BÁRDOSI VILMOS, FÁBIÁN ZSUZSANNA, GERSTNER KÁROLY, HESSKY REGINA, MAGAY TAMÁS (a szerkesztőbizottság vezetője), PRÓSZÉKY GÁBOR Tudományos

Részletesebben

Wolfhart Pannenberg METAFIZIKA ÉS ISTENGONDOLAT

Wolfhart Pannenberg METAFIZIKA ÉS ISTENGONDOLAT Wolfhart Pannenberg METAFIZIKA ÉS ISTENGONDOLAT Wolfhart Pannenberg METAFIZIKA ÉS ISTENGONDOLAT AKADÉMIAI KIADÓ, BUDAPEST Fordította GÁSPÁR CSABA LÁSZLÓ Lektorálta GÖRFÖL TIBOR ISBN Kiadja az Akadémiai

Részletesebben

54. Mit nevezünk rombusznak? A rombusz olyan négyszög,

54. Mit nevezünk rombusznak? A rombusz olyan négyszög, 52. Sorold fel a deltoid tulajdonságait! 53. Hogy számoljuk ki a deltoid területét? A deltoid egyik átlója a deltoid Átlói. A szimmetriaátló a másik átlót és a deltoid szögét. A szimmetriatengely két ellentétes

Részletesebben

Hatvány, gyök, normálalak

Hatvány, gyök, normálalak Hatvány, gyök, normálalak 1. Számítsd ki a következő hatványok pontos értékét! 3 5 3 3 1 4 3 3 4 1 7 3 3 75 100 3 0,8 ( ) 6 3 1 3 5 3 1 3 0 999. 3. Számológép használata nélkül számítsd ki a következő

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2

Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2 Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Két iskola tanulói műveltségi vetélkedőn vettek részt. A 100

Részletesebben

Geometria 1 normál szint

Geometria 1 normál szint Geometria 1 normál szint Naszódi Márton nmarci@math.elte.hu www.math.elte.hu/ nmarci ELTE TTK Geometriai Tsz. Budapest Geometria 1 p.1/4 Vizsga 1. Írásban, 90 perc. 2. Index nélkül nem lehet vizsgázni!

Részletesebben

Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok)

Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok) Hasonlósági transzformációk II. (Befogó -, magasság tétel; hasonló alakzatok) DEFINÍCIÓ: (Hasonló alakzatok) Két alakzat hasonló, ha van olyan hasonlósági transzformáció, amely az egyik alakzatot a másikba

Részletesebben

10. Síkgeometria. I. Elméleti összefoglaló. Szögek, nevezetes szögpárok

10. Síkgeometria. I. Elméleti összefoglaló. Szögek, nevezetes szögpárok 10. Síkgeometria I. Elméleti összefoglaló Szögek, nevezetes szögpárok Egy adott pontból kiinduló két félegyenes a síkot két részre bontja. Egy-egy ilyen rész neve szögtartomány, vagy szög. A két félegyenest

Részletesebben

BEVEZETÉS A SZÁMVITEL RENDSZERÉBE SZEMLÉLET ÉS MÓDSZERTAN

BEVEZETÉS A SZÁMVITEL RENDSZERÉBE SZEMLÉLET ÉS MÓDSZERTAN BEVEZETÉS A SZÁMVITEL RENDSZERÉBE SZEMLÉLET ÉS MÓDSZERTAN 1 KOROM ERIK ORMOS MIHÁLY VERESS ATTILA BEVEZETÉS A SZÁMVITEL RENDSZERÉBE SZEMLÉLET ÉS MÓDSZERTAN A AKADÉMIAI KIADÓ, BUDAPEST Lektorok: DR. MATUKOVICS

Részletesebben

Számv_00eleje 11/28/05 3:03 PM Page 1 BEVEZETÉS A SZÁMVITEL RENDSZERÉBE SZEMLÉLET ÉS MÓDSZERTAN

Számv_00eleje 11/28/05 3:03 PM Page 1 BEVEZETÉS A SZÁMVITEL RENDSZERÉBE SZEMLÉLET ÉS MÓDSZERTAN Számv_00eleje 11/28/05 3:03 PM Page 1 BEVEZETÉS A SZÁMVITEL RENDSZERÉBE SZEMLÉLET ÉS MÓDSZERTAN 1 Számv_00eleje 11/28/05 3:03 PM Page 2 Számv_00eleje 11/28/05 3:03 PM Page 3 KOROM ERIK ORMOS MIHÁLY VERESS

Részletesebben

A dohányszárítás elmélete és gyakorlata

A dohányszárítás elmélete és gyakorlata A dohányszárítás elmélete és gyakorlata A mezôgazdaság mûszaki fejlesztésének tudományos kérdései 92. Gondozza Az MTA Agrártudományok Osztálya Agrármûszaki Bizottsága Szerkesztô Sembery Péter egyetemi

Részletesebben

ÉLETREVALÓ fiataloknak

ÉLETREVALÓ fiataloknak ÉLETREVALÓ fiataloknak ÉLETREVALÓ fiataloknak Budapest, 2008 A könyv a Microsoft Magyarország felkérésére és finanszírozásával jött létre. Köszönjük Somogyi Edit tanárnô és Szabó Vince munkáját a Jedlik

Részletesebben

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804)

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804) Matematika A definíciókat és tételeket (bizonyítás nélkül) ki kell mondani, a tananyagrészekhez tartozó alap- és közepes nehézségű feladatokat kell tudni megoldani A javítóvizsga 60 -es írásbeliből áll.

Részletesebben

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel

Részletesebben

1. FELADAT: SZÁMÍTSD KI A KÖVETKEZŐ SZÁMKIFEJEZÉSEK ÉRTÉKEIT:

1. FELADAT: SZÁMÍTSD KI A KÖVETKEZŐ SZÁMKIFEJEZÉSEK ÉRTÉKEIT: 1. FELADAT: SZÁMÍTSD KI A KÖVETKEZŐ SZÁMKIFEJEZÉSEK ÉRTÉKEIT: a) ( 7) + ( 12) = 19 b) ( 24) + (+15) = 9 c) ( 5) + ( 27) = 32 d) (+19) + (+11) = +30 e) ( 7) ( 25) = +175 f) ( 5) (+14) = 70 g) ( 36) (+6)

Részletesebben

MATEMATIKA C 12. évfolyam 4. modul Még egyszer!

MATEMATIKA C 12. évfolyam 4. modul Még egyszer! MATEMATIKA C 1. évfolyam 4. modul Még egyszer! Készítette: Kovács Károlyné Matematika C 1. évfolyam 4. modul: Még eygszer! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok

Részletesebben

Tanmenetjavaslat. Téma Óraszám Tananyag Fogalmak Összefüggések Eszközök Kitekintés. Helyi érték, alaki érték. Számegyenes.

Tanmenetjavaslat. Téma Óraszám Tananyag Fogalmak Összefüggések Eszközök Kitekintés. Helyi érték, alaki érték. Számegyenes. Heti 4 óra esetén, 37 tanítási hétre összesen 148 óra áll rendelkezésre. A tanmenet 132 óra beosztását tartalmazza. Heti 5 óra esetén összesen 37-tel több órában dolgozhatunk. Ez összesen 185 óra. Itt

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 9 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

A 2006-2007. tanévi matematika OKTV I. kategória első (iskolai) fordulójának pontozási útmutatója

A 2006-2007. tanévi matematika OKTV I. kategória első (iskolai) fordulójának pontozási útmutatója SZAKKÖZÉPISKOLA A 006-007. tanévi matematika OKTV I. kategória első (iskolai) fordulójának pontozási útmutatója. Feladat: Egy számtani sorozat három egymást követő tagjához rendre 3-at, -et, 3-at adva

Részletesebben

12. Trigonometria I.

12. Trigonometria I. Trigonometria I I Elméleti összefoglaló Szögmérés A szög mérésének két gyakran használt módja van: fokban, illetve radiánban (ívmértékben) mérünk A teljesszög 0, ennek a 0-ad része az A szög nagyságát

Részletesebben

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA 1 SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 x 3 = 111 A tanmenet 101 óra beosztását tartalmazza. A dolgozatok írása és javítása 10 órát foglal

Részletesebben

Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint

Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint TÁMOP-3.1.4-08/-009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a szinusz- és koszinusztétel témaköréhez 11. osztály, középszint Vasvár, 010.

Részletesebben

Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek

Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek 2013. 11.19. Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek csoportosítása szögeik szerint (hegyes-,

Részletesebben

NAGY BÉLA * MAURITZ BÉLA

NAGY BÉLA * MAURITZ BÉLA NAGY BÉLA * MAURITZ BÉLA A MÚLT MAGYAR TUDÓSAI FÔSZERKESZTÔ SZABADVÁRY FERENC NAGY BÉLA MAURITZ BÉLA A AKADÉMIAI KIADÓ BUDAPEST Megjelent a Magyar Tudományos Akadémia támogatásával ISBN 978 963 05 8637

Részletesebben

Érettségi feladatok: Trigonometria 1 /6

Érettségi feladatok: Trigonometria 1 /6 Érettségi feladatok: Trigonometria 1 /6 2003. Próba 14. Egy hajó a Csendes-óceán egy szigetéről elindulva 40 perc alatt 24 km-t haladt észak felé, majd az eredeti haladási irányhoz képest 65 -ot nyugat

Részletesebben

TARTALOM. MATEMATIKA - MD Matematika oktatótablók 135 Geometriai oktatótablók 136 Táblai vonalzók 137 Geometria 138 Fóliamappák 139 141

TARTALOM. MATEMATIKA - MD Matematika oktatótablók 135 Geometriai oktatótablók 136 Táblai vonalzók 137 Geometria 138 Fóliamappák 139 141 TARTALOM MATEMATIKA - MD Matematika oktatótablók 135 Geometriai oktatótablók 136 Táblai vonalzók 137 Geometria 138 Fóliamappák 139 141 INFORMATIKA Informatikai falitablók 142 MATEMATIKAI OKTATÓTABLÓK 50

Részletesebben

15. Koordinátageometria

15. Koordinátageometria I. Elméleti összefoglaló Koordinátákkal adott vektorok 15. Koordinátageometria Ha a(a ; a ) és b(b ; b ) a sík két vektora, λ valós szám, akkor az a vektor hossza: a = a + a a két vektor összege : a +

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 01. 01. kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

Gondolat, vélemény a Hajdú matematika és Sokszínű Matematika tankönyvről. Sokszínű Matematika 9

Gondolat, vélemény a Hajdú matematika és Sokszínű Matematika tankönyvről. Sokszínű Matematika 9 Gondolat, vélemény a Hajdú matematika és Sokszínű Matematika tankönyvről Sokszínű Matematika 9 Szerzők : Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István Mozaik Kiadó - Szeged, 2003.

Részletesebben

Reményi Károly MEGÚJULÓ ENERGIÁK AKADÉMIAI KIADÓ, BUDAPEST

Reményi Károly MEGÚJULÓ ENERGIÁK AKADÉMIAI KIADÓ, BUDAPEST Megújuló energiák Reményi Károly MEGÚJULÓ ENERGIÁK AKADÉMIAI KIADÓ, BUDAPEST Megjelent a Magyar Tudományos Akadémia támogatásával ISBN 978 963 05 8458 6 Kiadja az Akadémiai Kiadó, az 1795-ben alapított

Részletesebben

Osztályozó és Javító vizsga témakörei matematikából 9. osztály

Osztályozó és Javító vizsga témakörei matematikából 9. osztály Osztályozó és Javító vizsga témakörei matematikából 9. osztály 1. félév 1. Kombinatorika, halmazok Számoljuk össze! Összeszámlálási feladatok Matematikai logika Halmazok Halmazműveletek Halmazok elemszáma,

Részletesebben

Matematika tanmenet 10. osztály (heti 3 óra) A gyökvonás 14 óra

Matematika tanmenet 10. osztály (heti 3 óra) A gyökvonás 14 óra Matematika tanmenet 10. osztály (heti 3 óra) Tankönyv: Ábrahám Gábor Dr. Kosztolányiné Nagy Erzsébet Tóth Julianna: Matematika 10. Példatárak: Fuksz Éva Riener Ferenc: É rettségi feladatgyűjtemény matematikából

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Koordinátageometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Koordinátageometria ) MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Koordinátageometria A szürkített hátterű feladatrzek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

Próbaérettségi feladatsor_a NÉV: osztály Elért pont:

Próbaérettségi feladatsor_a NÉV: osztály Elért pont: Próbaérettségi feladatsor_a NÉV: osztály Elért pont: I. rész A feladatsor 1 példából áll, a megoldásokkal maximum 30 pont szerezhető. A kidolgozásra 45 perc fordítható. 1. feladat Egy osztály tanulói a

Részletesebben

= 3 és az y = 1 egyenletű egyenesek metszéspontjának (M)

= 3 és az y = 1 egyenletű egyenesek metszéspontjának (M) Matematika PRÉ megoldókulcs 04. január 8. MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT I. rész: Az alábbi feladat megoldása kötelező volt! ) Adja meg az x+ y = 3 és az y = egyenletű egyenesek metszéspontjának

Részletesebben

Innovacio_negyedik.qxd 2007.04.16. 16:45 Page 1 INNOVÁCIÓMENEDZSMENT A GYAKORLATBAN

Innovacio_negyedik.qxd 2007.04.16. 16:45 Page 1 INNOVÁCIÓMENEDZSMENT A GYAKORLATBAN Innovacio_negyedik.qxd 2007.04.16. 16:45 Page 1 INNOVÁCIÓMENEDZSMENT A GYAKORLATBAN Innovacio_negyedik.qxd 2007.04.16. 16:45 Page 2 Innovacio_negyedik.qxd 2007.04.16. 16:45 Page 3 INNOVÁCIÓMENEDZSMENT

Részletesebben

Add meg az összeadásban szereplő számok elnevezéseit!

Add meg az összeadásban szereplő számok elnevezéseit! 1. 2. 3. 4. Add meg az összeadásban szereplő számok elnevezéseit! Add meg a kivonásban szereplő számok elnevezéseit! Add meg a szorzásban szereplő számok elnevezéseit! Add meg az osztásban szereplő számok

Részletesebben

SZERKESZTÉS SZÁMÍTÓGÉPPEL

SZERKESZTÉS SZÁMÍTÓGÉPPEL SZERKESZTÉS SZÁMÍTÓGÉPPEL Ha már ismerjük a szerkesztés szabályait, és ezeket a gyakorlatban is jól tudjuk alkalmazni, akkor érdemes megismerkedni a számítógépes lehetőségekkel. Így olyan eszköz áll rendelkezésünkre,

Részletesebben

Érettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél

Érettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél Emelt szintű matematika érettségi előkészítő 11. évfolyam Tematikai egység/fejlesztési cél Órakeret 72 óra Kötelező Szabad Összesen 1. Gondolkodási módszerek Halmazok, matematikai logika, kombinatorika,

Részletesebben

Az osztályozó vizsgák tematikája matematikából

Az osztályozó vizsgák tematikája matematikából Az osztályozó vizsgák tematikája matematikából Matematikából osztályozó vizsgára kötelezhető az a tanuló, aki magántanuló, vagy akinek a hiányzása eléri az össz óraszám 30%-át. Az írásbeli vizsga időtartama

Részletesebben

Ez az oktatói munka több évtizedes előzményekre épül.

Ez az oktatói munka több évtizedes előzményekre épül. 2010.04.23. 12:55 -- www.baranyi.hu/fizika főoldalra html file - 1 - Kedves Középiskolás Diákok! Kedves Középiskolai Fizikatanárok! A fizika tudományával való ismerkedésre, a fizika tanulására nyílik itt

Részletesebben

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer)

A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) A lehetetlenségre visszavezetés módszere (A reductio ad absurdum módszer) Ezt a módszert akkor alkalmazzuk, amikor könnyebb bizonyítani egy állítás ellentettjét, mintsem az állítást direktben. Ez a módszer

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 091 ÉRETTSÉGI VIZSGA 011. május 3. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

Kommunikációs gyakorlatok

Kommunikációs gyakorlatok Kommunikációs gyakorlatok K á r o l i J e g y z e t e k Sólyom Réka Kommunikációs gyakorlatok Kari jegyzet a Kommunikációs gyakorlatok című tárgy oktatásához és az Anyanyelvi kritériumvizsgához Lektor:

Részletesebben

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez TANMENETJAVASLAT Dr. Korányi Erzsébet MATEMATIKA tankönyv ötödikeseknek címû tankönyvéhez A heti 3 óra, évi 111 óra B heti 4 óra, évi 148 óra Javaslat témazáró dolgozatra: Dr. Korányi Erzsébet: Matematika

Részletesebben

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2 Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését

Részletesebben

Dr. Körmendi Lajos Dr. Pucsek József LOGISZTIKA PÉLDATÁR

Dr. Körmendi Lajos Dr. Pucsek József LOGISZTIKA PÉLDATÁR Dr. Körmendi Lajos Dr. Pucsek József LOGISZTIKA PÉLDATÁR Budapest, 2009 Szerzők: Dr. Körmendi Lajos (1.-4. és 6. fejezetek) Dr. Pucsek József (5. fejezet) Lektorálta: Dr. Bíró Tibor ISBN 978 963 638 291

Részletesebben

Feladatok MATEMATIKÁBÓL II.

Feladatok MATEMATIKÁBÓL II. Feladatok MATEMATIKÁBÓL a 12. évfolyam számára II. 1. Alakítsuk át a következő kifejezéseket úgy, hogy teljes négyzetek jelenjenek meg: a) x 2 2x + b) x 2 6x + 10 c) x 2 + x + 1 d) x 2 12x + 11 e) 2x 2

Részletesebben

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA A TÁMOP 3.1.4. EU-s pályázat megvalósításához a matematika (9. b/fizika) tárgy tanmenete a matematika kompetenciaterület A típusú

Részletesebben

ADÓK ÉS TÁMOGATÁSOK ALAPJAI

ADÓK ÉS TÁMOGATÁSOK ALAPJAI ADÓK ÉS TÁMOGATÁSOK ALAPJAI Budapest, 2007 Szerzők: Burján Ákos Dr. Szebellédi István Sztanó Imréné dr. Dr. Tóth József Szerkesztő: Sztanó Imréné dr. Lektor: Dr. Bokor Pál ISBN 978 963 638 246 9 Kiadja

Részletesebben

Az osztályozóvizsgák követelményrendszere MATEMATIKA

Az osztályozóvizsgák követelményrendszere MATEMATIKA Az osztályozóvizsgák követelményrendszere MATEMATIKA 1. Számok, számhalmazok A 9. évfolyam során feldolgozásra kerülő témakörök: A nyelvi előkészítő és a két tanítási nyelvű osztályok tananyaga: A számfogalom

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

A hiperbolikus síkgeometria Poincaré-féle körmodellje

A hiperbolikus síkgeometria Poincaré-féle körmodellje A hiperbolikus síkgeometria Poincaré-féle körmodellje Ha egy aiómarendszerre modellt adunk, az azt jelenti, hogy egy matematikai rendszerben interpretáljuk az aiómarendszer alapfogalmait és az aiómák a

Részletesebben

Mongol játékok és versenyek

Mongol játékok és versenyek Mongol játékok és versenyek Kôrösi Csoma Kiskönyvtár 27. Szerkeszti: Ivanics Mária Mongol játékok és versenyek Szerkesztette: Birtalan Ágnes A Akadémiai Kiadó, Budapest Megjelent a mongol állam megalapításának

Részletesebben

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból

Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 9. évfolyam I. Halmazok 1. Alapfogalmak, jelölések 2. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 3. Nevezetes számhalmazok (N,

Részletesebben

I. Síkgeometriai alapfogalmak, szögek, szögpárok

I. Síkgeometriai alapfogalmak, szögek, szögpárok 15. modul: SÍKIDOMOK 7 I. Síkgeometriai alapfogalmak, szögek, szögpárok Módszertani megjegyzés: A jelen modult többnyire kibővített ismétlésnek szántuk, és fő célja az alapfogalmak és az alapismeretek

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai

Az Országos Középiskolai Tanulmányi Verseny 2006-2007. tanévi első fordulójának feladatmegoldásai Az Országos Középiskolai Tanulmányi Verseny 006-007. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Melyek azok a pozitív egészek, amelyeknek pontosan négy pozitív

Részletesebben

Németh László Matematikaverseny, Hódmezővásárhely. 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa

Németh László Matematikaverseny, Hódmezővásárhely. 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa Németh László Matematikaverseny, Hódmezővásárhely 2015. március 30. A 11-12. osztályosok feladatainak javítókulcsa Feladatok csak szakközépiskolásoknak Sz 1. A C csúcs értelemszerűen az AB oldal felező

Részletesebben

PRÓBAÉRETTSÉGI FELADATSOR : MATEMATIKA, EMELT SZINT

PRÓBAÉRETTSÉGI FELADATSOR : MATEMATIKA, EMELT SZINT 1. FELADATSOR Felhasználható idő: 40 perc I. rész 1.1.) Oldja meg grafikusan az alábbi egyenlőtlenséget! x + 1 + 1 x + x + 11 1..) Mekkora legyen az x valós szám értéke, hogy az alábbi három mennyiség

Részletesebben

Kutyagondolatok nyomában

Kutyagondolatok nyomában Kutyagondolatok nyomában Gyorsuló tudomány Sorozatszerkesztõ: Szívós Mihály A sorozat kötetei: Pataki Béla: A technológia menedzselése (2005) Máté András: Magyar matematikusok és a filozófia (elõkészületben)

Részletesebben

9-10. évfolyam felnőttképzés Heti óraszám: 3 óra

9-10. évfolyam felnőttképzés Heti óraszám: 3 óra 9-10. évfolyam felnőttképzés Heti óraszám: 3 óra Fejlesztési cél/ kompetencia lehetőségei: Gondolkodási képességek: rendszerezés, kombinativitás, deduktív következtetés, valószínűségi Tudásszerző képességek:

Részletesebben

Exponenciális és logaritmusos kifejezések, egyenletek

Exponenciális és logaritmusos kifejezések, egyenletek Gyaorló feladato Eponenciális és logaritmusos ifejezése, egyenlete. Hatványozási azonosságo. Számítsd i a övetező hatványo pontos értéét! g) b) c) d) 7 e) f) 9 0, 9 h) 0, 6 i) 0,7 j), 6 ), l). A övetező

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 131 ÉRETTSÉGI VIZSGA 013. október 15. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

Az osztályozóvizsgák követelményrendszere 9. évfolyam

Az osztályozóvizsgák követelményrendszere 9. évfolyam Az osztályozóvizsgák követelményrendszere 9. évfolyam Kombinatorika, halmazok Összeszámlálási feladatok Halmazok, halmazműveletek, halmazok elemszáma Logikai szita Számegyenesek intervallumok Algebra és

Részletesebben

Matematika PRÉ megoldókulcs 2013. január 19. MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT

Matematika PRÉ megoldókulcs 2013. január 19. MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT Matematika PRÉ megoldókulcs 013. január 19. MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT I. rész: Az alábbi 1 feladat megoldása kötelező volt! 1) Adott A( 1; 3 ) és B( ; ) 7 9 pont. Határozza meg

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2015. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2015. május 5. 8:00 I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Matematika középszint

Részletesebben

XXIII. ERDÉLYI MAGYAR MATEMATIKAVERSENY

XXIII. ERDÉLYI MAGYAR MATEMATIKAVERSENY ANDRÁS SZILÁRD CSAPÓ HAJNALKA KOVÁCS BÉLA NAGY ÖRS BENCZE MIHÁLY DÁVID GÉZA MÉSZÁR JULIANNA SZILÁGYI JUDIT XXIII. ERDÉLYI MAGYAR MATEMATIKAVERSENY Arany János Elméleti Líceum Nagyszalonta Feladatok és

Részletesebben

MATEMATIKA C 6. évfolyam 2. modul TANGRAMOK

MATEMATIKA C 6. évfolyam 2. modul TANGRAMOK MATEMATIKA C 6. évfolyam 2. modul TANGRAMOK Készítette: Köves Gabriella MATEMATIKA C 6. ÉVFOLYAM 2. MODUL: TANGRAMOK TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott korosztály A képességfejlesztés fókuszai

Részletesebben

Mértan O.I. Globin, O.P. Vasulenko, A.V. Kozakivszka

Mértan O.I. Globin, O.P. Vasulenko, A.V. Kozakivszka MAGYARÁZAT Az ajánlott Mértan 0 osztály feladatgyűjtemény a középiskolák 0-es tanulóinak általános iskolai tudásszintjének felmérését szolgálja. A felmérés célja a tízedikes tanulók általános iskolában

Részletesebben

FELADATOK ÉS MEGOLDÁSOK

FELADATOK ÉS MEGOLDÁSOK 3. osztály A mellékelt ábrán két egymás melletti mező számának összege mindig a közvetlen felettük lévő mezőben szerepel. Fejtsétek meg a hiányzó számokat! 96 23 24 17 A baloldali három mezőbe tartozó

Részletesebben

Matematika az építészetben

Matematika az építészetben Matematika az építészetben Molnár-Sáska Katalin Főisk.docens YMÉK Bevezetés - Történeti áttekintés - A geometria helye a főiskolai képzésben - Újraindítás és körülményei Részletes tanmenet Megjegyzések:

Részletesebben

MATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, 2014. szeptember

MATEMATIKA TANMENET. 9. osztály. 4 óra/hét. Budapest, 2014. szeptember MATEMATIKA TANMENET 9. osztály 4 óra/hét Budapest, 2014. szeptember 2 Évi óraszám: 144 óra Heti óraszám: 4 óra Ismerkedés, év elejei feladatok, szintfelmérő írása 2 óra I. Kombinatorika, halmazok 13 óra

Részletesebben

Hírek Újdonságok Mintaoldalak www.olvas.hu

Hírek Újdonságok Mintaoldalak www.olvas.hu Katalógus Bı ológı ológı a Fı zı zı ka Földra z Kémı a Hogy biztos legyen... Hírek Újdonságok Mintaoldalak www.olvas.hu 1 Bán Sándor, Barta Ágnes: 8 próbaérettségi biológiából (középszint) Csiszár Imre,

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 11 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

Geometria Négyzet, téglalap tulajdonságai A kerület fogalom kialakítása; síkidomok kerületének meghatározása méréssel, számítással

Geometria Négyzet, téglalap tulajdonságai A kerület fogalom kialakítása; síkidomok kerületének meghatározása méréssel, számítással Geometria Négyzet, téglalap tulajdonságai A kerület fogalom kialakítása; síkidomok kerületének meghatározása méréssel, számítással Ismeretek, tananyagtartalmak Négyzet, téglalap tulajdonságai A kerület

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 080 ÉRETTSÉGI VIZSGA 009. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos tudnivalók Formai előírások:

Részletesebben

MATEMATIKA ÉRETTSÉGI 2011. május 3. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI 2011. május 3. KÖZÉPSZINT MATMATIKA ÉRTTSÉGI 011. május 3. KÖZÉPSZINT 1) gyszerűsítse a következő törtet, ahol b 6 b b 36 6 I. Az egyszerűsítés utáni alak: b 6 Összesen: pont ) A, 4 és 5 számjegyek mindegyikének felhasználásával

Részletesebben

M/D/13. Szorozzuk meg az egyenlet mindkét oldalát a közös nevezővel, 12-vel; így a következő egyenlethez jutunk: = 24

M/D/13. Szorozzuk meg az egyenlet mindkét oldalát a közös nevezővel, 12-vel; így a következő egyenlethez jutunk: = 24 OKTATÁSI MINISZTÉRIUM M/D/13 Dolgozók gimnáziuma Dolgozók szakközépiskolája Szakmunkások szakközépiskolája intenzív tagozat) 003. május ) Határozza meg a következő egyenlet racionális gyökét! 1 3 4 + 5

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 11 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Emelt

Részletesebben

MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 1I. PRÓBAÉRETTSÉGI FELADATSOR

MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 1I. PRÓBAÉRETTSÉGI FELADATSOR MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 1I PRÓBAÉRETTSÉGI FELADATSOR EGYENES ÚT AZ EGYETEMRE 11 FELADATSOR 11 FELADATSOR I rész Felhasználható idő: 45 perc 6x 1 111) Melyik állítás igaz az alábbi egyenlet

Részletesebben

Matematikai tehetséggondozás Heves megyében Bíró Bálint, Eger

Matematikai tehetséggondozás Heves megyében Bíró Bálint, Eger Matematikai tehetséggondozás Heves megyében Bíró Bálint, Eger 1. Bevezetés: A matematikai tehetséggondozás egyik alapja a tehetségek felkutatása. Ahhoz pedig, hogy matematikai tehetségeket találjunk, olyan

Részletesebben

te+amatek Te +a matek Országos Matematika Verseny

te+amatek Te +a matek Országos Matematika Verseny Te +a matek A verseny szervezői Általános és középiskolai matematikatanárok, a Rákoscsabai Jókai Mór Református Általános Iskola és az Oktatási Hivatal segítségével az idei évben első alkalommal rendezik

Részletesebben

Érettségi feladatok: Halmazok, logika

Érettségi feladatok: Halmazok, logika Érettségi feladatok: Halmazok, logika 2005. május 10 18. Egy rejtvényújságban egymás mellett két, szinte azonos rajz található, amelyek között 23 apró eltérés van. Ezek megtalálása a feladat. Először Ádám

Részletesebben

6. OSZTÁLY. Az évi munka szervezése, az érdeklõdés felkeltése Feladatok a 6. osztály anyagából. Halmazok Ismétlés (halmaz megadása, részhalmaz)

6. OSZTÁLY. Az évi munka szervezése, az érdeklõdés felkeltése Feladatok a 6. osztály anyagából. Halmazok Ismétlés (halmaz megadása, részhalmaz) 6. OSZTÁLY Óraszám 1. 1. Az évi munka szervezése, az érdeklõdés felkeltése a 6. osztály anyagából Tk. 13/elsõ mintapélda 42/69 70. 96/elsõ mintapélda 202/16. 218/69. 2 3. 2 3. Halmazok Ismétlés (halmaz

Részletesebben

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2010. október 19. 8:00. Az írásbeli vizsga időtartama: 240 perc

Azonosító jel: MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA. 2010. október 19. 8:00. Az írásbeli vizsga időtartama: 240 perc ÉRETTSÉGI VIZSGA 2010. október 19. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI VIZSGA 2010. október 19. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS MINISZTÉRIUM

Részletesebben

Matematika tanmenet, 9. osztály (heti 4 óra) Halmazok, műveletek racionális számok között 12 óra. Az n elemű halmaz részhalmazainak száma

Matematika tanmenet, 9. osztály (heti 4 óra) Halmazok, műveletek racionális számok között 12 óra. Az n elemű halmaz részhalmazainak száma Matematika tanmenet, 9. osztály (heti 4 óra) Tankönyv: Ábrahám Gábor Dr. Kosztolányiné Nagy Erzsébet Tóth Julianna: Matematika 9. Példatárak: É rettségi feladatgyűjtemény matematikából I. Érettségi feladatgyűjtemény

Részletesebben

Ismétlő feladatsor: 10.A/I.

Ismétlő feladatsor: 10.A/I. Ismétlő feladatsor: 0.A/I. Harasztos Barnabás 205. január. Feladat Mekkora az alábbi ábrán (szürkével) jelölt síkidom összterülete? A terület egységének a négyzetrács egy négyzetének területét tekintjük!

Részletesebben

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2008. május 06. KÖZÉPSZINT I. 1) Adja meg a Például: 1 ; 8 8 M 1 ; 10 5 MATEMATIKA ÉRETTSÉGI 008. május 06. KÖZÉPSZINT I. nyílt intervallum két különböző elemét! ( pont) ( pont) ) Egy 7-tagú társaságban mindenki mindenkivel egyszer

Részletesebben

Szakértelem a jövő záloga

Szakértelem a jövő záloga 1211 Budapest, Posztógyár út. LEKTORI VÉLEMÉNY Moduláris tananyagfejlesztés Modul száma, megnevezése: Szerző neve: Lektor neve: Imagine Logo programozás Babos Gábor Újváry Angelika, Szabó Imre Sorszám

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A, 9.D. OSZTÁLY HETI 4 ÓRA 37 HÉT ÖSSZ: 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító ME-III.1./1 2 Azonosító: Változatszám : Érvényesség kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK-DC-2013 2013. 09. 01. MATEMATIKA

Részletesebben

Erdősné Németh Ágnes. Batthyány Lajos Gimnázium Nagykanizsa. agi@microprof.hu. INFO SAVARIA 2010. április 23. Erdősné Németh Ágnes, Nagykanizsa 1

Erdősné Németh Ágnes. Batthyány Lajos Gimnázium Nagykanizsa. agi@microprof.hu. INFO SAVARIA 2010. április 23. Erdősné Németh Ágnes, Nagykanizsa 1 Parkettázás s szabályos sokszögekkel Erdősné Németh Ágnes Batthyány Lajos Gimnázium Nagykanizsa agi@microprof.hu INFO SAVARIA 2010. április 23. Erdősné Németh Ágnes, Nagykanizsa 1 LOGO versenyfeladatok

Részletesebben