VEGYIPARI MŰVELETTAN JEGYZET CSÉFALVAY EDIT MIKA LÁSZLÓ TAMÁS

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "VEGYIPARI MŰVELETTAN JEGYZET CSÉFALVAY EDIT MIKA LÁSZLÓ TAMÁS"

Átírás

1 VEGYIPRI MŰVELETTN JEGYZET CSÉFLVY EDIT MIK LÁSZLÓ TMÁS ELTE KÉMII INTÉZET BUDPEST 8

2 Művelettan és folyamatrányítás specáls kollégum BEVEZETÉS... 5 VEGYIPRI ÉS VELE ROKONIPRI MŰVELETEK CSOPORTOSÍTÁS MŰVELETI EGYSÉG MŰVELETI EGYSÉGEK CSOPORTOSÍTÁS MŰVELETI EGYSÉGEK MTEMTIKI LEÍRÁS TRNSZPORTFOLYMTOK ÉS Z ÁRM FOGLM Konvektív áram, áramsűrűség Vezetéses áram, áramsűrűség z átadás áram Források és a lokáls megváltozás MÉRLEGEK ÁLTLÁNOS LKJ, BENEDEK LÁSZLÓ EGYENLET z általános komponensmérleg z általános hőmérleg z általános mpulzusmérleg (lásd még 5.) Z ÁTDÁSI TG ÁLTLÁNOSBB ÉRTELMEZÉSE, MUNKVONL FOGLM Egyenáramú kétfázsú művelet egység leírása komponensre, staconárus, zoterm kéma reakcót nem tartalmazó rendszerben Ellenáramú kétfázsú művelet egység leírása komponensre, staconárus, zoterm kéma reakcót nem tartalmazó rendszerben ÁRMOK ÉS ÁRMSŰRŰSÉGEK ÖSSZEFOGLLÁS Z ÁRMLÁSTN LPJI FOLYTONOSSÁGI TÉTEL NVIER STOKES TÉTEL EGYSZERŰSÍTETT MÉRLEGEGYENLETEK, Z EULER- ÉS BERNOULLI-EGYENLET BERNOULLI-EGYENLET LKLMZÁS, Z ÁRMLÁS SEBESSÉGÉNEK MÉRÉSE REOLÓGII LPFOGLMK Z ÁRMLÁSOK JELLEGE Lamnárs áramlás Turbulens áramlás HGEN-POISEUILLE-EGYENLETET LKLMZÁS, CSŐVEZETÉKEK VESZTESÉGMGSSÁG FLUIDIZÁCIÓ KÉMII REKTOROK KÉMII REKTOROK CSOPORTOSÍTÁS REKTOROK MŰKÖDÉSÉT BEFOLYÁSOLÓ FŐBB TÉNYEZŐK Z EGYES REKTORTÍPUSOK MTEMTIKI LEÍRÁS Homogén, szakaszos zoterm üstreaktor, elsőrendű reakcó Homogén, folyamatos zoterm üstreaktor, elsőrendű reakcó Folyamatos staconárus csőreaktor, elsőrendű reakcó Folyamatos staconárus reaktorkaszkád, elsőrendű reakcó dabatkus reaktorok elsőrendű reakcó esetén REKTOROK KIVÁLSZTÁS ÉS TERVEZÉSE REKTOROK KIVÁLSZTÁS REKTOROK TERVEZÉSE REKTOROK GYKORLTBN DESZTILLÁCIÓ GŐZ- FOLYDÉK EGYENSÚLYOK BINER ELEGY SZKSZOS DESZTILLÁCIÓJ BINER ELEGY FOLYMTOS DESZTILLÁCIÓJ MOLEKULÁRIS DESZTILLÁCIÓ VÍZGŐZDESZTILLÁCIÓ LBORTÓRIUMI DESZTILLÁCIÓS BERENDEZÉSEK REKTIFIKÁCIÓ NYGÁRMOK, MUNKVONLK... 49

3 Művelettan és folyamatrányítás specáls kollégum 3 8. Z ELMÉLETI TÁNYÉRSZÁM MEGHTÁROZÁS MCCBE THIELE MÓDSZERREL MINIMÁLIS ÉS MXIMÁLIS REFLUX- ÉS VISSZFORRLÁSI RÁNY OPTIMÁLIS REFLUX- ÉS VISSZFORRLÁSI RÁNY TÖBBKOMPONENSŰ REKTIFIKÁCIÓ, REKTIFIKÁLÓOSZLOPOK KPCSOLÁSI SORRENDJE FOLYMTOS REKTIFIKÁCIÓ TÖLTETES OSZLOPBN KŐOLJIPRI DESZTILLÁLÓ ÜZEMEK REKTIFIKÁLÓBERENDEZÉSEK FELÉPÍTÉSE ÉS SZERKEZETI ELEMEI EXTRKCIÓ LPELVEK, CSOPORTOSÍTÁS FOLYDÉK-FOLYDÉK EXTRKCIÓ Folyadék-folyadék etrakcó egyensúly vszonya Keverő-ülepítő etraktorok Egyfokozatú etrakcó Többfokozatú F-F etrakcó fokozatonként frss oldószerrel Többfokozatú folyamatos ellenáramú etrakcó z etrakcó számítása Keverő-ülepítő etraktorok hatásossága SZILÁRD FOLYDÉK EXTRKCIÓ Szlárd Folyadék etrakcó fzka oldással szlárd-folyadék etrakcós folyamat tervezés szempontja és lépése Szlárd folyadék etrakcó kéma reakcóval Szlárd folyadék etrakcó szuperkrtkus körülmények között (SCE) BSZORPCIÓ DESZORPCIÓ KOMPONENSÁTDÁS KÉTFILM ELMÉLETE (LEWIS WHITMN FÉLE KÉTFILM MODELL) Kétflm elmélet fzka abszorpcóra Kétflm elmélet gen gyors kéma reakcó esetén EGY- ÉS TÖBBFOKOZTÚ BSZORPCIÓS EGYENSÚLYI EGYSÉGEK ELLENÁRMÚ IZOTERM BSZORPCIÓ, DESZORPCIÓ BSZORBER DESZORBER RENDSZEREK Oldószer-regenerálás... 9 DSZORPCIÓ DSZORBENSEK DSZORPCIÓS EGYENSÚLYOK DSZORPCIÓS KINETIK Z EGYENSÚLYI DSZORPCIÓ ÉS MODELLJE ÉS NLITIKUS MEGOLDÁS PS (PRESSURE SWING DSORPTION)... HŐTNI LPISMERETEK ÉS MŰVELETEK.... HŐVEZETÉS Staconárus hővezetés sík és hengeres falon keresztül Hengeres falon végbemenő staconárus hővezetés KONVEKTÍV HŐÁTDÁS HTÁRRÉTEG- VGY FILMELMÉLET HŐÁTBOCSÁTÁS HŐSUGÁRZÁS HŐCSERE HŐKÖZVETÍTŐ KÖZEGEK HŐCSERÉLŐK ÁTTEKINTÉSE HŐCSERÉLŐK TEM SZERINTI OSZTÁLYOZÁSI RENDSZERE.... LKLMZOTT HŐCSERÉLŐK.... HŰTŐTORNYOK.... BEPÁRLÁS MEMBRÁNSZEPRÁCIÓ MEMBRÁNOK OSZTÁLYOZÁS Osztályozás a membrán anyaga és halmazállapota szernt Osztályozás a membrán előállítás módja szernt MEMBRÁNSZŰRÉS LKLMZÁSÁNK TRTOMÁNY... 9

4 Művelettan és folyamatrányítás specáls kollégum MEMBRÁN SZEPRÁCIÓ MÓDJI MEMBRÁNMŰVELETEKKEL KPCSOLTOS LPFOGLMK MEMBRÁNMODULOK KILKÍTÁS: MEMBRÁN SZEPRÁCIÓ IPRI LKLMZÁSI: SZŰRÉS ÜLEPÍTÉS CENTRIFUGÁLÁS POR ÉS CSEPPLEVÁLSZTÁS GÁZTISZTÍTÁS PORTLNÍTÁSI FOK PORLEVÁLSZTÓ KÉSZÜLÉKEK CSEPPFOGÓK ÉS CSEPPLEVÁLSZTÓK KOMBINÁLT MŰVELETEK GŐZ-FOLYDÉK EGYENSÚLYOK ÉS Z ZEOTRÓPI JELENSÉGE ZEOTRÓP VGY KIS ILLÉKONYSÁGÚ ELEGYEK SZÉTVÁLSZTÁS Kétnyomásos rektfkálás Etraktív desztllácó zeotróp desztllácó EGYÉB IPRI PÉLDELJÁRÁSOK KRISTÁYLOSÍTÁS OLDTBÓL TÖRTÉNŐ KRISTÁLYOSÍTÁS Készülékek OLVDÉKBÓL TÖRTÉNŐ KRISTÁLYOSÍTÁS SZÁRÍTÁS SZÁRÍTÓBERENDEZÉSEK CSOPORTOSÍTÁS KEVERÉS KEVERŐTÍPUSOK... 6

5 Művelettan és folyamatrányítás specáls kollégum 5 BEVEZETÉS vegypar művelettan a kéma technológával összevetve: Vegypar Termelés Mestersége (Chemcal Engneerng) Kéma Technológa Mlyen módon lehet egy terméket nyersanyag(ok)ból előállítan? Horzontáls leírás. Technológán belül készülékek (Unt Operaton) Megfelelő sorrend (Flowchart) Vegypar Művelettan Gépek, készülékek, berendezések gyártás technológától független elmélete. Vertkáls leírás. Gazdaság és társadalm vonatkozások (bztonság, megbízhatóság, környezetvédelem ) Kapcsolódó egyéb főbb tudományterületek: Bztonságtechnka Folyamattervezés és rányítástechnka Energetka stb.. ábra VEGYIPRI ÉS VELE ROKONIPRI MŰVELETEK CSOPORTOSÍTÁS Hdrodnamka műveletek (folyadékok és gázok mozgatása) Folyadékok és gázok áramlása csőben, készülékben és szemcsehalmazon. Ülepítés, szűrés, centrfugálás, flotálás, fludzácó és folyadékok keverése. Hőátadás műveletek (hőterjedés és hőátadás) Melegítés, hűtés, kondenzácó, hőcsere, bepárlás. nyagátadás (komponensátadás) műveletek Egyensúly műveletek: desztllácó és rektfkácó, abszorpcó, etrakcó, adszorpcó, szárítás és krstályosítás. Nemegyensúly elválasztás műveletek: membránszűrés, mkro- és ultraszűrés, fordított (reverz) ozmózs, pervaporácó, dalízs és elektrodalízs. Mechanka műveletek Szlárd anyagok előkészítése és szlárd végtermékek megmunkálása. Szlárd darabos és por alakú anyagok előkészítése: aprítás, fajtázás, osztályozás, granulálás és szlárd anyagok keverése.

6 Művelettan és folyamatrányítás specáls kollégum 6 3 MŰVELETI EGYSÉG művelettan alapvető fogalma a művelet egység (unt operaton), melynek alapján a vegypar eljárások széles köre jól defnált, vszonylag kevés számú alapműveletből összeállítható. Első közelítésben azt mondhatjuk, hogy az elv folyamatábrákon található egyszerű készülékszmbólumok általában egy-egy műveletet képvselnek (kolonna: desztllácó, reaktor: reagáltatás, szűrő: szűrés, kondenzátor: gőz-folyadék fázsátalakulás, stb.). készülékek a legtöbb esetben művelet egységeknek teknthetőek, de nem mnden esetben azonosak annak fogalmával. Előfordulhat, hogy az elv folyamatábrán a művelet egység nem szerepel készülékként (pl. elágazás), vagy több, egyszerű művelet egység alkot egy készüléket (pl. reaktorkaszkád vagy rektfkálóoszlop). 3. művelet egységek csoportosítása bennük végbemenő transzportfolyamatok alapján: Mechankus: Impulzustranszport (szűrés, aprítás, centrfugálás ) Termkus: Entalpaváltozás (bepárlás, hűtés, hőcsere ) Dffúzós műveletek: komponenstranszport (komponensszétválasztás műveletek ) Fázsérntkeztetés alapján: Gőz folyadék: desztllácó, rektfkácó Gáz folyadék: abszorpcó, deszorpcó Folyadék folyadék: etrakcó Folyadék szlárd: etrakcó, adszorpcó, oncsere Szlárd folyadék gőz: nedvesítés, szárítás Folyadék szlárd folyadék: membránszeparácó, dalízs Üzemvtel szernt: szakaszos, folyamatos szakaszos egység: Időben perodkusan smétlődő részműveletekből áll.. Kndulás anyag adagolása.. Művelet elvégzése vagy folyamat levezetése. 3. Készülék vagy gép ürítése. 4. Tsztítás Műveletek Reakcó levezetése Készülék töltése ürítése tsztítása 3. ábra Idő

7 Művelettan és folyamatrányítás specáls kollégum 7 c c j c k = Folyamatos egység: a betáplálás és a termékek elvezetése folyamatos. + Csőreaktor esetén: h = H Dugószerű áramlás esetén: B c y z k B c k H Γ z t Γ = y = Staconárus esetben: Γ t t j 3. ábra h Γ: ntenzív (térfogatfüggetlen) állapotjelző (pl.: T, p, c) kéma reakcó: + j = k + Üstreaktor esetén: j c c j...3 c k = áll. k Tökéletes keveredés esetén: Γ Γ Γ = = = t y z t Staconárus esetben: Γ = t,y, z t Γ: ntenzív (térfogatfüggetlen) állapotjelző (.) (.) c k = c = áll. c j = áll. D 3.3 ábra Fázsérntkeztetés módja szernt: ntegráls, dfferencáls Integráls, ha Γ ntenzív állapotjelző: Γ t Γ = y t Γ = z t = (.3) Dfferencáls, ha a fent parcáls derváltak nullától különböznek. Időben vselkedés szernt: staconárus és nstaconárus Staconárus esetben az ntenzív paraméterek eloszlása dőtől független, nstaconárus esetben pedg függ az dőtől. Fázsok száma szernt: egyfázsú, többfázsú (homogén, heterogén) Áramlás rány szernt: egyenáramú, ellenáramú, keresztáramú Hőtan szempontból: zoterm, adabatkus, poltrop

8 Művelettan és folyamatrányítás specáls kollégum 8 Energafelhasználás szernt: mechanka, termkus, kéma (elektrokéma) Egyensúly, nem egyensúly Egyensúly egységnek nevezzük a művelet egység azon részét, melyből a távozó fázsok egymással termodnamka egyensúlyban vannak, vagys a fázsokban a hőmérséklet, a nyomás és a komponensek kéma potencálja egyenlő. Gázfázs Folyadékfázs Egyensúly egység 3.4 ábra 4 MŰVELETI EGYSÉGEK MTEMTIKI LEÍRÁS vegypar gyakorlatban a folyamatok leírásához öt alapmennység elegendő, melyek bázst alkotnak. Ezek a következők: Hosszúság, dő, tömeg, hőmérséklet és anyagmennység. leíró mennységek számát tekntve egy művelet egység leírását akkor tekntjük teljesnek, ha megadunk mnden be- és klépés pontra, az anyagáramokra vonatkozóan C számú komponens esetén, fázsonként (C+) adatot. Igy a következőket kapjuk eredményül: komponensáram, mpulzusáram és energaáram. Ha az energaáramot hőáramra korlátozzuk, akkor az előző három áram helyett megadhatunk az anyagáramokra fázsonként egy etenzív és (C+) ntenzív adatot s, mégpedg: a tömegáramot, a (C-)móltörtet, a hőmérsékletet és a nyomást. szabadság fok fogalma Egy művelet egység matematka modellezésénél, tervezésénél, ll. üzemeltetésénél szabadon megválasztható paraméterek száma: F = N M, ahol F a szabadság fok, N a változók száma, M a változók között összefüggéseket leíró egyenletek és egyéb megkötések száma. 4. Transzportfolyamatok és az áram fogalma művelet egységek kvanttatív leírásához a bennük áramló mennységek tér-dő függése alapvető jelentőségű. z áramló közeget halmazállapotától függetlenül fludumnak nevezzük. fludum lehet áramló gőz, gáz, folyadék, valamnt az összenyomatóságot tekntve kompresszbls és nkompresszbls. művelettan témakörében az anyag általános mozgásegyenlete, vagys a tömegmérlegegyenlet mellett tovább három etenzív mennység transzportjával kell foglalkoznunk. Ezek a komponens, hő(termkus energa) és az mpulzus transzport. művelet egység leírásához három féle tér(, y, z) dő(t) függvény smerete szükséges, ezeket mező kfejezéssel adjuk meg: sűrűségmező: ρ = ρ (, y, z, t) vagy koncentrácómező c = c (, y, z, t), = C; hőmérsékletmező: T = T (, y, z, t); sebességmező: ν = ν (, y, z, t), ν y = ν y (, y, z, t), ν z = ν z (, y, z, t)

9 Művelettan és folyamatrányítás specáls kollégum 9 Áram (jele: I): egy etenzív mennység (ψ) adott felületen történő elmozdulása, adott dőtartam alatt. Skalárs mennység, dmenzóját tekntve: etenzív mennység Ψ áram(i) = = (.4) dő t művelettanban a rendszer jellemzésére négy áram elegendő, ezek: - tömegáram (kg/s) - komponensáram (mol/s) - hőáram (J/s) - mpulzusáram (kgm/s d(m v), azaz ). dt Áramsűrűség (jele: j): Vektor, melynek ránya megegyezk az áramlás rányával, nagysága egyenlő az etenzív mennységnek az áramlás rányára merőleges egységny keresztmetszetű felületen dőegység alatt átlépő mennységével. etenzív mennység Ψ áramsűrűsé g(j) = = (.5) felület dő t 4.. Konvektív áram, áramsűrűség konvekcó (vándorlás) azon transzportmechanzmus, melyben az anyag teljes tömegében mozgást végez egy adott térben. Legnkább a fludumokra jellemző és a mértékadó a sebességvektor ( v) (rögzített koordnátarendszerben). z y j konvektív rögzített koordnátarendszer 4. ábra etenzív mennység etenzív mennység = = sebesség (.6) felület dő térfogat Komponensre: Hőre: j j konvektív konvektív = c v (.7) = ( ρc T) v (.8) p c p : állandó nyomásra vontkozó hőkapactás [J/kg*K] c : -dk anyag koncentrácója [mol/dm 3 ] 4.. Vezetéses áram, áramsűrűség Ha a térben egy adott fzka mennység sűrűsége nem egyforma (nem unform rendszer), akkor a rendszerben vezetéses transzportmechanzmus ndul, amely ezt a sűrűségkülönbséget gyekszk kegyenlíten (a rendszert unformmá tesz).

10 Művelettan és folyamatrányítás specáls kollégum Mvel a nem unform rendszert leíró ntenzív tulajdonságok között mutatkozó térbel különbségeket tekntjük a rendszerben lezajló változások okanak, ezért a két pont közt különbségüket, vagy folytonos rendszereknél gradensüket hajtóerőnek nevezzük (kéma potencál, hőmérséklet ll. nyomás különbség). Hajtóerők megléte esetén tehát mndg olyan etenzív áramok ndulnak meg, amelyek a hajtóerők koltására törekednek. kalakuló vezetéses áramsűrűségeket az ún. fenomenológa egyenletek írják le. Ezek általános alakja: j v = L v grad ϕ ahol L v a vezetéses transzportegyüttható (.9) negatv előjel az áram rányára vonatkozk, azaz a magasabb potencálú hely felől az alacsonyabb potencálú hely felé rányul. ϕ: általánosított etenzív változó, amely lehet, hőmérséklet, koncentrácó, sebesség) z átadás áram változásokat leíró folytonos függvények helyett olyan áramokat s defnálnunk kell, amelyek értéke arányos a fázsok között érntkezés felülettel, és a fázsok belsejében lévő ntenzív paraméterek különbségével. fázsok a határfelületén az ntenzív állapotjelzők értéke törést, a koncentrácóé pedg szakadást mutat. z arányosság együtthatót átadás tényezőnek nevezzük. Így az átadás áram kfejezése pl.: komponensre: j = βδc (.) hőre: átadás j átadás = αδt (.) ahol: β: komponensátadás tényező [m/s], α: hőátadás tényező [J/m Ks] : átadás felület [m ], Δc : koncentrácókülönbség, -komponensre nézve ΔT: hőmérséklet-különbség 4..4 Források és a lokáls megváltozás Áramló rendszerek esetében a nem megmaradó etenzív mennységekre források és nyelők (G) s előfordulhatnak, lyenek pl.: a kéma reakcók. térfogatelemben előálló áramtöbbletet forrásnak, az áramcsökkenést pedg nyelőnek nevezzük. Matematkalag az áram térfogat szernt dfferencálhányadosa: di d(j) mennység G = =, 3 dv dv m s (.) dc Komponensre : dt (.3) dρcpt Hőre : (.4) dt

11 Művelettan és folyamatrányítás specáls kollégum 4. mérlegek általános alakja, a Benedek László * egyenlet fent meggondolások alapján a művelet egységeket leíró mérlegegyenletek általános alakja: Lokáls megváltozás Időben változás = Konvekcó + Vezetés + Átadás + Forrás (.5) 4.. z általános komponensmérleg (.5) egyenlet alapján adott komponens esetén az dőbel változást kfejező egyenlet: c t = dv(c v) dv(d grad c ) ± β ωδc + υ r ahol: c : komponens koncentrácója [mol/dm 3 ] v: sebességvektor (v, v y, v z ) D : dffúzós állandó [m /s] β: komponensátadás tényező [m/s] ω: fajlagos felület [m ] ν : sztöchometra együttható r: reakcósebesség Δc : komponensátadás hajtóereje konvektív tag dv (vc) értelmezése: dv (vc) = dv (cv, cv y, cv z ) = cv cv + y y cv + z (Csővezeték esetére a formula z v v y v z c = c + c + c + v + v y z y c + v y dc v alakra egyszerűsödk.) d z (.6) c = c dv v + v grad c z (.7) vezetéses tag értelmezése: (.6) egyenlet másodk tagját tekntve a FICK II. törvény néven smert összefüggést kapjuk: ( negatív előjel azt fejez k, hogy a nagyobb koncentrácójú hely felől a ksebb koncentrácójú felé rányul a komponenstranszport) komponensdffúzóra vonatkozó FICK I. törvény (staconárus eset): dc dc - = D, (mol m s ) dt d (.8) * Benedek Pál és László ntal professzorokról elnevezett egyenlet. z rodalomban kbővített Damköhler egyenletnek s nevezk.

12 Művelettan és folyamatrányítás specáls kollégum c c o dn dt c o Komponensdffúzó 4. ábra c c c c c c dv (D gradc) = dv D ;D ;D = D + D + D = y z y y z z c c c D c D c D c = D + D + D = D c + D c (.9) y z y y z z (.9) egyenlet esetében fgyelembe vettük, hogy a dffúzós állandó függ a koncentrácótól (gázok esetében mndenképp). bban az esetben, ha ezt a feltételezést elhanyagoljuk és a térnek csak egy rányát tekntjük, nstaconárus esetben, akkor a FICK II. törvényt kapjuk. c c = D (.) t Kzárólag dffúzót feltételezve és D = áll. az általános dffúzós egyenlet: c c r c = D + (.) t r =, ha réteget vzsgálunk (ekkor az (.) egyenletet kapjuk), r =, ha henger geometrát vzsgálunk, r =, ha gömb geometrát vzsgálunk z. egyenlet az.7 egy specáls esete, abból levezethető. forrás tag értelmezése koncentrácó körülhatárolt térfogatelemben történő megváltozását jelent, amely legtöbbször kéma reakcó eredménye. Forrás: az adott anyag a reakcóban termékként szerepel, nyelő : negatív forrás, az adott anyag reaktáns. 4.. z általános hőmérleg Egy rendszer hőtartalmának dőben változását kfejező általános mérlegegyenlet: ( ρc pt) = dv( ρc pt v) + dv( λ gradt) + αωδt + ( Δ t ahol: ρ: sűrűség [mol/dm 3 ], v: sebességvektor (v, v y, v z ); λ: hővezetés tényező [J/msK] R H)r (.)

13 Művelettan és folyamatrányítás specáls kollégum 3 α: hőátadás tényező [m/s] ω: fajlagos felület [m ] Δ R H: reakcóhő [J/mol] r: reakcósebesség c p : fajhő, állandó nyomáson [J/kg*K] Vezetéses tag: hővezetés FOURIER egyenlet egy rányt ( rány) fgyelembe véve: dq dt = λ dt d (.) ahol: Q: hő [J], Instaconer állapotra kapjuk a. másodk tagját. Átadásos tag: z átadott hőmennység arányos a felülettel, a hőmérsékletkülönbséggel és a hőátadás tényezővel. Forrás tag: eoterm ll. endoterm reakcó esetén a rendszerben hőforrás ll. nyelő van z általános mpulzusmérleg (lásd még 5.) ( ρv) = dv( ρv o v) + Dvη( Grad v) + γωδv grad p (.3) t ahol: ρ: sűrűség [mol/dm 3 ] v: sebességvektor (v, v y, v z ) η: vszkoztás γ: mpulzusátadás tényező [m/s] ω: fajlagos felület [m ] p: mpulzusforrás Fontos megjegyezn, hogy grad v Grad v (.4) konvektív tag értelmezése: Dv( ρv o v) = ρv dv(v) + (v o v) gradρ + ρ(gradv) v (.5) (Ebben a felírásban a lehető legbővebb értelmezést adtuk a konvektív tagnak: a sebesség és a sűrűség s helyfüggő. gyakorlatban azonban egyszerűsíten szoktak.) vezetéses tag értelmezése: Dv ηgradv = ηdvgradv + Gradv gradη (.6) z mozgó lap v +Δv Δz τ v (z) fludum v v Nyírófeszültség két párhuzamos lap között 4.3 ábra NEWTON súrlódás törvénye, am szntén származtatható (.3)-ból, egyetlen rányt fgyelembe véve:

14 Művelettan és folyamatrányítás specáls kollégum 4 di d( ρv ) dv - τ = = υ = η, (kgm s = Nm ) dt dz dz (.7) z átadásos tag értelmezése: nalóg módon értelmezhető, mnt a komponens esetében: dott fajlagos felületen történő átadás adott sebességkülönbség mellett. z átadás az ún. mpulzusátadás tényezővel arányos. Forrás tag: kkor kell vele számoln, ha az adott térfogatelemben mpulzusforrás, vagy nyelő van. 4.3 z átadás tag általánosabb értelmezése, a munkavonal fogalma Munkavonal: a kétfázsú művelet egység adott pontján (adott helyén) az egymáshoz tartozó fázskoncentrácók halmaza. Egyensúly görbe: adott φ fázsbel koncentrácóval termodnamka egyensúlyban lévő φ fázsbel koncentrácók halmaza (pl.: gőz - folyadék egyensúly görbe). z egyensúlyt mnden esetben a kéma potencálok egyenlősége jelent. Hajtóerő: az egyensúly görbe és a munkavonal között különbség, amely lehet pl.: koncentrácókülönbség: komponenstranszport, hőmérsékletkülönbség: hőtranszport Egyenáramú kétfázsú művelet egység leírása komponensre, staconárus, zoterm kéma reakcót nem tartalmazó rendszerben y G F Gázfázs Folyadékfázs y G F y H H z= z=h z c y ( y - y,s ) azaz a hajtóerõ,s = y /K y y H H z= y,s =,s K z=h z 4.4 ábra Koncentrácók jele: : folyadékfázs, y : gőzfázs. G: gázáram, F: folyadákáram [kg, mol/sec] telítés egyensúly koncentrácók:,s és y,s. (Meghatározásuk a Henry-törvény (y,s =K ) alapján történk.) megmaradás tételekből Σ belépő áram - Σ klépő áram = Gy + F = Gy + F H H (.8)

15 Művelettan és folyamatrányítás specáls kollégum 5 tetszőleges belső ponttal kettéosztva a művelet egységet, a mérlegek: Gy + F = Gy + F és H H Gy + F = Gy + F (.9) fent egyenleteket rendezve a munkavonal (y ) egyenletéhez jutunk: ( ) y F y = + vagy, (.3) G H H ( ) y F y = + (.3) G y y m = -F/G p, T = állandó H y H 4.5 ábra z egyensúly fennállása esetén a munkavonal elér az egyensúly vonalat, a hajtóerő értéke zérus lesz, megszűnk a komponenstranszport. z átadás áram értéke: I átadás =β y (y -y,s )=β (,s - ). (.3) (β y és β a gáz- és a folyadékkoncentrácókkal kfejezett komponensátadás tényező) Ellenáramú kétfázsú művelet egység leírása komponensre, staconárus, zoterm kéma reakcót nem tartalmazó rendszerben y G F Gázfázs Folyadékfázs y G F y H H z= z=h h c y ( y - y,s ) azaz a hajtóerõ y,s =,s K y y H H h H 4.6 ábra Mérlegek: H H Gy + F = Gy + F (.33) Gy + F = Gy + F (.34) H munkavonal egyenlete: H Gy + F = Gy + F (.35)

16 Művelettan és folyamatrányítás specáls kollégum 6 ( ) y F y = + G (.36) F H H y = ( ) + y G (.37) y m = F/G y p, T = állandó H y H 4.7 ábra 4.4 Áramok és áramsűrűségek összefoglalása Mennység Áram Sűrűség jele Ψ Ψ Általánosan Ψ t V m kg m kg Tömeg m [kg] t s ρ = 3 V m m n Komponens n = [ mol] mol n mol M c = t s 3 V m mc Hő (entalpa) Q = mcpt[] J p T J J t s ρc pt 3 m kgm mv kgm kg Impulzus I = mv s t s ρv m s Áramsűrűség Konvektív Vezetéses ϕ v L v gradϕ kg ρv m s Dgrad ρ mol c v m s D gradc J ρcp Tv m s λgradt ρ kg m s v μgradv 5 Z ÁRMLÁSTN LPJI modern természettudomány alapvető felsmerése (elsősorban LOMONOSZOV, LVOISIER, EULER és JOULE megfgyelése alapján), hogy az anyag vlág olyan tulajdonságat skerült leírn (tömeg és energa), amelyekre ún. megmaradás törvények érvényesek. Ezen tulajdonságokhoz rendelt mennységek u. a változások során összegükben állandóak maradnak. Általánosan azt mondhatjuk, hogy egy rendszerbe belépő összes energa egyenlő a kmenő és a felhalmozódó összes energák összegével. 5. folytonosság tétel

17 Művelettan és folyamatrányítás specáls kollégum 7 vegypar, bokéma, élelmszerpar stb. többnyre áramló rendszerekkel dolgoznak. tömegmegmaradás törvényét áramló rendszerekre a folytonosság vagy más néven kontnutás egyenlet fejez k. folyadékok mozgását kétféle módon adhatjuk meg: LGRNGE szernt: leírás a részecskékkel együtt haladva történk úgy, hogy megadjuk valamenny részecske pályáját az dő függvényében. EULER szernt: Rögzített pontból fgyeljük az áramlás tér mnden egyes pontját és megadjuk az ott áthaladó részecskék sebességét. levezetéshez határoljuk el az áramlás tér kjelölt helyén egy adott koordnátarendszerhez kötött dv térfogatelemet (control volume), majd írjuk fel a dt dő alatt átáramlott tömegmennységet: dv = d dy dz (5.) z ρv dz dy ( ρv ) d ρv + d y 5. ábra térfogatelem ránnyal párhuzamosan belépő áramsűrűség ρv, ebből az rányba dt dő alatt belépő tömegmennység ρv dydzdt. ránnyal párhuzamosan klépő sűrűség és sebesség általában más értékű, a belépőhöz képest megváltozk: ( ρv ) ρv + d dy dz dt (5.) Α klépő többlet: ( ρv ) dy dz d (5.3) másk két rányban történő megváltozás ugyanúgy írható fel a megfelelő ndeek szernt jelöléssel. z így kapott három kfejezés összegéből azaz a térfogatelemből dőegység alatt k- és belépő tömegmennység különbsége egyenlő a térfogatelemben lévő tömegmennység dőegységre eső csökkenésével, azaz: ρ d dy dz (5.4) t tömegmegmaradás tétele tehát általánosan a kválasztott térfogatelemre:

18 Művelettan és folyamatrányítás specáls kollégum 8 klépő ρ m& m& = dy dz d (5.5) t belépő ahol m& a k- és belépő tömegáramot jelent. Ennek alapján: ( ρv ) ( ρv ) y ( ρv ) z ρ + + d dy dz = d dy dz y z (5.6) t z egyszerűsítés után: ( ρv ) ( ρv ) y ( ρv z ) ρ + + = y z (5.7) t Vektorként felírva: ρ dv( ρ v) = (5.8) t Ez az összefüggés a folytonosság tétel általános alakja, összenyomható (kompresszbls) és súrlódásos közegre s alkalmazható. Ha az (5.7) kfejezést úgy általánosítjuk, hogy a sűrűség s a hely függvénye, akkor a dfferencálásokat elvégezve: ρ ρ ρ v v y v z ρ v + v y + v z + ρ + ρ + ρ = (5.9) y z y z t majd rendezve: ρ ρ ρ ρ v v y v z + v + + = ρ + + v y vz (5.) t y z y z az egyenlet bal oldala a sűrűség teljes megváltozását adja, azaz teljes dfferencál. Ennek megfelelően: Dρ + ρ v = (5.) Dt ρ Ha az áramlás dőben állandósult (staconárus, dt = ), akkor a folytonosság tétel alakja egyszerűsödk: dv ( ρ v) = (5.) Tovább fontos specáls eset, ha staconárus áramlást feltételezünk és a közeget összenyomhatatlannak tekntjük (ρ = állandó), ekkor a (5.) bal oldala zérus: v v y v z = + + (5.3) y z vagy: dv (v) = tételt adott keresztmetszeten áthaladó áramra megfogalmazva (5.8 alapján):

19 Művelettan és folyamatrányítás specáls kollégum 9 ( ρv ) ρ + = t (5.4) lletve staconárus áramlásnál: ( ρv ) = (5.5) azaz: ρv = állandó (5.5) Ha az áramló közeg összenyomhatatlan: v = állandó azaz v = v (5.6) 5. NVIER STOKES tétel z mpulzusra (mozgásmennységre), azaz mv -re felírt mérleg nem más mnt NEWTON másodk törvényének alkalmazása áramló rendszerek egy körülhatárolt térfogatelemére. d(mv) = F (5.7) dt azaz, az m tömegre ható erők összege egyenlő az mpulzus dőszernt teljes dfferencáljával. Konstans tömeg esetén: d(v) m = F = ma, ahol a : gyorsulásvektor (5.8) dt sebesség teljes dfferencálhányadosa sebességvektor: v = f (,y,z,t), v y = f (,y,z,t), v z = f (,y,z,t) (5.9) sebesség rányú komponensének megváltozása O pontból O pontba: O z ' z v v + dz z dy d O' v v v v + d + dy + dz y z dz O v O ' v v + d O y ' v v + dy y y 5. ábra az rányú komponensre v változása d, dy, és dz távolságban: v v v v + d, v + dy, v + dz (5.) y z

20 Művelettan és folyamatrányítás specáls kollégum a sebesség v komponense dt dő alatt dt értékkel változk meg. t távolságváltozások felírhatók: v d = v dt, dy = v y dt, dz = v z dt (5.) Így tehát: O pontban a sebesség v + dv, azaz (5.) v v v v + d + dy + dz y z (5.4) dővel kfejezve: dv v v v v = d + dy + dz + dt (5.5) y z t amely a sebesség totáls dfferencálhányadosa. z 5. kfejezést felhasználva: dv dt Dv v v v v = = v + v y + vz + (5.6) Dt y z t Hasonló módon levezethető az y és z rányú megváltozás s. Ezeket s felhasználva a sebesség teljes derváltja dő és hely szernt: dv Dv v v = = v + v y + vz v + = + (v ) v (5.7) dt Dt y z t t térfogatelem m tömegére ható erők Csoportosításuk: Környezetből származó erők: nyomóerő ( F ) és surlódás erő ( F II ) Külső erőterek okozta erő a nehézség erő (F g ) a) térfogatelem bal és jobb oldalára ható nyomóerők, valamnt a felső és alsó lapokon ható súrlódás erők: τ τ + dz dyd z z pdydz dz y τdyd dy p p + d dydz d 5.3 ábra felületre merőlegesen ható eredő nyomóerő: p F, = ddydz (5.8)

21 Művelettan és folyamatrányítás specáls kollégum másk két koordnáta rányába ugyanezek az egyenletek érvényesek, így felírható az általános formula: F = + j + k p ddydz = ( gradp)ddydz = ( p)ddydz (5.9) y z b) felülettel párhuzamosan ható eredő súrlódás erő: nyomás helyett tt τ nyírófeszültséggel kell számoln: τ FII, z = dzddy (5.3) z nyírófeszültséget.7 szernt (előjel-korrekcóval) felhasználva: v FII,z = dzddy z η z (5.3) ha a vszkoztás a helytől független: v FII,z = η dzddy (5.3) z valóságban azonban mndhárom rányban fellép a nyíróerő: v v v FII,z ddydz y z = η + + (5.33) másk két koordnáta rányát s fgyelembe véve: F II [ η grad(dvv) ] ddydz = ( η v)ddydz = (5.34) c) z elem térfogatra rányba ható tömegerő: ma = ρaddydz (5.35) F g, = ρa ddydz (5.36) Mndhárom rány fgyelembevételével: Fg = ρaddydz (5.37) levezetett (a,b,c) összefüggések alapján már felírható az mpulzus-mérlegegyenlet, azaz 5.8-be helyettesíthetjük az (5.7), (5.9), (5.34) és (5.37) et, rányban. Így a NVIER STOKES egyenlet: v v v + v y y v + v z z v + t p v = + υ ρ v + y v + z + a (5.38) η ahol: υ = zotróp (helytől független) knematka vszkoztás (5.39) ρ Általánosan a több térrányt s fgyelembe véve, vektoranaltkus formában:

22 Művelettan és folyamatrányítás specáls kollégum Dv v = + (v )v = grad(p) + υgrad(dvv) + a (5.4) Dt t ρ z egyenlet áramsűrűség dmenzóban felírt alakja: Dv ρ = p + η ( v) + ρa (5.4) Dt 5.3 Egyszerűsített mérlegegyenletek, z EULER- és BERNOULLI-egyenlet fent NVIER STOKES egyenlet zárt analtkus megoldása általában nem lehetséges, ematt egyszerűsítések alkalmazása célszerű.. Belső súrlódástól mentes közeg esetén, a sebesség másodrendű, helyszernt derváltja zérusok lesznek. Így kapjuk az EULER egyenletet: Dv ρ = p + ρa (5.4) Dt staconárus áramlás esetén z rányra felírva: dvz dp ρ vz = + ρa z (5.43) dz dz. Ha a konstans nehézség gyorsulást, továbbá a staconárus és a föld gyorsulás ellen rányuló áramlást feltételezünk: a z = g, és az (5.43)-et h magasságra ntegráljuk, akkor a jól smert BERNOULLI-egyenlethez jutunk: v ρ = gρdh v h h p vdv dp (5.44) p elvégezve az ntegrálást, rendezés után: v v ρ + p + gρh = ρ + p + gρh kons tans. = (5.45) BERNOULLI-egyenlet legfontosabb alakja: - Nyomásformula v ρ + p + gρh kons tans. = (5.46) - Magasság formula v p + h + kons tans. g gρ = (5.47) - Energaformula v p + gh + kons tans. ρ = (5.48)

23 Művelettan és folyamatrányítás specáls kollégum BERNOULLI-egyenlet alkalmazása, az áramlás sebességének mérése z áramlások sebességének meghatározására gyakran alkalmazzák a cső keresztmetszetének szűkítését (mérőperem, mérőtorok, VENTURI-cső). mérés elve, hogy az áramlás sebesség a szűkítés folyamán kalakult nyomáskülönbséggel arányos. p p 5.4 ábra 5.6 alapján és bevezetve α kontrakcós tényezőt v = αv BERNOULLI-egyenlet nyomásformuláját felhasználva: v v ρ + p h + gρh = ρ + p + gρ (5.49) fgyelembe véve, hogy h =h v (p = ρ p ) = Δp = ρ v v (5.5) α α átrendezve: Δp v = (5.5) ρ α 5.5 Reológa alapfogalmak newton és nemnewton fludumok folyás görbé: τ (N/m ) Bngham-plasztkus pszeudoplasztkus Newton dlatáló τ 5.5 ábra dv dy NEWTONI fludumok: a nyírófeszültség és a sebességgradens között összefüggés egyszerű egyenes arányosság. z arányosság tényező a dnamkus vszkoztás, melynek értéke a dv /dz től független anyag állandó, lásd.7 egyenlet. BINGHM-féle plasztkus folyadékok: ebben az esetben s a nyírófeszültség lefutása lneárs, de az nem megy át az orgón. Egy véges τ nyírófeszültség szükséges az áramlás (folyás) bendításához.

24 Művelettan és folyamatrányítás specáls kollégum 4 dv ( τ τ ) = B, (5.5) dz ahol τ a folyás határ, B a látszólagos vagy plasztkus vszkoztás együttható. Bzonyos Bngham-fludumok nyírófeszültség-lefutása felfelé, vagy lefelé ks mértékben elgörbül. Sűrű szuszpenzók, paszták és zagyok vselkedése írható le ezzel a modellel. Pszeudoplasztkus fludumok: a newton folyadékokhoz hasonlóan már ks τ érték esetén folynak. Ezeknél a fludumoknál azonban a nyírófeszültség és a sebességgradens aránya függ a τ nagyságától. B ún. látszólagos vszkoztás értéke (dv /dz) értékének növekedésével csökken. görbe jól közelíthető az Ostwald-deWaele-egyenlettel: n dv τ = B', (n<). (5.53) dz legtöbb nemnewton fludum ebbe a csoportba tartozk, pl.: polmeroldatok, olvadékok, keményítőszuszpenzó, festékek Dlatáló fludumok: ezekre a folyadékokra s érvényes az Ostvald-deWaele-modell, de tt n>, am azt jelent, hogy B értéke dv /dz értékének növekedésével nő. Nagy mennységű szlárd szuszpenzót tartalmazó folyadékok tartoznak ebbe a csoportba, pl.: tengerpart homok, porok vízben Totrop fludumok: a legfontosabb dőfüggő newton folyadék a totrop folyadék. látszólagos vszkoztás s tt már nemcsak a sebességgradenstől, hanem a nyírás dejétől s függ. totrop folyadékok esetében az állandó nyírófeszültség deje alatt a folyadék szerkezete felbomlk és a folyékonyság nő. feszültség megszűnése után azonban a folyadékszerkezet fokozatosan helyreáll és a folyás megszűnk. Ide tartoznak: sok festékfajta, a kefr és a tejtermékek. Mawell fludumok: ebbe a csoportba tartoznak a rugalmas folyadékok, amelyek t nyírófeszültség hatására folynak, de a feszültség megszűnése után részben felveszk a szlárd test alakját. Ilyenek többek között a műgyanták, btumenek és a tészták. 5.6 z áramlások jellege REYNOLDS már 883-ban smertette a róla elnevezett kísérletet, amely a folyadékok áramlásának két alaptípusát különböztet meg. h víz h h Lamnárs áramlás 5.6 ábra Turbulens áramlás

25 Művelettan és folyamatrányítás specáls kollégum 5 z áramlás jellemzésre REYNOLDS egy dmenzómentes számot vezetett be, melynek krtkus értéke 3 **. Re szán ezen értéke alatt lamnárs, felette turbulens áramlásról beszélünk. d v Re = υ (5.54) ahol: d: áramlás keresztmetszet, vagy egyenértékátmérő [m] v: áramlás sebesség [m/s] ν: knematka vszkoztás [m /sec] 5.6. Lamnárs áramlás Lamnárs (réteges) áramlásról akkor beszélünk, ha a fludum adott pontjában, staconárus áramlást feltételezve a sebességvektorok dőben állandók. Ilyen rendszerben keveredést csak a molekulárs mozgás dézhet elő. z áramlás során dőben konstans profl alakul k, ha r a csősugár: v ma v d r l p p elem térfogat 5.7 ábra (5.8) egyenletet felhasználva, annak jobb oldala zérus, mvel sebességváltozás nncs, a bal oldalon pedg a nyíró és súrlódás erők összege adja az eredő erőt: F = (p p ) r π (5.55) dv F II = rlπτ = rlπη dr (5.56) dv (p p )r π = rlπη (5.57) dr r (p p ) rdr = η dv l r v (5.58) r p ) r = v (p [ ] v (5.59) lη r a kapott v = v(r ) összefüggés adja a lamnárs áramlásokra jellemző parabolkus proflt. p p ) 4lη ( ha r = r akkor v =, és r = esetén v = v ma, így ( r r ) = v (p p ) r = v ma 4lη z átáramlott térfogatra felírható: (5.6) (5.6) ** szakrodalom Re=3 krtkus értéket ad meg, sokszor azonban ez az érték széles tartományon belül mozoghat. Re~..

26 Művelettan és folyamatrányítás specáls kollégum 6 d V& = vd = vátlag (5.6) & V ahol d = πrdr (5.63) helyettesítéssel: V r r Δp d V & = v(πrdr) = (r r )(πrdr) (5.64) 4ηl az ntegrálást elvégezve a Newton folyadékokra érvényes HGEN-POISEUILLE-egyenletet kapjuk: p 4 V& Δ = πr (5.65) 8ηl a (5.65) egyenletet elosztva az (5.6)-el kapjuk, hogy a 5.6. Turbulens áramlás v ma vátlag = (5.66) Turbulens áramlásra a (5.6) összefüggés már nem érvényes. Emprkus közelítő összefüggés a NIKURDZE-egyenlet: v r n r v ma r, ahol n = 6 (5.67) Turbulens sebességprofl esetén a mamáls sebességérték az áramlás átmérő mntegy /3 részén csak közelítőleg érvényes: v 5.8 ábra 5.7 HGEN-POISEUILLE-egyenletet alkalmazása, csővezetékek veszteségmagassága csővezetékeken kalakuló nyomásveszteséget a gépészetben a veszteségmagassággal adják meg. (5.6) és a (5.65)-ből: d p V π Δ = vátlag = πr 4 8ηl (5.68) az (5.39) segítségével (5.69) 8 l 64 l ρ l ρ Δ p = ρvátlagos = vátlagos = λ vátlagos (5.7) d vátlagos d Re d d υ 64 helyettesített tagot ( =λ) csősúrlódás tényezőnek nevezzük. Ha a fent egyenlet Re elosztjuk a gravtácós gyorsulással és átrendezzük, megkapjuk a veszteségmagasságot (h ):

27 Művelettan és folyamatrányítás specáls kollégum 7 Δp = λ gρ l d v átlagos = g h' (5.7) 5.8 Fludzácó Fludzácó alatt azt a jelenséget értjük, amkor egy töltött oszlopon áramló fludum szlárd részecskéket lebegő állapotban tart (5.9 ábra). Ha a töltött csőben áramló fludum üres oszlopra vonatkoztatott áramlás sebességét (v ) növeljük és közben mérjük az oszlop nyomásesését akkor az 5. ábrának megfelelő görbét kapjuk. 5.9 ábra Δp: nyomáskülönbség L : tömörített töltetmagasság O O B B C C D D E E 5. ábra Lneárs szakasz, a nyomásesés a sebességgel egyenesen arányosan nő Növekvő Re számmal a nyomásesés négyzetes összefüggéssel írható le. Ez azonban csak addg érvényes amíg a részecskék nyugalomban vannak. ( számított súrlódás nyomásesés egyenlő lesz az m felületre számolt tötet rchmedesz súlyával, B pont) részecskék elkezdenek lebegn, a legksebb ellenállás rányába rendeződnek. sebsség növelésével az ellenállás tovább nő, de ksebb mértékben, majd a C ponton egy mamumot ér el. Ennek oka, hogy a fellazulás már csökkent az ellenállást, mégpedg nagyobb mértékben mnt ahogy a sebességnövekedés növelné azt. Fludzált állapot, tovább sebességnövekedés már nem okoz nyomásesést. D pont a fludzácó kezdőpontja. Megkezdődk a töltet pneumatkus kszállítása

28 Művelettan és folyamatrányítás specáls kollégum 8 fludum áramlás sebessége és a nyomásveszteség között az alább FNNING-egyenlet adja meg: Δp vρf = 4f m (5.7) L d p ahol: v : üres oszlopra vonatkoztatott áramlás sebesség [m/s] f m : surlódás tényező [m/s] d p : részecskeátmérő [m] ρ f : fludum áramlás sebessége [m/s] Paraméterek hatása a fludzácóra: Szemcseátmérő hatása Fnom porokat (d = μm) fludzáltatva csatornák alakulnak k, a gáz és szlárd anyag nem keveredk. Szemcseátmérő d =. mm, a gáz buborékokban tör át a rétegen Durvább porok esetén d =..3mm, löketszerű fludzácó. Rétegmagasság hatása Ks rétegmagasságnál (.5-cm), több ks csatorna alakul k, melyek folyamatosan vándorolnak. z áramlás sebességet növelve a csatornák helye állandósul. Közepes rétegmagasságnál, buborékképződés lép fel Vastag rétegnél (5cm), lökés jelensége lép fel 6 KÉMII REKTOROK * Laboratórum körülmények között a kéma reakcókat ks méretben (lombkokban, ksebb nyomástartó berendezésekben) valósíthatjuk meg. z parban ezek a reakcók par kéma reaktorokban zajlanak, melyekben a nagymennységű anyagok kezelése, reagáltatása különleges problémák megoldását követel. z par reaktorok tervezésénél (modellezésénél) az alább kérdésekre kell választ adn: Mlyen reaktort alkalmazzunk? Mlyen méretben? Mlyen művelet paraméterek mellett? 6. Kéma reaktorok csoportosítása reaktorok a külső megjelenés szempontjából gen változatos alakúak lehetnek, az esetek zömében azonban zömök üst vagy hosszú cső alakú berendezések. Itt gazából nem a geometra az elsődleges, hanem az, hogy mlyen a reaktoron belül a komponensek eloszlása. z olyan reaktorban, melyben a komponensek eloszlása egyenletes, a koncentrácók a reaktor mnden pontján azonosak, ezért a koncentrácó-függvények legfeljebb az dőben változhatnak. c(t) hely szernt konstans koncentrácó-függvénnyel jellemezhető reaktorokat üstreaktornak nevezzük. Geometralag gen sok fajta üstreaktor létezk (gömb, hasáb, henger). Működés mód szernt szakaszos és folyamatos üstreaktort smerünk. cső szerű reaktorra legnkább az a jellemző, hogy benne a komponenseknek az áramlás rányában eloszlása van. Szakaszos * Dr. rgyelán János (VE Vegypar Műveletek Tsz.) előadása alapján

29 Művelettan és folyamatrányítás specáls kollégum 9 csőreaktor nem létezk. staconárus működésű csőreaktorban a koncentrácó csak a hely koordnáták függvénye: c(). z nstaconárus körülmények között működő csőreaktorban a c(,t) koncentrácó a helykoordnátán kívül az dőtől s függ. Modellezés alapján Matematka modellezés Koncentrált paraméteres koncentrált paraméteres egyenlettel írhatók le Osztott paraméteres osztott paraméteres egyenlettel írhatók le j c B csoreaktor B üstreaktor... 3 c k H Szakaszos Folyamatos Folyamatos c k = c k (t) c k = c k (t) c k = c k () c k() (t)= c k() (t)=c k(3) (t) Üzemvtel szernt Staconárus Szakaszos Folyamatos c k () Instaconárus c k (t) mndg nstaconárus állapotban vannak c k (,t) csak ndításkor és leálláskor, vagy zavarás esetén Szakaszos Folyamatos Csőreaktor c k (, t) Üstreaktor c k (t) c k (t) Üzemmód szernt: Ha egy reaktorban a termék koncentrácóját c-vel jelöljük, akkor matematka szempontból és tt most lényegtelen, hogy szakaszos vagy folyamatos reaktorról van szó a reaktorban a c koncentrácó a 4. táblázat szernt függ a c b belépő anyagáram koncentrácótól, a c k kezdet koncentrácó eloszlástól, az helytől és a t dőtől. Staconárus Instaconárus Üstreaktor c(c b ) c(c b (t), c k,t) Csőreaktor c(c b, ) c(c b (t), c k (),,t) hol: c b :belépő anyagáram koncentrácója, c k : kezdet koncentrácóeloszlás, c:koncentrácó t:dő, : helykoordnáta

30 Művelettan és folyamatrányítás specáls kollégum 3 szakaszos üstreaktor ebben az értelemben nstaconárus reaktornak teknthető, amelyben adott c k kezdet koncentrácójú anyag van, de betáplálás nncs így: c b (t)= és c(,c k,t) Technka osztályozás, mely során fgyelembe vesszük a reaktorok geometráját, működés módját, a lehetséges fázsok számát és halmazállapotát: Reakcó Homogén Heterogén Reaktor Flud Foly.-szlárd. Gáz-szlárd Foly.-foly. Gáz-foly. Szakaszos üst Közepes reakcó sebesség, keverés erős keverés erős keverés Foly. üst erős keverés + Közepes reakcó sebesség, keverés erős keverés kaszkád gázcrkulácó Foly. cső Üres vagy katalzátorral töltött cső flmreaktor szlárd fázs Félfoly. üst elreagál Hőtan jellemzés szernt: Izoterm, azaz a reaktor hőmérséklete konstans. dabatkus, azaz nncs hőforgalom a környezettel Poltrop, azaz van hőforgalom, de a reakcóhő és a hőforgalom több nagyságrendben különbözk. 6. reaktorok működését befolyásoló főbb tényezők reaktorban nduláskor bentlévő anyagok, azaz a kndulás koncentrácóeloszlás c k () t= reaktor kezdet hőmérsékleteloszlása T() t= reaktorba belépő térfogatáram ha van lyen és annak hőmérséklete, valamnt koncentrácója. komponensek reakcókészsége (νr) működés módja reakcó hőszínezete (ΔH r ) 6.3 z egyes reaktortípusok matematka leírása z egyes reaktortípusok leírásánál az (.6) és az (.) egyenleteket tekntjük kndulásnak. leírásokat csak néhány alapesetre adjuk meg, a koncentrácóváltozás az (.6) egyenlet alapján tetszőleges esetre megadható. z egyszerűsítés érdekében csak az rányú változásokat vesszük fgyelembe, így az (.6) az alább egyenletté egyszerűsödk: α α α c c c = v + D + βωδc + υr (6.) t hőmérlegre érvényes. egyenlet pedg az alábbak szernt alakul: T T T ρ c p = v ρc p + λ + ΔHυr (6.) t

31 Művelettan és folyamatrányítás specáls kollégum Homogén, szakaszos zoterm üstreaktor, elsőrendű reakcó Tökéletesen kevert üstreaktorokat tekntve a vezetéses tag értéke zérus (dffúzóval nem kell számoln). Konvekcó nncs a rendszerben, és a homogentás matt az átadás tag értéke s nulla. z (6.) egyenletet ntegráljuk a reakcótérfogatra, egyetlen rányt fgyelembevéve, elsőrendű reakcóra: dc V = υrv = Vυkc (6.3) dt H a vzsgált komponens a reakcóban fogy akkor ν = -, így megoldva (6.3)-t: c kt = c e (6.4) a konverzó dőben alakulására a következő kfejezés érvényes: c c kt κ = = e (6.5),be 6.3. Homogén, folyamatos zoterm üstreaktor, elsőrendű reakcó c,be B B 6. ábra c,k Jelen esetben a folyamatos betáplálás és elvét matt már a konvekcós taggal számoln kell, a dffúzó értékét nullának vehetjük. Ha a rendszer többfázsú (α, β) akkor a -dk komponens mérlegét az α fázsra felírva: α α α β α dc B cbe B ck + ωβ (mc c ) + Vυr = V (6.6) dt (z egyenlet az átadás taggal egészül k.) Egyfázsú reaktor esetén nncs átadás tag, így a (6.) egyenletet ntegrálva kapjuk az egyfázsú folyamatos üstreaktor általános mérlegegyenletét: dc B c,be B c,k + Vυr = V (6.7) dt Bevezetve az átlagos tartózkodás dőt: τ = V / B (6.8) reaktorban a c koncentrácó a következő függvény szernt alakul (c a t = dőpllanathoz tartozó koncentrácó): + kτ ( + kτ)c c t,be c τ,be c = e + (6.9) + kτ + kτ Ha csökkentjük azaz B értéke tart nullához tart, akkor a tartózkodás dő végtelenné kt válk, így a c = c e, azaz a szakaszos üstreaktor egyenletét kaptuk vssza.

32 Művelettan és folyamatrányítás specáls kollégum 3 Ha feltételezzük a rendszer staconárus állapotát akkor a (6.7) egyenlet a következőképpen alakul: dc B c,be B c,k + Vυr = V = (6.) dt Rendezve és a (6.8)-as összefüggést felhasználva kapjuk az anyag koncentrácóját az üstben: c,be c = (6.) + kτ konverzó defnícóját felhasználva a folyamatos üstreaktor konverzójára az alább összefüggés érvényes: c kτ κ = = (6.) c + kτ,be Folyamatos staconárus csőreaktor, elsőrendű reakcó Ha az eddg tárgyalt elsőrendű reakcót folyamatos csőreaktorban hajtjuk végre és feltételezzük, hogy koncentrácóváltozás csak a tengely rányában tapasztalható, akkor a (6.)-es egyenlet az alább szernt egyszerűsödk: dc dc v kc = d dt = (6.3) a peremfeltétel: =, c = c az egyenlet megoldása a koncentrácó hely függvény: k v e c = c (6.4) Tehát az anyag koncentrácója a hossz mentén eponencálsan csökken. Ha adott pont elérésének dejét /v=t-vel jelöljük, és c betáplálás koncentrácó megegyezk az üstreaktornál tárgyalt c koncentrácóval, akkor a (6.4) egyenlet szó szernt azonossá válk az üstreaktorra felírt (6.4) egyenlettel. Ennek magyarázatául ragadjunk k egy folyadékelemet a betáplálás pllanatában. Ha együtt mozgunk a kszemelt fázselemmel, akkor csupán az dő múlását érzékeljük, vagys a fázselem koncentrácója az dőben szükségszerűen úgy változk, mntha egy szakaszos üstbe tettük volna. rról, hogy a fázselem egy üstben ülve utazk és az dőben a reaktor más-más helyén tartózkodk arról a folyadékelem nem tud. z elérhető konverzó a csőreaktor hosszától (L), és az tartózkodás dőtől L/v = τ függ: L c k v kτ κ = = e = e (6.5) c,be

33 Művelettan és folyamatrányítás specáls kollégum Folyamatos staconárus reaktorkaszkád, elsőrendű reakcó c c,k = c,be c,k = c,be 3 c,k 3 6. ábra N darab reaktor van a rendszerben és a reaktorok egyenként térfogata V. Kellően hosszú dő elteltével a kezdet zavarások hatása elenyészk és mndegyk reaktor staconárus állapotba kerül. Ezt az állapotot tekntjük vzsgálatunk kndulópontjának. z első reaktor klépő koncentrácója a (6.) alapján c,k = c + kτ (6.6) másodk reaktor belépő koncentrácója az elsőből klépőével azonos ( c = c ) így: c,k c,be = c + kτ ( + kτ) (6.7) Ezen elv alapján az N-edk kaszkádelemet elhagyó c koncentrácó: N c,k c N ( + kτ) (6.8) mennyben a kaszkádelemek nem azonos térfogatúak, akkor τ j = V j / B-vel jelölve a tartózkodás dőt az j-edk elemben a klépő koncentrácó: N c,k = c N (6.9) ( + kτ ) j= j,k,be dabatkus reaktorok elsőrendű reakcó esetén z adabatkus reaktorokra az a jellemző, hogy a reakcó által termelt hő a reakcóelegyben marad, azaz a reakcó hőszükségletét a reakcóelegy fedez. reaktorok hőtan tárgyalása meghaladja e tárgy keretet, így csak a legegyszerűbb két típust smertetjük: dabatkus szakaszos üstreaktor (6.) egyenletet üstszerű berendezésre megoldva: dt Bρ cptbe Bρc pt + VΔHυr = Vρcp (6.) dt Mvel a vzsgált rendszerben a betáplálás és az elvétel értéke zérus a (6.) egyenlet az alább formára egyszerűsödk: dt VΔ Hυr = Vρcp (6.) dt (6.3) és a (6.) egymásba helyettesítésével a

34 Művelettan és folyamatrányítás specáls kollégum 34 dc ρc p dt = (6.) dt ΔH dt egyenletet kapjuk, ntegrálva c kezdet koncentrácó és T kezdet hőmérséklet mellett ρc p c c = ( T T ) (6.3) ΔH Látható, hogy a vzsgált anyag koncentrácója és a közeg hőmérséklete között lneárs az összefüggés. Ha a kndulás komponens teljes egészében elreagált, akkor a közeg hőmérséklete az úgynevezett T* adabatkus véghőmérséklet lesz. ρc p * c = ( T T ) (6.4) ΔH térfogatváltozás nélkül reakcók esetében a konverzó nemcsak a koncentrácók, hanem a hőmérsékletek segítségével s kfejezhető, ugyans a (6.3) és (6.4) hányadosa éppen a konverzót adja azaz: c c T T κ = = (6.5) * c T T * T T c = c (6.6) * T T Elsőrendű knetkával lejátszódó reakcó esetén (ν = ) az entalpamérleg: dt ΔHkc = ρcp (6.7) dt (6.7) egyenletből a (6.6) segítségével elmnáljuk c -t, továbbá a (6.5) egyenletből kfejezzük a ΔH/ρc p hányadost és ezt s behelyettesítve a (6.7) egyenletbe, a következő dfferencálegyenlethez jutunk: k E * RT * ( T T) = e ( T T) = dt dt (6.8) megoldás csak végtelen sor formájában szolgáltatja a hőmérséklet-dő függvényt. Tpkus eoterm reakcóra érvényes hőmérsékletproflt mutat be a. ábra. T T* T 6.3 ábra t dabatkus csőreaktor (6.8) egyenlet alkalmazható csőreaktorra s azzal a megkötéssel, hogy a hőmérséklet ebben az esetben a hely függvénye.

35 Művelettan és folyamatrányítás specáls kollégum 35 így: d = vdt (6.9) k E * RT * ( T T) = e ( T T) = dt v d (6.3) 6.4 reaktorok kválasztása és tervezése z egyes reaktortípusok koncentrácó dő, koncentrácó hely, hőmérséklet dő stb. eloszlását leíró függvények a (6.) és a (6.) egyenletek megoldásával megadhatók. Ennek bzonyos esetere láttunk példát a 6.3 részben. Ezekben egy egyszerű B típusú elsőrendű átalakulást vettünk alapul, a valóságban és az par gyakorlatban azonban a kéma átalakulások összetett (konszekutív, egyensúlyra vezető, kompettív) reakcók, melyekre optmáls reakcókörülményeket kell bztosítan, hogy a kívánt célterméket mnél gazdaságosabban tudjuk előállítan. tovább tárgyalások előtt be kell vezetnünk két új fogalmat: dfferencáls reakcószelektvtás (Ψ), amely azt mutatja meg, hogy egy reakcóelegyben a nyersanyagfogyás sebessége (r ), hogyan vszonyul a termékképződés sebességéhez (r p ) (összetett reakcóban természetesen ezt mnden egyes termékre meg lehet adn). Példaként tekntsük az alább reakcót: rp P Q, Ψ = (6.3) r (Ψ) azért dfferencáls mennység, mert a reakcósebességek vszonya mndg a pllanatny állapottól (hőmérséklet, konverzó /κ/) függ. szelektvtás a reakcó előrehaladtával, a konverzóval pontról pontra változk. Fajlagos hozam (η), amely azt mutatja meg, hogy az anyag a reakcó befejeztével mlyen mértékben alakult át termékké. fajlagos khozatal a dfferencáls szelektvtások eredőjeként megjelenő ntegráls mennység: cp η = (6.3) c mólszámváltozással járó reakcók esetében c P ν η = (6.33) c ν P 6.5 reaktorok kválasztása khozatalra vonatkozó vzsgálatankat a következő ν ν P P ν Q Q konszekutív reakcó alapján végezzük cső- és üstreaktor esetén. Egy térfogatváltozással nem járó reakcóban a csőreaktor komponensmérlege (6.3) alapján:

36 Művelettan és folyamatrányítás specáls kollégum 36 ra: dc dc ν r = v = B (6.34) d dv dcp dcp P re: ν P rp = v = B (6.35) d dv két egyenletet osztva egymással a dfferencáls szelektvtás és a koncentrácóváltozás között összefüggéshez jutunk: ν r ν r P P dc = dc P ν = ν P Ψ (6.36) Ha a belépő anyagáramban (B, mol/sec) P termék nncs jelen ( c p = ), akkor: c P = c p dc = c ν P Ψ dc P ν c p c (6.37) behelyettesítve a (6.33) egyenletbe: c ν ν P η = Ψ dc ν P c ν c és felhasználva a konverzó defnícóját: η = κ (6.38) Ψd κ (6.38) Megkaptuk a jól smert összefüggést mszernt, a hozam = konverzó * szelektvtás. Ez azonban csak ntegrálsan érvényes, mvel a reakcósebesség függvénye a konverzónak és a hőmérsékletnek. Így a fajlagos khozatal a dfferencáls szelektvtás ntegráljaként előállítva: η = κ κ rp ( κ,t) Ψd κ = dκ (6.39) r ( κ,t) Egy térfogatváltozás nélkül reakcóban egy üstreaktor komponensmérlege (6.7) alapján: Vν P r P = B (c P c P ) (6.4) Vν r = B (c c ) (6.4) Osztva egymással a két egyenletet: ν P (cp cp ) Ψ = ν (c c ) Ismét feltételezve, hogy a betáplált elegyben P termék nncs: (6.4) cp ν c c η = = Ψ = κψ( κ,t) (6.43) c ν c P Ábrázoljuk a Ψ(κ,T) dfferencáls szelektvtást a κ függvényében olyan esetben, amkor a szelektvtás a konverzó előrehaladtával csökken:

,...,q 3N és 3N impulzuskoordinátával: p 1,

,...,q 3N és 3N impulzuskoordinátával: p 1, Louvlle tétele Egy tetszőleges klasszkus mechanka rendszer állapotát mnden t dőpllanatban megadja a kanónkus koordnáták összessége. Legyen a rendszerünk N anyag pontot tartalmazó. Ilyen esetben a rendszer

Részletesebben

Az entrópia statisztikus értelmezése

Az entrópia statisztikus értelmezése Az entrópa statsztkus értelmezése A tapasztalat azt mutatja hogy annak ellenére hogy egy gáz molekulá egyed mozgást végeznek vselkedésükben mégs szabályszerűségek vannak. Statsztka jellegű vselkedés szabályok

Részletesebben

VÁLASZOK A FIZKÉM I ALAPKÉRDÉSEKRE, KERESZTÉVFOLYAM 2006

VÁLASZOK A FIZKÉM I ALAPKÉRDÉSEKRE, KERESZTÉVFOLYAM 2006 ÁLASZOK A FIZKÉM I ALAPKÉRDÉSEKRE, KERESZÉFOLYAM 6. Az elszgetelt rendszer határfelületén át nem áramlk sem energa, sem anyag. A zárt rendszer határfelületén energa léhet át, anyag nem. A nytott rendszer

Részletesebben

10. Transzportfolyamatok folytonos közegben. dt dx. = λ. j Q. x l. termodinamika. mechanika. Onsager. jóslás: F a v x(t) magyarázat: x(t) v a F

10. Transzportfolyamatok folytonos közegben. dt dx. = λ. j Q. x l. termodinamika. mechanika. Onsager. jóslás: F a v x(t) magyarázat: x(t) v a F 10. Transzportfolyamatok folytonos közegben Erőtörvény dff-egyenlet: Mérleg mechanka Newton jóslás: F a v x(t) magyarázat: x(t) v a F pl. rugó: mat. nga: F = m & x m & x = D x x m & x mg l energa-, mpulzus

Részletesebben

Elektrokémia 03. Cellareakció potenciálja, elektródreakció potenciálja, Nernst-egyenlet. Láng Győző

Elektrokémia 03. Cellareakció potenciálja, elektródreakció potenciálja, Nernst-egyenlet. Láng Győző lektrokéma 03. Cellareakcó potencálja, elektródreakcó potencálja, Nernst-egyenlet Láng Győző Kéma Intézet, Fzka Kéma Tanszék ötvös Loránd Tudományegyetem Budapest Cellareakcó Közvetlenül nem mérhető (

Részletesebben

Hidrosztatika. Folyadékok fizikai tulajdonságai

Hidrosztatika. Folyadékok fizikai tulajdonságai Hidrosztatika A Hidrosztatika a nyugalomban lévő folyadékoknak a szilárd testekre, felületekre gyakorolt hatásával foglalkozik. Tárgyalja a nyugalomban lévő folyadékok nyomásviszonyait, vizsgálja a folyadékba

Részletesebben

Folyadékok áramlása Folyadékok. Folyadékok mechanikája. Pascal törvénye

Folyadékok áramlása Folyadékok. Folyadékok mechanikája. Pascal törvénye Folyadékok áramlása Folyadékok Folyékony halmazállapot nyíróerő hatására folytonosan deformálódik (folyik) Folyadék Gáz Plazma Talián Csaba Gábor PTE ÁOK, Biofizikai Intézet 2012.09.12. Folyadék Rövidtávú

Részletesebben

Reológia Mérési technikák

Reológia Mérési technikák Reológia Mérési technikák Reológia Testek (és folyadékok) külső erőhatásra bekövetkező deformációját, mozgását írja le. A deformációt irreverzibilisnek nevezzük, ha a az erőhatás megszűnése után a test

Részletesebben

Folyadékok és gázok mechanikája

Folyadékok és gázok mechanikája Folyadékok és gázok mechanikája Hidrosztatikai nyomás A folyadékok és gázok közös tulajdonsága, hogy alakjukat szabadon változtatják. Hidrosztatika: nyugvó folyadékok mechanikája Nyomás: Egy pontban a

Részletesebben

Szárítás során kialakuló hővezetés számítása Excel VBA makróval

Szárítás során kialakuló hővezetés számítása Excel VBA makróval Szárítás során kalakuló hővezetés számítása Excel VBA makróval Rajkó Róbert 1 Eszes Ferenc 2 Szabó Gábor 1 1 Szeged Tudományegyetem, Szeged Élelmszerpar Főskola Kar Élelmszerpar Műveletek és Környezettechnka

Részletesebben

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg

Részletesebben

Transzportjelenségek

Transzportjelenségek Transzportjelenségek Fizikai kémia előadások 8. Turányi Tamás ELTE Kémiai Intézet lamináris (réteges) áramlás: minden réteget a falhoz közelebbi szomszédja fékez, a faltól távolabbi szomszédja gyorsít

Részletesebben

Ellenáramú hőcserélő

Ellenáramú hőcserélő Ellenáramú hőcserélő Elméleti összefoglalás, emlékeztető A hőcserélő alapvető működésével és az egyszerűsített számolásokkal a Vegyipari műveletek. tárgy keretében ismerkedtek meg. A mérés elvégzéséhez

Részletesebben

Modellezési esettanulmányok. elosztott paraméterű és hibrid példa

Modellezési esettanulmányok. elosztott paraméterű és hibrid példa Modellezési esettanulmányok elosztott paraméterű és hibrid példa Hangos Katalin Számítástudomány Alkalmazása Tanszék Veszprémi Egyetem Haladó Folyamatmodellezés és modell analízis PhD kurzus p. 1/38 Tartalom

Részletesebben

Művelettan 3 fejezete

Művelettan 3 fejezete Művelettan 3 fejezete Impulzusátadás Hőátszármaztatás mechanikai műveletek áramlástani műveletek termikus műveletek aprítás, osztályozás ülepítés, szűrés hűtés, sterilizálás, hőcsere Komponensátadás anyagátadási

Részletesebben

Az elektromos kölcsönhatás

Az elektromos kölcsönhatás TÓTH.: lektrosztatka/ (kbővített óravázlat) z elektromos kölcsönhatás Rég tapasztalat, hogy megdörzsölt testek különös erőket tudnak kfejten. Így pl. megdörzsölt műanyagok (fésű), megdörzsölt üveg- vagy

Részletesebben

Hidrosztatika, Hidrodinamika

Hidrosztatika, Hidrodinamika Hidrosztatika, Hidrodinamika Folyadékok alaptulajdonságai folyadék: anyag, amely folyni képes térfogat állandó, alakjuk változó, a tartóedénytől függ a térfogat-változtató erőkkel szemben ellenállást fejtenek

Részletesebben

Bevezetés a kémiai termodinamikába

Bevezetés a kémiai termodinamikába A Sprnger kadónál megjelenő könyv nem végleges magyar változata (Csak oktatás célú magánhasználatra!) Bevezetés a kéma termodnamkába írta: Kesze Ernő Eötvös Loránd udományegyetem Budapest, 007 Ez az oldal

Részletesebben

Folyadékok és gázok mechanikája

Folyadékok és gázok mechanikája Folyadékok és gázok mechanikája A folyadékok nyomása A folyadék súlyából származó nyomást hidrosztatikai nyomásnak nevezzük. Függ: egyenesen arányos a folyadék sűrűségével (ρ) egyenesen arányos a folyadékoszlop

Részletesebben

F. F, <I> F,, F, <I> F,, F, <J> F F, <I> F,,

F. F, <I> F,, F, <I> F,, F, <J> F F, <I> F,, F,=A4>, ahol A arányossági tényező: A= 0.06 ~, oszt as cl> a műszer kitérése. A F, = f(f,,) függvénykapcsolatot felrajzolva (a mérőpontok közé egyenes huzható) az egyenes iránytaogense a mozgó surlódási

Részletesebben

1. Feladatok a termodinamika tárgyköréből

1. Feladatok a termodinamika tárgyköréből . Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással.. Feladat: (HN 9A-5) Egy épület téglafalának mérete: 4 m 0 m és, a fal 5 cm vastag. A hővezetési együtthatója λ = 0,8 W/m K. Mennyi

Részletesebben

Művelettan 3 fejezete

Művelettan 3 fejezete Művelettan 3 fejezete Impulzusátadás Hőátszármaztatás mechanikai műveletek áramlástani műveletek termikus műveletek aprítás, osztályozás ülepítés, szűrés hűtés, sterilizálás, hőcsere Komponensátadás anyagátadási

Részletesebben

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések!

ORVOSI STATISZTIKA. Az orvosi statisztika helye. Egyéb példák. Példa: test hőmérséklet. Lehet kérdés? Statisztika. Élettan Anatómia Kémia. Kérdések! ORVOSI STATISZTIKA Az orvos statsztka helye Élettan Anatóma Kéma Lehet kérdés?? Statsztka! Az orvos döntéseket hoz! Mkor jó egy döntés? Mennyre helyes egy döntés? Mekkora a tévedés lehetősége? Példa: test

Részletesebben

Biofizika szeminárium. Diffúzió, ozmózis

Biofizika szeminárium. Diffúzió, ozmózis Biofizika szeminárium Diffúzió, ozmózis I. DIFFÚZIÓ ORVOSI BIOFIZIKA tankönyv: III./2 fejezet Részecskék mozgása Brown-mozgás Robert Brown o kísérlet: pollenszuszpenzió mikroszkópos vizsgálata o megfigyelés:

Részletesebben

1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom:

1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom: 1. előadás Gáztörvények Kapcsolódó irodalom: Fizikai-kémia I: Kémiai Termodinamika(24-26 old) Chemical principles: The quest for insight (Atkins-Jones) 6. fejezet Kapcsolódó multimédiás anyag: Youtube:

Részletesebben

TRANSZPORTFOLYAMATOK ÉS SZIMULÁCIÓJUK (MAKKEM 242M)

TRANSZPORTFOLYAMATOK ÉS SZIMULÁCIÓJUK (MAKKEM 242M) TRANSZPORTFOLYAMATOK ÉS SZIMULÁCIÓJUK (MAKKEM 242M) ANYAGMÉRNÖK MESTERKÉPZÉS TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR KÉMIAI INTÉZET Miskolc, 2012/13. 1 Tartalomjegyzék

Részletesebben

Hely és elmozdulás - meghatározás távolságméréssel

Hely és elmozdulás - meghatározás távolságméréssel Hely és elmozdulás - meghatározás távolságméréssel Bevezetés A repülő szerkezetek repülőgépek, rakéták, stb. helyének ( koordnátának ) meghatározása nem új feladat. Ezt a szakrodalom részletesen taglalja

Részletesebben

2 Wigner Fizikai Kutatóintézet augusztus / 17

2 Wigner Fizikai Kutatóintézet augusztus / 17 Táguló sqgp tűzgömb többkomponensű kéma kfagyása Kasza Gábor 1 és Csörgő Tamás 2,3 1 Eötvös Loránd Tudományegyetem 2 Wgner Fzka Kutatóntézet 3 Károly Róbert Főskola 2015. augusztus 17. Gyöngyös - KRF 1

Részletesebben

Folyadékáramlás. Orvosi biofizika (szerk. Damjanovich Sándor, Fidy Judit, Szöllősi János) Medicina Könyvkiadó, Budapest, 2006

Folyadékáramlás. Orvosi biofizika (szerk. Damjanovich Sándor, Fidy Judit, Szöllősi János) Medicina Könyvkiadó, Budapest, 2006 14. Előadás Folyadékáramlás Kapcsolódó irodalom: Orvosi biofizika (szerk. Damjanovich Sándor, Fidy Judit, Szöllősi János) Medicina Könyvkiadó, Budapest, 2006 A biofizika alapjai (szerk. Rontó Györgyi,

Részletesebben

BMEGEÁTAT01-AKM1 ÁRAMLÁSTAN (DR.SUDA-J.M.) 2.FAKZH AELAB (90MIN) 18:45H

BMEGEÁTAT01-AKM1 ÁRAMLÁSTAN (DR.SUDA-J.M.) 2.FAKZH AELAB (90MIN) 18:45H BMEGEÁTAT0-AKM ÁRAMLÁSTAN (DR.SUDA-J.M.).FAKZH 08..04. AELAB (90MIN) 8:45H AB Név: NEPTUN kód:. Aláírás: ÜLŐHELY sorszám PONTSZÁM: 50p / p Toll, fényképes igazolvány, számológépen kívül más segédeszköz

Részletesebben

Fizika-Biofizika I. DIFFÚZIÓ OZMÓZIS Október 22. Vig Andrea PTE ÁOK Biofizikai Intézet

Fizika-Biofizika I. DIFFÚZIÓ OZMÓZIS Október 22. Vig Andrea PTE ÁOK Biofizikai Intézet Fizika-Biofizika I. DIFFÚZIÓ OZMÓZIS 2013. Október 22. Vig Andrea PTE ÁOK Biofizikai Intézet DIFFÚZIÓ 1. KÍSÉRLET Fizika-Biofizika I. - DIFFÚZIÓ 1. kísérlet: cseppentsünk tintát egy üveg vízbe 1. megfigyelés:

Részletesebben

HIDROSZTATIKA, HIDRODINAMIKA

HIDROSZTATIKA, HIDRODINAMIKA HIDROSZTATIKA, HIDRODINAMIKA Hidrosztatika a nyugvó folyadékok fizikájával foglalkozik. Hidrodinamika az áramló folyadékok fizikájával foglalkozik. Folyadékmodell Önálló alakkal nem rendelkeznek. Térfogatuk

Részletesebben

Mechanika. Kinematika

Mechanika. Kinematika Mechanika Kinematika Alapfogalmak Anyagi pont Vonatkoztatási és koordináta rendszer Pálya, út, elmozdulás, Vektormennyiségek: elmozdulásvektor Helyvektor fogalma Sebesség Mozgások csoportosítása A mozgásokat

Részletesebben

Dinamikus modellek felállítása mérnöki alapelvek segítségével

Dinamikus modellek felállítása mérnöki alapelvek segítségével IgyR - 3/1 p. 1/20 Integrált Gyártórendszerek - MSc Dinamikus modellek felállítása mérnöki alapelvek segítségével Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék IgyR - 3/1 p. 2/20

Részletesebben

Termodinamika (Hőtan)

Termodinamika (Hőtan) Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi

Részletesebben

SEMMELWEIS EGYETEM. Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatócsoport. Zrínyi Miklós

SEMMELWEIS EGYETEM. Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatócsoport. Zrínyi Miklós SEMMELWEIS EGYETEM Biofizikai és Sugárbiológiai Intézet, Nanokémiai Kutatósoport Transzportjelenségek az élő szervezetben I. Zrínyi Miklós egyetemi tanár, az MTA levelező tagja mikloszrinyi@gmail.om RENDSZER

Részletesebben

Folyadékok és gázok áramlása

Folyadékok és gázok áramlása Folyadékok és gázok áramlása Hőkerék készítése házilag Gázok és folyadékok áramlása A meleg fűtőtest vagy rezsó felett a levegő felmelegszik és kitágul, sűrűsége kisebb lesz, mint a környezetéé, ezért

Részletesebben

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Alkalmazás a makrókanónikus sokaságra: A fotongáz Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,

Részletesebben

Hidraulika. 1.előadás A hidraulika alapjai. Szilágyi Attila, NYE, 2018.

Hidraulika. 1.előadás A hidraulika alapjai. Szilágyi Attila, NYE, 2018. Hidraulika 1.előadás A hidraulika alapjai Szilágyi Attila, NYE, 018. Folyadékok mechanikája Ideális folyadék: homogén, súrlódásmentes, kitölti a rendelkezésre álló teret, nincs nyírófeszültség. Folyadékok

Részletesebben

TRANSZPORTFOLYAMATOK ÉS SZIMULÁCIÓJUK (MAKKEM 242ML)

TRANSZPORTFOLYAMATOK ÉS SZIMULÁCIÓJUK (MAKKEM 242ML) TRANSZPORTFOLYAMATOK ÉS SZIMULÁCIÓJUK (MAKKEM 242ML) ANYAGMÉRNÖK MESTERKÉPZÉS TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR KÉMIAI INTÉZET Miskolc, 2012/13. 1 Tartalomjegyzék

Részletesebben

A mechanika alapjai. A pontszerű testek dinamikája

A mechanika alapjai. A pontszerű testek dinamikája A mechanika alapjai A pontszerű testek dinamikája Horváth András SZE, Fizika Tsz. v 0.6 1 / 26 alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. alapi 2 / 26 Bevezetés alapi Bevezetés Newton

Részletesebben

Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből november 28. Hővezetés, hőterjedés sugárzással. Ideális gázok állapotegyenlete

Fizika feladatok. 1. Feladatok a termodinamika tárgyköréből november 28. Hővezetés, hőterjedés sugárzással. Ideális gázok állapotegyenlete Fizika feladatok 2014. november 28. 1. Feladatok a termodinamika tárgyköréből Hővezetés, hőterjedés sugárzással 1.1. Feladat: (HN 19A-23) Határozzuk meg egy 20 cm hosszú, 4 cm átmérőjű hengeres vörösréz

Részletesebben

Euleri és Lagrange szemlélet, avagy a meteorológia deriváltjai

Euleri és Lagrange szemlélet, avagy a meteorológia deriváltjai Euleri és Lagrange szemlélet, avagy a meteorológia deriváltjai Mona Tamás Időjárás előrejelzés speci 3. előadás 2014 Differenciál, differencia Mi a különbség f x és df dx között??? Differenciál, differencia

Részletesebben

Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont)

Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont) Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont) 1. "Az olyan rendszereket, amelyek határfelülete a tömegáramokat megakadályozza,... rendszernek nevezzük" (1) 2. "Az olyan rendszereket,

Részletesebben

Szilárd testek rugalmassága

Szilárd testek rugalmassága Fizika villamosmérnököknek Szilárd testek rugalmassága Dr. Giczi Ferenc Széchenyi István Egyetem, Fizika és Kémia Tanszék Győr, Egyetem tér 1. 1 Deformálható testek (A merev test idealizált határeset.)

Részletesebben

W = F s A munka származtatott, előjeles skalármennyiség.

W = F s A munka származtatott, előjeles skalármennyiség. Ha az erő és az elmozdulás egymásra merőleges, akkor fizikai értelemben nem történik munkavégzés. Pl.: ha egy táskát függőlegesen tartunk, és úgy sétálunk, akkor sem a tartóerő, sem a nehézségi erő nem

Részletesebben

Belső energia, hőmennyiség, munka Hőtan főtételei

Belső energia, hőmennyiség, munka Hőtan főtételei Belső energia, hőmennyiség, munka Hőtan főtételei Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak.

Részletesebben

2. (d) Hővezetési problémák II. főtétel - termoelektromosság

2. (d) Hővezetési problémák II. főtétel - termoelektromosság 2. (d) Hővezetési problémák II. főtétel - termoelektromosság Utolsó módosítás: 2015. március 10. Kezdeti érték nélküli problémák (1) 1 A fél-végtelen közeg a Az x=0 pontban a tartományban helyezkedik el.

Részletesebben

Előszó.. Bevezetés. 1. A fizikai megismerés alapjai Tér is idő. Hosszúság- és időmérés.

Előszó.. Bevezetés. 1. A fizikai megismerés alapjai Tér is idő. Hosszúság- és időmérés. SZABÓ JÁNOS: Fizika (Mechanika, hőtan) I. TARTALOMJEGYZÉK Előszó.. Bevezetés. 1. A fizikai megismerés alapjai... 2. Tér is idő. Hosszúság- és időmérés. MECHANIKA I. Az anyagi pont mechanikája 1. Az anyagi

Részletesebben

3. Gyakorlat Áramlástani feladatok és megoldásuk

3. Gyakorlat Áramlástani feladatok és megoldásuk 3 Gyakorlat Áramlástani feladatok és megoldásuk 681 Feladat Adja meg Kelvin és Fahrenheit fokban a T = + 73 = 318 K o K T C, T = 9 5 + 3 = 113Fo F T C 68 Feladat Adja meg Kelvin és Celsius fokban a ( T

Részletesebben

Turbulens áramlás modellezése háromszög elrendezésű csőkötegben

Turbulens áramlás modellezése háromszög elrendezésű csőkötegben Turbulens áramlás modellezése háromszög elrendezésű csőkötegben Mayer Gusztáv mayer@sunserv.kfk.hu 2005. 09. 27. CFD Workshop 1 Tartalom - Vzsgált geometra Motvácó Az áramlás jellemző Saját fejlesztésű

Részletesebben

v i = v i V. (1) m i m i (v i V) = i P = i m i V = m i v i i A V = P M

v i = v i V. (1) m i m i (v i V) = i P = i m i V = m i v i i A V = P M Mképpen függ egy pontrendszer mpulzusa a vonatkoztatás rendszertől? K-ban legyenek a részecskék sebessége v. K -ben mely K-hoz képest V sebességgel halad v = v V. (1) P = m v = m (v V) = m v m V = = P

Részletesebben

Mechanika, dinamika. p = m = F t vagy. m t

Mechanika, dinamika. p = m = F t vagy. m t Mechanika, dinamika Mozgás, alakváltozás és ennek háttere Newton: a mozgás természetes állapot. A témakör egyik kulcsfontosságú fizikai mennyisége az impulzus (p), vagy lendület, vagy mozgásmennyiség.

Részletesebben

Szűrés. Gyógyszertechnológiai alapműveletek. Pécsi Tudományegyetem Gyógyszertechnológia és Biofarmáciai Intézet

Szűrés. Gyógyszertechnológiai alapműveletek. Pécsi Tudományegyetem Gyógyszertechnológia és Biofarmáciai Intézet Szűrés Gyógyszertechnológiai alapműveletek Pécsi Tudományegyetem Gyógyszertechnológia és Biofarmáciai Intézet Szűrés Szűrésnek nevezzük azt a műveletet, amelynek során egy heterogén keverék, különböző

Részletesebben

Alapmőveletek koncentrált erıkkel

Alapmőveletek koncentrált erıkkel Alapmőveletek koncentrált erıkkel /a. példa Az.7. ábrán feltüntetett, a,5 [m], b, [m] és c,7 [m] oldalú hasábot a bejelölt erık terhelk. A berajzolt koordnátarendszer fgyelembevételével írjuk fel komponens-alakban

Részletesebben

ÁRAMLÁSTAN MFKGT600443

ÁRAMLÁSTAN MFKGT600443 ÁRAMLÁSTAN MFKGT600443 Környezetmérnöki alapszak nappali munkarend TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI FÖLDTUDOMÁNYI KAR KŐOLAJ ÉS FÖLDGÁZ INTÉZET Miskolc, 2018/2019. II. félév TARTALOMJEGYZÉK

Részletesebben

MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI KAR DOKTORI ISKOLA VEZETŐ: MTA rendes tagja TÉMACSOPORT VEZETŐ: MTA rendes tagja TÉMAVEZETŐ: egyetemi docens

MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI KAR DOKTORI ISKOLA VEZETŐ: MTA rendes tagja TÉMACSOPORT VEZETŐ: MTA rendes tagja TÉMAVEZETŐ: egyetemi docens MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI KAR ÚJ ELJÁRÁS AUTOKLÁV GÉPCSOPORTOK EXPOZÍCIÓJÁNAK MEGHATÁROZÁSÁRA PhD értekezés KÉSZÍTETTE: Szees L. Gábor okleveles géészmérnök SÁLYI ISTVÁN GÉPÉSZETI TUDOMÁNYOK DOKTORI

Részletesebben

Fluidumok áramlása. Vegyipari és biomérnöki műveletek segédanyag Simándi Béla, Székely Edit BME, Kémiai és Környezeti Folyamatmérnöki Tanszék

Fluidumok áramlása. Vegyipari és biomérnöki műveletek segédanyag Simándi Béla, Székely Edit BME, Kémiai és Környezeti Folyamatmérnöki Tanszék Fluidumok áramlása Vegyipari és biomérnöki műveletek segédanyag Simándi Béla, Székely Edit BME, Kémiai és Környezeti Folyamatmérnöki Tanszék Megköszönjük Szternácsik Klaudia és Wolowiec Szilvia hallgatóknak

Részletesebben

SZÁMOLÁSI FELADATOK. 2. Mekkora egy klíma teljesítménytényező maximális értéke, ha a szobában 20 C-ot akarunk elérni és kint 35 C van?

SZÁMOLÁSI FELADATOK. 2. Mekkora egy klíma teljesítménytényező maximális értéke, ha a szobában 20 C-ot akarunk elérni és kint 35 C van? SZÁMOLÁSI FELADATOK 1. Egy fehérje kcsapásához tartozó standard reakcóentalpa 512 kj/mol és standard reakcóentrópa 1,60 kj/k/mol. Határozza meg, hogy mlyen hőmérséklettartományban játszódk le önként a

Részletesebben

A hő terjedése szilárd test belsejében szakaszos tüzelés esetén

A hő terjedése szilárd test belsejében szakaszos tüzelés esetén A hő terjedése szlárd test belsejében szakaszos tüzelés esetén Snka Klára okl. kohómérnök, doktorandusz hallgató Mskol Egyetem Anyag- és Kohómérnök Kar Energahasznosítás Khelyezett anszék Bevezetés Az

Részletesebben

METROLÓGIA ÉS HIBASZÁMíTÁS

METROLÓGIA ÉS HIBASZÁMíTÁS METROLÓGIA ÉS HIBASZÁMíTÁS Metrológa alapfogalmak A metrológa a mérések tudománya, a mérésekkel kapcsolatos smereteket fogja össze. Méréssel egy objektum valamlyen tulajdonságáról számszerű értéket kapunk.

Részletesebben

Modern Fizika Labor. 2. Elemi töltés meghatározása

Modern Fizika Labor. 2. Elemi töltés meghatározása Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.09.27. A mérés száma és címe: 2. Elemi töltés meghatározása Értékelés: A beadás dátuma: 2011.10.11. A mérést végezte: Kalas György Benjámin Németh Gergely

Részletesebben

KOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára. Szita formula

KOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára. Szita formula KOMBINATORIKA ELŐADÁS osztatlan matematka tanár hallgatók számára Szta formula Előadó: Hajnal Péter 2015. 1. Bevezető példák 1. Feladat. Hány olyan sorbaállítása van a a, b, c, d, e} halmaznak, amelyben

Részletesebben

1. feladat Összesen 25 pont

1. feladat Összesen 25 pont 1. feladat Összesen 25 pont Centrifugál szivattyúval folyadékot szállítunk az 1 jelű, légköri nyomású tartályból a 2 jelű, ugyancsak légköri nyomású tartályba. A folyadék sűrűsége 1000 kg/m 3. A nehézségi

Részletesebben

5. Pontrendszerek mechanikája. A kontinuumok Euler-féle leírása. Tömegmérleg. Bernoulli-egyenlet. Hidrosztatika. Felhajtóerő és Arhimédesz törvénye.

5. Pontrendszerek mechanikája. A kontinuumok Euler-féle leírása. Tömegmérleg. Bernoulli-egyenlet. Hidrosztatika. Felhajtóerő és Arhimédesz törvénye. 5 Pontrenszerek echankája kontnuuok Euler-féle leírása Töegérleg Bernoull-egyenlet Hrosztatka Felhajtóerő és rhéesz törvénye Töegpontrenszerek Töegpontok eghatározott halaza, ng ugyanazok a pontok tartoznak

Részletesebben

Légköri termodinamika

Légköri termodinamika Légköri termodinamika Termodinamika: a hőegyensúllyal, valamint a hőnek, és más energiafajtáknak kölcsönös átalakulásával foglalkozó tudományág. Meteorológiai vonatkozása ( a légkör termodinamikája): a

Részletesebben

Egy részecske mozgási energiája: v 2 3 = k T, ahol T a gáz hőmérséklete Kelvinben 2 2 (k = 1, J/K Boltzmann-állandó) Tehát a gáz hőmérséklete

Egy részecske mozgási energiája: v 2 3 = k T, ahol T a gáz hőmérséklete Kelvinben 2 2 (k = 1, J/K Boltzmann-állandó) Tehát a gáz hőmérséklete Hőtan III. Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak. Rugalmasan ütköznek egymással és a tartály

Részletesebben

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk:

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: Válaszoljatok a következő kérdésekre: 1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: a) zéró izoterm átalakulásnál és végtelen az adiabatikusnál

Részletesebben

Folyadékok és gázok áramlása

Folyadékok és gázok áramlása Folyadékok és gázok áramlása Gázok és folyadékok áramlása A meleg fűtőtest vagy rezsó felett a levegő felmelegszik és kitágul, sűrűsége kisebb lesz, mint a környezetéé, ezért felmelegedik. A folyadékok

Részletesebben

Molekuláris dinamika I. 10. előadás

Molekuláris dinamika I. 10. előadás Molekuláris dinamika I. 10. előadás Miről is szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten minden részecske mozgását szimuláljuk? Hogyan tudjuk megérteni a folyadékok,

Részletesebben

Mit nevezünk nehézségi erőnek?

Mit nevezünk nehézségi erőnek? Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt

Részletesebben

5. gy. VIZES OLDATOK VISZKOZITÁSÁNAK MÉRÉSE OSTWALD-FENSKE-FÉLE VISZKOZIMÉTERREL

5. gy. VIZES OLDATOK VISZKOZITÁSÁNAK MÉRÉSE OSTWALD-FENSKE-FÉLE VISZKOZIMÉTERREL 5. gy. VIZES OLDAOK VISZKOZIÁSÁNAK MÉRÉSE OSWALD-FENSKE-FÉLE VISZKOZIMÉERREL A fluid közegek jellemző anyagi tulajdonsága a viszkozitás, mely erősen befolyásolhatja a bennük lejátszódó reakciók sebességét,

Részletesebben

FIZIKA II. Dr. Rácz Ervin. egyetemi docens

FIZIKA II. Dr. Rácz Ervin. egyetemi docens FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés

Részletesebben

Mechanika IV.: Hidrosztatika és hidrodinamika. Vizsgatétel. Folyadékok fizikája. Folyadékok alaptulajdonságai

Mechanika IV.: Hidrosztatika és hidrodinamika. Vizsgatétel. Folyadékok fizikája. Folyadékok alaptulajdonságai 016.11.18. Vizsgatétel Mechanika IV.: Hidrosztatika és hidrodinamika Hidrosztatika és hidrodinamika: hidrosztatikai nyomás, Pascaltörvény. Newtoni- és nem-newtoni folyadékok, áramlástípusok, viszkozitás.

Részletesebben

Mechanizmusok vegyes dinamikájának elemzése

Mechanizmusok vegyes dinamikájának elemzése echanzmuso vegyes dnamáána elemzése ntonya Csaba ranslvana Egyetem, nyagsmeret Kar, Brassó. Bevezetés Komple mechanzmuso nemata és dnama mozgásvszonyana elemzése nélülözhetetlen a termétervezés első szaaszaban.

Részletesebben

Az extrakció. Az extrakció oldószerszükségletének meghatározása

Az extrakció. Az extrakció oldószerszükségletének meghatározása Az extrakció Az extrakció oldószerszükségletének meghatározása Az extrakció fogalma és fajtái olyan szétválasztási művelet, melynek során szilárd vagy folyadék fázisból egy vagy több komponens kioldását

Részletesebben

Áramlástan feladatgyűjtemény. 6. gyakorlat Bernoulli-egyenlet instacionárius esetben

Áramlástan feladatgyűjtemény. 6. gyakorlat Bernoulli-egyenlet instacionárius esetben Áramlástan feladatgyűjtemény Az energetikai mérnöki BSc és gépészmérnöki BSc képzések Áramlástan című tárgyához 6. gyakorlat Bernoulli-egyenlet instacionárius esetben Összeállította: Lukács Eszter Dr.

Részletesebben

A diffúzió leírása az anyagmennyiség időbeli változásával A diffúzió leírása a koncentráció térbeli változásával

A diffúzió leírása az anyagmennyiség időbeli változásával A diffúzió leírása a koncentráció térbeli változásával Kapcsolódó irodalom: Kapcsolódó multimédiás anyag: Az előadás témakörei: 1.A diffúzió fogalma 2. A diffúzió biológiai jelentősége 3. A részecskék mozgása 3.1. A Brown mozgás 4. Mitől függ a diffúzió erőssége?

Részletesebben

Kiegészítő desztillációs példa. 1. feladatsor. 2. feladatsor

Kiegészítő desztillációs példa. 1. feladatsor. 2. feladatsor Kiegészítő desztillációs példa D3. példa: Izopropanol propanol elegy rektifikálása tányéros oszlopon 2104 kg/h 45 tömeg% izopropanol-tartalmú propanol izopropanol elegyet folyamatos üzemű rektifikáló oszlopon,

Részletesebben

A Ga-Bi OLVADÉK TERMODINAMIKAI OPTIMALIZÁLÁSA

A Ga-Bi OLVADÉK TERMODINAMIKAI OPTIMALIZÁLÁSA A Ga-B OLVADÉK TRMODINAMIKAI OPTIMALIZÁLÁSA Végh Ádám, Mekler Csaba, Dr. Kaptay György, Mskolc gyetem, Khelyezett Nanotechnológa tanszék, Mskolc-3, gyetemváros, Hungary Bay Zoltán Közhasznú Nonproft kft.,

Részletesebben

Reakciókinetika és katalízis

Reakciókinetika és katalízis Reakciókinetika és katalízis k 4. előadás: 1/14 Különbségek a gázfázisú és az oldatreakciók között: 1 Reaktáns molekulák által betöltött térfogat az oldatreakciónál jóval nagyobb. Nincs akadálytalan mozgás.

Részletesebben

Szilárd testek rugalmas alakváltozásai Nyú y j ú tás y j Hooke törvény, Hooke törvén E E o Y un un modulus a f eszültség ffeszültség

Szilárd testek rugalmas alakváltozásai Nyú y j ú tás y j Hooke törvény, Hooke törvén E E o Y un un modulus a f eszültség ffeszültség Kontinuumok mechanikája Szabó Gábor egyetemi tanár SZTE Optikai Tanszék Szilárd testek rugalmas alakváltozásai Nyújtás l l = l E F A Hooke törvény, E Young modulus σ = F A σ a feszültség l l l = σ E Szilárd

Részletesebben

Lemezeshőcserélő mérés

Lemezeshőcserélő mérés BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR Épületgépészeti és Gépészeti Eljárástechnika Tanszék Lemezeshőcserélő mérés Hallgatói mérési segédlet Budapest, 2014 1. A hőcserélők típusai

Részletesebben

10. Transzportfolyamatok folytonos közegben

10. Transzportfolyamatok folytonos közegben 10. Transzportfolyamatok folytonos közegben erőtörvény: mechanka Newton dff-egyenlet: pl. rugó: mat. nga: állapot -> jóslás: F a v x(t) jelenség -> magyarázat: x(t) v a F F = m & x m & x = -D x x m & x

Részletesebben

Az Ampère-Maxwell-féle gerjesztési törvény

Az Ampère-Maxwell-féle gerjesztési törvény Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér

Részletesebben

28. Nagy László Fizikaverseny Szalézi Szent Ferenc Gimnázium, Kazincbarcika február 28. március osztály

28. Nagy László Fizikaverseny Szalézi Szent Ferenc Gimnázium, Kazincbarcika február 28. március osztály 1. feladat a) A négyzet alakú vetítővászon egy oldalának hossza 1,2 m. Ahhoz, hogy a legnagyobb nagyításban is ráférjen a diafilm-kocka képe a vászonra, és teljes egészében látható legyen, ahhoz a 36 milliméteres

Részletesebben

Fizika II. (Termosztatika, termodinamika)

Fizika II. (Termosztatika, termodinamika) Fzka II. (Termosztatka, termodnamka) előadás jegyzet Élelmszermérnök, Szőlész-borász mérnök és omérnök hallgatóknak Dr. Frtha Ferenc. árls 4. Tartalom evezetés.... Hőmérséklet, I. főtétel. Ideáls gázok...3

Részletesebben

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor 1. 2:29 Normál párolgás olyan halmazállapot-változás, amelynek során a folyadék légneművé válik. párolgás a folyadék felszínén megy végbe. forrás olyan halmazállapot-változás, amelynek során nemcsak a

Részletesebben

BUDAPESTI MŰ SZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR VASÚTI JÁRMŰVEK ÉS JÁRMŰRENDSZERANALÍZIS TANSZÉK

BUDAPESTI MŰ SZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR VASÚTI JÁRMŰVEK ÉS JÁRMŰRENDSZERANALÍZIS TANSZÉK BUDAPESTI MŰ SZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR VASÚTI JÁRMŰVEK ÉS JÁRMŰRENDSZERANALÍZIS TANSZÉK MÉRNÖKI MATAMATIKA Segédlet a Bessel-függvények témaköréhez a Közlekedésmérnök

Részletesebben

Fizika. Tanmenet. 7. osztály. 1. félév: 1 óra 2. félév: 2 óra. A OFI javaslata alapján összeállította az NT számú tankönyvhöz:: Látta: ...

Fizika. Tanmenet. 7. osztály. 1. félév: 1 óra 2. félév: 2 óra. A OFI javaslata alapján összeállította az NT számú tankönyvhöz:: Látta: ... Tanmenet Fizika 7. osztály ÉVES ÓRASZÁM: 54 óra 1. félév: 1 óra 2. félév: 2 óra A OFI javaslata alapján összeállította az NT-11715 számú tankönyvhöz:: Látta:...... Harmath Lajos munkaközösség vezető tanár

Részletesebben

{ } x x x y 1. MATEMATIKAI ÖSSZEFOGLALÓ. ( ) ( ) ( ) (a szorzás eredménye:vektor) 1.1. Vektorok közötti műveletek

{ } x x x y 1. MATEMATIKAI ÖSSZEFOGLALÓ. ( ) ( ) ( ) (a szorzás eredménye:vektor) 1.1. Vektorok közötti műveletek 1. MAEMAIKAI ÖSSZEFOGLALÓ 1.1. Vektorok közötti műveletek Azok a fizikai mennyiségek, melyeknek nagyságukon kívül irányuk is van, vektoroknak nevezzük. A vektort egyértelműen megadhatjuk a hosszával és

Részletesebben

Követelmények: f - részvétel az előadások 67 %-án - 3 db érvényes ZH (min. 50%) - 4 elfogadott laborjegyzőkönyv

Követelmények: f - részvétel az előadások 67 %-án - 3 db érvényes ZH (min. 50%) - 4 elfogadott laborjegyzőkönyv Fizikai kémia és radiokémia B.Sc. László Krisztina 18-93 klaszlo@mail.bme.hu F ép. I. lépcsőház 1. emelet 135 http://oktatas.ch.bme.hu/oktatas/konyvek/fizkem/kornymern Követelmények: 2+0+1 f - részvétel

Részletesebben

NKFP6-BKOMSZ05. Célzott mérőhálózat létrehozása a globális klímaváltozás magyarországi hatásainak nagypontosságú nyomon követésére. II.

NKFP6-BKOMSZ05. Célzott mérőhálózat létrehozása a globális klímaváltozás magyarországi hatásainak nagypontosságú nyomon követésére. II. NKFP6-BKOMSZ05 Célzott mérőhálózat létrehozása a globáls klímaváltozás magyarország hatásanak nagypontosságú nyomon követésére II. Munkaszakasz 2007.01.01. - 2008.01.02. Konzorcumvezető: Országos Meteorológa

Részletesebben

1. feladat Összesen 17 pont

1. feladat Összesen 17 pont 1. feladat Összesen 17 pont Két tartály közötti folyadékszállítást végzünk. Az ábrán egy centrifugál szivattyú- és egy csővezetéki (terhelési) jelleggörbe látható. A jelleggörbe alapján válaszoljon az

Részletesebben

Egyenes és sík. Wettl Ferenc szeptember 29. Wettl Ferenc () Egyenes és sík szeptember / 15

Egyenes és sík. Wettl Ferenc szeptember 29. Wettl Ferenc () Egyenes és sík szeptember / 15 Egyenes és sík Wettl Ferenc 2006. szeptember 29. Wettl Ferenc () Egyenes és sík 2006. szeptember 29. 1 / 15 Tartalom 1 Egyenes és szakasz Egyenes Szakasz Egyenesvonalú egyenletes mozgás Egyenes és pont

Részletesebben

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István

FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői:

Részletesebben

+ - kondenzátor. Elektromos áram

+ - kondenzátor. Elektromos áram Tóth : Eektromos áram/1 1 Eektromos áram tapasztaat szernt az eektromos tötések az anyagokban ksebb vagy nagyobb mértékben hosszú távú mozgásra képesek tötések egyrányú, hosszútávú mozgását eektromos áramnak

Részletesebben

2. mérés Áramlási veszteségek mérése

2. mérés Áramlási veszteségek mérése . mérés Áramlási veszteségek mérése A mérésről készült rövid videó az itt látható QR-kód segítségével: vagy az alábbi linken érhető el: http://www.uni-miskolc.hu/gepelemek/tantargyaink/00b_gepeszmernoki_alapismeretek/.meres.mp4

Részletesebben

ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK

ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK HŐTÁGULÁS lineáris (hosszanti) hőtágulási együttható felületi hőtágulási együttható megmutatja, hogy mennyivel változik meg a test hossza az eredeti hosszához képest, ha

Részletesebben

A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I. KATEGÓRIA. Javítási-értékelési útmutató

A 2016/2017. tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I. KATEGÓRIA. Javítási-értékelési útmutató Oktatási Hivatal A 06/07 tanévi Országos Középiskolai Tanulmányi Verseny második forduló FIZIKA I KATEGÓRIA Javítási-értékelési útmutató feladat Három azonos méretű, pontszerűnek tekinthető, m, m, m tömegű

Részletesebben