5. gy. VIZES OLDATOK VISZKOZITÁSÁNAK MÉRÉSE OSTWALD-FENSKE-FÉLE VISZKOZIMÉTERREL

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "5. gy. VIZES OLDATOK VISZKOZITÁSÁNAK MÉRÉSE OSTWALD-FENSKE-FÉLE VISZKOZIMÉTERREL"

Átírás

1 5. gy. VIZES OLDAOK VISZKOZIÁSÁNAK MÉRÉSE OSWALD-FENSKE-FÉLE VISZKOZIMÉERREL A fluid közegek jellemző anyagi tulajdonsága a viszkozitás, mely erősen befolyásolhatja a bennük lejátszódó reakciók sebességét, vagy az adott közegben zajló transzportfolyamatokat. A viszkozitás miatt az áramló folyadék egymáson elcsúszó rétegei-, vagy gázoknál a molekulák között elmozdulást akadályozó súrlódási erő lép fel. (Viszkozitása a szilárd anyagoknak is van, de ez oly nagymértékű, kvázi végtelen, hogy a gyakorlatban nem is beszélünk a szilárd anyag viszkozitásáról.) A viszkozitás (belső súrlódás) a fluid közeg (gáz, folyadék) áramlásakor fellépő, a közeg folyásával, áramlásával szembeni ellenállást (nyíróerőt) kifejező fizikai mennyiség. [] A viszkozitás transzportsajátság. A belső súrlódás a közeg az egymással érintkező rétegei között jelenik meg. Nézzük meg a magyarázathoz az. ábrán felvázolt helyzetet. A v x F s dv x dy y y z x v=0. ábra. A viszkozitás értelmezése ételezzük fel, hogy két párhuzamos, egymástól y távolságra levő, A felületű lemez között ideálisan folyó fluid fázis (pl. folyadék) helyezkedik el. Az egyik lemezt mozdítsuk el a másikhoz képest a lemez síkjával párhuzamosan v x sebességgel, a másik lemez maradjon mozduzlatlan. A lemezek felületén a közeg nyugalomban van, így a súrlódás a közeg egyes rétegei között lép fel, minden réteg a szomszédos rétegen súrlódik. Ekkor a rétegek között fellépő súrlódó erők (F s ) legyőzése állandó nagyságú munkavégzéssel lehetséges, így tartható fenn az állandó sebesség (v x ). A munkavégzést előidéző súrlódó erő egyenesen arányos az elmozduló felület nagyságával (A), és a réteg sebességével (v x ), valamint fordítottan arányos a két réteg távolságával (y). Az összefüggést a Newton-féle törvény fejezi ki: dv x Fs A dy ahol arányossági tényező a dinamikai viszkozitás; a két lemez közötti közeg belső súrlódási együtthatója. Mértékegysége: N. s. m - = Pa? s Az előjel azért negatív, mert a súrlódó erő a folyadék sebességvektorával ellenkező irányú. A belső súrlódás tehát az az erő, amely két, egységnyi területű rétegnek egymáshoz képest egységnyi sebességgel történő elmozdításához szükséges. A fenti egyenletnek megfelelően viselkedő folyadékok az ún. newtoni folyadékok. Használatos a kinematikai viszkozitás () is, ami alatt a dinamikai viszkozitás és a sűrűség hányadosát értjük. ahol (ró) a sűrűség, kg? m -3 a dinamikai viszkozitás, Pas (nű) a kinematikai viszkozitás, mértékegysége, m. s -.

2 A viszkozitás változik a hőmérséklettel. Kondenzált rendszerekben (ilyenek a folyadékok) a hőmérsékletnövekedés hatására csökken a viszkozitás az alábbi összefüggés szerint: H η Aexp R ahol A preexponenciális tényező, az adott anyagi rendszerre állandó, H a viszkózus folyás aktiválási entalpiája, J/mol. Gáz fázisok esetében a viszkozitás növekszik a hőmérséklet növekedésével, mivel az ütközések számának növekedésével a részecskék mozgása akadályozottabb lesz. Ez érthető is, ha meggondoljuk, hogy a viszkozitás arányos a közeg belső ellenállásával, vagyis a benne ébredő súrlódási erővel, a súrlódó erő nagysága pedig az ütköző molekulák számával nő. A viszkozitás mérés egyik módszere a Hagen-Poiseuille-törvényen alapszik, amely a kapillárisban történő folyadékáramlás körülményeit írja le. E törvény összefüggést állapít meg az r sugarú, l hosszúságú kapillárisban p nyomáskülönbség hatására t idő alatt átfolyó folyadék térfogata és viszkozitása között. A törvény lamináris áramlásra vonatkozik. Ha törvényből kifejezzük a dinamikai viszkozitást, az alábbi összefüggést kapjuk: 4 R p t 8 V k t ahol R a kapilláris sugara, m l a kapilláris hossza, m V a folyadék térfogata, amely a kapillárison áthalad, m 3 ρ a folyadék sűrűsége, kg/m 3 p nyomáskülönbség, amelynek hatására a folyadék átkényszerül a kapillárison, Pa t k az átfolyási idő, s viszkoziméter állandó; a készülék méretével összefüggő jellemzőit, valamint az állandókat foglalja magába. Ezt a k állandót ismert viszkozitású folyadék (általában desztillált víz) átfolyási idejének a mérésével kell megállapítani (kalibráció). Ha a fenti kifejezést elosztjuk a folyadék sűrűségével, akkor a kinematikai viszkozitás () az átfolyási idő ismeretében közvetlenül számítható. k t Esetünkben a kinematikai viszkozitás meghatározásához az Ostwald-Fenske-féle viszkozimétert használjuk. A mérés abból áll, hogy a termosztátban elhelyezett Ostwald-féle viszkoziméter alsó gömbjéből az adott V térfogatú folyadékot a készülék kapilláris szárú ágában levő gömbbe vízsugárszivattyúval az A jel fölé szívjuk, majd mérjük azt a t időt, amely alatt a V térfogatú folyadék szintje az A jeltől a gömb alatti B jelig süllyed. A vizsgálandó oldat betöltése előtt azonban ismert kinematikai viszkozitású desztillált vízzel megállapítjuk a készülék viszkoziméterállandóját. A B. ábra. Ostwald-Fenske-féle viszkoziméter

3 VIZES SÓOLDAOK VISZKOZIÁSÁNAK MÉRÉSE OSWALD-FENSKE-FÉLE VISZKOZIMÉERREL A mérési feladat:. Határozza meg a viszkoziméter-állandót!. Mérje meg az adott oldat kinematikai viszkozitását különböző hőmérsékleteken! 3. Mérje meg ugyanezen hőmérsékleteken az oldat sűrűségét, és számítsa ki az oldat dinamikai viszkozitását! 4. Ábrázolja az = f(t) függvényt! A gyakorlat kivitelezése: A kiadott koncentrációjú só-oldat viszkozitását változó hőmérsékleten mérjük. A termosztátot az első hőmérsékletre beállítjuk, a viszkoziméterbe és a Mohr-Westphal-mérleg edényébe desztillált vizet töltünk. Miközben a hőmérséklet a készülékekben állandósul, elkészítjük a megadott töménységű sóoldatot, majd ellenőrizzük a sűrűségmérő beállítását. Utóbbi a sóoldatok relatív sűrűségének mérésére szolgál. Mivel a sűrűségmérő eszközt 0 Cos desztillált vízzel kalibrálják mérés előtt, ezért ebben az esetben a relatív sűrűség megadja, hogy a vizsgált oldat sűrűsége hányszorosa a 0 C-os desztillált víz sűrűségének. A relatív sűrűség dimenzió nélküli arányszám. A viszkoziméterbe töltött desztillált vízzel elvégezzük a kalibrációt úgy, hogy a vizet vízsugárszivattyú segítségével -3 mm-rel az alsó gömb felső jele (A) fölé szívjuk és stopper órával megmérjük A-tól B jelig a lefolyási időt egymás után háromszor. Az időadatok átlagából a desztillált víz kinematikai viszkozitásának ismeretében (. táblázat) kiszámítjuk a viszkoziméter állandót: desztvíz k t desztvíz k t desztvíz desztvíz A desztillált vizet a készülékekből kiöntjük, az oldatot betöltve a fenti módon az első, beállított hőmérsékleten mérjük a lefolyási időket, majd Mohr-Westphal mérleggel megállapítjuk a relatív sűrűségeket is. A mérést fentiek szerint a következő, beállított hőmérsékleten is elvégezzük megfelelő termosztálási idő kivárása után. Hőmérséklet, t, C. táblázat: A víz sűrűsége és viszkozitása különböző hőmérsékleten Sűrűség,, g.cm -3 Dinamikai viszkozitás,, mpa? s Kinematikai viszkozitás,, mm. s - 5 0,9993,38,39 0 0,9983,00, , ,8904 0, , ,7976 0, ,9937 0,797 0, ,995 0,6534 0,6585 A mérési adatok kiértékelése Az aktiválási elmélet szerint a folyadékok viszkozitásának () hőmérséklet-függését az alábbi összefüggés adja meg: d ln H. d R 3

4 A fenti összefüggésben a H a viszkózus folyás aktiválási entalpiája (aktiválási energiája), R pedig az egyetemes gázállandó (8,34 J/mol. K). Két hőmérséklet között elvégezve a határozott integrálást, az alábbi kifejezéshez jutunk: H H d ln d, ln. R R Innen a viszkózus folyás aktiválási entalpiája kiszámítható: H R ln a.) A viszkozitás aktiválási energiájának numerikus meghatározása A gyakorlaton két hőmérsékleten (, ) meghatározzuk az oldat dinamikai viszkozitását (, ). Ezeket az értékét behelyettesítjük fenti kifejezésbe, így a viszkozitás aktiválási entalpiája kiszámítható. b.) A viszkozitás aktiválási energiájának grafikus meghatározása A differenciálegyenlet határozatlan integrálása esetén az alábbi összefüggéshez jutunk: H H d ln d, ln ln A. R R Az összefüggés azt mutatja, hogy a dinamikai viszkozitás logaritmusa a hőmérséklet reciprokával lineárisan változik. Ha a négy mérési adatpárt ábrázoljuk a ln / koordináta-rendszerben, és a pontokon át egy egyenest fektetünk, akkor a 3. ábrán látható függvényt kapjuk. ln ln / / 3. ábra: Diagram az aktiválási entalpia grafikus meghatározásához Ennek az egyenesnek az iránytangense (meredeksége) - a határozatlan integrálással kapott egyenlet meredekségéből láthatóan - a viszkozitás aktiválási energiájával arányos. Vagyis ln a érték kiszámítása után az aktiválási entalpia az alábbi összefüggés alapján (/ ) meghatározható: Beadandó mellékletek: = f(t, C ), ln = f(/ ) diagramok ln ln H (/ ) R ln H R. / 4,

5 Név:... cs:... Dátum:... VIZES SÓOLDAOK VISZKOZIÁSÁNAK MÉRÉSE OSWALD-FENSKE-FÉLE VISZKOZIMÉERREL. Viszkoziméter állandó meghatározása Észlelési- és eredménylap A mérés hőmérséklete: t =... o C A víz kinematikai viszkozitása: víz =... mm. s - sűrűsége: víz =... g. cm -3 A víz átfolyási ideje:.)... s.)... s 3.)... s Az átfolyási idők átlaga: t víz =...s Viszkoziméter-állandó számítása: k = víz t víz =... =... mm. s -. Az oldatok viszkozitásának meghatározása A vizsgált oldat megnevezése:... Koncentráció c, mol. Hőmérséklet dm -3 C Átfolyási idő, s.. 3. Átfolyási idők átlaga, s 0 C-os desztillált víz sűrűsége:. Homérséklet t, o C Átfolyási idők átlaga s Relatív sűrűség rel Abszolút sűrűség, g. cm -3 Kinematikai viszkozitás, mm. s - Dinamikai viszkozitás, mpa. s 5

6 3. A viszkozitás aktiválási entalpiájának meghatározása Hőmérséklet (t ) o C ermodinamikai hőmérséklet ( ) K / K - mpa. s ln a.) Numerikus módszerrel a hőmérsékleti és viszkozitási adatokból számítva:. H R ln = - b.) Grafikus úton (diagramról) a differencia hányadosból számítva: A ln=f(/) diagramból leolvasott adatok: / ln ln H R = / Mellékletek: = f (t, C ), ln = f (/ ) diagram 6

7. VIZES OLDATOK VISZKOZITÁSÁNAK MÉRÉSE OSTWALD-FENSKE-FÉLE VISZKOZIMÉTERREL

7. VIZES OLDATOK VISZKOZITÁSÁNAK MÉRÉSE OSTWALD-FENSKE-FÉLE VISZKOZIMÉTERREL 7. VIZES OLDATOK VISZKOZITÁSÁNAK MÉRÉSE OSTWALD-FENSKE-FÉLE VISZKOZIMÉTERREL Számos technológiai folyamat, kémiai reakció színtere gáz, vagy folyékony közeg (fluid közeg). Gondoljunk csak a fémek előállításakor

Részletesebben

5. Laboratóriumi gyakorlat

5. Laboratóriumi gyakorlat 5. Laboratóriumi gyakorlat HETEROGÉN KÉMIAI REAKCIÓ SEBESSÉGÉNEK VIZSGÁLATA A CO 2 -nak vízben történő oldódása és az azt követő egyensúlyra vezető kémiai reakció az alábbi reakcióegyenlettel írható le:

Részletesebben

Reológia Mérési technikák

Reológia Mérési technikák Reológia Mérési technikák Reológia Testek (és folyadékok) külső erőhatásra bekövetkező deformációját, mozgását írja le. A deformációt irreverzibilisnek nevezzük, ha a az erőhatás megszűnése után a test

Részletesebben

Hidrosztatika, Hidrodinamika

Hidrosztatika, Hidrodinamika Hidrosztatika, Hidrodinamika Folyadékok alaptulajdonságai folyadék: anyag, amely folyni képes térfogat állandó, alakjuk változó, a tartóedénytől függ a térfogat-változtató erőkkel szemben ellenállást fejtenek

Részletesebben

Folyadékok és szilárd anyagok sűrűségének meghatározása különböző módszerekkel

Folyadékok és szilárd anyagok sűrűségének meghatározása különböző módszerekkel Folyadékok és szilárd anyagok sűrűségének meghatározása különböző módszerekkel Név: Neptun kód: _ mérőhely: _ Labor előzetes feladatok 20 C-on különböző töménységű ecetsav-oldatok sűrűségét megmérve az

Részletesebben

FOLYADÉK BELSŐ SÚRLÓDÁSÁNAK MÉRÉSE

FOLYADÉK BELSŐ SÚRLÓDÁSÁNAK MÉRÉSE FOLYADÉK BELSŐ SÚRLÓDÁSÁNAK MÉRÉSE 1. Elméleti háttér Viszkozitás Ha pohárban lévő mézet kiskanállal gyorsan kevergetjük, akkor egy idő után a pohár is forogni kezd anélkül, hogy a kiskanállal a pohárhoz

Részletesebben

Fogalom meghatározás A viszkozitás az a nyíróerő, amely az anyag belsejében az alakváltozással szemben hat, tehát tulajdonképpen belső súrlódás.

Fogalom meghatározás A viszkozitás az a nyíróerő, amely az anyag belsejében az alakváltozással szemben hat, tehát tulajdonképpen belső súrlódás. VISZKOZITÁS 1 Fogalom meghatározás A viszkozitás az a nyíróerő, amely az anyag belsejében az alakváltozással szemben hat, tehát tulajdonképpen belső súrlódás. Halmazállapottól függetlenül az anyag alakjának

Részletesebben

Hidrosztatika. Folyadékok fizikai tulajdonságai

Hidrosztatika. Folyadékok fizikai tulajdonságai Hidrosztatika A Hidrosztatika a nyugalomban lévő folyadékoknak a szilárd testekre, felületekre gyakorolt hatásával foglalkozik. Tárgyalja a nyugalomban lévő folyadékok nyomásviszonyait, vizsgálja a folyadékba

Részletesebben

Folyadékáramlás. Orvosi biofizika (szerk. Damjanovich Sándor, Fidy Judit, Szöllősi János) Medicina Könyvkiadó, Budapest, 2006

Folyadékáramlás. Orvosi biofizika (szerk. Damjanovich Sándor, Fidy Judit, Szöllősi János) Medicina Könyvkiadó, Budapest, 2006 14. Előadás Folyadékáramlás Kapcsolódó irodalom: Orvosi biofizika (szerk. Damjanovich Sándor, Fidy Judit, Szöllősi János) Medicina Könyvkiadó, Budapest, 2006 A biofizika alapjai (szerk. Rontó Györgyi,

Részletesebben

Felületi feszültség és viszkozitás mérése. I. Felületi feszültség mérése. Felületi feszültség mérés és viszkozimetria 2. Fizikai kémia gyakorlat 1

Felületi feszültség és viszkozitás mérése. I. Felületi feszültség mérése. Felületi feszültség mérés és viszkozimetria 2. Fizikai kémia gyakorlat 1 Fizikai kémia gyakorlat 1 Felületi feszültség mérés és viszkozimetria 2 I. Felületi feszültség mérése 1. Bevezetés Felületi feszültség és viszkozitás mérése A felületi feszültség fázisok határfelületén

Részletesebben

Termodinamika (Hőtan)

Termodinamika (Hőtan) Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi

Részletesebben

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok

HÁZI FELADATOK. 2. félév. 1. konferencia Komplex számok Figyelem! A feladatok megoldása legyen áttekinthet és részletes, de férjen el az arra szánt helyen! Ha valamelyik HÁZI FELADATOK. félév. konferencia Komple számok Értékelés:. egység: önálló feladatmegoldás

Részletesebben

A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011

A gáz halmazállapot. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 A gáz halmazállapot A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 0 Halmazállapotok, állapotjelzők Az anyagi rendszerek a részecskék közötti kölcsönhatásoktól és az állapotjelzőktől függően

Részletesebben

PHYWE Fizikai kémia és az anyagok tulajdonságai

PHYWE Fizikai kémia és az anyagok tulajdonságai PHYWE Fizikai kémia és az anyagok tulajdonságai Témakörök: Gázok és gáztörvények Felületi feszültség Viszkozitás Sűrűség és hőtágulás Olvadáspont, forráspont, lobbanáspont Hőtan és kalorimetria Mágneses

Részletesebben

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA VEGYIPAR ISMERETEK EMELT SZINTŰ GYAKORLATI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA VEGYIPAR ISMERETEK EMELT SZINTŰ GYAKORLATI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK 06. OKTÓBER VEGYIPAR ISMERETEK EMELT SZINTŰ GYAKORLATI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK 06. OKTÓBER. tétel Anyagvizsgálatok gyakorlat I. Viszkozitás mérése Höppler-féle viszkoziméterrel A mérés megkezdése

Részletesebben

POLIMERTECHNIKA Laboratóriumi gyakorlat

POLIMERTECHNIKA Laboratóriumi gyakorlat MÉRÉSI JEGYZŐKÖNYV Polimer anyagvizsgálat Név: Neptun kód: Dátum:. Gyakorlat célja: 1. Műanyagok folyóképességének vizsgálata, fontosabb reológiai jellemzők kiszámítása 2. Műanyagok Charpy-féle ütővizsgálata

Részletesebben

Folyadékok és gázok mechanikája

Folyadékok és gázok mechanikája Folyadékok és gázok mechanikája Hidrosztatikai nyomás A folyadékok és gázok közös tulajdonsága, hogy alakjukat szabadon változtatják. Hidrosztatika: nyugvó folyadékok mechanikája Nyomás: Egy pontban a

Részletesebben

9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK

9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 1.A gyakorlat célja Az MPX12DP piezorezisztiv differenciális nyomásérzékelő tanulmányozása. A nyomás feszültség p=f(u) karakterisztika megrajzolása. 2. Elméleti

Részletesebben

1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom:

1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom: 1. előadás Gáztörvények Kapcsolódó irodalom: Fizikai-kémia I: Kémiai Termodinamika(24-26 old) Chemical principles: The quest for insight (Atkins-Jones) 6. fejezet Kapcsolódó multimédiás anyag: Youtube:

Részletesebben

Ellenáramú hőcserélő

Ellenáramú hőcserélő Ellenáramú hőcserélő Elméleti összefoglalás, emlékeztető A hőcserélő alapvető működésével és az egyszerűsített számolásokkal a Vegyipari műveletek. tárgy keretében ismerkedtek meg. A mérés elvégzéséhez

Részletesebben

Mérés: Millikan olajcsepp-kísérlete

Mérés: Millikan olajcsepp-kísérlete Mérés: Millikan olajcsepp-kísérlete Mérés célja: 1909-ben ezt a mérést Robert Millikan végezte el először. Mérése során meg tudta határozni az elemi részecskék töltését. Ezért a felfedezéséért Nobel-díjat

Részletesebben

Érettségi feladatok: Koordináta-geometria 1/5

Érettségi feladatok: Koordináta-geometria 1/5 Érettségi feladatok: Koordináta-geometria 1/5 2003. Próba/ 13. Adott egy háromszög három csúcspontja a koordinátáival: A( 4; 4), B(4; 4) és C( 4; 8). Számítsa ki a C csúcsból induló súlyvonal és az A csúcsból

Részletesebben

TÉRFOGATÁRAM MÉRÉSE. Mérési feladatok

TÉRFOGATÁRAM MÉRÉSE. Mérési feladatok Készítette:....kurzus Dátum:...év...hó...nap TÉRFOGATÁRAM MÉRÉSE Mérési feladatok 1. Csővezetékben áramló levegő térfogatáramának mérése mérőperemmel 2. Csővezetékben áramló levegő térfogatáramának mérése

Részletesebben

Halmazállapot-változások vizsgálata ( )

Halmazállapot-változások vizsgálata ( ) Halmazállapot-változások vizsgálata Eddigi tanulmányaik során a szilárd, folyékony és légnemő, valamint a plazma állapottal találkoztak. Ezen halmazállapotok mindegyikében más és más összefüggés áll fenn

Részletesebben

AZ ALUMINUM KORRÓZIÓJÁNAK VIZSGÁLATA LÚGOS KÖZEGBEN

AZ ALUMINUM KORRÓZIÓJÁNAK VIZSGÁLATA LÚGOS KÖZEGBEN Laboratóriumi gyakorlat AZ ALUMINUM KORRÓZIÓJÁNAK VIZSGÁLATA LÚGOS KÖZEGBEN Az alumínium - mivel tipikusan amfoter sajátságú elem - mind savakban, mind pedig lúgokban H 2 fejldés közben oldódik. A fémoldódási

Részletesebben

Vérkeringés. A szív munkája

Vérkeringés. A szív munkája Vérkeringés. A szív munkája 2014.11.04. Keringési Rendszer Szív + erek (artériák, kapillárisok, vénák) alkotta zárt rendszer. Funkció: vér pumpálása vér áramlása az erekben oxigén és tápanyag szállítása

Részletesebben

Az oldatok összetétele

Az oldatok összetétele Az oldatok összetétele Az oldatok összetételét (töménységét) többféleképpen fejezhetjük ki. Ezek közül itt a tömegszázalék, vegyes százalék és a mólos oldat fogalmát tárgyaljuk. a.) Tömegszázalék (jele:

Részletesebben

Érettségi feladatok Koordinátageometria_rendszerezve / 5

Érettségi feladatok Koordinátageometria_rendszerezve / 5 Érettségi feladatok Koordinátageometria_rendszerezve 2005-2013 1/ 5 Vektorok 2005. május 28./12. Adottak az a (4; 3) és b ( 2; 1) vektorok. a) Adja meg az a hosszát! b) Számítsa ki az a + b koordinátáit!

Részletesebben

Debreceni Egyetem. Feladatok a Matematika II. tárgy gyakorlataihoz. Határozatlan integrál

Debreceni Egyetem. Feladatok a Matematika II. tárgy gyakorlataihoz. Határozatlan integrál Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Matematika II. tárgy gyakorlataihoz Határozatlan integrál. z alapintegrálok, elemi átalakítások és lineáris helyettesítések segítségével számítsuk

Részletesebben

Mit nevezünk nehézségi erőnek?

Mit nevezünk nehézségi erőnek? Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt

Részletesebben

A nátrium-klorid oldat összetétele. Néhány megjegyzés az összetételi arány méréséről és számításáról

A nátrium-klorid oldat összetétele. Néhány megjegyzés az összetételi arány méréséről és számításáról A nátrium-klorid oldat összetétele Néhány megjegyzés az összetételi arány méréséről és számításáról Mérés areométerrel kiértékelés lineáris regresszióval αραιός = híg Sodium-chloride solution at 20 Celsius

Részletesebben

V átlag = (V 1 + V 2 +V 3 )/3. A szórás V = ((V átlag -V 1 ) 2 + ((V átlag -V 2 ) 2 ((V átlag -V 3 ) 2 ) 0,5 / 3

V átlag = (V 1 + V 2 +V 3 )/3. A szórás V = ((V átlag -V 1 ) 2 + ((V átlag -V 2 ) 2 ((V átlag -V 3 ) 2 ) 0,5 / 3 5. gyakorlat. Tömegmérés, térfogatmérés, pipettázás gyakorlása tömegméréssel kombinálva. A mérési eredmények megadása. Sóoldat sőrőségének meghatározása, koncentrációjának megadása a mért sőrőség alapján.

Részletesebben

Fermi Dirac statisztika elemei

Fermi Dirac statisztika elemei Fermi Dirac statisztika elemei A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra érvényes klasszikus statisztika

Részletesebben

Zaj- és rezgés. Törvényszerűségek

Zaj- és rezgés. Törvényszerűségek Zaj- és rezgés Törvényszerűségek A hang valamilyen közegben létrejövő rezgés. A vivőközeg szerint megkülönböztetünk: léghangot (a vivőközeg gáz, leggyakrabban levegő); folyadékhangot (a vivőközeg folyadék,

Részletesebben

NYOMÁS ÉS NYOMÁSKÜLÖNBSÉG MÉRÉS. Mérési feladatok

NYOMÁS ÉS NYOMÁSKÜLÖNBSÉG MÉRÉS. Mérési feladatok Hidrodinamikai Rendszerek Tanszék Készítette:... kurzus Elfogadva: Dátum:...év...hó...nap NYOMÁS ÉS NYOMÁSKÜLÖNBSÉG MÉRÉS Mérési feladatok 1. Csővezetékben áramló levegő nyomásveszteségének mérése U-csöves

Részletesebben

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 Kérdések. 1. Mit mond ki a termodinamika nulladik főtétele? Azt mondja ki, hogy mindenegyes termodinamikai kölcsönhatáshoz tartozik a TDR-nek egyegy

Részletesebben

Sók oldékonysági szorzatának és oldáshőjének meghatározása vezetés méréssel

Sók oldékonysági szorzatának és oldáshőjének meghatározása vezetés méréssel Sók oldékonysági szorzatának és oldáshőjének meghatározása vezetés méréssel 1. Bevezetés Az elektromos ellenállás anyagi tulajdonság, melyen -definíció szerint- az anyagon áthaladó 1 amper intenzitású

Részletesebben

Abszolútértékes egyenlôtlenségek

Abszolútértékes egyenlôtlenségek Abszolútértékes egyenlôtlenségek 575. a) $, $ ; b) < - vagy $, # - vagy > 4. 5 576. a) =, =- 6, 5 =, =-, 7 =, 4 = 5; b) nincs megoldás;! c), = - ; d) =-. Abszolútértékes egyenlôtlenségek 577. a) - # #,

Részletesebben

6 Ionszelektív elektródok. elektródokat kiterjedten alkalmazzák a klinikai gyakorlatban: az automata analizátorokban

6 Ionszelektív elektródok. elektródokat kiterjedten alkalmazzák a klinikai gyakorlatban: az automata analizátorokban 6. Szelektivitási együttható meghatározása 6.1. Bevezetés Az ionszelektív elektródok olyan potenciometriás érzékelők, melyek valamely ion aktivitásának többé-kevésbé szelektív meghatározását teszik lehetővé.

Részletesebben

3. Gyakorlat Áramlástani feladatok és megoldásuk

3. Gyakorlat Áramlástani feladatok és megoldásuk 3 Gyakorlat Áramlástani feladatok és megoldásuk 681 Feladat Adja meg Kelvin és Fahrenheit fokban a T = + 73 = 318 K o K T C, T = 9 5 + 3 = 113Fo F T C 68 Feladat Adja meg Kelvin és Celsius fokban a ( T

Részletesebben

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS!

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! 1. példa Vasúti kocsinak a 6. ábrán látható ütközőjébe épített tekercsrugóban 44,5 kn előfeszítő erő ébred. A rugó állandója 0,18

Részletesebben

Kollár Veronika A biofizika fizikai alapjai

Kollár Veronika A biofizika fizikai alapjai Kollár Veronika A biofizika fizikai alajai 013. 10. 14. Folyadékok alatulajdonságai folyadék: anyag, amely folyni kées térfogat állandó, alakjuk változó, a tartóedénytől függ a térfogat-változtató erőkkel

Részletesebben

Nemzeti Akkreditáló Testület. MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (1) a NAT /2010 számú akkreditált státuszhoz

Nemzeti Akkreditáló Testület. MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (1) a NAT /2010 számú akkreditált státuszhoz Nemzeti Akkreditáló Testület MÓDOSÍTOTT RÉSZLETEZŐ OKIRAT (1) a NAT-1-1101/2010 számú akkreditált státuszhoz A Magyar Honvédség Anyagellátó Raktárbázis Üzemanyag Bevizsgáló Alosztály 1 (2378 Pusztavacs,

Részletesebben

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport Elméleti kérdések 11. osztály érettségire el ı készít ı csoport MECHANIKA I. 1. Definiálja a helyvektort! 2. Mondja meg mit értünk vonatkoztatási rendszeren! 3. Fogalmazza meg kinematikailag, hogy mikor

Részletesebben

MŰSZAKI HŐTAN I. 1. ZÁRTHELYI. Termodinamika. Név: Azonosító: Helyszám: Munkaidő: 80 perc I. 50 II. 50 ÖSSZ.: 100. Javította: Képzési kódja:

MŰSZAKI HŐTAN I. 1. ZÁRTHELYI. Termodinamika. Név: Azonosító: Helyszám: Munkaidő: 80 perc I. 50 II. 50 ÖSSZ.: 100. Javította: Képzési kódja: Képzési kódja: MŰSZAKI HŐTAN I. 1. ZÁRTHELYI N- Név: Azonosító: Helyszám: Jelölje meg aláhúzással vagy keretezéssel a Gyakorlatvezetőjét! Dobai Attila Györke Gábor Péter Norbert Vass Bálint Termodinamika

Részletesebben

Fluidizált halmaz jellemzőinek mérése

Fluidizált halmaz jellemzőinek mérése 1. Gyakorlat célja Fluidizált halaz jellezőinek érése A szecsés halaz tulajdonságainak eghatározása, a légsebesség-nyoásesés görbe és a luidizációs határsebesseg eghatározása. A érésekböl eghatározott

Részletesebben

1. feladat Összesen 5 pont. 2. feladat Összesen 19 pont

1. feladat Összesen 5 pont. 2. feladat Összesen 19 pont 1. feladat Összesen 5 pont Válassza ki, hogy az alábbi táblázatban olvasható állításokhoz mely szivattyúcsővezetéki jelleggörbék rendelhetők (A D)! Írja a jelleggörbe betűjelét az állítások utáni üres

Részletesebben

Az úszás biomechanikája

Az úszás biomechanikája Az úszás biomechanikája Alapvető összetevők Izomerő Kondíció állóképesség Mozgáskoordináció kivitelezés + Nem levegő, mint közeg + Izmok nem gravitációval szembeni mozgása + Levegővétel Az úszóra ható

Részletesebben

Szent István Egyetem FIZI IKA Folyadékok fizikája (Hidrodinamika) Dr. Seres István

Szent István Egyetem FIZI IKA Folyadékok fizikája (Hidrodinamika) Dr. Seres István Szent István Egyetem FIZI IKA Folyadékok fizikája (Hidrodinamika) Dr. Seres István Hidrosztatika Ideális folyadékok áramlása Viszkózus folyadékok áramlása Felületi feszültség fft.szie.hu 2 Seres.Istvan@gek.szie.hu

Részletesebben

A keverés fogalma és csoportosítása

A keverés fogalma és csoportosítása A keverés A keverés fogalma és csoportosítása olyan vegyipari művelet, melynek célja a homogenizálás (koncentráció-, hőmérséklet-, sűrűség-, viszkozitás kiegyenlítése) vagy a részecskék közvetlenebb érintkezésének

Részletesebben

Hőtágulás - szilárd és folyékony anyagoknál

Hőtágulás - szilárd és folyékony anyagoknál Hőtágulás - szilárd és folyékony anyagoknál Celsius hőmérsékleti skála: 0 ºC pontja a víz fagyáspontja 100 ºC pontja a víz forráspontja Kelvin hőmérsékleti skála: A beosztása 273-al van elcsúsztatva a

Részletesebben

2011/2012 tavaszi félév 2. óra. Tananyag:

2011/2012 tavaszi félév 2. óra. Tananyag: 2011/2012 tavaszi félév 2. óra Tananyag: 2. Gázelegyek, gőztenzió Gázelegyek összetétele, térfogattört és móltört egyezősége Gázelegyek sűrűsége Relatív sűrűség Parciális nyomás és térfogat, Dalton-törvény,

Részletesebben

FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK

FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK 2007-2008-2fé EHA kód:.név:.. 1. Egy 5 cm átmérőjű vasgolyó 0,01 mm-rel nagyobb, mint a sárgaréz lemezen vágott lyuk, ha mindkettő 30 C-os. Mekkora

Részletesebben

HIDROSZTATIKA, HIDRODINAMIKA

HIDROSZTATIKA, HIDRODINAMIKA HIDROSZTATIKA, HIDRODINAMIKA Hidrosztatika a nyugvó folyadékok fizikájával foglalkozik. Hidrodinamika az áramló folyadékok fizikájával foglalkozik. Folyadékmodell Önálló alakkal nem rendelkeznek. Térfogatuk

Részletesebben

2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma: 2. Rugalmas állandók mérése jegyzőkönyv javított Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 17. Leadás dátuma: 2008. 10. 08. 1 1. Mérések ismertetése Az első részben egy téglalap keresztmetszetű

Részletesebben

Az oldatok összetétele

Az oldatok összetétele Az oldatok összetétele Az oldatok összetételét (töménységét) többféleképpen fejezhetjük ki. Ezek közül itt a tömegszázalék, vegyesszázalék és a mólos oldat fogalmát tárgyaljuk. a.) Tömegszázalék (jele:

Részletesebben

Reakciókinetika és katalízis

Reakciókinetika és katalízis Reakciókinetika és katalízis k 4. előadás: 1/14 Különbségek a gázfázisú és az oldatreakciók között: 1 Reaktáns molekulák által betöltött térfogat az oldatreakciónál jóval nagyobb. Nincs akadálytalan mozgás.

Részletesebben

ELLENÁLLÁSOK HŐMÉRSÉKLETFÜGGÉSE. Az ellenállások, de általában minden villamos vezetőanyag fajlagos ellenállása 20 o

ELLENÁLLÁSOK HŐMÉRSÉKLETFÜGGÉSE. Az ellenállások, de általában minden villamos vezetőanyag fajlagos ellenállása 20 o ELLENÁLLÁSO HŐMÉRSÉLETFÜGGÉSE Az ellenállások, de általában minden villamos vezetőanyag fajlagos ellenállása 20 o szobahőmérsékleten értelmezett. Ismeretfrissítésként tekintsük át az 1. táblázat adatait:

Részletesebben

Áramlástechnikai mérések

Áramlástechnikai mérések Áramlástehnikai mérések Mérés Prandtl- ső segítségével. Előző tanulmányaikból ismert: A kontinuitás elve: A A Ahol: - a közeg sebessége az. pontban - a közeg sebessége a. pontban A, A - keresztmetszetek

Részletesebben

ROTAMÉTER VIZSGÁLATA. 1. Bevezetés

ROTAMÉTER VIZSGÁLATA. 1. Bevezetés ROTMÉTER VIZSGÁLT. Bevezetés 0.0. 4. rotaméter az áramlási mennyiségmérők egyik ajtája. rotamétert egyaránt lehet áramló olyadékok és gázok térogatáramának mérésére használni, mégpedig kis (labor) méretektől

Részletesebben

Gáztörvények tesztek

Gáztörvények tesztek Gáztörvények tesztek. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik gázmennyiség jellemzői,,, a másiké,,. A két tartályt összenyitjuk. Melyik állítás igaz?

Részletesebben

Gáztörvények tesztek. 2. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik

Gáztörvények tesztek. 2. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik Gáztörvények tesztek. Azonos fajtájú ideális gáz különböző mennyiségei töltenek ki két hőszigetelt tartályt. Az egyik gázmennyiség jellemzői,,, a másiké,,. A két tartályt összenyitjuk. Melyik állítás igaz?

Részletesebben

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor Nézd meg a képet és jelöld az 1. igaz állításokat! 1:56 Könnyű F sak a sárga golyó fejt ki erőhatást a fehérre. Mechanikai kölcsönhatás jön létre a golyók között. Mindkét golyó mozgásállapota változik.

Részletesebben

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor

TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor gázok hőtágulása függ: 1. 1:55 Normál de független az anyagi minőségtől. Függ az anyagi minőségtől. a kezdeti térfogattól, a hőmérséklet-változástól, Mlyik állítás az igaz? 2. 2:31 Normál Hőáramláskor

Részletesebben

Folyamatirányítás. Számítási gyakorlatok. Gyakorlaton megoldandó feladatok. Készítette: Dr. Farkas Tivadar

Folyamatirányítás. Számítási gyakorlatok. Gyakorlaton megoldandó feladatok. Készítette: Dr. Farkas Tivadar Folyamatirányítás Számítási gyakorlatok Gyakorlaton megoldandó feladatok Készítette: Dr. Farkas Tivadar 2010 I.-II. RENDŰ TAGOK 1. feladat Egy tökéletesen kevert, nyitott tartályban folyamatosan meleg

Részletesebben

Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki Kar. Járműelemek és Hajtások Tanszék. Siklócsapágyak.

Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki Kar. Járműelemek és Hajtások Tanszék. Siklócsapágyak. BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM K ö z l e k e d é s m é r n ö k i K a r Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki Kar Járműelemek és Hajtások Tanszék Járműelemek és

Részletesebben

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Alkalmazás a makrókanónikus sokaságra: A fotongáz Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,

Részletesebben

4. A metil-acetát lúgos hidrolízise. Előkészítő előadás

4. A metil-acetát lúgos hidrolízise. Előkészítő előadás 4. A metil-acetát lúgos hidrolízise Előkészítő előadás 207.02.20. A metil-acetát hidrolízise Metil-acetát: ecetsav metil észtere, CH 3 COOCH 3 Hidrolízis: reakció a vízzel, mint oldószerrel. CH 3 COOCH

Részletesebben

2.9.1. TABLETTÁK ÉS KAPSZULÁK SZÉTESÉSE

2.9.1. TABLETTÁK ÉS KAPSZULÁK SZÉTESÉSE 2.9.1 Tabletták és kapszulák szétesése Ph.Hg.VIII. Ph.Eur.6.3-1 01/2009:20901 2.9.1. TABLETTÁK ÉS KAPSZULÁK SZÉTESÉSE A szétesésvizsgálattal azt határozzuk meg, hogy az alábbiakban leírt kísérleti körülmények

Részletesebben

a NAT /2006 nyilvántartási számú akkreditálási státuszhoz

a NAT /2006 nyilvántartási számú akkreditálási státuszhoz Nemzeti Akkreditáló Testület MÓDOSÍTOTT RÉSZLETEZÕ OKIRAT a NAT-1-1101/2006 nyilvántartási számú akkreditálási státuszhoz A Magyar Honvédség Veszélyesanyag Ellátó Központ, Központi Veszélyesanyag Bevizsgáló

Részletesebben

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk:

1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: Válaszoljatok a következő kérdésekre: 1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: a) zéró izoterm átalakulásnál és végtelen az adiabatikusnál

Részletesebben

Belső energia, hőmennyiség, munka Hőtan főtételei

Belső energia, hőmennyiség, munka Hőtan főtételei Belső energia, hőmennyiség, munka Hőtan főtételei Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak.

Részletesebben

3. Termoelektromos hűtőelemek vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

3. Termoelektromos hűtőelemek vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma: 3. Termoelektromos hűtőelemek vizsgálata jegyzőkönyv Zsigmond Anna Fizika Bsc. Mérés dátuma: 28... Leadás dátuma: 28.. 8. . Mérések ismertetése A Peltier-elemek az. ábrán látható módon vannak elhelyezve

Részletesebben

Mikroszkóp vizsgálata Folyadék törésmutatójának mérése

Mikroszkóp vizsgálata Folyadék törésmutatójának mérése KLASSZIKUS FIZIKA LABORATÓRIUM 8. MÉRÉS Mikroszkóp vizsgálata Folyadék törésmutatójának mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 12. Szerda délelőtti csoport

Részletesebben

Feladatok matematikából 3. rész

Feladatok matematikából 3. rész Debreceni Egyetem Matematikai Intézet Feladatok matematikából 3. rész fizika és villamosmérök alapszakos hallgatók részére Debrecen, 6 ősz Határozatlan integrál. Számítsuk ki a következő integrálokat!

Részletesebben

2. Rugalmas állandók mérése

2. Rugalmas állandók mérése 2. Rugalmas állandók mérése Klasszikus fizika laboratórium Mérési jegyzőkönyv Mérést végezte: Vitkóczi Fanni Jegyzőkönyv leadásának időpontja: 2012. 12. 15. I. A mérés célja: Két anyag Young-modulusának

Részletesebben

Oldatkészítés, ph- és sűrűségmérés

Oldatkészítés, ph- és sűrűségmérés Oldatkészítés, ph- és sűrűségmérés A laboratóriumi gyakorlat során elvégzendő feladat: Oldatok hígítása, adott ph-jú pufferoldat készítése és vizsgálata, valamint egy oldat sűrűségének mérése. Felkészülés

Részletesebben

Cseppfolyós halmazállapotú közegek. hőtranszport-jellemzőinek számítása. Gergely Dániel Zoltán

Cseppfolyós halmazállapotú közegek. hőtranszport-jellemzőinek számítása. Gergely Dániel Zoltán Cseppfolyós halmazállapotú közegek hőtranszport-jellemzőinek számítása Gergely Dániel Zoltán Bevezetés Ez a segédlet elsősorban a Pécsi Tudományegyetem Pollack Mihály Műszaki és Informatikai kar Gépészmérnök

Részletesebben

Reológia, a koherens rendszerek tulajdonságai

Reológia, a koherens rendszerek tulajdonságai Reológia, a koherens rendszerek tulajdonságai Bányai István http://dragon.unideb.hu/~kolloid/ Koherens rendszerek Szubmikroszkópos vagy durva diszkontinuitásokat tartalmazó rendszerek, amelyekben micellák,

Részletesebben

Nyomástartóedény-gépész Kőolaj- és vegyipari géprendszer üzemeltetője

Nyomástartóedény-gépész Kőolaj- és vegyipari géprendszer üzemeltetője A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

MUNKAANYAG. Szabó László. Hogyan kell U csöves manométerrel nyomást mérni? A követelménymodul megnevezése: Fluidumszállítás

MUNKAANYAG. Szabó László. Hogyan kell U csöves manométerrel nyomást mérni? A követelménymodul megnevezése: Fluidumszállítás Szabó László Hogyan kell U csöves manométerrel nyomást mérni? A követelménymodul megnevezése: Fluidumszállítás A követelménymodul száma: 699-06 A tartalomelem azonosító száma és célcsoportja: SzT-001-0

Részletesebben

1. feladat Összesen 8 pont. 2. feladat Összesen 18 pont

1. feladat Összesen 8 pont. 2. feladat Összesen 18 pont 1. feladat Összesen 8 pont Az ábrán egy szállítóberendezést lát. A) Nevezze meg a szállítóberendezést!... B) Milyen elven működik a berendezés?... C) Nevezze meg a szállítóberendezést számokkal jelölt

Részletesebben

Légköri termodinamika

Légköri termodinamika Légköri termodinamika Termodinamika: a hőegyensúllyal, valamint a hőnek, és más energiafajtáknak kölcsönös átalakulásával foglalkozó tudományág. Meteorológiai vonatkozása ( a légkör termodinamikája): a

Részletesebben

1. gy. SÓ OLDÁSHŐJÉNEK MEGHATÁROZÁSA. Kalorimetriás mérések

1. gy. SÓ OLDÁSHŐJÉNEK MEGHATÁROZÁSA. Kalorimetriás mérések 1. gy. SÓ OLDÁSHŐJÉNEK MEGHATÁROZÁSA Kalorimetriás mérések A fizikai és kémiai folyamatokat energiaváltozások kísérik, melynek egyik megnyilvánulása a hőeffektus. A rendszerben ilyen esetekben észlelhető

Részletesebben

Orvosi Fizika 10. Biológiai membránok fizikája, diffúzió, ozmózis Dr. Nagy László

Orvosi Fizika 10. Biológiai membránok fizikája, diffúzió, ozmózis Dr. Nagy László Orvosi Fizika 10. Biológiai membránok fizikája, diffúzió, ozmózis Dr. Nagy László -Az anyagcsere és a transzportfolyamatok. - Makrotranszport : jelentős anyagmennyiségek transzportja : csöveken, edényeken

Részletesebben

Méréstechnika. Hőmérséklet mérése

Méréstechnika. Hőmérséklet mérése Méréstechnika Hőmérséklet mérése Hőmérséklet: A hőmérséklet a termikus kölcsönhatáshoz tartozó állapotjelző. A hőmérséklet azt jelzi, hogy egy test hőtartalma milyen szintű. Amennyiben két eltérő hőmérsékletű

Részletesebben

Digitális tananyag a fizika tanításához

Digitális tananyag a fizika tanításához Digitális tananyag a izika tanításához Gázok állaotjelzői Adott mennyiségű gáz állaotjelzői: Nyomás: []=Pa=N/m Térogat []=m 3 Hőmérséklet [T]=K; A gázok állaotát megadó egyéb mennyiségek: tömeg: [m]=g

Részletesebben

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg

Részletesebben

Méréselmélet és mérőrendszerek

Méréselmélet és mérőrendszerek Méréselmélet és mérőrendszerek 6. ELŐADÁS KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba eredete o

Részletesebben

1.1 Hasonlítsa össze a valós ill. ideális folyadékokat legfontosabb sajátosságaik alapján!

1.1 Hasonlítsa össze a valós ill. ideális folyadékokat legfontosabb sajátosságaik alapján! Kérem, þ jellel jelölje be képzését! AKM VBK Környezetmérnök BSc AT0 Ipari termék- és formatervező BSc AM0 Mechatronikus BSc AM Mechatronikus BSc ÁRAMLÁSTAN. FAKULTATÍV ZH 203.04.04. KF8 Név:. NEPTUN kód:

Részletesebben

Termodinamika. 1. rész

Termodinamika. 1. rész Termodinamika 1. rész 1. Alapfogalmak A fejezet tartalma FENOMENOLÓGIAI HŐTAN a) Hőmérsékleti skálák (otthoni feldolgozással) b) Hőtágulások (otthoni feldolgozással) c) A hőmérséklet mérése, hőmérők (otthoni

Részletesebben

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:...

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:... T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 7. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...

Részletesebben

Ellenállásmérés Ohm törvénye alapján

Ellenállásmérés Ohm törvénye alapján Ellenállásmérés Ohm törvénye alapján A mérés elmélete Egy fémes vezetőn átfolyó áram I erőssége egyenesen arányos a vezető végpontjai közt mérhető U feszültséggel: ahol a G arányossági tényező az elektromos

Részletesebben

STAF, STAF-SG. Beszabályozó szelepek DN , PN 16 és PN 25

STAF, STAF-SG. Beszabályozó szelepek DN , PN 16 és PN 25 STAF, STAF-SG Beszabályozó szelepek DN 20-400, PN 16 és PN 25 IMI TA / Beszabályozó szelepek / STAF, STAF-SG STAF, STAF-SG A karimás, szürkeöntvény (STAF) és gömbgrafitos öntvény (STAF-SG) beszabályozó

Részletesebben

3. Mérőeszközök és segédberendezések

3. Mérőeszközök és segédberendezések 3. Mérőeszközök és segédberendezések A leggyakrabban használt mérőeszközöket és használatukat is ismertetjük. Az ipari műszerek helyi, vagy távmérésre szolgálnak; lehetnek jelző és/vagy regisztráló műszerek;

Részletesebben

Elektrotechnika. Ballagi Áron

Elektrotechnika. Ballagi Áron Elektrotechnika Ballagi Áron Mágneses tér Elektrotechnika x/2 Mágneses indukció kísérlet Állandó mágneses térben helyezzünk el egy l hosszúságú vezetőt, és bocsássunk a vezetőbe I áramot! Tapasztalat:

Részletesebben

Mérési jegyzőkönyv. M1 számú mérés. Testek ellenállástényezőjének mérése

Mérési jegyzőkönyv. M1 számú mérés. Testek ellenállástényezőjének mérése Tanév, félév 2010-11 I. félév Tantárgy Áramlástan GEÁTAG01 Képzés főiskola (BSc) Mérés A Nap Hét A mérés dátuma 2010 Dátum Pontszám Megjegyzés Mérési jegyzőkönyv M1 számú mérés Testek ellenállástényezőjének

Részletesebben

Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése

Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése (Mérési jegyzőkönyv) Hagymási Imre 2007. március 19. (hétfő délelőtti csoport) 1. Mikroszkóp vizsgálata 1.1. A mérés

Részletesebben

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS

Részletesebben

Folyadékok és gázok mechanikája

Folyadékok és gázok mechanikája Folyadékok és gázok mechanikája A folyadékok nyomása A folyadék súlyából származó nyomást hidrosztatikai nyomásnak nevezzük. Függ: egyenesen arányos a folyadék sűrűségével (ρ) egyenesen arányos a folyadékoszlop

Részletesebben